PARSONS

Parsons Engineering Science, Inc. • A Unit of Parsons Infrastructure & Technology Group Inc. 30 Dan Road • Canton, Massachusetts 02021-2809 • (781) 401-3200 • Fax: (781) 401-2575 • www.parsons.com

March 4, 2002

Ms. Alicia Thorne			
New York State Department of Environmental Conser	.•	AWONDON	
Bureau of Eastern Remedial Action		00767	
Division of Hazardous Waste Remediation		00767	드레멘
625 Broadway, 11 th Floor		07	- 利納予約
Albany, NY 12233-7010		5/	
		- ,	= 2%Cs
			line of T - Life L

SUBJECT: Seneca Army Depot Activity – Use of the Universal Radiation Spectrum Analyzer (URSA)

Dear Ms. Thorne:

This letter is in response to comments from the New York State Department of Health (NYSDOH) regarding the use of the Universal Radiation Spectrum Analyzer (URSA). This letter was dated September 6, 2001, and was sent under cover of the New York State Department of Environmental Conservation (NYSDEC). The letter is attached as **Attachment A**.

On August 15, 2001, Parsons' Health Physicists Mr. Ronald McConn and Mr. John Hackett gave a presentation to radiation specialists from the NYSDOH and NYSDEC. The purpose of the presentation was to demonstrate the capabilities of the URSA and explain its applications at SEAD-12 during the Phase II building surveys. While the URSA's ability to screen areas of contamination was noted, concerns were raised about its ability to quantify volumetric contamination. These concerns were reiterated in the September 6, 2001 letter from NYSDOH.

This letter addresses State concerns raised during the August 15th meeting and in the September 6th letter regarding 1) the ability of the URSA to quantify contamination; 2) the correlation of material samples and URSA instrument readings; and 3) the use of the NaI-based URSA versus the high purity Germanium (HPGe) detector at SEAD-12.

URSA's Ability to Quantify Contamination

The following issues are discussed in support of the URSA's ability to quantify contamination, if present, at Seneca:

- (1) There is very limited potential for volumetric contamination at SEAD-12 or else where at Seneca;
- (2) Very little change in the URSA detector response is predicted when radiological contamination is present at probable thicknesses;
- (3) The MDAs achieved using the URSA are below DCGLs; and
- (4) Background radioactivity can be directly subtracted from instrument readings.

Each of the points are described in detail below.

P:\Pit\Projects\Seneca\S12ri\Comments\URSA\response0130.doc

- 1) There is limited potential for volumetric contamination at SEAD-12 or elsewhere at Seneca. Of particular concern at SEAD-12 is the migration of Plutonium and Americium To determine the potential for Plutonium and Americium into porous materials. contamination intrusion into concrete over a 40-year time frame, solubility/infiltration modeling was completed. This assessment is summarized in Attachment B of this letter. This assessment was completed by assuming that a saturated water solution of Plutonium and Americium based on weapons grade Plutonium sits on a concrete surface for 180 days per year for 40 years. This solution would migrate through the concrete and deposit the radioactive materials within the concrete matrix. Plutonium or Americium materials would migrate quickly as liquids or particulates into cracks in the concrete. The initial result of this calculation indicates that deposition within the concrete from this mechanism is negligible (approximately 2x10⁻⁶ pCi/g) over a 40-year time frame. This result was expected as Plutonium and Americium materials are not soluble in water and would require a highly acidic solution to facilitate further intrusion. Additionally, no cracking of the surfaces was observed such as pitting of walls or floors that is typical when concrete is subjected to highly acidic conditions, and the use of acid solutions is inconsistent with the activities in the facility. Because there is no indication that acid solutions were used in the buildings in SEAD-12, appreciable migration of Plutonium and Americium into concrete structures is not likely.
- 2) Very little change in the URSA detector response is predicted when radiological contamination is present at probable thicknesses. Monte Carlo analyses modeling the potential extent of volumetric contamination at SEAD-12 were completed based on the URSA gamma spectroscopy results. The expected thin crystal NaI detector response to volumetric contamination into concrete at various depths was modeled as described in Attachment C. The results of the modeling show that for a 60 keV source, a 30% change in detector response may be expected at 1 cm (scenario 1) and less than 10% may be expected at the 0.25 cm thickness (scenario 2). As discussed above, migration of radionuclides into materials is highly unlikely and therefore radionuclides embedded at a thickness of 1 cm (scenario 1) is unlikely. Scenario 2 is more probable, where a surface may have been painted over. The modeling shows that in this scenario, less than a 10% change in the detector response is expected. Based on the outcome of the modeled detector responses and the unlikelihood of scenario 1, it was determined that the SEAD-12 gamma spectroscopy data could reliably be compared to the DCGLs as surface contamination.
- 3) The MDAs achieved using the URSA are below DCGLs. The minimum detectable activities (MDAs) for the primary materials found in SEAD-12 buildings are adequate using a thin window NaI-based system. The NaI-based system can produce results below the DCGLs for the building materials using a 60 to 70 -minute count time. The graphs in Figure 1 and Figure 2 illustrate this point. The URSA measurements are being used as part of a multi-tiered survey approach at the SEAD-12 buildings to determine if any contamination exists. If elevated levels were found during the initial alpha, beta, or gamma surveys those areas were then surveyed with a FIDLER that was setup with an electronic window to discriminate the Am-241 59.5 keV photon energy. The survey with the Am-241 windowed FIDLER was followed by an URSA measurement having a count time of sufficient length to meet the DCGL requirements for the material being examined.

P:\Pit\Projects\Seneca\S12ri\Comments\URSA\response1210.doc

·

4) Background radioactivity can be subtracted from instrument readings. Material specific background in situ gamma measurements can be subtracted from the site in situ measurement to show activity above background. A graphical example of this is shown in Figure 3. The decay gamma energy spectra are consistent with what is expected from naturally occurring uranium and thorium. The ability to subtract background spectra can be used to eliminate elevated readings that may have been encountered during gross measurements to truly determine whether or not elevated radiation exists or not.

Material Sample Results Compared to URSA Readings at SEAD-12

Material samples analyzed with the URSA in the field were sent to General Engineering Laboratories, Inc. for isotopic analysis so that a correlation could be drawn. Locations were sampled where field survey equipment indicated an area to be potentially elevated. The laboratory analysis indicated that there were no elevated concentrations present in the seven material samples that were analyzed for Americium-241 and Plutonium-239/240. These results confirmed the determination based on gamma spectroscopy using the URSA that the material samples did not contain elevated levels of these radionuclides. **Table 1** reports both the laboratory analytical results and the URSA results for the seven material samples that were collected. No correlation factor could be derived since neither the field nor analytical results detected anything significant.

Use of the NaI-Based URSA Versus the High Purity Germanium (HPGe) System

NYSDEC had expressed concern about using the NaI-based URSA system instead of a high purity germanium (HPGe) system. At the end of this letter is a reference list citing several studies have been done on the use and performance of NaI-based spectroscopy systems. Some of the topics that are covered in the articles are:

- The adequacy of NaI detectors for analysis of natural background measurements (HASL-258, 1972);
- The use of the NaI spectroscopy, including making of NaI crystals, electronics development, calibration, analysis, and interferences. There is also discussion on the efficiencies of various crystal geometries (Crouthamel, 1960); and
- A comparison of NaI and Ge measurements for various radionuclides with different energy photons (Lowder, 1972).

The NaI-based system has several advantages over the HPGe system. The high expense of purchasing germanium-based systems, limited availability of HPGe rentals, and additional logistics concerns, such as system mobility, make an HPGe system an impractical solution for the isotopic analysis at SEAD-12. In addition, the gamma-emitting radionuclides of concern at SEAD-12 are low-energy gamma emitters that can be adequately detected by a thin crystal NaI-based system. The data collection needs at SEAD-12 do not justify the additional expense of an HPGe system.

Parsons is determined to satisfy the regulators' concerns about the application of the URSA at the SEAD-12 buildings. We are confident that the URSA/NaI-based system is capable of radiological quantification at a level of certainty that demonstrates it effectiveness. We would like to continue to use the URSA in field investigations at Seneca to (1) take specific measurements at elevated gross readings identified during survey efforts, and (2) to determine if levels detected are (i) distinguishable from background, (ii) above DCGLs, and (iii) to identify

P:\Pit\Projects\Seneca\S12ri\Comments\URSA\response1210.doc

۰, t

the particular isotope(s) of concern. If residual radioactivity is above the DCGLs, material samples will be collected and analyzed for the isotope of concern to confirm actual quantities of radioisotopes present. The ex-situ sample analysis will provide confirmatory data, and is consistent with the NYSDOH requests for assessing contamination.

In order to standardize the data collection/identification/quantification process with the URSA, we have provided "A Guidance for Spectrum Analysis Process" document that has been developed by Parsons' Certified Health Physicist, Mr. Steve Woolfolk. This document, which is provided as **Attachment D** to this letter, gives instruction in the process of selecting, using, and analyzing energy-specific radiation emissions data using spectroscopy. Included is information on the use of the URSA with a NaI detector for gamma spectroscopy.

Should you have any questions regarding this letter, please do not hesitate to call me at (781) 401-2535 to discuss them.

Sincerely,

PARSONS ENGINEERING SCIENCE, INC.

Couline Fravers

Jacqueline Travers, P.E. Task Order Manager

cc: S. Absolom, SEDA K. Hoddinott - USACHPPM J. Mullikin - USACHPPM T. Sydelko, Argonne Nat'l Lab E. Kashdan, Gannett Fleming J. Vazquez, USEPA T. Enroth, USACOE – NY District Marshall Greene, USACOE C. Kim, USAEC B. Wright, USAIOC K. Healy, USACE

P:\Pit\Projects\Seneca\S12ri\Comments\URSA\response1210.doc

• 2

Figure 1

Figure 2

ł . ,

Figure 3 URSA Background and SEAD-12 Spectra Seneca Army Depot Activity <u>Background Concrete Spectrum</u>

Raw Spectrum with Background Spectrum Subtracted

Raw Spectrum with Background Spectrum Subtracted with Energy Peaks Identified

1) This spectrum is of concrete from building 804, room 1, grid 10, location C9.

• •

Table 1 Analytical and URSA Results for Material Samples SEAD-12 Building Survey Seneca Army Depot Activity

Building		804			804				
Location ID		804-1-08		804-3-(*3					
Grid ID			804-1-5				804-3-14		
Matrix			Misc Solid				Mise Solid		
Date collected			8/23/2001				8/28/2001		
Туре			SA				SA		
	Parameter	Result (pCi/g)	Error (+/-)	Qualifier	MDA	Result (pCi/g)	Error (+/-)	Qualifier	MDA
Laboratory Analytical	Americium-241	0.0143	0.0107		0.0122	0.00571	0.0151	U	0.0273
Data	Plutonium-239/240	-0.0122	0.0139	U	0.0297	-0.0137	0.012	U	0.0288
URSA Data	Americium-241	N	ot Identified		0,06	Not Identified 0.07			
(ARGA IJata	Plutonium-239/240	N	ot Identified		0.04	Not Identified 0.04			
	FIDLER scanning data (open energy window)		13900-15300		17000-20000 cpm				
East Data ⁴	FIDLER direct measurement data (open energy window)		14896 cpm	l	19106 cpm				
Field Data	FIDLER scanning data (closed Am-241 window)		300-600 epi	n	300-800 cpm				
	FIDTER direct measurement data (closed Am-241 window)		485 cpm		581 cpm				

1) In the laboratory analysis the "U" qualifiers indicate that the reported results are below the MDA and are non-detectable activity.

2) "Not Identified" indicates that there is no discernable activity detected above the MDA to allow the radionucludes to be identified
3) The identification for BKGD-CB1 of Pu-239, Am-241 is complicated by the presence of multiple radionuclides having a gamma emission at the 13 keV energy level. Also identified were U-233 at 1.88pCi/g (+/-0.94), U-238 at 0.83pCi/g (+/-0.42), Th-208 at 0.81pCi/g (+/-0.94), and Pb-210 at 1.65pCi/g (+/-0.94). The correct identification is most likely U-238 based on the other radionuclides that are present in the sample; however, the background building was never used for radiological activities.

4) Grids were selected for material sampling because the FIDLER measurements were either the highest gamma in a room the exceeded background based on Wilcoxon Rank Sum (WRS) statistics or the room was one of the highest elevated gamma readings (based on the open FIDLER energy window)
5) NA Not applicable Background measurements for comparison against material samples were collected with the URSA.

Table 1 Analytical and URSA Results for Material Samples SEAD-12 Building Survey Seneca Army Depot Activity

Building			819				819	-		819			
Location ID			819-5-011				819-5-013			819-12D-C27			
Grid ID			819-5-15				819-5-11			819-12D-5			
Matrix			Mise Solid				Mise Solid				Misc Solid		
Date collected			8/23/2001				8/23/2001				8/28/2001		
Турс			SA				SA				SA		
	Parameter	Result (pCi/g) Error (+/-) Qualifier MDA			Result (pCi/g)	Error (+/-)	Qualifier	MDA	Result (pCi/g)	Error (+/-)	Qualifier	MDA	
Laboratory Analytical	Americium-241	0.0118	0.0103	U	0.0141	0.0123	0.00989	U	0.0136	0.0104	0.0139	U	0.0233
Data	Plutonium-239/240	-0.0166	0.0126	Ū	0.0288	0.00136	0.00273	U	0.0299	0.00542	0.0109	U	0.0163
LIDSA Data	Americium-241	Not Identified 0.08			Not Identified 0.08			0.08	Not Identified 0.0			0.08	
OK5X Data	Plutonium-239/240	Ne	Not Identified (Not Identified 0.05			0.05	Not Identified 0.05			
	FIDEER scanning data (open energy window)	12000-16000 cpm				14000-17000 cpm				12800-14500 cpm			
Wald Duga ⁴	FIDEER direct measurement data (open energy window)	15839 cpm				16014 cpm				14211 cpm			
Field Data"	FIDLER scanning data (closed Am-241 window) FIDLER direct measurement	350-500 cpm				300-700 cpm				300-450 cpm			
	data (closed Am-241 window)		418 cpm			402 cpm				406 cpm			

· ·

Table 1 Analytical and URSA Results for Material Samples SEAD-12 Building Survey Seneca Army Depot Activity

Building			BKGD			BKGD				
Location ID		BKGD CB1			BKGD FL					
Grid ID			NΛ				NA			
Matrix			Misc Solid				Misc Solid			
Date collected			8/22/2001				8/23/2001			
Туре			SA				SA			
	Parameter		Error (+/-)	Qualifier	MDA	Result (pCi/g)	Error (+/-)	Qualifier	MDA	
Laboratory Analytical	Americium-241	0.0141	0.0116	U	0.0169	0.019	0.0159	U	0.024	
Data	Plutonium-239/240	0.0193	0.0225		0.0193	0.011	0.0156	U	0.0165	
EDEA Data	Americium-241	0.37 0.19 0.09				Not Identified 0.1				
UK97 Data	Plutonium-239/240	1.67.3	1.67.3 0.83 0.05				Not Identified 0.06			
	FIDLER scanning data (open energy window)		NA ^{\$}		NA					
Field Dates ⁴	FIDLER direct measurement data (open energy window)		NA		NΛ					
Field Data	FIDLER scanning data (closed Am-241 window)		NA		NA					
	FIDLER direct measurement data (closed Am-241 window)		NA		NA					

References:

"Standard Practice for NaI(Tl) Gamma-Ray Spectrometry of Water", ASTM D 4962 – 95, American Society for Testing and Materials.

Dickson, 1976. "Environmental Gamma-Ray Measurements Using In Situ and Core sampling Techniques", Dickson et. al., Health Physics Journal, Vol. 30, pp. 221-227, 1976.

"In Situ Ge(Li) and NaI(Tl) Gamma-Ray Spectrometry", HASL-258, Health and Safety Laboratory (AEC), New York, New York, 1972.

"Comparison of In-Situ and Laboratory Measurement Methods for Radium-226 in Soils", Marutzky et. al., U.S. DOE, UC-70A, 1986.

"International Series of Monographs on Analytical Chemistry, Vol.2, Applied Gamma-Ray Spectrometry", C.E. Crouthamel, Pergamon Press, 1960.

"Experimental Investigations of the Environmental Field", W. M. Lowder et. al., U.S. DOE, Conf-720805-P1, 1972.

.

a .

ATTACHMENT A

September 6. 2001 letter from the New York State Department of Environmental Conservation (NYSDEC)

.

New York State Department of Environmental Conservation

Division of Environmental Remediation Bureau of Eastern Remedial Action, 11th Floor 625 Broadway, Albany, New York 12233-7015 Phone: (518) 402-9623 • FAX: (518) 402-9627 Website: www.dec.state.ny.us

September 6, 2001

Mr. Stephen Absolom Chief, Engineering and Environmental Division Seneca Army Depot Activity (SEDA) 5786 State Route 96 Romulus, NY 14541-5001

Re: Sencea Army Depot Activity NYS Inactive Hazardous Waste Disposal Site No. 8-50-006

Dear Mr. Absolom,

Enclosed are the New York State Department of Health's comments on the Universal Radiation Spectrum Analyzer (URSA) demonstration performed on August 15, 2001. A facsimile of this letter will be sent to you today. If you have any questions, please contact me at (518) 402-9623 or by email at <u>aithorne@gw.dec.state.ny.us</u>

Sincerely. leciath

Alicia Thome Bureau of Eastern Remediation Action Division of Environmental Remediation

cc: J. Vazquez, USEPA (w/ attach) D. Geraghty, NYSDOH (w/ attach) M. Peachey, NYSDEC Region 8 (w/ attach) R. Scott, NYSDEC Region 8 (w/ attach)

DONE STATE OF NEW YORK DEPARTMENT OF HEALTH

Flanigan Square, 547 River Street, Troy, New York 12180-2216

Antonia C. Novello, M.D., M.P.H., Dr.P.H. Commissioner Dennis P. Whalen Executive Deputy Commissioner

August 20, 2001

Ms. Alicia Thome Bureau of Eastern Remedial Action Division of Environmental Remediation NYS Department of Environmental Conservation 625 Broadway, 11th Floor Albany, New York 12233

> RE: Seneca Army Depot Site #850006 Romulus, Seneca County

Dear Ms. Thorne:

On August 15, 2001 Mr. Ron McConn and Mr. John Hackett, Health Physicists with Parsons Engineering Science gave a demonstration of the Universal Radiation Spectrum Analyzer (URSA) from Radiation Safety Associates, Inc. The presentation was followed by a discussion of how Parson's intends to use the device to investigate the special weapons area of the Seneca Army Depot. Over twenty radiation professionals from the NYS Departments of Health and Environmental Conservation attended the presentation held at the NYSDOH's Center for Environmental Health in Troy, New York. The following comment is provided by the NYSDOH's Bureau of Environmental Radiation Protection:

After the presentation by Parsons of the "URSA" unit as a means to "quantify" the levels of contamination in or on building materials our staff came to the conclusion that while the system shows some promise in screening areas for contamination and perhaps identifying some of the isotopes, it is, as presently configured, not capable of measuring concentrations of the isotopes of interest in volumetric sources. Parsons has admitted that further work is necessary in calibrating the system with multiple energy standards and comparing in house analysis with the unit and laboratory analysis of material samples. Units such as Canberra's ISOCS, presently being used at the Brookhaven National Laboratory, utilizes a high purity germanium detector and has undergone numerous quality assurance measurements to compare field results with laboratory analysis and has successfully shown that quantification is possible.

Until Parsons can show that the "URSA" unit can be compared to lab analysis and correction factors can be applied to field measurements, we feel that it is premature to depend solely on in-situ measurements for the final status survey and more sampling is required. However, we will re-evaluate this position if further study shows the unit to be capable.

If you have any questions, please contact me by telephone at (518) 402-7890 or by e-mail at <u>drg01@health.state.ny.us</u>.

Sincerely

Daniel R. Geraghty Program Research Specialist III Bureau of Environmental Exposure Investigation

cc: Mr. G. Litwin/Mr. M. Rivara/FILE Mr. D. Miles Mr. D. Napier - RFO Mr. B. Dombrowski - SCHD Mr. M. Chen - DEC Ms. M. J. Peachey - DEC, Region 8 Mr. G. Ulirsch - ATSDR Mr. A. Block - ATSDR

P:\Burcau\Sites\Region_\$\SENECA\\$50006\SDASHPR3.DOC

•

ATTACHMENT B

Volumetric Contamination and the Effects on the FIDLER Detector Response. Parsons, 2002

PARSONS	Calculation I	Page	Job Number 730047-01001	Discipline Health Physics	Page 1 of 10					
Rev	Date	By	Ck	Subject:						
0	1/16/02	RJM	h	 Volumetric Contamination and the Effect on FIDLER Detector Response 						
Author:HChecker:SCalc #:7	Ronald McConn Steven Woolfolk 730047-01001-02	Den 2	lash miljo	L						

Purpose

The purpose of this calculation was to determine the difference in detector response for a Bicron FIDLER for different thicknesses of volumes of contamination. The response to a FIDLER detector was of specific interest as this was used at the Seneca Army Depot SEAD-12 site in Romulus, New York to determine the presence of radiological contamination on building surfaces. Of specific interest was the radioisotope Am-241 which can be used to identify the presence of weapons grade plutonium.

References, Inputs and Assumptions

Assumptions:

The density of concrete was assumed to by 2.35 g/cc per Ref 2, table 5.4 and 1.5 g/cc to represent a lower density material typical of soil or paint.

The source of contamination was assumed to be an area source 2 inches square and have varying thickness (0.1, 0.25, 0.5, 1 cm).

References:

- 1. "MCNP 4B Monte Carlo N-Particle Transport Code System", Oak Ridge National Laboratory, contributed by Los Alamos National Laboratory, Los Alamos, New Mexico, UC 705 & UC 700, J.F. Briesmeister.
- 2. "The Health Physics and Radiological Health Handbook", B. Shleien, Scinta Inc., 1992.

Inputs To Calculation:

Appendix A - Sample MCNP Input File

Appendix B - Excel Workbook Printout

Discussion

The presence of volumetric contamination of building surfaces could result in the underestimation of the assessment of residual contamination that might lead to release of the facility with levels of contamination in exceedence of the release criteria. This underestimation would be based on the difference in the survey instrument efficiency for the detection of surface versus volumetric contamination. Therefore it is desirable to determine the effect on the detector response from varying thickness of volume contamination. It is assumed that the contamination source in question would occupy an area of 2 square inches (5.08 cm) with a varying thickness between 0.1 and 1 cm. Further depth was not deemed necessary based on previous calculation (Woolfolk, 2001), this calculation also determined that the actual penetration of plutonium/americium bearing water to be one the order of 1 mm in depth. These calculations address the infiltration of americium and plutonium into concrete but did not address the surfaces surveyed were intact and did not show signs of cracking or other deteriorate that would also give rise to contamination being present at depth within the surfaces. Determination of the FIDLER detector response is being evaluated to support the building surveys that were completed at the Seneca Army Depot SEAD-12 in Romulus, NY during the summer of 2001.

The impact of a volumetric rather than a surface contamination source on the detector response is quantified by estimating the resultant gross efficiency of the detector giving the various source thickness. This was accomplished through the use of the Monte Carlo modeling software MCNP. A model of a FIDLER probe and the source region was developed (see Figure 1 and Appendix A). The FIDLER, which is a thin crystal detector, was used since it is more effective at detecting and assessing low energy photon fluxes because of the reduced impact of the higher energy photons on the instrument. The FIDLER was setup and calibrated to survey for a

PARSONS	Calculation I	Page			Job Number 730047-01001	Discipline Health Physics	Page 2 of 10			
Rev	Date	By	Ck	Subject:						
0	1/16/02	RJM		 Volumetric Contamination and the Effect on FIDLER Detector 						
				- Respons	e					

narrow band around the 59 keV photon associated with Am-241. An example of the input file used for the MCNP model is attached as Appendix A. The source thickness was varied by changing the source bottom surface (i.e., Surface 20 line in the input deck) and the bottom of the source in the source card "z" dimension (i.e., the last value in the "si3" line of the input deck). A series of these inputs files (see Table 1) were created to cover many different energy sources (10-500 keV), different source thickness (0.1, 0.25, 0.5, and 1 cm), and two different densities of source material (i.e., the density was varied for Cell 10 in the input deck). (Note, the FIDLER probe would be used for photon surveys in the 10 to 350 keV range.) Each source energy required a separate input file in order to account for the down-scatter of photon energy present due to the interaction of the photons with matter (see Table 1). Two different densities were used to determine how this parameter would affect the detector response, and are of particular interest at the lower energy range (<50 keV). The densities used are 2.35 g/cc for concrete and 1.5 g/cc for paint or soil.

Table 1, Input Files											
Filename	Source Thickness (cm)	Source Density (g/cm ³)	Energy (keV)	Filename	Source Thickness (cm)	Source Density (g/cm ³)	Energy (keV)				
Fid10a	1	1.5 or 2.35	10	Fid100c	0.25	1.5 or 2.35	100				
Fid10b	0.5	1.5 or 2.35	10	Fid100d	0.1	1.5 or 2.35	100				
Fid10c	0.25	1.5 or 2.35	10	etc							
Fid10d	0.1	1.5 or 2.35	10	Fid180a	1	1.5 or 2.35	180				
etc				Fid180b	0.5	1.5 or 2.35	180				
Fid50a	1	1.5 or 2.35	50	Fid180c	0.25	1.5 or 2.35	180				
Fid50b	0.5	1.5 or 2.35	50	Fid180d	0.1	1.5 or 2.35	180				
Fid50c	0.25	1.5 or 2.35	50	etc							
Fid50d	0.1	1.5 or 2.35	50	Fid360a	1	1.5 or 2.35	360				
etc				Fid360b	0.5	1.5 or 2.35	360				
Fid100a	1	1.5 or 2.35	100	Fid360c	0.25	1.5 or 2.35	360				
Fid100b	0.5	1.5 or 2.35	100	Fid360d	0.1	1.5 or 2.35	360				

The geometry of the FIDLER and source MCNP model is depicted in Figure 1, this figure is not to scale. The air gap depicted is 0.08 cm thick while the overall dimensions of the FIDLER are 5" diameter at the detector surface tapering to approximately 2" at the end of the photomultiplier tube. The dimensions used in the model were found in the Bircon product manual and through actual measurement of a Bicron FIDLER probe. The areas of significant importance are the following:

- Source thickness,
- Detector volume and thickness,
- Distance between the source and detector, and
- Relative geometry of the source and the detector.

The other parameters have a relative minor effect.

With the basic geometry defined the input files were run for 60 minutes to ensure that the results would reach statistical convergence (a statistical Monte Carlo error value of <0.01 or <1%)for the F8 MCNP tally, which collects information regarding photon pulses within the detector volume. Note, this error value does not include any assessment of the uncertainty introduced by the accuracy of the model assumed. The data from this F8 tally are the number of photons detected for each photon emitted. The data for each of the source energies for a given source thickness and density are quantified in this MCNP tally. These values were transferred to a spreadsheet and plotted to show how the gross efficiency varies as a function of energy. The output data from the F8 tally was compiled in an Excel workbook so that it could be easily manipulated. This workbook (mcnp volume seneca.xls) is attached as Appendix B. A plot of the gross efficiencies for each density is provided as Figure 2 and Figure 3, note that these plots do not account for the photon yield from an specific radionuclide and are meant only to show the relative response variation due to the source thickness to each of the other thickness, these ratios are given in Table 2. These ratios are the factor you would need to multiply the FIDLER flux by to obtain the true flux for each of these monoenergetic fluxes. From Table 2, it becomes apparent that the difference in detector response is essentially flat beyond 50 keV. This behavior is expected since the shielding of effect (i.e., reduction in flux) of the is determined by:

$$\Box \propto e^{-\mu(E) * x}$$

Where $\mu(E)$ is the energy dependent linear attenuation coefficient. It is the decreasing value of the linear attenuation coefficient that results in the curve slope becoming very small.

					Job Number	Discipline	Page 4 of 10			
PARSONS	Calculation	Page			730047-01001	Health Physics	Fage 4 01 10			
Rev	Date	By	Ck	Subject:						
0	1/16/02	RJM		Volumetric Contamination and the Effect on FIDLER Detector						
			 	Respons	е					

Therefore the results indicate that the change in response for the lower energies (<30 keV) can change significantly with differences in surface vs. volume and material density while the higher energy photons (>50 keV) are impacted to a much lesser degree (<30% from 50 to 80 keV and <10% above that). Note, the impact of volumetric contamination would be much more significant if substantial thickness (i.e., multiple centimeters) were involved or if there was a substantial thickness of concrete (i.e., multiple centimeters) or soil above the contaminated zone.

This data leads to the conclusion that while the presence of volume contamination does lower the overall detector response it is only significant for the low energy photon range (<30 keV) and in the primary region of interest for the presence of Am-241 at 59 keV with change in response will not adversely affect the detection capabilities of the FIDLER instrument (i.e., <30% reduction in efficiency).

When the thickness of the contamination is considered in relation to the Seneca Army Depot SEAD-12 situation (thickness on the order of 1 mm to 2.5 mm) it is apparent that the effect is flat (i.e., no significant reduction in efficiency occurs) above 30 keV which indicates that the FIDLER probe will respond appropriately to surface and the very shallow volumetric contamination. This of course, relies on the instrument being in place to count for an amount of time sufficient to reach the applicable MDA and level of confidence for the project, whether the contamination is on the surface or is volumetric contamination.

Conclusion

It has been shown that both the density of the source and the thickness of the source affect the detector response for various energies of photon radiation. These two parameters result in the increase of self-shielding by the material that the emitted radiation must pass through in order to reach the detector volume. This effect is more important for the low energy photons (<30 keV) than for the higher energy range. The response to the low energy band is shown to change be as much as a factor of 10 and as little as no change depending on the thickness and density of the material. Therefore if there is a real potential to have volumetric contamination of a building surface the radiological surveys will need to factor in the change in detector response that is appropriate for the material and radionuclides that produce photon at very low energies. For the Seneca Army Depot SEAD-12 buildings there is extremely limited potential for volumetric contamination but this calculation has shown that the change is detector response for the 60 keV source, that is representative of Am-241 is less than 30% at the 1 cm thickness and <10% at the 0.25 cm thickness.

-0.1 cm total

120 140 160 180 200 220 240 260 280 300 320 340 360

1 00E-01

0.00E+00

 Energy (keV)

PARSONS	Calculation	Page							Job 7300	Nui)47-(mbe 0100	r)1	Discipline Health Physics	Page 6 of 10
Rev	Date	By		Ck		Sub	ject:			-				
0	1/16/02	RJM				Valu	imot	ric (onta	min	atior	1 200	I the Effect on FIDI F	-R Detector
						Res	pons	se	one		auor			
			Table	e 2 -	Dete	ctor	Resp	onse	e Rat	ios				
		This set is for	the I.	5 g/cc	densi	ty case		(1 1)						
		Thickness	10	20	20	E L	nergy	(KeV)	0.0	00	100		
		(cm)		20	30	40	50	00	/0	80	90	100		
		0.1 to 0.5	9.6	4./	2.5	1.0	1.3	12	1.Z	1.1	1.1	1.1		
		0.1 to 0.25	27	1.1	1.0	1.5	1.2	1.1	1.1	1.1	1.1	1.0		
		0.110 0.25	2.7	1.0	1.2	F	Inerpy	(keV	}	1.0	1.0	1.0		
		Thickness	120	140	160	180	200	220	240	260	280	300		
		0.1 to 1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		
		0.1 to 0.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
		0.1 to 0.25	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
				l	l <u>-</u>	E	Energy	(keV)		L	l		
		(cm)	320	340	360	380	400	420	440	460	480	500		
		0.1 to 1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		
		0.1 to 0.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
		0.1 to 0.25	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
		This set is for	the 2.	35 g/c	c dens	sity ca	se							
		Thickness			1	Energy	(KeV)	-	0.0				
		(cm)		20	30	40	50	60	70	80				
		0.1 to 1	9.8	6.1	3.0	1.9	1.5	1.3	1.2	1.2				
		0.1 to 0.5	2.5	1.4	1.9	1.4	1.2	1.1	1.1	1.1				
		0.110 0.25	2.7	1.9	1.5	Energy	(keV)	1.0	1.0				
		Thickness	90	100	120	140	160	,	200	220				
		(cm) 0.1 to 1	11	111	11	11	11	11	11	11				
		0.1 to 0.5	1.1	1.1	1.0	1.0	1.0	1.0	1.0	1.0				
		0.1 to 0.25	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0				
				i	Ene	rgy (k	eV)		l		ţ			

240 260 280 300 320 340 360

1.1 1.1

1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.1

1.0

1.1 1.1

1.0 1.0

1.1 1.1

1.0 1.0 1.0

1.0

Thickness

(cm) 0.1 to 1

0.1 to 0.5

0.1 to 0.25

PARSONS	Calculation I	Page			Job Number 730047-01001	Discipline Health Physics	Page 7 of 10						
Rev	Date	By	Ck	Subject:									
0	1/16/02	RJM		Volumetr	ic Contamination and	the Effect on FIDLE	R Detector						
				Response									
	Appendix A Sample MCNP Input File												

					Job Number	Dissipling	
PROFERE						Discipline	Page 8 of 10
EPARSUNS	Calculation F	Page			/3004/-01001	Health Physics	
Rev	Date	Ву	Ck	Subject:			
0	1/16/02	RJM		Volumetr	ic Contamination and	the Effect on FIDLE	R Detector
				Respons	e		
This is to approxim c air shield 0.08 cm $1 \ge -0.001293 \ 1 = -7$ c c photon source 1 c $10 \ 1 = -1.5 \ 20 = -1 = -21$ c c 5"x1.6mm NaI de 2 4 = -3.67 8 = -10 = -11 c c 5"x1.6mm NaI de c window (0.254 m 3 6 = -1.85 7 = 8 = -30 in c detector housing 4 5 = -2.7 11 = -30 8 = -1 c photomultiplier h 5 5 = -2.7 31 = -12 = 9 in 6 5 = -2.7 10 = -31 = -30 c c air environment 100 2 = -0.001293 = -1 c c outer void 105 0 100 imp:p==0 C surfaces c Air shield 1 pz 5 c 2 pz 5.08 3 px 125 4 px = -125 5 py 125 6 py = -125 c detector window 7 pz 5.08 8 pz 5.105 9 cz 3.175 30 cz 6.83 c NaI material 10 pz 5.265 11 cz 6.35 c detector back 12 pz 30.48 31 pz 15.43 c universe boundary 100 so 200 c source bottom bou 20 pz 4 c source side bound 21 px 2.54	ate a FIDLER (5 a thick 100 keV S -3 4 -5 6 imp:p= m thick 2 inch so 22 -23 24 imp:p= etector (scintillati imp:p=1 etector m beryllium) np:p=1 0 imp:p=1 00 #1 #2 #3 #4 # 0 0 / undary aries	5 in x 1.6 mm Source 1 quare =1 ion material) 5 #6 #10 imp	Nal) gamma	scint			

					Job Number	Discipline	
PARSONS	Colouistion [2000			730047-01001	Health Physics	Page 9 of 10
Rev	Date	By	Ck	Subject:			
0	1/16/02	R.IM		-			
	1110102	1.0.01		- Volumetr	ic Contamination and	the Effect on FIDLE	R Detector
22 px -2 54							
23 py 2.54							
24 py -2.54							
mode n							
sdef cel=10 erg=0.	l x=d1 y=d2 z=d	l3 par=2					
sil H -2.53 2.53							
sp1 c 0 1 si2 H _2 53 2 53							
sp2 c 0 l							
si3 H 4.01 4.99							
sp3 c 0 l	over surface (p	articles)					
fl:p 8	over surface (pr	intrenes)					
e1:p 0.01 0.02 0.03	0.04 0.05 0.06 0	0.08 0.1 0.125	0.15&				
$0.175\ 0.2\ 0.25\ 0$.3 0.35 0.4 0.45	0.5 0.55					
f4:p 2							
e4:p 0.01 0.02 0.03	0.04 0.05 0.06 0	0.08 0.1 0.125	0.15&				
0.175 0.2 0.25 0	.3 0.35 0.4 0.45	0.5 0.55					
f8:p 2	detector						
e8:p 0 0.01 0.02 0.0	03 0.04 0.05 0.06	5 0.08 0.1 0.12	5 0.15&				
0.175 0.2 0.25 0	.3 0.35 0.4 0.45 d for compositio	0.5 0.55					
m1 10000.0056	80000.4983	10000.0171	120000.0	0024&			
130000.0456	140000.3158	160000.0012	2 190000.	.0192&			
200000.0826 2	260000.0122						
m2 70000.755	80000.232 18	30000.013	GAS=1				
C ICRU TISSUI	E						
c m3 10000.102	60000.123 7	0000.035 80)000.7289 ว <i>ะ</i>	3&			
c 160000.005	120000.0002	. 130000.000	2æ 7				
c Sodium Iodide							
m4 110000.1534	530000.8466)					
m5 13000, -1							
c Beryllium							
m6 40001							
ctme 30							

PARSONS	Calculation	Page			Job Number 730047-01001	Discipline Health Physics	Page 10 0 10
Rev	Date	Ву	Ck	Subject:			
0	1/16/02	RJM		- Volumetr	ic Contamination and	the Effect on FIDLE	R Detector
		F	Aj Excel W	ppendix orkbook	B		
		, ,	Total Pa	age Cour	nt is 108		

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	AB	CI	DII	F	G	Н	I	J	K
1	This is the MCNP data for t	he Seneca Ar	ny Depot volu	ime contamination	study				
2	The goal is to determine the	affect that yo	lume contami	ination would have	on the FIDLE	R istrument	used for ga	mma spectr	OSCODY.
2	Filonomos uso the following	format:	fid	energy (keV	denth	it ion union	about to. Be		coropy.
1	ritenames use the following	is indicated by	1) n = 1 cm	(2) h = 0.5 cm; 3)	$c = 0.25 \text{ cm} \cdot 4$	d = 0.1 cm	_	-	
4	where depth	is indicated by	$y_{1} = 100 \text{ keV}$	(2)0 = 0.5 cm, 5)	thick				
5	as an exampl	the source or	d datastar the	t is $0.265 \text{ cm} (0.1)$	inch) thick and	d should not	affact the r	eeulte	
0	An air shield exists between	(O minutes of	id delector that	at is 0.203 cm (0.1	inch) unck and		cilect the i	courts.	
1	All runs were completed in	ou minutes of	run time.			,			
8	I nese run are with the 1.5	g/cc density.							
9	CIIO.		1	Filemanna	6420-			i	Filonomo
10	Filename fidilua		- +	Filename	nuzua			ļ-=	Flichaline
11	1. 1. 0 100000	10	ŧ	14-11- 0		000			Itally 9
12	Itally 8 nps=1500429			Itally 8	nps =113291	ouo			tally o
13	tally type 8 pulse n	eight distribut	lion.	un tally t	ype a puise	neight distric	uuon.	unn	tally fo
14	tally for photons			tally I	or photons	+			tany io
15					-	L			0011 2
16	cell 2			cell 2				1	Cell 2
17	energy	0		energy	00 0000000	·			0.00E+00
18	0.00E+00 0.00E+00	0.0010		0.00E+	00 0.00E+00	0.0004			5.00E+00
19	5.00E-02 4.22E-03	0.0013		5.00E-	02 5.78E-02	0.0004	-		1.00E-02
20	1.00E-01 0.00E+00	- 0		1.00E-	01 0.00E+00			<u> </u>	1.00E-01
21	1.50E-01 0.00E+00	0		1.50E-	01 0.00E+00	- 0			1.50E-01
22	2.00E-01 0.00E+00	0		2.00E-	01 0.00E+00	0	1		2.00E-01
23	2.50E-01 0.00E+00	0		2.50E-	01 0.00E+00	0			2.50E-01
24	3.00E-01 0.00E+00	0		3.00E-	01 0.00E+00	+			3.00E-01
25	3.50E-01 0.00E+00	0		3.50E-	01 0.00E+00	0.			3.50E-01
26	4.00E-01 0.00E+00	- 0.		4.00E-	01 0.00E+00				4.00E-01
27	4.50E-01 0.00E+00	0	4	4.50E-	01 0.00E+00	0	-		4.50E-01
28	5.00E-01 0.00E+00	0.		5.00E-	01 0.00E+00	0			5.00E-01
29	5.50E-01 0.00E+00	0		5.50E-	01, 0.00E+00	0			5.50E-01
30	6.00E-01 0.00E+00	0		6.00E-	01 0.00E+00	0			6.00E-01
31	6.50E-01 0.00E+00	0		6.50E-	01 0.00E+00	0			6.50E-01
32	7.00E-01 0.00E+00	0		7.00E-	01 0.00E+00	0		+++++ ++++++++++++++++++++++++++++++++	7.00E-01
33	7.50E-01 0.00E+00	0	- •	7.50E-	01 0.00E+00	0			7.50E-01
34	8.00E-01 0.00E+00	0		8.00E-	01 0.00E+00	0		1	8.00E-01
35	8.50E-01 0.00E+00	0		8.50E-	01 0.00E+00	0		*****	8.50E-01
36	9.00E-01 0.00E+00	0		9.00E-	01 0.00E+00	0		1	9.00E-01
37	9.50E-01 0.00E+00	0		9.50E-	01 0.00E+00	0			9.50E-01
38	1.00E+00 0.00E+00	0	,	1.00E+	00 0.00E+00	- 0.			1.00E+00
39	1.05E+00 0.00E+00	_ 0	**	1.05E+	00 0.00E+00	0	-		1.05E+00
40	1.10E+00 0.00E+00	0	-4	1.10E+	00, 0.00E+00	0			1.10E+00
41	1.15E+00 0.00E+00	0		1.15E+	00 0.00E+00				1.15E+00
42	1.20E+00 0.00E+00	0		1.20E+	00 0.00E+00	0		÷	1.20E+00
43	1.25E+00 0.00E+00	- 0	4	1.25E+	00 0.00E+00	- 0		+	1.25E+00
44	1.30E+00 0.00E+00	0	- !	1.30E+	00 0.00E+00	L 0			1.30E+00
45	1.35E+00 0.00E+00	0		1.35E+	00 0.00E+00	0	_	+	1.35E+00
46	1.40E+00 0.00E+00	0	4	1.40E+	00 0.00E+00	0		1	1.40E+00
47	1.45E+00 0.00E+00	0		1.45E+	00 0.00E+00	0		1	1.45E+00
48	1.50E+00 0.00E+00	_ 0		1.50E+	00 0.00E+00	0			1.50E+00
49	1.55E+00 0.00E+00	0		1.55E+	00 0.00E+00	0			1.55E+00
50	1.60E+00 0.00E+00	0		1.60E+	00 0.00E+00	0			1.60E+00
51	1.65E+00 0.00E+00	0		1.65E+	00 0.00E+00	0.			1.65E+00
52	1.70E+00 0.00E+00	0	1	1.70E+	00 0.00E+00	0			1.70E+00
53	1.75E+00 0.00E+00	0		1.75E+	00 0.00E+00	0		1	1.75E+00
54	1.80E+00 0.00E+00	0		1.80E+	00, 0.00E+00	0			1.80E+00
55	1.85E+00, 0.00E+00	0		1.85E+	00 0.00E+00	0.			1.85E+00
56	1.90E+00 0.00E+00	0		1.90E+	00 0.00E+00	0			1.90E+00
57	1.95E+00 0.00E+00	0		1.95E+	00 0.00E+00	0			1.95E+00
58	2.00E+00 0.00E+00	0		2.00E+	00 0.00E+00	0		1	2.00E+00
59	total 4.22E-03	0.0013		total	5.78E-02	0.0004		· ··-	total
60									

	A	B	С	D	E	F	G	H	I	J	K
61						-					T*1
62	Filename	fid10b				Filename	tid20b		· · · · · · · · · · · · · · · · · · ·		Filename
63	14.11. 0	-150906	160			Itally 9	-1102593	+			Itally 8
65	tally to	ne 8 nulse h	eight distri	oution	un	tally typ	ne 8 nulse h	eight distrik	ution	unit	tally ty
66	tally fo	r photons	leight disu	Jution	, un	tally for	photons	eight distite	auon.	unit	tally fo
67	tany io	· pilotona .				tung io.	photons	- 1		r	
68	cell 2		-		1 · ·	cell 2		1			cell 2
69	energy				1	energy		1			energy
70	0.00E+00	0.00E+00	- Ū'			0.00E+00	0.00E+00	0		+	0.00E+00
71	5.00E-02	7.73E-03	0.0009			5.00E-02	2 1.02E-01	0.0003		1	5.00E-02
72	1.00E-01	0.00E+00	0			1.00E-01	0.00E+00	0;		-	1.00E-01
73	1.50E-01	0.00E+00	0		-	1.50E-01	0.00E+00	0		+	1.50E-01
74	2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0		h	2.00E-01
75	2.50E-01	0.00E+00	0	-	÷	2.50E-01	0.00E+00	0			2.50E-01
76	3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0	1000		3.00E-01
77	3.50E-01	0.00E+00	0		*	3.50E-01	0.00E+00	0			3.50E-01
78	4.00E-01	0.00E+00	0		•	4.00E-01	0.00E+00	0			4.00E-01
79	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0			4.50E-01
80	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0		: : 1	5.00E-01
81	5.50E-01	0.00E+00	0.			5.50E-01	0.00E+00	0			5.50E-01
82	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01
83	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01
84	7.00E-01	0.00E+00	0	an asias		7.00E-01	0.00E+00	0			7.00E-01
85	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01
86	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0			8.00E-01
87	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-01
88	9.00E-01	0.00E+00	0'			9.00E-01	0.00E+00	0			9.00E-01
89	9.50E-01	0.00E+00	0		1	9.50E-01	0.00E+00	0		ļ	9.50E-01
90	1.00E+00	0.00E+00	0			1.00E+00	0 0.00E+00	0			1.00E+00
91	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0,		1	1.05E+00
92	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00
93	1.15E+00	0.00E+00	0.			1.15E+00	0.00E+00	0		L	1.15E+00
94	1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00
95	1.25E+00	0.00E+00	0		-	1.25E+00	0.00E+00	0			1.25E+00
96	1.30E+00	0.00E+00	0		+ = -	1.30E+00	0.00E+00	0			1.30E+00
97	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0		· * ** * · · · · · · · · · · · · · · ·	1.35E+00
98	1.40E+00	0.00E+00	0.			1.40E+00	0.00E+00	0			1.40E+00
99	1.45E+00	0.00E+00	0			1.43E+00	0.00E+00	0			1.43E+00
100	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0		÷	1.50E+00
101	1.55E+00	0.00E+00	0	-		1.53E+00	0.00E+00				1.55E+00
102	1.00E+00	0.00E+00	0			1.655+00	0.00E+00	0			1.65E+00
103	1.05E+00	0.00E+00	0		•	1.05E+00	0.00E+00	0			1.05E+00
104	1.70E+00	0.00E+00	0	-	-1	1.75E+00	0.00E+00	0			1.75E+00
105	1.75E+00	0.00E+00	- 0'	-		1.80E+00	0.00E+00	0			1.75E+00
100	1.855+00	0.00E+00	- 0			1.85E+00	0.00E+00	0			1.85E+00
100	1 905+00	0.00E+00	0		i	1.90F+00	0.00E+00	0			1 90F+00
100	1.90E+00	0.00E+00	0	adarah 10		1.95E+00	0.00E+00				1.95E+00
110	2 00E+00	0.00E+00	0		+	2.00E+00	0.00E+00	0		1	2.00E+00
111	total	7.73E-03	0.0009			total	1.02E-01	0.0003		· · · · · · · · · · · · · · · · · · ·	total
112											
113		•••••				_	++				
114	Filename	fid10c		***		Filename	fid20c				Filename
115											
116	Itally 8	nps =148279	575		-	Itally 8	nps =1090092	209			Itally 8
117	tally ty	pe 8 pulse h	neight distri	bution.	un	tally typ	pe 8 pulse h	eight distril	oution.	unit	tally ty
118	tally fo	r photons			г	tally for	r photons			- r	tally fo
119		- +	- 1	•	1			*		å	
120	cell 2	a				cell 2					cell 2

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

-	A	BI	CI	D	E	T	F	G	Н	I	J	K
121	energy					-	energy					energy
122	0.00E+00	0.00E+00	0.	•		1	0.00E+00	0.00E+00	0			0.00E+00
123	5 00F-02	1 50E-02	0.0007	•		-	5.00E-02	1.69E-01	0.0002		1.1	5.00E-02
124	1.00E-01	0.00E+00	0	ł			1.00E-01	0.00E+00	0		•	1.00E-01
125	1 50E-01	0.00E+00	0				1.50E-01	0.00E+00	01			1.50E-01
125	2.00F-01	0.00E+00	0	1		*	2.00E-01	0.00E+00	0			2.00E-01
120	2.50E-01	0.00E+00	0				2.50E-01	0.00E+00	0.	-		2.50E-01
127	3.00E-01	0.00E+00	0			,	3 00E-01	0.00E+00	0			3.00E-01
120	3.50E-01	0.000000	0				3 50E-01	0.00E+00	01			3.50E-01
129	1.00E-01	0.000000	0			,	4 00F-01	0.00E+00	0		-	4.00E-01
121	4.000-01	0.000000	0	-			4 50E-01	0.00E+00	- 0	-		4.50E-01
121	- 4.50E-01	0.000000	0	,			5.00E-01	0.00E+00	0	-		5.00F-01
132	5.00E-01	0.000000	0				5.50E-01	0.001-00	0			5.50E-01
133	5.50E-01	0.000+00	0	*		- 1	5.50E-01	0.000-00	-0		1	6.00E-01
134	6.00E-01	0.00E+00	0				6.00E-01	0.000000	0		• -	6 50E 01
135	6.50E-01	0.00E+00	0				0.30E-01	0.000000	0			7.005.01
136	7.00E-01	0.00E+00	- 0				7.00E-01	0.0000+00				7.002-01
137	7.50E-01	0.00E+00	0				7.50E-01	0.00E+00	0			7.30E-01
138	8.00E-01	0.00E+00	0,				8.001-01	0.00E+00	0		:	8.00E-01
139	8.50E-01	0.00E+00	0				8.50E-01	0.00E+00	0			8.50E-01
140	9.00E-01	0.00E+00	0				9.00E-01	0.00E+00				9.00E-01
141	9.50E-01	0.00E+00	0				9.50E-01	0.00E+00	. 0	-	·	9.50E-01
142	1.00E+00	0.00E+00	0				1.00E+00	0.00E+00	0			1.00E+00
143	1.05E+00	0.00E+00	0				1.05E+00	0.00E+00	0			1.05E+00
144	1.10E+00	0.00E+00	0	1	_		1.10E+00	0.00E+00	0			1.10E+00
145	1.15E+00	0.00E+00	0				1.15E+00	0.00E+00	0			1.15E+00
146	1.20E+00	0.00E+00	0	1			1.20E+00	0.00E+00	0		-	1.20E+00
147	1.25E+00	0.00E+00	0				1.25E+00	0.00E+00	0		1	1.25E+00
148	1.30E+00	0.00E+00	0.				1.30E+00	0.00E+00	0		1	1.30E+00
149	1.35E+00	0.00E+00	0	-			1.35E+00	0.00E+00	0		1	1.35E+00
150	1.40E+00	0.00E+00	0	1			1.40E+00	0.00E+00	0			1.40E+00
151	1.45E+00	0.00E+00	0	4			1.45E+00	0.00E+00	0			1.45E+00
152	1.50E+00	0.00E+00	0				1.50E+00	0.00E+00	0			1.50E+00
153	1 55E+00	0.00E+00	0				1.55E+00	0.00E+00	0		+	1.55E+00
154	1.60E+00	0.00E+00	0	4			1.60E+00	0.00E+00	0		1	1.60E+00
155	1.65E+00	0.00E+00	0				1.65E+00	0.00E+00	0		<u>+</u>	1.65E+00
156	1.70E+00	0.00E+00	0				1 70E+00	0.00E+00	0	-		1.70E+00
157	1.75E+00	0.001.00	0				1.75E+00	0.00E+00	0			1.75F+00
157	1.752+00	0.00000	- 0				1.805+00	0.00E+00	0			1 80E+00
150	1.802+00	0.000000	0				1.855+00	0.00E+00	0		+	1.85E+00
159	1.852+00	0.000-00	0				1.00E+00	0.00L+00	- 0			1.00E+00
160	1.90E+00	0.00E+00	0				1.902+00	0.000000	t O		+	1.901100
161	1.95E+00	0.00E+00	- 0	-			1.95E+00	0.000000	. 0		+	2.005+00
162	2.00E+00	0.00E+00	0				2.00E+00	0.00E+00	0.0002			2.00E+00
163	total	1.50E-02	0.0007			to	tal	1.69E-01	0.0002			total
164			,						-		+	-1
165								C 100.		_	· · · · · · · · · · · · · · · · · · ·	1211
166	Filename	fid10d	-1			F	ilename	fid20d				Filename
167						1					· · · · · · · · · · · · · · · · · · ·	
168	Itally 8 n	ps =139690	778			11	ally 8 n	ps = 969506	567		1	Itally 8
169	tally typ	e 8 pulse	height distri	bution.		un	tally typ	e 8 pulse	height distri	bution.	uni	tally ty
170	tally for	photons					tally for	photons			+	tally fo
171									1			
172	cell 2		L			c	ell 2					cell 2
173	energy						energy			1	4	energy
174	0.00E+00	0.00E+00	0	-			0.00E+00	0.00E+00	0	1		0.00E+00
175	5.00F-02	4.04E-02	0.0004				5.00E-02	2.74E-01	0.0002	+		5.00E-02
176	1.00E-01	0.00E+00	0				1.00E-01	0.00E+00	0			1.00E-01
177	1 50F-01	0.00F+00	0				1.50E-01	0.00E+00	0	1	2 -	1.50E-01
179	2.00F-01	0.00E+00	0			•	2 00F-01	0.00F+00	. 0	*	-	2.00E-01
170	2.00E-01	0.00E+00	0 0				2.50E-01	0.00E+00	+- 0		-+	2.50F-01
119	2.500-01	0.000-00	0	100			3 00E 01	0.002.00	1 0			3 00F-01
180	3.00E-01	0.002+00	0				5.00E-01	0.000-00	0			5.00L-01

	A	B	C	D	Ē	F	G	H	1	J	K
181	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0.			3.50E-01
182	4.00E-01	0.00E+00	0	*		4.00E-01	0.00E+00	0			4.00E-01
183	4.50E-01	0.00E+00	0		,	4.50E-01	0.00E+00	0		4	4.50E-01
184	5.00E-01	0.00E+00	0	1*		5.00E-01	0.00E+00	0	-		5.00E-01
185	5.50E-01	0.00E+00	0	,		5.50E-01	0.00E+00	0		4.	5.50E-01
186	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01
187	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01
188	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0		1	7.00E-01
189	7.50E-01	0.00E+00	0		,	7.50E-01	0.00E+00	0		1	7.50E-01
190	8.00E-01	0.00E+00	0	4		8.00E-01	0.00E+00	0			8.00E-01
191	8.50E-01	0.00E+00	0	1	1	8.50E-01	0.00E+00	0		1	8.50E-01
192	9.00E-01	0.00E+00	0	-1		9.00E-01	0.00E+00	0			9.00E-01
193	9.50E-01	0.00E+00	0	1		9.50E-01	0.00E+00	0			9.50E-01
194	1.00E+00	0.00E+00	0	,		1.00E+00	0.00E+00	0		+-	1.00E+00
195	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00
196	1.10E+00	0.00E+00	0	*		1.10E+00	0.00E+00	0			1.10E+00
197	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00
198	1.20E+00	0.00E+00	0.	•		1.20E+00;	0.00E+00	0		;	1.20E+00
199	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00
200	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0		1	1.30E+00
201	1.35E+00	0:00E+00	0			1.35E+00	0.00E+00	0			1.35E+00
202	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0	-		1.40E+00
203	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		+	1.45E+00
204	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00
205	1.55E+00	0.00E+00.	0		A	1.55E+00	0.00E+00	0			1.55E+00
206	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0		1	1.60E+00
207	1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0			1.65E+00
208	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00
209	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00
210	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00
211	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0			1.85E+00
212	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00
213	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00
214	2.00E+00	0.00E+00	Ō			2.00E+00	0.00E+00	0			2.00E+00
215	total	4.04E-02	0.0004		t	otal	2.74E-01	0.0002			total

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	L	M	N	0	Р	Q	R	S	Т	U	V
1											
2		1	ţ		•	4	1		1	+	
3	-		4		+	- +	12			+ +	
4				*							
5				•			1				
6							- 1				1
7	•		4	8-		*			1	4	
8							1				1
9	4.	1		• -		•					
10	fid30a		}		Filename	fid40a				Filename	fid50a
11							1		4		1
12	ns = 8537937	70			Itally 8	nns = 59577	617		1-	Itally 8	nps = 5254
13	e 8 pulse he	eight distr	ibution.	uni	tally ty	pe 8 pulse	height distr	ibution.	un	tally t	vpe 8 pulse
14	photons	-Brit alba			tally fo	r photons			T	tally f	or photons
15	photons		-			, protono					
16					cell 2				•	cell 2	
17	-	-			energy					energy	
18	0.00E+00	0			0.00E+00	0.00E+00	0		4	0.00E+0	0 0.00E+00
19	171E-01	0.0002		1	5.00E-02	2.77E-01	0.0002		•	5.00E-0	2 3.45E-01
20	0.00E+00	0.0002		1	1.00E-01	0.00E+00	0.0002		:	1.00E-0	1 2.29E-04
21	0.00E+00	0			1.50E-01	0.00E+00	0		-	1.50E-0	1 0.00E+00
22	0.00E+00	0			2 00F-01	0.00E+00	0	-	•	2.00E-0	1 0.00E+00
22	0.00E+00	0		1	2 50E-01	0.00E+00	0		-	2.50E-0	1 0.00E+00
24	0.00E+00	0	,	* -	3.00E-01	0.00E+00	- 0 [†]			3.00E-0	01 0.00E+00
25	0.00E+00	0		•	3 50F-01	0.00E+00	0		4	3 50E-0	1 0.00E+00
26	0.00E+00	0			4 00E-01	0.00E+00	0+		t	+ 4 00E-0	1 0.00E+00
27	0.00E+00	0			4 50E-01	0.00E+00	0			4 50E-0	1 0.00E+00
28	0.00E+00	0	-		5.00E-01	0.00E+00	0			5 00F-0	0.00E+00
20	0.00E+00	0			5 50E-01	0.00E+00	ō			5.50E-0	1 0.00E+00
29	0.00E+00	0.		-	6.00E-01	0.00E+00	ō		+	6.00E-0	0.00E+00
21	0.00E+00	0			6 50E-01	0.00E+00	0		1	6 50E-0	1 0.00E+00
22	0.00E+00	0			7.00E-01	0.00E+00	0		•	7.00E-0	1' 0.00E+00
22	0.00E+00	- 0		4	7.50E-01	0.000+00	0			7.50E-0	1 0.00E+00
24	0.00E+00	0			8 00E-01	0.00L+00	0			8.00E-0	1 0.00E+00
25	0.00E+00	0			8 50E-01	0.000000	0		+	8 50E-0	0.00E+00
26	0.00E+00	0			0.00E.01	0.000000	-0			9.00E-0	1 0.00E+00
27	0.00E+00	0			9.00E-01	0.000000	0		•	9 50E-0	1 0.00E+00
20	0.00E+00	0			1.005+00	0.000000	0'		t =	1.00E+0	0 0.00E+00
20	0.00000	- 0			1.00E+00	0.00E+00	0		• •	1.05E+0	0 0.00E+00
10	0.00E+00	0			1.05E+00	0.00E+00	0			1 10E+0	0 0.00E+00
40	0.00E+00	0	-		1.10E+00	0.000000	0'			1.15E+0	0 0.00E+00
41	0.00E+00	0		1	1.75E+00	0.0000-000				1 20E+0	0 0.00E+00
42	0.00E+00	0		·	1.200+00	0.000000	- 0		1	1.20E+0	0.00E+00
43	0.00E+00				1 305±00	0.000+00	0	-	6	1 30E+0	0 0.00E+00
44	0.00E+00				1.300+00	0.000+00	0			1 35E+0	0 0.00E+00
43	0.00E+00			1 I I I I I I I I I I I I I I I I I I I	1.35E+00	0.0000+00	0 0	-	т.	1.350-1	0 0.00E+00
40	0.00E+00	0			1.400+00	0.00E+00	0		4	1.400+(0 0.00E+00
4/	0.00E+00		-		1.43E+00	0.00E+00	0			1.450E+0	0 0.00E+00
48	0.00E+00	0		5	1.50E+00	0.00C+00				1.50E+(0.00E+00
49	0.00E+00				1.55E+00	0.00E+00	0	-spin-terms		1.556+(0.00E+00
50	0.00E+00	0		+-	1.00E+00	0.00E+00	0			1.002+0	0 0.00E+00
51	0.000+00	0			1.05E+00	0.00E+00	0	-	-1	1.05E+0	0 0.00E+00
52	0.00E+00	0		1	1.70E+00	0.00E+00	0		1.00	1.70E+(0.00E+00
33	0.00E+00	0			1./5E+00	0.00E+00	0			1./SE+(0 0.00E+00
54	0.00E+00	0			1.60E+00	0.00E+00	0			1.80E+U	0 0.00E+00
55	0.00E+00	0		1	1.65E+00	0.00E+00	0	-		1.00E+(0 0.00E+00
56	0.00E+00	- 0	-	۵	1.90E+00	0.00E+00	0			1.90E+(0 0.00E+00
5/	0.00E+00	0		*	1.95E+00	0.00E+00	0			1.95E+(0 0.00E+00
58	0.00E+00	0			2.00E+00	0.001+00	0 0000			2.00E+(2 455 01
59	1./IE-01	0.0002	De 15		total	2.//E=01	0.0002		• =	total	3.45E-01
1 00											

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	L	М	N	0	Р	Q	R	S	T	U	V
61				-1							
62	fid30b		-	1	Filename	fid40b		-		Filename	fid50b
63											
64	ps = 90337	828			Itally 8	nps = 638333	523			Itally 8 1	ps = 5893
65	e 8 pulse	height distr	ibution.	uni	tally ty	pe 8 pulse	height distr	ibution.	un	tally typ	be 8 pulse
66	photons				tally fo	r photons				tally for	photons
67											
68			-		cell 2	. ,	,			cell 2	
69	0.000		-		energy	0.005.00	0			energy	0.000.00
70	0.00E+00	0	*	ŧ.	0.00E+00	0.00E+00	0 0000			0.00E+00	0.00E+00
71	2.48E-01	0.0002	1		5.00E-02	3.46E-01;	0.0002			5.00E-02	3.99E-01
12	0.00E+00	0	4 -		1.00E-01	0.00E+00	0.			1.00E-01	2.97E-04
13	0.00E+00	0			1.50E-01	0.000000	0	-		2.00E.01	0.00E+00
74	0.00E+00	0			2.00E-01	0.0000000	0			2.00E-01	0.00E+00
76	0.00E+00	0			2.30E-01	0.00E+00	0			3.00E-01	0.000000
70	0.00E+00	- 0	,		3 50E-01	0.00E+00	0		1.00	3 50E-01	0.00E+00
78	0.00E+00	0			4 00F-01	0.00E+00	0			4 00E-01	0.00E+00
79	0.00E+00	0			4 50E-01	0.00E+00	0			4.50E-01	0.00E+00
80	0.00E+00	0		;	5 00E-01	0.00E+00	0			5.00E-01	0.00E+00
81	0.00E+00	$-\frac{0}{0}$			5.50E-01	0.00E+00	0.	-		5.50E-01	0.00E+00
82	0.00E+00	- 0		-	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00
83	0.00E+00	0		+	6.50E-01	0.00E+00	0		- 5-	6.50E-01	0.00E+00
84	0.00E+00	0		•	7.00E-01	0.00E+00	0		e ²	7.00E-01	0.00E+00
85	0.00E+00	0		*	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00
86	0.00E+00	0		1	8.00E-01	0.00E+00	0,			8.00E-01	0.00E+00
87	0.00E+00	0		*	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00
88	0.00E+00	0	trate :		9.00E-01	0.00E+00	0			9.00E-01	0.00E+00
89	0.00E+00	0			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00
90	0.00E+00	0			1.00E+00	0.00E+00	0.			1.00E+00	0.00E+00
91	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
92	0.00E+00	0	-		1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
93	0.00E+00	0			1.15E+00	0.00E+00	0		and a second discovery	1.15E+00	0.00E+00
94	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
95	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
96	0.00E+00	0	_		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
97	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
98	0.00E+00	0			1.40E+00	0.00E+00	0	-		1.40E+00	0.00E+00
99	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
100	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
101	0.00E+00	0		• -	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
102	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00
103	0.00E+00	0	L.		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
104	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
105	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
106	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
107	0.00E+00	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
108	0.00E+00	0		÷	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
109	0.00E+00	0		+-	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
110	0.00E+00	0 0000			2.00E+00	0.00E+00	0.0002			2.00E+00	0.00E+00
111	2.48E-01	0.0002			total	3.40E-01	0.0002			total	3.99E-01
112											
113	6420-				Filmont	6.1100				Ellanama	6.150.0
114	nasue			÷	rnename	110400				rnename	nasoc
115	no - 96356	550			Italiy 9	me = 61525	145			Itally 9	ne = 5012
110	ps = 80230.	height diet-	ibution	Inter	tally tally tal	1ps - 015254	height diste	ibution		tally tu	1ps - 5913
110	nhotone	neight distr	ioution.	, uni	tally for	r photons	neight distr	ioution.	un	tally for	photons
110	photons				tany 10	photons	t			tany lo	photons
120					cell 2	1	-	· · · · · · · · · · · ·		cell 2	· ·
120					0011 Z					CON 2	

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

121 cnergy energy energy 122 0.00E+00		L	М	N	0	Р	Q	R	S	Т	U	V
172 0.00E+00 0 0.00E+00 0.00E+0	121					energy					energy	
172 321:-01 0.0002 5.00E-02 3.99E-01 0.0002 5.00E-02 4.35E-01 173 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 0 2.50E-01 0.00E+00 0 3.50E-01 0.00E+00 0 3.50E-01 0.00E+00 0 3.50E-01 0.00E+00 0 4.50E-01 0.00E+00 0 4.50E-01 0.00E+00 0 4.50E-01 0.00E+00 0 5.50E-01 0.00E+00 </td <td>122</td> <td>0.00E+00</td> <td>0</td> <td></td> <td></td> <td>0.00E+00</td> <td>0.00E+00</td> <td>0</td> <td>•</td> <td></td> <td>0.00E+00</td> <td>0.00E+00</td>	122	0.00E+00	0			0.00E+00	0.00E+00	0	•		0.00E+00	0.00E+00
Tay ODE+OD 100E-10 0.00E+00 1.00E-10 0.00E+00 1.00E-10 0.00E+00 0.0	123	3.21E-01	0.0002			5.00E-02	3.99E-01	0.0002			5.00E-02	4.35E-01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	124	0.00E+00	0			1.00E-01	0.00E+00	0			1.00E-01	3.25E-04
	125	0.00E+00	0			1.50E-01	0.00E+00	0			1.50E-01	0.00E+00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	126	0.00E+00	0			2 00F-01	0.00E+00	0			2.00E-01	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	127	0.00E+00	0			2.50E-01	0.00E+00	0			2 50E-01	0.00E+00
120 0.00E+00 0 3.50E-01 0.00E+00 0 3.50E-01 0.00E+00 130 0.00E+00 0 4.00E-01 0.00E+00 0 5.00E-01 0.00E+00 0 7.00E-01 0.00E+00 0 7.00E-01 0.00E+00 0 7.00E-01 0.00E+00 0 0.00E+00 0 0.00E+01 0.00E+00 0 0.00E+01 0.00E+00 0 0.00E+01 0.00E+00 0 0.00E+00 0 0.00E+00 0 0.00E+00 0 0.00E+00 0 0.00E+00 0 0.00E+00 0.00E+00 0	127	0.00E+00	0			3.00F-01	0.00E+00	0			3.00E-01	0.00E+00
12 0.002+00 0 4.002-01 0.002+00 0 4.002-01 0.002+00 0 4.002-01 0.002+00 0 4.002-01 0.002+00 0 0.002+00	120	0.00E+00	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	129	0.0000	0			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	130	0.00E+00	0			4.00E-01	0.00E+00	0			4.50E-01	0.00E+00
120 0.001-00 <th0.001-00< th=""> 0.001-00 0</th0.001-00<>	122	0.0000	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00
120 0.001-00 0.002+00 <th0.002+00< th=""> 0.002+00 <th0< td=""><td>132</td><td>0.00E+00</td><td>0</td><td></td><td></td><td>5.00E-01</td><td>0.0000+00</td><td>0</td><td></td><td></td><td>5.50E-01</td><td>0.00E+00</td></th0<></th0.002+00<>	132	0.00E+00	0			5.00E-01	0.0000+00	0			5.50E-01	0.00E+00
1.34 0.00E+00 0.00E+00 <td< td=""><td>133</td><td>0.00E+00</td><td>0</td><td></td><td></td><td>5.50E-01</td><td>0.0000+00</td><td>0</td><td></td><td>•</td><td>. 5.50L-01</td><td>0.00L+00</td></td<>	133	0.00E+00	0			5.50E-01	0.0000+00	0		•	. 5.50L-01	0.00L+00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	134	0.00E+00	0			0.00E-01	0.000-00	0			6.00E-01	0.00E+00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	135	0.00E+00	0			0.50E-01	0.000+00	0			0.50E-01	0.00E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	130	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01	0.000 +00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	137	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	138	0.00E+00	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	139	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	140	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00
142 0.00E+00 0 1.00E+00 0.00E+00 0.00E+00 </td <td>141</td> <td>0.00E+00</td> <td>0</td> <td></td> <td></td> <td>9.50E-01</td> <td>0.00E+00</td> <td>0</td> <td></td> <td></td> <td>9.50E-01</td> <td>0.00E+00</td>	141	0.00E+00	0			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	142	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00
144 $0.00E+00$ 0 1.10E+00 $0.00E+00$ 0 1.15E+00 $0.00E+00$ 0 1.15E+00 $0.00E+00$ 0 1.15E+00 $0.00E+00$ 0 0.00E+00 0 1.35E+00 0.00E+00 0 0.00E+00 0 0.00E+00 0 1.45E+00 0.00E+00 0 1.45E+00 0.00E+00 0 1.45E+00 0.00E+00 0 1.45E+00 0.00E+00 0 1.55E+00 0.00E+00 1.55E	143	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
145 $0.00E+00$ 0 1.15E+00 $0.00E+00$ 0 1.25E+00 $0.00E+00$ 0 1.35E+00 $0.00E+00$ 0 0.05E+00 $0.00E+00$ 0 1.35E+00 $0.00E+00$ 0 1.35E+00 $0.00E+00$ 0 0.05E+00 $0.00E+00$ 0 1.35E+00 $0.00E+00$ 0 1.35E+00 $0.00E+00$ 0 1.45E+00 $0.00E+00$ 0 1.45E+00 $0.00E+00$ 0 1.55E+00 $0.00E+00$ 0 1.55E+00<	144	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
146 $0.00E+00$ 0 $1.20E+00$ $0.00E+00$ 0 $1.25E+00$ $0.00E+00$ 0 $1.35E+00$ $0.00E+00$ 0 $1.40E+00$ $0.00E+00$ 0 $1.40E+00$ $0.00E+00$ 0 $1.40E+00$ $0.00E+00$ 0 $1.40E+00$ $0.00E+00$ 0 $1.45E+00$ $0.00E+00$ 0 $1.45E+00$ $0.00E+00$ 0 $1.55E+00$ $0.00E+00$ 0 $1.55E+00$ $0.00E+00$ 0 $1.55E+00$ $0.00E+00$ 0 $0.5E+00$ $0.00E+00$ 0 $1.55E+00$ $0.00E+00$ 0 $0.55E+00$	145	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
147 0.00E+00 0 1.25E+00 0.00E+00 0 1.30E+00 0.00E+00 0 1.30E+00 0.00E+00 0 1.30E+00 0.00E+00 0 1.30E+00 0.00E+00 0 1.35E+00 0.00E+00 0 1.35E+00 0.00E+00 0 1.40E+00 0.00E+00 0 1.45E+00 0.00E+00 0 1.55E+00 0.00E+00 0 1.75E+00 0.00E+00 0 1.75E+00 0.00E+00 0 1.75E+00 0.00E+00 0 1.55	146	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	147	0.00E+00	0	•		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
149 $0.00E+00$ 0 $1.35E+00$ $0.00E+00$ 0	148	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	149	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	150	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	151	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	152	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	153	0.00E+00	0	, .		1.55E+00	0.00E+00	0		•	1.55E+00	0.00E+00
125 0.00E+00 0 1.65E+00 0.00E+00 0 1.75E+00 0.00E+00 0 1.75E+00 0.00E+00 0 1.75E+00 0.00E+00 0 1.85E+00 0.00E+00 0 1.85E+00 0.00E+00 0 1.85E+00 0.00E+00 0 1.85E+00 0.00E+00 0 1.99E+00 0.00E+00 0.00E+00<	154	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00
1250 0.00E+00 0 1.70E+00 0.00E+00 0 1.70E+00 0.00E+00 0 1.70E+00 0.00E+00 0 1.75E+00 0.00E+00 0 1.75E+00 0.00E+00 0 1.75E+00 0.00E+00 0 1.80E+00 0.00E+00 0 1.90E+00 0.00E+00 0.00E+00 <t< td=""><td>155</td><td>0.00E+00</td><td>- 0</td><td></td><td></td><td>1.65E+00</td><td>0.00E+00</td><td>0</td><td></td><td></td><td>1.65E+00</td><td>0.00E+00</td></t<>	155	0.00E+00	- 0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	156	0.00E+00	0			1 70E+00	0.00E+00	0			1.70E+00	0.00E+00
131 0.00E+00 0 1.80E+00 0.00E+00 0 1.90E+00 0.00E+00 1.95E+01 0.00E+00 0 1.95E+01 0.00E+00 0.00E+	157	0.00E + 00	0			1 75E+00	0.00E+00	Ő			1.75E+00	0.00E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	158	0.00E+00	Ő			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	150	0.00E + 00	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
100 0.001/00 1.9	160	0.00E+00	0			1.00E+00	0.00E+00	0			1.90E+00	0.00E+00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	161	0.001+00	0			1.90E+00	0.00E+00	0			1.95E+00	0.00E+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	162	0.00E+00	0	, .		2.00E+00	0.00E+00	0	,		2.00E+00	0.00E+00
103 $3.212-01$ 0.002 1041 $3.392-01$ 0.002 1041 $4.351-01$ 164 165 fid30d Filename fid40d Filename fid50d 166 fid30d Itally 8 nps = 59784935 Itally 8 nps = 5839 Itally 8 nps = 5839 169 e 8 pulse height distribution. uni tally type 8 pulse height distribution. un tally type 8 pulse 170 photons cell 2 cell 2 energy energy energy 171 cell 2 cell 2 cell 2 cell 2 cell 2 1000E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E-01 2.81E-04 1.00E-01 2.81E-04 1.00E+00 1.00E+00 <t< td=""><td>162</td><td>2 21E 01</td><td>0.0002</td><td></td><td></td><td>2.00E+00</td><td>2 00E 01</td><td>0 0002</td><td></td><td></td><td>total</td><td>1 36E 01</td></t<>	162	2 21E 01	0.0002			2.00E+00	2 00E 01	0 0002			total	1 36E 01
107 165 Filename fid40d Filename fid50d 167 168 ps = 81988313 1tally 8 nps = 59784935 1tally 8 nps = 5839 169 e 8 pulse height distribution. uni tally type 8 pulse height distribution. uni tally type 8 pulse height distribution. uni tally for photons tally for photons 170 photons cell 2 cell 2 energy energy energy energy energy energy 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E-01 2.81E-04 177 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 0.00E+00 178 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 1.50E+00 0.00E+00 1.50E+00 0.00E+00 1.50E+00 0.00E+00 1.50E+00 0.00E+00 1.50E+00 0.00E+00 1.50E+01 0.00E+00 1.50E+01 0.00E+00	164	J.21E-01	0.0002			iotai	J.77E*01	0.0002			(ota)	JUL-UI
103 Filename fid40d Filename fid50d 166 fid30d Filename fid40d Filename fid50d 167 ps = 81988313 Itally 8 nps = 59784935 Itally 8 nps = 5839 Itally type 8 pulse height distribution. un tally type 8 pulse height distribution. un tally type 8 pulse height distribution. un tally for photons 170 photons cell 2 cell 2 cell 2 energy energy energy energy energy 0.00E+00	104											
1100 Halande Filename Haladd Filename Haladd 167 167 $ps = 81988313$ Itally 8 $nps = 59784935$ Itally 8 $nps = 5839$ 169 $e 8$ pulse height distribution. uni tally type 8 pulse height distribution. un 170 photons tally for photons tally for photons tally for photons 171 cell 2 cell 2 energy energy energy 174 0.00E+00 0 0.00E+00 0.00E+00 0.00E+00 175 3.95E-01 0.0001 5.00E-02 4.43E-01 0.0001 5.00E-02 4.63E-01 176 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 177 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 178 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 180 0.00E+00 0 3.00E-01 0.00E+00 0 0.00E+00	105	6 J20 J				Ellen en e					Filmone	64604
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	110300				rliename	110400				Fliename	. 110500
168 ps = 81988313 Itally 8 nps = 59784935 Itally 8 nps = 5839 169 e 8 pulse height distribution. uni tally type 8 pulse height distribution. un tally type 8 pulse 170 photons cell 2 cell 2 energy energy energy 174 0.00E+00 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 175 3.95E-01 0.0001 5.00E-02 4.43E-01 0.0001 5.00E-02 4.63E-01 176 0.00E+00 0 1.00E-01 0.00E+00 0 1.00E-01 2.81E-04 177 0.00E+00 0 1.50E-01 0.00E+00 0 2.00E-01 0.00E+00 178 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 179 0.00E+00 0 3.00E-01 0.00E+00 0 <td>167</td> <td>010000</td> <td></td> <td></td> <td></td> <td></td> <td>60.80</td> <td>0.2.5</td> <td></td> <td>,</td> <td>1. 11 0</td> <td></td>	167	010000					60.80	0.2.5		,	1. 11 0	
169 e 8 pulse height distribution. uni tally type 8 pulse height distribution. uni tally for photons 171 photons cell 2 cell 2 cell 2 energy energy energy energy 0.00E+00	168	ps = 819883	13			Itally 8	nps = 59784	935			Itally 8 r	1ps = 5839
170 photons tally for photons tally for photons 171 172 cell 2 cell 2 173 energy energy energy 174 0.00E+00 0 0.00E+00 0.00E+00 0.00E+00 175 3.95E-01 0.0001 5.00E-02 4.43E-01 0.0001 5.00E-02 4.63E-01 176 0.00E+00 0 1.00E-01 0.00E+00 0 1.00E-01 2.81E-04 177 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 178 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 179 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00 180 0.00E+00 0 3.00E-01 0.00E+00 0 0.00E+00	169	e 8 pulse h	eight distr	ibution.	uni	tally ty	pe 8 pulse	height dist	ribution.	. un	tally typ	be 8 pulse
171 cell 2 cell 2 173 cell 2 energy 174 0.00E+00 0 0.00E+00 0.00E+00 0.00E+00 175 3.95E-01 0.0001 5.00E-02 4.43E-01 0.0001 5.00E-02 4.63E-01 176 0.00E+00 0 1.00E-01 0.00E+00 0 1.00E-01 2.81E-04 177 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 178 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 179 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00	170	photons				tally fo	r photons				tally for	photons
172 cell 2 cell 2 173 energy energy 174 0.00E+00 0 0.00E+00 0 175 3.95E-01 0.0001 5.00E-02 4.43E-01 0.0001 176 0.00E+00 0 1.00E-01 0.00E+00 0 1.00E-01 2.81E-04 177 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 178 0.00E+00 0 2.00E-01 0.00E+00 0 2.50E-01 0.00E+00 179 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00	171											
173 energy energy energy 174 0.00E+00 0 0.00E+00 0 0.00E+00 0.00E+00 175 3.95E-01 0.0001 5.00E-02 4.43E-01 0.0001 5.00E-02 4.63E-01 176 0.00E+00 0 1.00E-01 0.00E+00 0 1.00E-01 2.81E-04 177 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 178 0.00E+00 0 2.00E-01 0.00E+00 0 2.00E-01 0.00E+00 179 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00 180 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00	172					cell 2					cell 2	
174 0.00E+00 0 0.00E+00 0 0.00E+00	173	-				energy					energy	.
175 3.95E-01 0.0001 5.00E-02 4.43E-01 0.0001 5.00E-02 4.63E-01 176 0.00E+00 0 1.00E-01 0.00E+00 0 1.00E-01 2.81E-04 177 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 178 0.00E+00 0 2.00E-01 0.00E+00 0 2.00E-01 0.00E+00 179 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 180 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00	174	0.00E+00	0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
176 0.00E+00 0 1.00E-01 0.00E+00 0 1.00E-01 2.81E-04 177 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 178 0.00E+00 0 2.00E-01 0.00E+00 0 2.00E-01 0.00E+00 179 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 180 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00	175	3.95E-01	0.0001			5.00E-02	4.43E-01	0.0001			5.00E-02	4.63E-01
177 0.00E+00 0 1.50E-01 0.00E+00 0 1.50E-01 0.00E+00 178 0.00E+00 0 2.00E-01 0.00E+00 0 2.00E-01 0.00E+00 179 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 180 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00	176	0.00E+00	0			1.00E-01	0.00E+00	0	-		1.00E-01	2.81E-04
178 0.00E+00 0 2.00E-01 0.00E+00 0 2.00E-01 0.00E+00 179 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 180 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00	177	0.00E+00	0			1.50E-01	0.00E+00	0	,		1.50E-01	0.00E+00
179 0.00E+00 0 2.50E-01 0.00E+00 0 2.50E-01 0.00E+00 180 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00	178	0.00E+00	0			2.00E-01	0.00E+00	0			2.00E-01	0.00E+00
180 0.00E+00 0 3.00E-01 0.00E+00 0 3.00E-01 0.00E+00	179	0.00E+00	0			2.50E-01	0.00E+00	0			2.50E-01	0.00E+00
	180	0.00E+00	0			3.00E-01	0.00E+00	0			3.00E-01	0.00E+00

for another and a state of the	Worksheet '	"MCNP	Data p=1.5	of Workbook	"MCNP	Volume Seneca.xls
---	-------------	-------	------------	-------------	-------	-------------------

	L	M	N	0	Р	Q	R	S	T	U	V
181	0.00E+00	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
182	0.00E+00	0	•		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00
183	0.00E+00	0	•		4.50E-01	0.00E+00	0		•	4.50E-01	0.00E+00
184	0.00E+00	0			5.00E-01	0.00E+00	0		•	5.00E-01	0.00E+00
185	0.00E+00	0	•		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00
186	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00
187	0.00E+00	0			6.50E-01	0.00E+00	0		•	6.50E-01	0.00E+00
188	0.00E+00	0	•		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
189	0.00E+00	0			7.50E-01	0.00E+00	0	-		7.50E-01	0.00E+00
190	0.00E+00	0		•	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00
191	0.00E+00	0		•	8.50E-01	0.00E+00	0		• -	8.50E-01	0.00E+00
192	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00
193	0.00E+00	0	•		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00
194	0.00E+00	0	•		1.00E+00	0.00E+00	0		*	1.00E+00	0.00E+00
195	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
196	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
197	0.00E+00	0	•		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
198	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
199	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
200	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
201	0.00E+00	0	•		1.35E+00	0.00E+00	0		•	1.35E+00	0.00E+00
202	0.00E+00	0	•	•	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00
203	0.00E+00	0			1.45E+00	0.00E+00	0		•	1.45E+00	0.00E+00
204	0.00E+00	0		•	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
205	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
206	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00
207	0.00E+00	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
208	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
209	0.00E+00	0	•		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
210	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
211	0.00E+00	0		•	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
212	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
213	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
214	0.00E+00	0		· -	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00
215	3.95E-01	0.0001	_		total	4.43E-01	0.0001		-	total	4.63E-01

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG
1										1	
2								1			
3											
4											
5									1		
6											
7											
8					a						
9	-+	-		inu	¹ C 160			1		6 170	_
10	r			Filename	fid60a			-+	Filename	Tid/Ua	
11	16	-1		Itally 9	- 520524				Itally 9		15
12	13 noight distrib	ution		i tolly to	nps = 320324	Deight distr	ibution		tally tally tw	rps = 317390	15 night dist
13 1	leight distrib	ution.	-	tally fo	r photons	leight distr	ibution.	ull	tally fo	r photons	leight uist
14	•	- 10.		, tany it	photons				tally io	photons	
16				cell 2					cell 2		
17				energy					energy		
18	0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0
19	0.0002			5.00E-03	7.65E-02	0.0005			5.00E-02	6.76E-02:	0.0005
20	0.0091			1.00E-01	3.08E-01	0.0002		:	1.00E-01	3.41E-01	0.0002
21	0			1.50E-01	0.00E+00	0			1.50E-01	0.00E+00	0
22	0	1		2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0
23	0			2.50E-01	0.00E+00	0		+	2.50E-01	0.00E+00	0
24	0,			3.00E-01	0.00E+00	0	-	+	3.00E-01	0.00E+00	0
25	01			3.50E-01	0.00E+00	0.			3.50E-01	0.00E+00	0
26	0			4.00E-01	0.00E+00	0		1	4.00E-01	0.00E+00	0
27	0,	1		4.50E-01	0.00E+00	0	-		4.50E-01	0.00E+00	0
28	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0
29	0			5.50E-01	0.00E+00	0		1	5.50E-01	0.00E+00	0
30	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0
31	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0
32	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0
33	_ 0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0
34	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0
35	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0
36	0			9.00E-01	0.00E+00	0		. =	9.00E-01	0.00E+00	0
37	0	-		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0
38	0	- +		1.00E+00	0.00E+00	0		+	1.00E+00	0.00E+00	0
39	0	-		1.05E+00	0.00E+00	0		-+	1.05E+00	0.00E+00	0
40	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0
41	0			1.13E+00	0.00E+00	0			1.13E+00	0.00E+00	0
42	0	+		1.202+00	0.00E+00	0			1.20L+00	0.00E+00	0
43	- 0	- 1		1.20E+00	0.00E+00	0		4—	1 30F+00	0.00E+00	0
45				1 35E+00	0.00E+00	0			1 35E+00	0.00E+00	0
46			_	1.40F+00	0.00E+00	0			1.40E+00	0.00E+00	0
47	0			1.45E+00	0.00E+00	- 0			1.45E+00	0.00E+00	0
48	0			1.50E+00	0.00E+00	0		+	1.50E+00	0.00E+00	0
49	0	+-		1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	- 0
50	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0
51	0	-		1.65E+00	0.00E+00	0	-	1	1.65E+00	0.00E+00	0
52	0			1.70E+00	0.00E+00	0			. 1.70E+00	0.00E+00	0
53	0		_	1.75E+00	0.00E+00	0		-	1.75E+00	0.00E+00	0
54	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0
55	0	1		1.85E+00	0.00E+00	0		4	+ 1.85E+00	0.00E+00	0
56	0	*		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0
57	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0
58	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0
59	0.0002	+		total	3.85E-01	0.0002			total	4.08E-01	0.0002
60		+						,			

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG
61							—			1	
62	4			Filename	fid60b		-		Filename	fid70b	
63	06		Å	Italla 0	nna - 575519	205		-	Itally 9	- 561913	75
65	90 height distri	hution	uni	tally t	vne 8 nulse l	height distrib	ution	uni	tally to	ne 8 nulse h	neight dist
66	neight distri	oution.	- um	tally	for photons	neight distribu	ation.	un	tally fo	r photons	leight dist
67			,							- <u>-</u> · · · · ·	
68				cell 2					cell 2		-
69			1	energy					energy	1	
70	0	_		0.00E+0	0 0.00E+00	0			0.00E+00	0.00E+00	0
71	0.0002			5.00E-0	2 8.20E-02	0.0004			5.00E-02	7.33E-02	0.0005
72	0.0076			1.00E-0	01' 3.46E-01	0.0002			1.00E-01	3.71E-01	0.0002
73	0			1.50E-0	01 0.00E+00	0			1.50E-01	0.00E+00	0
74	0			2.00E-0	01 0.00E+00	0			2.00E-01	0.00E+00	0
75	0			2.50E-0	0.00E+00	0			2.50E-01	0.001+00	0
70	0	1.000	+ .	3.00E-0	0.00E+00	0	-		3.50E-01	0.00E+00	
78				4 00F-0	1 0.00E+00	0			4 00F-01	0.00E+00	0
79	0			4.50E-0	0.00E+00	0		Į.	4.50E-01	0.00E+00	0
80	0.			5.00E-0	01: 0.00E+00	0:			5.00E-01	0.00E+00	0
81	- 0		:	5.50E-0	01 0.00E+00	0	-	-	5.50E-01	0.00E+00	0
82	0		1	6.00E-0	0.00E+00	0	_		6.00E-01	0.00E+00	0
83	0			6.50E-0	01 0.00E+00	0			6.50E-01	0.00E+00	0
84	0	-	t ·	7.00E-0	01 0.00E+00	0			7.00E-01	0.00E+00	0
85	0.			7.50E-0	01 0.00E+00	0			7.50E-01	0.00E+00	0
86	0		+ -	8.00E-0	01 0.00E+00	0			8.00E-01	0.00E+00	0
87	0			8.50E-0	01 0.00E+00	0		_	8.50E-01	0.00E+00	0
88	0		•	9.00E-0	01 0.00E+00	0			9.00E-01	0.00E+00	0
89	0		d=	9.50E-0	01 0.00E+00	0			9.50E-01	0.00E+00	0
90	0.			1.00E+0	0.00E+00	0			1.00E+00	0.00E+00	0
91			+	1.03E+0	0 0.00E+00	0		·	1.05E+00	0.00E+00	0
92	0		-1	1.10E+0	0 00E+00	0 0			1.15E+00	0.00E+00	0
94	- 0		4	1.20E+0	0 0.00E+00	0			1.20E+00	0.00E+00	0
95	0			1.25E+0	0 0.00E+00	0	-		1.25E+00	0.00E+00	0
96	0			1.30E+0	0 0.00E+00	0			1.30E+00	0.00E+00	0
97	0		+	1.35E+0	00 0.00E+00	0			1.35E+00	0.00E+00	0
98	0			1.40E+0	0 0.00E+00	0			1.40E+00	0.00E+00	0
99	0			1.45E+0	0.00E+00	0			1.45E+00	0.00E+00	0
100	0			1.50E+0	00_0.00E+00	0			1.50E+00	0.00E+00	0
101	0			1.55E+0	00 0.00E+00	0	_	-	1.55E+00	0.00E+00	0
102	0	_		1.60E+0	00 0.00E+00	0	-4		1.60E+00	0.00E+00	0
103	0		,	1.65E+0	0 0.00E+00	0			1.65E+00	0.00E+00	0
104	0		1 .	1.70E+0	0 0.00E+00	0	i	-	1.75E+00	0.00E+00	0
105	0		ļ	1.75E+0	0 0.00E+00	0	-	-	1.75E+00	0.00E+00	0
100	0			1.80E+0	0.00E+00	0			1.80E+00	0.00E+00	0
108	0		<u> </u>	1.90E+0	0.00E+00	0			1.90E+00	0.00E+00	0
109	0.		1	1.95E+0	0 0.00E+00	0			1.95E+00	0.00E+00	0
110	0		e .	2.00E+0	0 0.00E+00	0			2.00E+00	0.00E+00	0
111	0.0002			total	4.28E-01	0.0002			total	4.44E-01	0.0001
112				1	1	1					
113	1					-					
114	1		1	Filename	fid60c	+			Filename	fid70c	
115	1					-					
116	01			Itally 8	nps = 584147	18			Itally 8	nps = 579555	72
117	height distri	bution.	uni	tally t	ype 8 pulse l	neight distribu	ition.	uni	tally ty	pe 8 pulse h	neight dist
118			1	tally 1	or photons	- F	_	•	tally fo	r photons	
120				cell 2					cell 2	<u> </u>	

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG
121	-			energy					energy		
122	0	•		0.00E+00	0.00E+00	0		+ •	0.00E+00	0.00E+00	0
123	0.0001			5.00E-02	8.50E-02	0.0004		4	5.00E-02	7.71E-02	0.0005
124	0.0072			1 00E-01	3 69E-01	0.0002			1.00E-01	3.87E-01	0.0002
124	0.0072			1.50E-01	0.00F+00	0		1	1.50E-01	0.00E+00	0
125		+		+ 2.00E-01	0.00E+00	0		+	2.00F-01	0.00F+00	0
120	0	4		2.00E-01	0.002.00	0			2.50E-01	0.00E+00	0
12/	0			2.500-01	0.000000	0			2.00E-01	0.00E+00	0
128	0			3.00E-01	0.00E+00	0			2.50E-01	0.00000	
129	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0
130	0	4		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	
131	0		-	4.50E-01	0.00E+00	0		:	4.50E-01	0.00E+00	0
132	0			5.00E-01	0.00E+00	0		*	5.00E-01	0.00E+00	0
133	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0
134	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0
135	0			6.50E-01	0.00E+00	0		1	6.50E-01	0.00E+00	0
136	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0
137	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0
138	0			8.00E-01	0.00E+00	0		ł	8.00E-01	0.00E+00	0
139	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0
140	0			9.00E-01	0.00E+00	0		4	9.00E-01	0.00E+00	0
141	0.	:		9.50E-01	0.00E+00	0:			9.50E-01	0.00E+00	0
142	0		-	1.00E+00	0.00E+00	0		1	1.00E+00	0.00E+00	0
143	0			1.05E+00	0.00E+00	0		+	1.05E+00	0.00E+00	0
144	-0			1 10E+00	0.00E+00	0		+	1.10E+00	0.00E+00	0
145				115E+00	0.00E+00	0			1.15E+00	0.00E+00	0
145	0	- 1		1.15E+00	0.00E+00	0		1	1 1.20E+00	0.00E+00	0
140		-		1.25E+00	0.00E+00	0		1	1 25E+00	0.00E+00	0
147	0			1 30E+00	0.00E+00	0		+	1 30E+00	0.00E+00	0
148	0	-+		1.30E+00	0.000000	0		1	1.30E+00	0.00E+00	
149	0	1		1.33E+00	0.0000000	0			1.351100	0.000000	0
150	0	_		1.40E+00	0.00E+00	0			1.402+00	0.00E+00	- 0
151	0	-		1.45E+00	0.00E+00	0		1	1.45E+00	0.00E+00	0
152	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0
153	0'			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	
154	0			1.60E+00	0.00E+00	0		.4	1.60E+00	0.00E+00	0
155	0			1.65E+00	0.00E+00	0		-	1.65E+00	0.00E+00	0
156	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0
157	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0
158	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0
159	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0
160	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0
161	0			1.95E+00	0.00E+00	0		•	1.95E+00	0.00E+00	0
162	0			2.00E+00	0.00E+00	0		•	2.00E+00	0.00E+00	0
163	0.0001			total	4.54E-01	0.0001		•	total	4.64E-01	0.0001
164	4			4				~1			
165	-								• • = =		
166				Filename	fid60d			•	Filename	fid70d	
167					1 Indoord						
169	25	- +		Itally 8 t	ne = 59491	988		·	Itally 8	nns = 59646	535
160	haight distribu	ution		tally ty	no & nulca	height distr	ibution		i tally ty	ne 8 nulse	height dist
109	neight distribu		un	tally for	nhotons	neight disu	ioution.	un	tally fo	r nhotone	norgin dist
170		+		, tany ton	photons			1	tuny io	photons	
1/1				·	han anno			1	anll 2	ı	
172				cell Z	-				cen z		
173				energy	0.005.00			-	energy	0.000 .00	- 0
174	0	4		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0 0004
175	0.0001	4		5.00E-02	8.74E-02	0.0004			5.00E-02	8.05E-02	0.0004
176	0.0078	1		1.00E-01	3.85E-01	0.0002		*	1.00E-01	3.97E-01	0.0002
177	0			1.50E-01	0.00E+00	0			1.50E-01	0.00E+00	0
178	0			2.00E-01	0.00E+00	. 0			2.00E-01	0.00E+00	0
179	0			2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0
180	0			3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0

Worksheet "MCNP Data	p=1.5" of Workbook	"MCNP Volume Seneca.xls"
----------------------	--------------------	--------------------------

	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG
181	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0
182	0		•	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0
183	0		•	4.50E-01	0.00E+00	0		•	4.50E-01	0.00E+00	0
184	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0
185	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0
186	0		•	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0
187	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0
188	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0
189	0	-		7.50E-01	0.00E+00	0		•	7.50E-01	0.00E+00	0
190	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0
191	- 0		s.	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0
192	. 0		•	9.00E-01	0.00E+00	0		· -	9.00E-01	0.00E+00	0
193	0			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0
194	0		4	1.00E+00	0.00E+00	0		-	1.00E+00	0.00E+00	0
195	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0
196	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0
197	0			1.15E+00	0.00E+00	0		*	1.15E+00	0.00E+00	0
198	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0
199	0			1.25E+00	0.00E+00	0		-	1.25E+00	0.00E+00	0
200	0		•	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0
201	0			1.35E+00	0.00E+00	0.			1.35E+00	0.00E+00	0
202	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0
203	0			1.45E+00	0.00E+00	0		-	1.45E+00	0.00E+00	0
204	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0
205	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0
206	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0
207	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0
208	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0
209	0 [`]			1.75E+00	0.00E+00	0		*	1.75E+00	0.00E+00	0
210	0			1.80E+00	0.00E+00	0		•	1.80E+00	0.00E+00	0
211	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0
212	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0
213	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0
214	0			2.00E+00	0.00E+00	0		•	2.00E+00	0.00E+00	0
215	0.0001			total	4.72E-01	0.0001		•	total	4.77E-01	0.0001

	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
1											
2				- •		-					
3			+ 1	27.							
4				*							
5											
6			÷ - +								
7	- 1								•	*	
8	- +								1		
9	- +								1	-	
10			Filename	fid80a				Filename	fid90a		
11	4										
12			ltally 8 n	ps = 524587	66			Itally 8	nps = 5143780)9	
13	bution.	uni	tally typ	e 8 pulse h	neight distri	bution.	uni	tally ty	pe 8 pulse he	eight distri	bution.
14			tally for	photons				tally fo	r photons		
15	•										
16			cell 2	•				cell 2			
17			energy					energy			
18			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0	
19	4		5.00E-02	4.41E-02	0.0006			5.00E-02	5.22E-02	0.0006	-
20			1.00E-01	3.78E-01	0.0002			1.00E-01	3.79E-01	0.0002	
21			1.50E-01	0.00E+00	0			1.50E-01	0.00E+00	0	
22			2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0	
23			2.50E-01	0.00E+00	0		-	2.50E-01	0.00E+00	0	
24	-		3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0	
25	1		3.50E-01	0.00E+00	0		1	3.50E-01	0.00E+00	0	
26			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	
27			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0	
28			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	
29			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	
30			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0	_
31			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0,	
32			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0	
33			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	_
34			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0	
35			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0	_
36			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0	
37			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	
38			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	
39	-		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
40			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0	
41	+-		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0 '	
42			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	
43		_	1.25E+00	0.00E+00	0			1.25E+00	0_0.00E+00	0	
44			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
45		-	1.35E+00.	0.00E+00	0		-	1.35E+00	0.00E+00	0	
46			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0	
47			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0	
48			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0	
49		-	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0	
50			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0	_
51			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
52			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	
53			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0	
54	+		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0	
55			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
56			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
57			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	-
58			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0	
59			total	4.22E-01	0.0002			total	4.31E-01	0.0002	
1 60											

	AH Al	AJ	AK	AL A	AM	AN	AO	AP	AQ	AR
61										
62	!	Filename	fid80b				Filename	fid90b		
63		Itally 9	- 552061	02			Itally 9	- 541106	70	
65	bution	tally tally two	ne 8 nulse h	eight distributi	on	uni	tally ty	ps = 341190	eight distrib	oution
66		tally fo	r photons	eight distributi		um	tally for	r photons	cigin uisuit	-
67			photons		•		turij io	photons		
68		cell 2					cell 2	- · ·		
69		energy	1				energy			
70		0.00E+00	0.00E+00	0	-1		0.00E+00	0.00E+00	01	
71		5.00E-02	4.45E-02	0.0006			5.00E-02	5.26E-02	0.0006	
72		1.00E-01	4.09E-01	0.0002			1.00E-01	4.06E-01	0.0002	
73		1.50E-01	0.00E+00	0			1.50E-01	0.00E+00	0	
74		2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0	
75		2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0	
76		3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0	
77		3.50E-01	0.00E+00:	0.	:		3.50E-01	0.00E+00.	0:	
78		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	
19		4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	- 0 ¹ -	
80	· ·= ·=	5.00E-01	0.00E+00	0			5.50E-01	0.00E+00		
81		5.50E-01	0.00E+00	0			6.00E-01	0.00E+00	0	
83		6 50E-01	0.00E+00	0		_	6 50E-01	0.00E+00	0	
84		7 00E-01	0.00E+00	0	,		7.00E-01	0.00E+00	0	
85		7.50E-01	0.00E+00	0	ŀ	-	7.50E-01	0.00E+00	0	
86		8.00E-01	0.00E+00	0			8.00E-01	0.00E+001	0,	
87		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0	
88		9.00E-01	0.00E+00	0		-	9.00E-01	0.00E+00	0,	
89	• • ••	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0.	
90		1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	
91		1.05E+00	0.00E+00	0	*	-	1.05E+00	0.00E+00	01	
92		1.10E+00	0.00E+00	0	-		1.10E+00	0.00E+00	0	
93		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0	
94		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	
95		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0	
96	L	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
97		1.35E+00	0.00E+00	0		10	1.35E+00	0.00E+00	0	
98		1.40E+00	0.00E+00	0	4	-	1.40E+00	0.00E+00	0.	
100		1.43E+00	0.00E+00	0			1.45E+00	0.00E+00	0	
100		1.55E+00	0.00E+00	0		-	1.50E+00	0.00E+00	0	
101		1.55E+00	0.00E+00	0			1.60E+00	0.00E+00	0	
102		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
104		1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	
105		1.75E+00	0.00E+00	0	,	_	1.75E+00	0.00E+00	0	
106		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0	
107		1.85E+00	0.00E+00	0,			1.85E+00	0.00E+00	0	
108		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
109		1.95E+00	0.00E+00	0	1		1.95E+00	0.00E+00	0	
110		2.00E+00	0.00E+00	0	· 		2.00E+00	0.00E+00	0	
111		total	4.53E-01	0.0001	-		total	4.59E-01	0.0001	
112					-+ -					
113	·		1		-		-			
114		Filename	fid80c				Filename	fid90c		
115		14-11- 0				-	1-11- 0		07	
116	huting	Itally 8 I	nps = 5/32343	oight diet it			Itally 8 I	1ps = 366458	9/	
11/	uni uni	tally typ	pe o puise h	eight distributi		uni	tally ty	pe o puise h	eight distrit	oution.
110		tally for	photons			-	tally for	photons		
120		cell 2		_			cell 2	·		

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	ATT A	I AI	AK	AL	AM	T	AN	T	40	AP	AO	AR
	AH A	I AJ	AN	AL	AM	_	AIN	1	AU	AI	AV	AR
121		energy						4	energy			
122		0.00E+00	0.00E+00	0					0.00E+00	0.00E+00	0	
123		5.00E-02	4.41E-02	0.0006				-1	5.00E-02	5.23E-02	0.0006	
124		1.00F-01	4 26E-01	0 0002				1	1.00E-01	4.21E-01	0.0002	
124		1.50E 01	0.0000	0.0002					1 50E-01	0.00E+00	0	
125	- ·	1.30E-01	0.00E+00	0					2.005.01	0.000000	0	
126		2.00E-01	0.00E+00	0					2.00E-01	0.00E+00	0	
127		2.50E-01	0.00E+00	0					2.50E-01	0.00E+00	0	
128		3.00E-01	0.00E+00	0					3.00E-01	0.00E+00	0	
129	- th	3.50E-01	0.00E+00	0		•			3.50E-01	0.00E+00	0	
130		4.00E-01	0.00E+00	0		•		•	4.00E-01	0.00E+00	0	
121		4 50E-01	0.00E+00	0				*	4 50F-01	0.00E+00	0	
131	++	4.502-01	0.000000	0.				4	5 00E 01	0.0000-00	0	
132		5.00E-01	0.00E+00	0.			_	-	5.00E-01	0.0012+00	0	
133		5.50E-01	0.00E+00	0				a c	5.50E-01	0.00E+00	0	
134		6.00E-01	0.00E+00	0					6.00E-01	0.00E+00	0	
135	· ·	6.50E-01	0.00E+00	0					6.50E-01	0.00E+00	0	
136		7.00E-01	0.00E+00	0				*	7.00E-01	0.00E+00	0	-
137	· ·	7 50E-01	0.00E+00	0				:	7 50E-01	0.00E+00	0	
120	•	9.00E 01	0.005+00	0				4	8 00F-01	0.00E+00	- 0	
138		0.00E-01	0.000000	0					8.00L-01	0.0001.00	0	
139		8.50E-01	0.00E+00	0				4	8.50E-01	0.00E+00	0	
140		9.00E-01	0.00E+00	0					9.00E-01	0.00E+00	0	
141		9.50E-01	0.00E+00	0					9.50E-01	0.00E+00	0	
142		1.00E+00	0.00E+00	0					1.00E+00	0.00E+00	0	
143		1.05E+00	0.00E+00	0		ę		1	1.05E+00	0.00E+00	0	1
144		1 10E+00	0.00E+00	0		~			1 10E+00	0.00E+00	0	
144		1.15E+00	0.000000	- 0		٠		+	1.15E+00	0.005+00	0	
145		1.13E+00	0.00E+00	0		-		+	1.1305+00	0.000100	0	
146		1.20E+00	0.00E+00	0			-	-+	1.20E+00	0.00E+00	0	
147		1.25E+00	0.00E+00	0				~*	1.25E+00	0.00E+00	0	
148		1.30E+00	0.00E+00	0					1.30E+00	0.00E+00	0	5
149		1.35E+00	0.00E+00	0		-			1.35E+00	0.00E+00	0	
150		1.40E+00	0.00E+00	0				-4	1.40E+00	0.00E+00	0	
151		1.45E+00	0.00E+00	0					145E+00	0.00F+00	0	
151		1.400.00	0.000100	0				-+	1.505+00	0.000000	0	
152		1.50E+00	0.00E+00	0					1.30E+00	0.00E+00	0	
153		1.55E+00	0.00E+00	0					1.55E+00	0.00E+00	0	
154		1.60E+00	0.00E+00	0					1.60E+00	0.00E+00	0	
155		1.65E+00	0.00E+00	0					1.65E+00	0.00E+00	0	
156		1.70E+00	0.00E+00	0				1	1.70E+00	0.00E+00	0	
157		1.75E+00	0.00E+00	0		٠		5	1.75E+00	0.00E+00	0	-
150	~	1.805+00	0.00E+00	0					1.80E+00	0.00F+00	0	
150	100	1.000-100	0.000000	0		1		+	1.862.00	0.000000		
159		1.85E+00	0.00E+00	0				4	1.63E+00	0.00E+00	0	
160		1.90E+00	0.00E+00	0				1	1.90E+00	0.00E+00	0	
161		1.95E+00	0.00E+00	0					1.95E+00	0.00E+00	0	
162		2.00E+00	0.00E+00.	0				f	2.00E+00	0.00E+00	0	
163		total	4.70E-01	0.0001				to	tal	4.73E-01	0.0001	
164	+		* *			•				+		h
165	+-		•			-4				+-	-	
105		Filmen						÷.	lanama	Edood	-	
100		Fliename	10800					F	nename	110900		
167			. L					+				
168		Itally 8 1	nps = 591339	953				11	ally 8 1	ps = 586305	581	
169	bution.	uni tally ty	pe 8 pulse	height distrib	oution.		un	i	tally typ	pe 8 pulse	height dist	ibution.
170		tally for	photons	-				T	tally for	photons		
171	-			1				+-		+		;
172		0011.2	1 _ 1			1			ell 2	L		
172		Cell 2						-+ 0				
173		energy					-	-1	energy	0.000 001		
174		0.00E+00	0.00E+00	0				+	0.00E+00	0.00E+00	0	
175		5.00E-02	4.34E-02	0.0006				1	5.00E-02	5.18E-02	0.0006	1
176	*	1.00E-01	4.37E-01	0.0001					1.00E-01	4.30E-01	0.0002	1
177	-	1 50F-01	0.00F+00	0				•	1.50E-01	0.00E+00	0	
170		2 00E 01	0.005+00	0				4	2 005-01	0.00E+00	0	
178		2.00E-01	0.0000000	0					2.000-01	0.000000		
179		2.50E-01	0.00E+00	0					2.50E-01	0.00E+00	0	
180		3.00E-01	0.00E+00	0					3.00E-01	0.00E+00	0	

	AH	Al	AJ	AK	AL	AM	AN	AO	AP	AO	AR
181			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0	
182			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	-
183			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0	
184			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	
185			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	
186			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0	
187			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0	
188			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0	
189			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	
190			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0	
191			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0	
192			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0	
193			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	
194			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	
195			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
196			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0	-
197			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0	
198			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	
199			1.25E÷00	0.00E+00	0			1.25E+00	0.00E+00	0	
200			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
201			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0	
202			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0	
203			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0	
204	•		1.50E+00	0.00E+00	0		•	1.50E+00	0.00E+00	0	
205			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0	
206	- •		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0	
207			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
208			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	
209			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0	
210			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0	
211			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
212			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
213			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	
214		_	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0	
215			total	4.80E-01	0.0001			total	4.82E-01	0.0001	

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC
1											
2											
3											
4									1		
5									- +		
6			4								
7											
8									-		·
9				4						_	
10		Filename	fid100a				Filename	fid120a			
11											
12		Itally 8 n	ps = 5068639	2			Itally 8 r	ps = 487079	98		
13	uni	tally typ	e 8 pulse h	eight distri	bution.	uni	tally typ	be 8 pulse h	height distri	bution.	uni
14		tally for	photons				tally for	photons			
15	-	u .o									
10		cell 2					cell 2				
1/		energy	0.000.00	0			energy	0.000 100	0		
18		0.00E+00	0.00E+00	0 0005			0.00E+00	0.00E+00	0 0004		-
19		5.00E-02	7.32E-02	0.0003			5.00E-02	1.19E-01	0.0004		-
20		1.00E-01	3.04E-01	0.0002			1.00E-01	9.03E-02	0.0003		
21		1.50E-01	1.33E-04	0.0121			2.00E-01	2.340-01	0.0003		
22	-	2.00E-01	0.00E+00	0			2.00E-01	0.000+00	0	-	-
24		2.50E-01	0.00E+00			•	2.50E-01	0.00E+00	- 0	······································	
24		3.50E-01	0.00E+00			4	3.50E-01	0.00E+00	0+		!
25		4.00E-01	0.00E+00	-0			4.00E-01	0.00E+00	-0		
20		4.50E-01	0.00E+00	0 0			4.50E-01	0.00E+00	0		
28		5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	- 0		4
20		5.50E-01	0.00E+00	0			5 50E-01	0.00E+00	0		
30		6.00E-01	0.00E+00	- 0			6.00E-01	0.00E+00	0		·····
31	-	6 50E-01	0.00E+00	0.			6 50E-01	0.00E+00	0		
32		7 00F-01	0.00E+00	0 [°]			7 00E-01	0.00E+00	0		
33		7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	-	
34		8.00E-01	0.00E+00	0		*	8.00E-01	0.00E+00	Õ		
35		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0	-	
36		9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0		
37		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0		
38		1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0		
39		1.05E+00	0.00E+00	oʻ			1.05E+00	0.00E+00	0		-
40		1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0		
41		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0		
42		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0		
43		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		
44		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0		
45		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0		
46		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0		
47		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		
48		1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0		
49		1.55E+00	0.00E+00	0,			1.55E+00	0.00E+00	0		
50		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0		
51		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0		
52		1.70E+00	0.00E+00	0	_		1.70E+00	0.00E+00	0		
53	_	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		
54		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0		
55		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	-	
56		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0		_
57		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0		
58		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0		
59		total	4.37E-01	0.0002			total	4.44E-01	0.0002		
60											

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC
61							-				
62		Filename	fid100b				Filename	fid120b			
63									1		
64		Itally 8	nps = 53575	368			Itally 8 r	nps = 51169	962		
65	uni	tally ty	pe 8 pulse	height distr	ibution.	ur	i tally typ	pe 8 pulse	height dist	ribution.	uni
66	-	tally fo	r photons				tally for	r photons	,		
67									. ~		
68		cell 2					cell 2				•
69	-	energy			-		energy		1		
70		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0	A	1
71		5.00E-02	7.48E-02	0.0005			5.00E-02	1.22E-01	0.0004	1	
72		1.00E-01	3.88E-01	0.0002		*	1.00E-01	8.48E-02	0.0005	-	
73		1.50E-01	1.61E-04	0.0108	-	•	1.50E-01	2.60E-01	0.0002		
74		2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0		
75		2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0		33
76		3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0		
77		3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0	*	
78		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0		
79	-	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	. 0		
80		5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	ī	
81	-	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	. 0	+ -	-
82		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	. 0	;	
83		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		
84		7.00E-01	0.00E+00	- 0		•	7.00E-01	0.00E+00	0		
85		7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	. 0		-
86		8.00E-01	0.00E+00	0	-	*	8.00E-01	0.00E+00	0		
87		8 50E-01	0.00E+00	- 0		•	8.50E-01	0.00E+00	0	;	
88		9 00F-01	0.00E+00	0		*	9.00E-01	0.00E+00	0	4	
89	-	9 50E-01	0.00E+00	0			9.50E-01	0.00E+00	0		
90		1.00E+00	0.00E+00	ō			1.00E+00	0.00E+00	0		
01	-	1.05E+00	0.00E+00	. 0		*	1.05E+00	0.00E+00	0		
92		1 10F+00	0.00E+00	0			1.10E+00	0.00E+00	t 0		
03	-	1.15E+00	0.00E+00	0			115E+00	0.00E+00	0		
04		1 20E+00	0.00E+00	0			1 20E+00	0.00E+00	- 0		
95		1.25E+00	0.00E+00	0		*	1.25E+00	0.00E+00			1
96	_	1.20E+00	0.00E+00	0		**	1 30E+00	0.00E+00	0		
97		1.35E+00	0.00E+00	0			1 35E+00	0.00E+00	• 0	1	
98	-	1.40F+00	0.00E+00	0			1 40E+00	0.00E+00	0		
99		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00		1	
100		1.50E+00	0.00E+00	0			1 50E+00	0.00E+00	0		
101		+- 1.55E+00	0.00E+00	0			1 55E+00	0.00E+00	0		
102	-	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	. 0		
102		1.65E+00	0.00E+00	0		P	1.65E+00	0.00E+00			
104		+ 1.70E+00	0.00E+00	0		*	1 70E+00	0.00E+00	t- 0		
105		1.75E+00	0.00E+00	- 0			1.75E+00	0.00F+00	· 0	4	···· · · · ·
105		1.805+00	0.00E+00	0			1.80E+00	0.00E+00	0		
107		1.80E+00	0.00E+00	0			1.85E+00	0.00E+00	0	1	
107		1.00E+00	0.00E+00	- 0			1.00E+00	0.00E+00	0		
100		1.90E+00	0.00E+00	0		2	1.95E+00	0.00E+00	0		+
110		2 00E+00	0.00E+00	0			2 00E+00	0.00E+00	0		1
111		2.002100	4.63E-01	0.0001			total	4.67E-01	· 0.0001		
112			4.050-01	0.0001	-	•	;	012-01	0.0001		
112	,		ules		-		1 1 1				
113		Filenama	fid100a	-			Filenama	fid120a	l		
114	_	riichanfe	nurooc .			*	rnename	101200			
115		Italia 9	nne = 55060	025		•	Itally 9		560	+	
110		Itally 6	nps - 55908	haight dict	ibution		i tallu tu	1ps - 33300	boight dist	ibution	
11/	uni	tally ty	r photons	neight distr	ioution.	. ur	tally typ	n photon	neight dist	ibution.	uni
110		tany to	photons				tany for	photons	t		
119		coll 2			-	•	cell 2	<u>ه</u>			
11201		CUII Z									

	AS AT	AU	AV	AW	T	AX	T	AY	AZ	BA	BB	BC
121	energy	1					_	energy				
121	0.00E+00	0.00E+00	0					0.00F+00	0.00E+00			+
122	5.00E 0	7 525 02	0.0005		4			5 00E-02	1.24E-01	0.0004		
123	J.00E-01	1.00E 01	0.0000					1.00E-02	7.01E.02	0.0004		+
124	1.00E-01	4.00E-01	0.0002					1.002-01	2.75E 01	0.0003		
125	1.50E-01	1.69E-04	0.0103					1.50E-01	2.75E-01	0.0002		
126	2.00E-0	0.00E+00	0					2.00E-01	0.00E+00	01		
127	2.50E-0	0.00E+00	0					2.50E-01	0.00E+00	0		
128	3.00E-01	0.00E+00	0					3.00E-01	0.00E+00	0	_	
129	3.50E-01	0.00E+00	0					3.50E-01	0.00E+00	0		+
130	4.00E-01	0.00E+00	0					4.00E-01	0.00E+00	0		-
131	4.50E-01	0.00E+00	0					4.50E-01	0.00E+00	0		
132	5.00E-01	0.00E+00	0					5.00E-01	0.00E+00	0		
133	5.50E-01	0.00E+00	0					5.50E-01	0.00E+00	0		
134	6.00E-01	0.00E+00	0				*	6.00E-01	0.00E+00	0		
135	6.50E-01	0.00E+00	0					6.50E-01	0.00E+00	0		-
136	7.00E-01	0.00E+00	0					7.00E-01	0.00E+00	0		
137	7.50E-01	0.00E+00	0					7.50E-01	0.00E+00	0		
138	8.00E-01	0.00E+00	0.					8.00E-01	0.00E+00	0		1
139	8.50E-01	: 0.00E+00	0					8.50E-01	0.00E+00:	0.		
140	9 00E-01	0.00E+00	0					9 00E-01	0.00E+00	0,		
141	9.50E-01	0.00E+00	0'					9 50E-01	0.00F+00	0		
142	1.00E+00	0.00E+00	0		·			1.00E+00	0.00E+00	0		1
142	1.00L+00	0.00E+00	0		•		1	1.00E+00	0.00E+00	- 0		
143	1.001+00	0.0000+00					-1-	1.051.00	0.00E+00	0		
144	1.10E+00	0.00E+00	- 0		4		lei.	1.15E+00	0.002+00	0		
145	1.13E+00	0.00E+00	0		,			1.1305+00	0.000+00	0		
140	1.20E+00	0.00E+00	0		i.		•	1.200+00	0.00000	0		
14/	1.25E+00	0.00E+00	0		*			1.25E+00	0.00E+00	0		
148	1.30E+00	0.00E+00	0				4	1.30E+00	0.00E+00	0		
149	1.35E+00	0.00E+00	0					1.35E+00	0.00E+00	0.		
150	1.40E+00	0.00E+00	- 0				~	1.40E+00	0.00E+00	0		
151	1.45E+00	0.00E+00	0					1.45E+00	0.00E+00	0		
152	1.50E+00	0.00E+00	0					1.50E+00	0.00E+00	0		+
153	1.55E+00	0.00E+00	0					1.55E+00	0.00E+00	0.		
154	1.60E+00	0.00E+00	0.					1.60E+00	0.00E+00	0		
155	1.65E+00	0.00E+00	0					1.65E+00	0.00E+00	0		
156	1.70E+00	0.00E+00	0					1.70E+00	0.00E+00	0		
157	1.75E+00	0.00E+00	0					1.75E+00	0.00E+00	0		
158	1.80E+00	0.00E+00	0					1.80E+00	0.00E+00	0		
159	1.85E+00	0.00E+00	0					1.85E+00	0.00E+00	0	-	
160	1.90E+00	0.00E+00	0					1.90E+00	0.00E+00	0		
161	1.95E+00	0.00E+00	0				•	1.95E+00	0.00E+00	0		-
162	2.00E+00	0.00E+00	0					2.00E+00	0.00E+00	0	_	•
163	total	4.76E-01	0.0001		1		tot	al	4.78E-01	0.0001		
164							ŕ	4		I.		
165										- +		
166	Filename	fid100d					Fi	lename	fid120d		-	1
167	+	+ +			·		4			1		
168	Itally 8	nns = 577287	71				'1ta	ally 8 n	ps = 546287	18		
169	uni tally ty	pe 8 pulse h	eight distri	bution.		u	ni	tally typ	e 8 pulse h	eight distri	bution.	uni
170	tally fo	r photons			•	u	+	tally for	photons	- One chour		Colline Collins
171	tany it	photons	- 1		•				1-			
172	L cell 2						+	11 2	i		_	
172			-				. 00	anaray				-
173	energy	+ 0.00E+00	07					0.00E LOO	0.005+00	0		
174	0.00E+00	7 64E 00	0.0005					5.00E+00	1.25E 01	0.0004		+
1/5	5.00E-02	1.54E-02	0.0005					1.00E-02	1.23E-01	0.0004		+
1/6	1.00E-01	4.08E-01	0.0002					1.00E-01	7.38E-02	0.0005	-	
177	1.50E-01	1.52E-04	0.0107					1.50E-01	2.86E-01	0.0002		
178	2.00E-01	0.00E+00	0					2.00E-01	0.00E+00	0		
179	2.50E-01	0.00E+00	0					2.50E-01	0.00E+00	0		
180	3.00E-01	0.00E+00	0					3.00E-01	0.00E+00	0		

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC
181		3.50E-01	0.00E+00	0		·	3.50E-01	0.00E+00	0		
182		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0		
183		4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0	_	
184		5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0		
185		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0		
186		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0		-
187		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		
188		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0		
189		7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0		
190	-	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0		
191		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0	_	
192		9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0		
193		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0		
194		1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0		
195		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0		-
196		1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0		
197		1.15E+00	0.00E+00	0.			1.15E+00	0.00E+00	0		
198		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0		
199		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		
200		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0		
201		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0		
202		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0		
203		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		
204		1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0	-	
205		1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0		
206		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0	*	
207		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0		
208		1.70E+00	0.00E+00	. 0			1.70E+00	0.00E+00	0		
209		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		
210		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0		
211		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0		
212		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0		
213		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	-	
214		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0		
215		total	4.83E-01	0.0001			total	4.84E-01	0.0001		

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	BD	BE	BF	BG	BH	BI	BJ	BK	BL	BM	BN
1											
2		1						-			
3			a				+				
4											
5			+				4			5- C	
6			•				• • • •			L	
7		·					ŧ			+	
8			· · · ·								
0		+ 1				*	· · ·			t-	
10	Filename	fid140a	1			Filename	fid160a				Filename
11	Thename	-		-						-	
12	Itally 8	nns = 46811	135			Itally 8	nns = 450098	97	+	t	Itally 8
12	tally ty	ne 8 nuice	height distri	nution	1171	tally ty	ne 8 pulse h	eight dist	ibution	uni	tally ty
14	tally fo	r photons	neight disuit	button.	un	tally for	r photons	iergine disti		1	tally fo
15	tany io	i pilotona					, photons		•		
16	call 2					cell 2					cell 2
17	epergy					energy'	- ,			1	energy
10		0.005+00	0			0.005+00	0.005+00	0	•	• •	0.00E+00
10	6.00E+00	1.64E 01	0.0003			5 00E-02	2.005-01	0.0003	•		\$ 00E-02
19	1.00E-01	5.62E 02	0.0005			1.00E-01	4 12E-02	0.0007	T		1.00E-01
20	1.00E-01	2 27E 01	0.0000			1 SOE 01	7.035.02	0.0007	t		1.50E-01
21	1.50E-01	2.2/E-01	0.0003			1.50E-01	1.03E-02	0.0003	ł		2.00E.01
22	2.00E-01	0.00E+00	0			2.00E-01	1.30E-01	0.0004			2.00E-01
23	2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0	1		2.30E-01
24	3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0			3.00E-01
25	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0		i	3.50E-01
26	4.00E-01	0.00E+00	- 0+		-	4.00E-01	0.00E+00	0	ļ	I	4.00E-01
27	4.50E-01	: 0.00E+00	0			4.50E-01	0.00E+00	- 0		·	4.50E-01
28	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	· · · · ·	1	5.00E-01
29	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00			4	5.50E-01
30	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01
31	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		t	6.50E-01
32	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0	+		7.00E-01
33	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0		+	7.50E-01
34	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0			8.00E-01
35	8.50E-01	0.00E+00	0	-		8.50E-01	0.00E+00	0		+	8.50E-01
36	9.00E-01	0.00E+00	0	-		9.00E-01	0.00E+00	0			9.00E-01
37	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0		+	9.50E-01
38	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	4-		1.00E+00
39	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	1		1.05E+00
40	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00+	0			1.10E+00
41	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00
42	1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00
43	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00,	0	-	1	1.25E+00
44	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00
45	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0		1	1.35E+00
46	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00
47	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00
48	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0		1	1.50E+00
49	1.55E+00	0.00E+00	0	_		1.55E+00	0.00E+00	0			1.55E+00
50	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00
51	1.65E+00	0.00E+00	0,			1.65E+00	0.00E+00	0	1		1.65E+00
52	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00
53	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00
54	1.80E+00	0.00E+00	0	1		1.80E+00	0.00E+00	0			1.80E+00
55	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	4		1.85E+00
56	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	*	_	1.90E+00
57	1.95E+00	0.00E+00	0.			1.95E+00	0.00E+00	0		Î	1.95E+00
58	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00 [†]	0		1	2.00E+00
59	total	4.47E-01	0.0002			total	4.49E-01	0.0002		•	total
60		• •							-		
-											

Worksheet "MCNP Data p=1.5	of Workbook "MCNP	Volume Seneca.xls"
----------------------------	-------------------	--------------------

	BD	BE	BF	BG	BH	BI	BJ	BK	BL	BM	BN
61			<u> </u>								
62	Filename	fid140b				Filename	fid160b				Filename
63	1										· ·
64	Italiv 8	nns = 49121	867			Itally 8	ns = 47330	234			Itally 8
65	tally ty	ne 8 nulse	height dist	ribution	uni	tally tvi	ne 8 nulse	height distr	ibution	າມກາ	tally ty
66	tally ty	pe o puise	inergine utsu	ibution.	·	tally for	r mhotone	neight dist	ibution.		tally fo
00	tany for	r photons				tany io	photons				. tany io
6/											
68	cell 2					cell 2					
69	energy	• • • • • • •				energy	0.007				energy
70	0.00E+00	0.00E+00	. 0			0.00E+00	0.00E+00	0			0.00E+00
71	5.00E-02	1.69E-01	0.0003			5.00E-02	2.06E-01	0.0003			5.00E-02
72	1.00E-01	5.07E-02	0.0006			1.00E-01	3.87E-02	0.0007			1.00E-01
73	1.50E-01	2.49E-01	0.0002			1.50E-01	6.71E-02	0.0005			1.50E-01
74	2.00E-01	0.00E+00	0			2.00E-01	1.58E-01	0.0003			2.00E-01
75	2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0			2.50E-01
76	3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0			3.00E-01
77	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0		•	3.50E-01
78	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0			4.00E-01
79	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0			4.50E-01
80	5.00E-01	0.00E+00	. 0			5.00E-01	0.00E+00	0			5.00E-01
81	5.50E-01	0.00E+00	. 0			5.50E-01	0.00E+00	0	•		5.50E-01
82	6.00E-01	0.00E+00	. 0	4		6.00E-01	0.00E+00	0			6.00E-01
83	6.50E-01	0.00E+00	0	•		6.50E-01	0.00E+00	0			6.50E-01
84	7 00F-01	0.00E+00	0			7.00E-01	0.00E+00	0	· _		7.00E-01
85	7.50E-01	0.00E+00	0			7 50E-01	0.00E+00	0			7.50E-01
86	- 8 00E-01	0.00E+00	0			8.00E-01	0.00E+00				8 00F-01
87	8.50E-01	0.00E+00	0			8 50E-01	0.00E+00	0	•	• • • • •	8 50E-01
07	0.00E-01	0.00E+00	. 0			9.00E-01	0.00E+00				9.00E-01
00	9.00E-01	0.00L+00				9.00L-01	0.0000000		-	• • –	9.50E-01
09	1.00E+00	0.00E+00	· 0			9.50L-01	0.0000+00	· · · ·			
90	1.00E+00	0.00E+00	. 0			1.00E+00	0.0000+00				1.000-00
91	1.05E+00		- 0			1.05E+00	0.00E+00				1.05E+00
92	1.10E+00	0.0000000	0			1.10E+00	0.0000+00	0		·- · -	
93	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00				1.15E+00
94	1.20E+00	0.00E+00				1.20E+00	0.00E+00	0			1.20E+00
95	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00
96	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00
97	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00
98	1.40E+00	0.00E+00	. 0			1.40E+00	0.00E+00	0			1.40E+00
99	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00
100	1.50E+00	0.00E+00	. 0			1.50E+00	0.00E+00	0			1.50E+00
101	1.55E+00	0.00E+00	. 0			1.55E+00	0.00E+00	0			1.55E+00
102	1.60E+00	0.00E+00	. 0			1.60E+00	0.00E+00	0			1.60E+00
103	1.65E+00	0.00E+00	. 0			1.65E+00	0.00E+00	0			1.65E+00
104	1.70E+00	0.00E+00	. 0			1.70E+00	0.00E+00	0		_	1.70E+00
105	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00
106	1.80E+00	0.00E+00	0	-		1.80E+00	0.00E+00	0			1.80E+00
107	1.85E+00	0.00E+00	. 0	•		1.85E+00	0.00E+00	0			1.85E+00
108	1.90E+00	0.00E+00	. 0			1.90E+00	0.00E+00	0	•		1.90E+00
109	1.95E+00	0.00E+00	. 0			1.95E+00	0.00E+00	0		•	1.95E+00
110	2.00E+00	0.00E+00	. 0			2.00E+00	0.00E+00	0	• -	• • •	2.00E+00
111	total	4.69E-01	0.0002			total	4.70E-01	0.0002	-	• - • •	total
112										• •-	*
113		•		•						•	
114	Filename	fid140c	-			Filename	fid160c			· ·	Filename
115			•								
116	Itally 8	$n_{ns} = 51100$	327			Itally 8	$n_{n} = 49076$	434			Itally 8
117	tally to	$p_{0} = \frac{1195}{21195}$	height dict	ibution		tally to	$1p_3 = +70/0$	height diete	ibution		tally to
110		r photono	neight disti	ioution.	uni	tally typ	ne o puise	neight distr	ioution.		· ···· tally ty
110		photons	•			tany for	photons				tany 10
119			· •			coll 2					cell 2
120						cen z					

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	BD	BE	BF	BG	BH	BI	BJ	BK	BL	BM	BN
121	energy	1000				energy					energy
122	0.00E+00	0.00E+00	0.			0.00E+00	0.00E+00	0			0.00E+00
123	5.00E-02	1.71E-01	0.0003			5.00E-02	2.08E-01	0.0003	_		5.00E-02
124	1.00E-01	4.58E-02	0.0006			1.00E-01	3.68E-02	0.0007			1.00E-01
125	1.50E-01	2.62E-01	0.0002	· · ·		1.50E-01	6.26E-02	0.0006	-		1.50E-01
126	2.00E-01	0.00E+00	0			2.00E-01	1.73E-01	0.0003			2.00E-01
127	2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0		•	2.50E-01
128	3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0			3.00E-01
129	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0		1	3.50E-01
130	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0			4.00E-01
131	4.50E-01	0.00E+00	0	-		4.50E-01	0.00E+00	0		2	4.50E-01
132	5.00E-01	0.00E+00	0	4		5.00E-01	0.00E+00	0			5.00E-01
133	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0		+	5.50E-01
134	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0		•	6.00E-01
135	6.50E-01	0.00E+00	. 0			6.50E-01	0.00E+00	0		+	6.50E-01
136	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0		T	7.00E-01
137	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0,		1	7.50E-01
138	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0		••	8.00E-01
139	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0		-	8.50E-01
140	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01
141	9.50E-01	0.00E+00	0	- i		9.50E-01	0.00E+00	0		+	9.50E-01
142	1.00E+00	0.00E+00	0.			1.00E+00	0.00E+00	0		1	1.00E+00
143	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00
144	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0		1	1.10E+00
145	1.15E+00	0.00E+00	0	1		1.15E+00	0.00E+00	0		- I	1.15E+00
146	1.20E+00	0.00E+00	0		-	1.20E+00	0.00E+00	0		1	1.20E+00
147	1.25E+00	0.00E+00	0	- +		1.25E+00	0.00E+00	0			1.25E+00
148	1.30E+00	0.00E+00	0	··		1.30E+00	0.00E+00	0			1.30E+00
149	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00
150	1.40E+00	0.00E+00	- 0			1.40E+00	0.00E+00	0			1.40E+00
151	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0	-		1.45E+00
152	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0		4	1.50E+00
153	1.55E+00	0.00E+00	0	• •		1.55E+00	0.00E+00	0		1	1.55E+00
154	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00
155	1.65E+00	0.00E+00	- 0	1		1.65E+00	0.00E+00	- 0			1.65E+00
156	1 70E+00	0.00E+00	0	4		1.70E+00	0.00E+00	0	_		1.70E+00
157	1.75E+00	0.00E+00	- 0			1.75E+00	0.00E+00	0			1.75E+00
158	1 80E+00	0.00E+00	- 0	-		1.80E+00	0.00E+00	- 0			1.80E+00
159	1.85E+00	0.00E+00	0	å		1.85E+00	0.00E+00	-0+			1.85E+00
160	1 90E+00	0.00E+00	0			1 90E+00	0.00E+00	- 0.		4	1.90E+00
161	1.95E+00	0.00E+00	Ō	- 4		1.95E+00	0.00E+00	0		.i	1.95E+00
162	2 00F+00	0.00E+00	0	. 1		2 00E+00	0.00E+00	0		· · · · ·	2 00E+00
163	total	4 79E-01	0.0001			total	4.80E-01	0.0001			itotal
164				•							
165		4				•		+			
166	Filename	fid140d +				Filename	fid160d	-			Filename
167	1 menune			- :		1 menune	+		-		
168	Itally 8 m	ns = 532003	898			Itally 8	nns = 507007	43 +		+	Itally 8
169	tally tyr	e 8 pulse	height distr	ibution	un	i tally ty	ne 8 pulse l	neight distri	hution.	1	i tally ty
170	tally for	photons	Bir diad	1	ull	tally for	r photons				tally fo
171	tuny tor	photons			-	' tuny ion	+				tuny to
172	cell 2			l.		cell 2					cell 2
173	energy					energy					energy
174	0.00F+00	0.00F+00	0			0.00F+00	0.00E+00	0			0.00E+00
175	5.00F-02	1.72E-01	0.0003	+		5 00F-02	2.09F-01	0.0003			5.00F-02
176	1.00E-01	4.14E-02	0.0007	-		1.00F-01	3.52E-02	0.0007			1.00E-01
177	1.50E-01	2.71E-01	0.0007			1.50E-01	5.79F-02	0.0006		-	1 50E-01
178	2.00F-01	0.00E+00	0.0002			2 00F-01	1.83E-01	0.0003		t	2 00F-01
170	2.505-01	0.00E+00	0			2.50E-01	0.00E+00	0.0005		•	2.50E-01
180	3.00E-01	0.00E+00	0	4		3 00F-01	0.00E+00	0			3.00E-01
1.00	5.000 01	0.000.00	0			2.000 01	0.000.00	5			0.000 01

	BD	BE	BF	BG	BH	Bl	BJ	BK	BL	BM	BN
181	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0			3.50E-01
182	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0			4.00E-01
183	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0			4.50E-01
184	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01
185	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01
186	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01
187	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01
188	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0		•	7.00E-01
189	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01
190	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0			8.00E-01
191	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-01
192	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0		• • •	9.00E-01
193	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00				9.50E-01
194	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0		• •	1.00E+00
195	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00
196	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00
197	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00
198	1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00
199	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		•	1.25E+00
200	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00
201	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00
202	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00
203	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		*	1.45E+00
204	1.50E+00	0.00E+00				1.50E+00	0.00E+00	0			1.50E+00
205	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+00
206	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00
207	1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0			1.65E+00
208	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00
209	1.75E+00	0.00E+00	0		•	1.75E+00	0.00E+00	0			1.75E+00
210	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00
211	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	. 0			1.85E+00
212	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0		·	1.90E+00
213	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00
214	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	. 0			2.00E+00
215	total	4.85E-01	0.0001			total	4.85E-01	0.0001			total

	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY
1											
2											
3	and a second		-		*	•				-	
4						*	+			*	
5							4				
6		- •			4				-		
7	1				4				•		
8							1				
9											-
10	fid180a				Filename	fid200a	1		-	Filename	fid220a
11							1				
12	ps = 4426681	5			Itally 8 1	nps = 433945	503			Itally 8	nps = 4311
13	e 8 pulse he	eight distri	bution.	ur	i tally typ	pe 8 pulse h	height distri	ibution.	un	i tally t	ype 8 pulse
14	photons				tally for	r photons				tally f	or photons
15					·						_
16					cell 2					cell 2	
17					energy					energy	
18	0.00E+00	0			0.00E+00	0.00E+00	0			0.00E+0	0 0.00E+00
19	2.30E-01	0.0003			5.00E-02	2.55E-01	0.0003			5.00E-0	2. 2.74E-01
20	3.59E-02	0.0008	- •		1.00E-01	3.51E-02	0.0008			1.00E-0	1 3.41E-02
21	5.82E-02	0.0006			1.50E-01	5.07E-02	0.0007			1.50E-0	1 4.67E-02
22	1.26E-01	0.0004			2.00E-01	1.11E-01	0.0004			2.00E-0	1 2.33E-02
23	0.00E+00	0			2.50E-01	4.24E-05	0.0233		l	2.50E-0	1 7.34E-02
24	0.00E+00	01			3.00E-01	0.00E+00	0			3.00E-0	1 0.00E+00
25	0.00E+00	0			3.50E-01	0.00E+00	_01			3.50E-0	1 0.00E+00
20	0.00E+00	0			4.00E-01	0.00E+00	01			4.00E-0	1 0.00E+00
27	0.00E+00				4.50E-01	0.002+00	0			4.30E-0	1 0.00E+00
28	0.00E+00			-	5.00E-01	0.000000	. 0.			5.50E-0	1 0.00E+00
29	0.00E+00	0		- +	6 00E-01	0.0000+00				6.00E-0	1 0.00E+00
30	0.00E+00	0			6 50E-01	0.00E+00	0			6 50E-0	1 0.00E+00
32	0.00E+00	0		-	7.00E-01	0.00E+00	- 0			7 00E-0	1 0.00E+00
33	0.00E+00	0			7 50E-01	0.00E+00	- 0			7.50E-0	1 0.00E+00
34	0.00E+00	0	4	-	8.00E-01	0.00E+00	0		+	8.00E-0	1 0.00E+00
35	0.00E+00	0			8.50E-01	0.00E+00 ⁺	0			8.50E-0	1 0.00E+00
36	0.00E+00	0			9.00E-01	0.00E+00	0	-		9.00E-0	1 0.00E+00
37	0.00E+00	0			9.50E-01	0.00E+00	Ō			9.50E-0	1 0.00E+00
38	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+0	0 0.00E+00
39	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+0	0 0.00E+00
40	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+0	0 0.00E+00
41	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+0	0 0.00E+00
42	0.00E+00	0			1.20E+00	0.00E+00	0		•	1.20E+0	0 0.00E+00
43	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+0	0 0.00E+00
44	0.00E+00	0	-		1.30E+00	0.00E+00	0			1.30E+0	0 0.00E+00
45	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+0	0 0.00E+00
46	0.00E+00	0		_	1.40E+00	0.00E+00	0			1.40E+0	0 0.00E+00
47	0.00E+00	01	1		1.45E+00	0.00E+00	0			1.45E+0	0 0.00E+00
48	0.00E+00	01			1.50E+00	0.00E+00	0		1	1.50E+0	0 0.00E+00
49	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+0	0 0.00E+00
50	0.00E+00	0		_	1.60E+00	0.00E+00	0			1.60E+0	0 0.00E+00
51	0.00E+00	0			1.65E+00	0.00E+00	0			1.65E+0	0 0.00E+00
52	0.00E+00	0,		_	1.70E+00	0.00E+00	0			1.70E+0	0 0.00E+00
53	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+0	0 0.00E+00
54	0.00E+00	0	-		1.80E+00	0.00E+00	0		-	1.80E+0	0 0.00E+00
55	0.00E+00	0			1.85E+00	0.00E+00	0		16	1.85E+0	0 0.00E+00
56	0.00E+00	. 0			1.90E+00	0.00E+00	0			1.90E+0	0 0.00E+00
57	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+0	0 0.00E+00
58	0.00E+00	0	-+		2.00E+00	0.00E+00	0 0000		-4	2.00E+0	0 0.00E+00
59	4.51E-01	0.0002	-		lotar	4.31E-01	0.0002				4.52E-01

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

<u> </u>	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY
61				<u>.</u>	••••••••••••••••••••••••••••••••••••••						
62	fid180b	•	F -		Filename	fid200b		•		Filename	fid220b
63			•					•		• ·	
64	ps = 46093	043			Itally 8 r	1ps = 45024	097			Itally 8	nps = 4462
65	e 8 pulse	height dist	ribution.	uni	tally typ	pe 8 pulse	height distr	ibution.	uni	tally ty	pe 8 pulse
66	photons	0		•	tally for	r photons				tally fo	r photons
67											
68	1				cell 2					cell 2	
69			•		energy			,		energy	
70	0.00E+00	. 0)		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
71	2.37E-01	0.0003	3		5.00E-02	2.62E-01	0.0002			5.00E-02	2.83E-01
72	3.50E-02	0.0008	3		1.00E-01	3.54E-02	0.0008			1.00E-01	3.51E-02
73	5.48E-02	0.0006	5		1.50E-01	4.80E-02	0.0007		•	1.50E-01	4.48E-02
74	1.44E-01	0.0004	ļ.		2.00E-01	1.26E-01	0.0004			2.00E-01	2.33E-02
75	0.00E+00	. 0)		2.50E-01	5.08E-05	0.0209	•	*	2.50E-01	8.57E-02
76	0.00E+00	0)		3.00E-01	0.00E+00	0			3.00E-01	0.00E+00
77	0.00E+00	0)		3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
78	0.00E+00	0)		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00
79	0.00E+00	0)		4.50E-01	0.00E+00	0			4.50E-01	0.00E+00
80	0.00E+00	0)		5.00E-01	0.00E+00	. 0	•		5.00E-01	0.00E+00
81	0.00E+00	0			5.50E-01	0.00E+00	0	•		5.50E-01	0.00E+00
82	0.00E+00	. 0)		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00
83	0.00E+00	. 0)		6.50E-01	0.00E+00	. 0	• •		6.50E-01	0.00E+00
84	0.00E+00	0)		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
85	0.00E+00	0)		7.50E-01	0.00E+00	0		•	7.50E-01	0.00E+00
86	0.00E+00	0)		8.00E-01	0.00E+00	0	•	•	8.00E-01	0.00E+00
87	0.00E+00	. 0)		8.50E-01	0.00E+00	. 0			8.50E-01	0.00E+00
88	0.00E+00	. 0)		9.00E-01	0.00E+00	0	• •	•	9.00E-01	0.00E+00
89	0.00E+00	. 0)		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00
90	0.00E+00	0)	-	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00
91	0.00E+00	0)		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
92	0.00E+00	0)		1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
93	0.00E+00	. 0)		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
94	0.00E+00	0)	•	1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
95	0.00E+00	. 0)		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
96	0.00E+00	0)		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
97	0.00E+00	0)		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
98	0.00E+00	0)		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00
99	0.00E+00	0)		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
100	0.00E+00	0)		1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
101	0.00E+00	0)		1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
102	0.00E+00	0)		1.60E+00	0.00E+00	. 0			1.60E+00	0.00E+00
103	0.00E+00	0)		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
104	0.00E+00	. 0)		1.70E+00	0.00E+00	. 0			1.70E+00	0.00E+00
105	0.00E+00	. 0)		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
106	0.00E+00	0)		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
107	0.00E+00	0)		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
108	0.00E+00	0)		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
109	0.00E+00	0)		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
110	0.00E+00	0)		2.00E+00	0.00E+00	0		.4	2.00E+00	0.00E+00
111	4.71E-01	0.0002	2		total	4.71E-01	0.0002			total	4.72E-01
112		- <u>-</u>						• -			
113			- -		L						
114	fid180c	-			Filename	fid200c				Filename	fid220c
115									-		
116	ps = 47593	856			Itally 8 1	nps = 46502	368			Itally 8	nps = 4580
117	e 8 pulse	height dist	ribution.	uni	tally ty	pe 8 pulse	height dist	ibution.	uni	tally ty	pe 8 pulse
118	photons				tally for	r photons				tally fo	r photons
119											
120					cell 2					cell 2	

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	BO	BP	BQ B	R BS	BT	BU	BV	BW	BX	BY
121				energy					energy	
122	0.00E+00	0		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
123	2.39E-01	0.0003		5.00E-02	2.65E-01	0.0002			5.00E-02	2.86E-01
124	3.43E-02	0.0008		1.00E-01	3.54E-02	0.0008	-		1.00E-01	3.57E-02
125	5.06E-02	0.0006		1.50E-01	4.47E-02	0.0007			1.50E-01	4.23E-02
126	1.56E-01	0.0003	-	2.00E-01	1.36E-01	0.0004		i	2.00E-01	2.27E-02
127	0.00E+00	0	•	2.50E-01	5.54E-05	0.0197		*	2.50E-01	9.44E-02
128	0.00E+00	0.		3.00E-01	0.00E+00	0			3.00E-01	0.00E+00
129	0.00E+00	- 0+		3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
130	0.00E+00	0	÷.	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00
131	0.00E+00	0		4.50E-01	0.00E+00	01		:	4.50E-01	0.00E+00
132	0.00E+00	0	4	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00
133	0.00E+00	0	•	5.50E-01	0.00E+00	0.		+	5.50E-01	0.00E+00
134	0.00E+00	0	:	6.00E-01	0.00E+00	0 [']			6.00E-01	0.00E+00
135	0.00E+00	0		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00
136	0.00E+00	0		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
137	0.00E+00	0		7.50E-01	0.00F+00	0			7.50E-01	0.00E+00
138	0.00E+00	0		8.00E-01	0.00E+00	0		4 +	8.00E-01	0.00E+00
139	0.00E+00	ů 0		8 50F-01	0.00E+00	0			8.50E-01	0.00E+00
140	0.00E+00	0 [°]		9 00F-01	0.00E+00	0			9.00E-01	0.00E+00
141	0.00E+00	0.	-	9 50F-01	0.00E+00	0			9.50E-01	0.00E+00
141	0.002+00	0		1.00E+00	0.00E+00	0	_	·	1.00E+00	0.00E+00
142	0.000000	0		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
143	0.000000	0		1.10E+00	0.00E+00	0			1 10E+00	0.00E+00
144	0.00E+00	0		1.10E+00	0.00E+00	0		++-	1 15E+00	0.00E+00
145	0.00E+00	0		1.15E+00	0.00E+00	0		1	1 20E+00	0.00E+00
140	0.000000	0		1.20E+00	0.00E+00	0		!	1.25E+00	0.00E+00
147	0.00E+00		+	1 30E+00	0.00E+00				1 30E+00	0.00E+00
140	0.002+00	0	→ →	1.300+00	0.00E+00	0	-		1 35E+00	0.00E+00
149	0.00E+00			1.350+00	0.000000	0		· +	1.05±+00	0.00E+00
150	0.00E+00			1.402+00	0.000000	0 I	-	1	1.40E+00	0.00E+00
151	0.00E+00			1.45E+00	0.00E+00	0		•+	1.400+00	0.00E+00
152	0.002+00	0	•	1.500+00	0.00E+00	0		4 ·	1.55E+00	0.00E+00
153	0.00E+00	0		1.55E+00	0.00E+00	0			1.605+00	0.000000
154	0.00E+00	0		1.000+00	0.00E+00	0	-		1.655+00	0.000000
155	0.00E+00	0		1.03E+00	0.00E+00	0		++-	1.705+00	0.000000
156	0.00E+00	0		1.70E+00	0.00E+00	0		•	1.702+00	0.00E+00
157	0.00E+00	0		1.75E+00	0.00E+00	0			1.75E+00	0.000000
158	0.00E+00	0		1.80E+00	0.00E+00	0		+ +	1.80E+00	0.00E+00
159	0.00E+00	0		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
160	0.00E+00	0		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
161	0.00E+00	0	<i>*</i> .	1.95E+00	0.00E+00	U			1.95E+00	0.00E+00
162	0.00E+00	0	-	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00
163	4.81E-01	0.0002	-+	total	4.81E-01	0.0002		- <u>t</u>	otal	4.81E-01
164										
165				tou						C 1000 1
166	fid180d	-		Filename	fid200d	+		1	llename	fid220d
167	1									1
168	ps = 4867881	9		Itally 8	nps = 479030	61 1			tally 8 r	nps = 4666
169	e 8 pulse h	eight distribu	ution.	uni tally ty	pe 8 pulse h	neight distrib	oution.	uni.	tally typ	pe 8 pulse
170	photons			tally fo	r photons	+		++-	tally for	r photons
171	1							h		
172				cell 2					cell 2	
173				energy					energy	0.000
174	0.00E+00	0		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
175	2.40E-01	0.0003		5.00E-02	2.66E-01	0.0002		+-	5.00E-02	2.87E-01
176	3.38E-02	0.0008	4	1.00E-01	3.55E-02	0.0008		-	1.00E-01	3.62E-02
177	4.63E-02	0.0007	- !	1.50E-01	4.13E-02	0.0007			1.50E-01	3.98E-02
178	1.65E-01	0.0003	- 1	2.00E-01	1.43E-01	0.0004			2.00E-01	2.19E-02
179	0.00E+00	0		2.50E-01	5.56E-05	0.0194			2.50E-01	1.01E-01
180	0.00E+00	0		3.00E-01	0.00E+00	0			3.00E-01	0.00E+00

Worksheet '	'MCNP Data p=1.5"	' of Workbook	"MCNP	Volume	Seneca.xls"

	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY
181	0.00E+00	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
182	0.00E+00	0			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00
183	0.00E+00	0			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00
184	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00
185	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00
186	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00
187	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00
188	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
189	0.00E+00	0			7.50E-01	0.00E+00	0	-		7.50E-01	0.00E+00
190	0.00E+00	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00
191	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00
192	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00
193	0.00E+00	0			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00
194	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00
195	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
196	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
197	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
198	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
199	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
200	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
201	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
202	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00
203	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
204	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
205	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
206	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00
207	0.00E+00	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
208	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
209	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
210	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
211	0.00E+00	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
212	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
213	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
214	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00
215	4.86E-01	0.0001			total	4.86E-01	0.0001			total	4.86E-01

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	BZ	CA	CB	CC	CD	CE	CF	CG	CH	CI	CJ
1											
2				1		-		1			
3				1							
4											
5											
6	1			1					*		
7					1						_
8			1	1		1		4			
9			+ -		1					A 10 10	
10				Filename	fid240a				Filename	fid260a	
11			+	1	10.0.101	100		ł	1. 11 0	100110	(1
12	00		1.	Itally 8	nps = 425431	88		1	Itally 8 1	ps = 422143	
13	height distrib	ution.	. uni		ype 8 puise	neight distri	ibution.	. uni	tally typ	nhotona	leight dist
14				. tany n	or photons			•	. tally for	photons	
15				. and 2					coll 2		1
10				Cell 2					CEII Z		
17	0			0.00E+0	0 00F+00	0			0.00F+00	0.00E+00	0
10	0.0002			5 00E-0	2 2 90F-01	0.0002		,	5.00E-02	3.03E-01	0.0002
20	0.0002	-		1 00E-0	1 3 04F-02	0.0002		•	1.00E-01	2.76E-02	0.0002
21	0.0007		•	1 50E-0	1 4.60E-02	0.0007		1	1.50E-01	4.46E-02	0.0007
22	0.001			2.00E-0	1 1.59E-02	0.0012		-	2.00E-01	1.57E-02	0.0012
23	0.0005			2.50E-0	1 6.96E-02	0.0006			2.50E-01	1.22E-02	0.0014
24	0		+	3.00E-0	1 0.00E+00	0			3.00E-01	4.89E-02	0.0007
25	0		-	3.50E-0	1 0.00E+00	0.		+	3.50E-01	0.00E+00	Ō
26	0			4.00E-0	1 0.00E+00	0		•	4.00E-01	0.00E+00	0
27	0		·····	4.50E-0	1 0.00E+00	0		+	4.50E-01	0.00E+00	Ō
28	0			5.00E-0	1 0.00E+00	0			5.00E-01	0.00E+00	0
29	0			5.50E-0	1 0.00E+00	0			5.50E-01	0.00E+00	0
30	0			6.00E-0	1 0.00E+00	0			6.00E-01	0.00E+00	0
31	0			6.50E-0	1 0.00E+00	0			6.50E-01	0.00E+00	0
32	0			7.00E-0	1 0.00E+00	0			7.00E-01	0.00E+00	0
33	0			7.50E-0	1 0.00E+00	0		_	7.50E-01	0.00E+00	0
34	0	_		8.00E-0	1 0.00E+00	0		-	8.00E-01	0.00E+00	0
35	0			8.50E-0	1 0.00E+00	0			8.50E-01	0.00E+00	0
36	0			9.00E-0	1 0.00E+00	0		+	9.00E-01	0.00E+00	0
37	0			9.50E-0	1 0.00E+00	0		4 -	9.50E-01	0.00E+00	0
38	0		_	1.00E+0	0 0.00E+00	0			1.00E+00	0.00E+00	0
39	0			1.05E+0	0 0.00E+00	0			1.05E+00	0.00E+00	0
40	0			1.10E+0	0 0.00E+00	0		-	1.10E+00	0.00E+00	0
41	0.			1.15E+0	0 0.00E+00	0	-		1.15E+00	0.00E+00	0
42	0.			1.20E+0	0'0.00E+00	0		•	1.20E+00	0.00E+00	0
43	0			1.25E+0	0 0.00E+00	0		part and	1.23E+00	0.00E+00	0
44	0,		-	1.30E+0	0 0.00E+00	0			1.30E+00	0.00E+00	0
45				1.35E+0	0 0.00E+00	0			1.35E+00	0.00E+00	0
40	0			1.40E+0	0 0.00E+00	0		T	1.45E+00	0.00E+00	0
48	0			1.40E+0	0 0.00E+00	0			1.50E+00	0.00E+00	0
40				1.55E+0	0 0.00E+00	0		ļ	1.55E+00	0.00E+00	0
50	0			1.60E+0	0 0.00E+00	0			1.60E+00	0.00E+00	0
51	0			1.65E+0	0 [†] 0.00E+00 [†]	0			1.65E+00	0.00E+00	0
52	0			1.70E+0	0 0.00E+00	0		+	1.70E+00	0.00E+00	0
53	0,			1.75E+0	0 0.00E+00	0		1	1.75E+00	0.00E+00	0
54	0	-		1.80E+0	0 0.00E+00	0	-		1.80E+00	0.00E+00	0
55	0			1.85E+0	0 0.00E+00	0			1.85E+00	0.00E+00	0
56	0,			1.90E+0	0 0.00E+00	0			1.90E+00	0.00E+00	0
57	0			1.95E+0	0.00E+00	0			1.95E+00	0.00E+00	0
58	0			2.00E+0	0 0.00E+00	0			2.00E+00	0.00E+00	0
59	0.0002			total	4.52E-01	0.0002			total	4.52E-01	0.0002
60								•			

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xis"

	BZ	CA	CB	CC	CD	CE	CF	CG	СН	CI	CJ
61					I						
67				Filename	fid240b				Filename	fid260b	
62	۰ I			FICHAME	102400				THEHAME	102000	
03	20			1 tolly 0	nna - 42702	070			Itally 0	- 42421	000
04	JU hairte the			italiy ð	nps - 43793	7/7	ilustice			1ps - 43432	height diet
65	neight distr	ibution.	uni	tally ty	pe o puise	neight distr	ioution.	uni	tany typ	pe o puise	neight dist
66	4			tally fo	r pnotons				tally for	pnotons	
67	-										
68				cell 2					cell 2		
69				energy					energy	·	
70	0			0.00E+00	0.00E+00	. 0			0.00E+00	0.00E+00	0
71	0.0002			5.00E-02	2.99E-01	0.0002			5.00E-02	3.13E-01	0.0002
72	0.0008			1.00E-01	3.14E-02	0.0008			1.00E-01	2.86E-02	0.0009
73	0.0007			1.50E-01	4.52E-02	0.0007			1.50E-01	4.47E-02	0.0007
74	0.001			2.00E-01	1.51E-02	0.0012			2.00E-01	1.51E-02	0.0012
75	0.0005			2.50E-01	8.08E-02	0.0005			2.50E-01	1.27E-02	0.0013
76	0			3.00E-01	0.00E+00	0			3.00E-01	5.80E-02	0.0006
77	0		•	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0
78	0			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0
79	0			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0
80	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0
81	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0
82	0	. , .		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0
83				6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0
84	- 0		, .	7.00E-01	0.00E+00	0		•	7.00E-01	0.00E+00	. 0
85	0			7.50E-01	0.00E+00	0		• -	7.50E-01	0.00E+00	·
86	0			8.00F-01	0.00E+00				8.00F-01	0.00E+00	
87	0			8 50E-01	0.00E+00	0	,		8 50E-01	0.00E+00	· · ·
07				0.00E-01	0.002+00				0.00E-01	0.0000.000	· 0
00	0			9.00E-01	0.00E+00	0			9.00E-01	0.0000+00	
89				9.50E-01	0.0000+00	. 0			9.50E-01	0.000+00	
90	. 0			1.00E+00	0.00E+00	. 0			1.00E+00	0.00E+00	0
91			-	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	
92	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	. 0
93	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	
94	0			1.20E+00	0.00E+00	. 0			1.20E+00	0.00E+00	0
95	0			1.25E+00	0.00E+00	. 0			1.25E+00	0.00E+00	0
96	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0
97	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0
98	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0
99	0			1.45E+00	0.00E+00	0		_	1.45E+00	0.00E+00	0
100	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0
101	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0
102	0			1.60E+00	0.00E+00	. 0			1.60E+00	0.00E+00	0
103	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0
104	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	
105	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0
106	0		n .	1.80E+00	0.00E+00	0		• • •	1.80E+00	0.00E+00	O
107	- n			1.85E+00	0.00E+00			• - •	1.85E+00	0.00E+00	
108	· 0			1.90F+00	0.00F+00		-	4 -	1.90F+00	0.00F+00	
100				1.95E+00	0.00E+00	. O		•-	1 95F+00	0.00E+00	
109				2 00E±00	0.0000+00	0			- 1.95E+00		·· 0
110	0.0000			 total	473E A1	0,0000			2.00E+00		0.0000
111	0.0002			iotai	4.72E-01	0.0002			iotai	4./2E-01	
112											
113				T71.	6 10 10			·	D'I	E 10 (0	
114				rllename	110240c				rilename	11d260c	
115											
116	98			Itally 8	nps = 44982	423			Itally 8 1	1ps = 44575	000
117	height distr	ibution.	uni	tally ty	pe 8 pulse	height distr	ibution.	uni	tally typ	pe 8 pulse	height dist
118				tally fo	r photons				tally for	photons	
119]			-							
120				cell 2					cell 2		
Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	BZ	CA	CB	CC	CD	CE	CF	CG	CH	CI	CJ
121				energy				-	energy		
122	0		•	0.00E+00	0.00E+00	0			0.00E+0	0 0.00E+00	0
123	0.0002			5 00F-02	3.03E-01	0.0002			5.00E-0	3.17E-01	0.0002
124	0.0008			1.00F-01	3 20F-02	0.0008			1.00F-0	1 2 92E-02	0 0009
124	0.0007			1.50E-01	4 38E-02	0.0007	-		1.50E-0	1 441E-02	0.0007
125	0.0007			2.00E 01	1 30E 02	0.0007			2.00E-0	1 1415-02	0.0013
120	0.001		*	2.000-01	0 00E-02	0.0015			2.00L-0	1 1.41L-02	0.0013
12/	0.0003			2.000-01	0.000-002	0.0005			2.00E-0	1 6 46E 02	0.0015
120	0			3.00E-01	0.000000	0			3.00E-0	0.401-02	0.0000
129	0		1	3.30E-01	0.00E+00	0	-		3.30E-0	0.00E+00	0
130	0			4.00E-01	0.00E+00	U O	_		4.00E-0	1 0.00E+00	. 0
131	0		-4	4.50E-01	0.00E+00	0			4.50E-0	1 0.00E+00	0
132	0			5.00E-01	0.00E+00	0			5.00E-0	1 0.00E+00	0
133	0			5.50E-01	0.00E+00	0			5.50E-0	0.00E+00	0
134	0			6.00E-01	0.00E+00	0			6.00E-0	1 0.00E+00	0
135	0			6.50E-01	0.00E+00	0			6.50E-0	0.00E+00	0
136	0			7.00E-01	0.00E+00	0			7.00E-0	1 0.00E+00	- 0
137	0			7.50E-01	0.00E+00	0			7.50E-0	1_0.00E+00	0
138	0			8.00E-01	0.00E+00	0			8.00E-0	1_0.00E+00	0
139	0			8.50E-01	0.00E+00	0			8.50E-0	1 0.00E+00	0
140	0			9.00E-01	0.00E+00	0.			9.00E-0	1: 0.00E+00	0
141	0			9.50E-01	0.00E+00	0			9.50E-0	1 0.00E+00	0
142	0		-4-	1.00E+00	0.00E+00	0			1.00E+0	0 0.00E+00	0
143	0			1.05E+00	0.00E+00	0			1.05E+0	0 0.00E+00	0
144	0			1.10E+00	0.00E+00	0			1.10E+0	0.00E+00	. 0
145	0	**		1.15E+00	0.00E+00	0			1.15E+0	0 0.00E+00	0
146	0			1.20E+00	0.00E+00	0			1.20E+0	0.00E+00	0
147	0	- 1		1.25E+00	0.00E+00	0	1		1.25E+0	0 0.00E+00	0
148	0			1.30E+00	0.00E+00	0			1.30E+0	0 0.00E+00	0
149	0.			1.35E+00	0.00E+00	0			1.35E+0	0.00E+00	0
150	0	1		1.40E+00	0.00E+00	0			1.40E+0	0 0.00E+00	0
151	0			145E+00	0.00E+00	0	-		1.45E+0	0 00E+00	0
152	0			1 50E+00	0.00E+00	0			1 50E+0	0.00E+00	0
153	0			1 55E+00	0.00E+00	0	-	-	1.55E+0	0.00E+00	0
154				1.60E+00	0.00E+00	0	-		1.60E+0	0.00E+00	0
154	0	+	1	1.655+00	0.000000	0			1.65E+0	0.00E+00	
155	0			1.705+00	0.002.00	0			1.00E+0	0.00E+00	0
150	0			1.755+00	0.000+00	0.			1.702+0	0.00E+00	0
157	0		*	1.000-00	0.0000000	0	4	-	1.750-0	0.00E+00	
158	0			1.80E+00	0.00E+00	0			1.80E+0	0.00E+00	0
159	0		-	1.85E+00	0.00E+00	0			1.85E+0	0.00E+00	- 0
160	0			1.90E+00	0.00E+00	0			1.90E+0	0 0.00E+00	0
161	0			1.95E+00	0.00E+00	0			1.95E+0	0 0.00E+00	0
162	0		r	2.00E+00	0.00E+00	0			2.00E+0	0.00E+00	0
163	0.0002		tota	1	4.81E-01	0.0002			total	4.81E-01	0.0002
164											
165			-				1		-	10 10 fe t	1
166			File	name	tid240d		-		Filename	tid260d	
167		-									
168	51	1	ltal	ly 8 n	aps = 461716	580			Itally 8	nps = 45383	3705
169	height distrib	ution.	uni	tally typ	e 8 pulse	height distri	bution.	uni	i tally ty	pe 8 pulse	height dist
170				tally for	photons				tally fo	or photons	
171	1		1 -								1
172		_	cell	2					cell 2		
173				energy					energy		
174	0			0.00E+00	0.00E+00	0	1		0.00E+0	0 0.00E+00	0
175	0.0002	-		5.00E-02	3.04E-01	0.0002	-		5.00E-0	2 3.18E-01	0.0002
176	0.0008			1.00E-01	3.25E-02	0.0008	-		1.00E-0	1 2.98E-02	0.0008
177	0.0007	t.		1.50E-01	4.22E-02	0.0007			1.50E-0	1 4.32E-02	0.0007
178	0.001			2.00E-01	1.25E-02	0.0013	-		2.00E-0	1 1.30E-02	0.0013
179	0.0004			2.50E-01	9.52E-02	0.0005			2.50E-0	1 1.24E-02	0.0013
180	0	+	•	3.00E-01	0.00E+00	0			3.00E-0	1 7.02E-02	0.0005
	-										

Worksheet "MCNP Data p	=1.5" of Workbook	"MCNP Volume	Seneca.xls"
------------------------	-------------------	--------------	-------------

	BZ	CA	CB	CC	CD	CE	CF	CG	СН	CI	CJ
181	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0
182	0			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0
183	0			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0
184	0			5.00E-01	0.00E+00	0		1	5.00E-01	0.00E+00	0
185	0		*	5.50E-01	0.00E+00	0		•	5.50E-01	0.00E+00	0
186	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0
187	0		•	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0
188	0		,	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0
189	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0
190	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0
191	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0
192	0			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0
193	0			9.50E-01	0.00E+00	0		•	9.50E-01	0.00E+00	0
194	0	-		1.00E+00	0.00E+00	0		•	1.00E+00	0.00E+00	0
195	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0
196	0			1.10E+00	0.00E+00	0		•	1.10E+00	0.00E+00	0
197	0			1.15E+00	0.00E+00	0		*	1.15E+00	0.00E+00	0
198	0			1.20E+00	0.00E+00	0		-	1.20E+00	0.00E+00	0
199	0			1.25E+00	0.00E+00	0		•	1.25E+00	0.00E+00	0
200	. 0		-	1.30E+00	0.00E+00	0	-		1.30E+00	0.00E+00	0
201	. 0			1.35E+00	0.00E+00	0		•	1.35E+00	0.00E+00	0
202	. 0		• • •	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0
203	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0
204	- 0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	Ő
205	. 0		1	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0
206	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0
207	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	
208				1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0
209	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	- 0
210	0	-	•	1.80E+00	0.00E+00	0		•	1.80E+00	0.00E+00	0
211	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0
212	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0
213	0			1.95E+00	0.00E+00	0		•	1.95E+00	0.00E+00	0
214	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0
215	0.0002			total	4.86E-01	0.0002			total	4.86E-01	0.0002

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	CK	CL	CM	T CN	CO	CP	CQ	CR	CS	CT	CU
1											
2		*									
3											
4		•	+-								
5							•		• •		
6		•						1	• •		
7		•		. ,			•	æ.			
8								•	-		
9			-	. ,			•	1	1 1		
10		1	Filename	fid280a			·	Filename	fid300a		
11			T				•	1	-+		
12			Itally 8	nps = 417838	54			Itally 8	nps = 421179	30	
13	bution.	u	ni tally ty	pe 8 pulse h	eight distri	bution.	uni	tally t	ype 8 pulse h	eight dist	ribution.
14	C unioni		tally fo	or photons	0			tally f	or photons		
15		*									
16			cell 2					cell 2			
17		•	energy					energy			
18			0.00E+0	0 0.00E+00	0			0.00E+0	0 0.00E+00	0	
19		•	5.00E-0	2 3.14E-01	0.0002			5.00E-0	2 3.22E-01	0.0002	
20		÷	1.00E-0	1 2.58E-02	0.001			1.00E-0	1. 2.43E-02	0.001	
21			1.50E-0	1 4.26E-02	0.0007			1.50E-0	1 3.78E-02	0.0008	
22		+	2.00E-0	1 1.61E-02	0.0012			2.00E-0	1 1.93E-02	0.0011	
23			2.50E-0	1 8.12E-03	0.0017		*	2.50E-0	1 6.69E-03	0.0019	
24			3.00E-0	1 4.61E-02	0.0007		*	3.00E-0	1 4.17E-02	0.0007	1
25		-9	3.50E-0	1 0.00E+00	0			3.50E-0	1 1.65E-05	0.0379	1
26		1.	4.00E-0	1 0.00E+00	0			4.00E-0	1 0.00E+00	0),
27			4.50E-0	1 0.00E+00	0		•	4.50E-0	1 0.00E+00	0	
28			5.00E-0	1 0.00E+00	0		• –	5.00E-0	1 0.00E+00	0	
29		-	5.50E-0	1. 0.00E+00	0			5.50E-0	1 0.00E+00	0)
30			6.00E-0	1 0.00E+00	0			6.00E-0	1 0.00E+00	0	
31			6.50E-0	1 0.00E+00	- 0			6.50E-0	1 0.00E+00	0	
32		+	7.00E-0	1 0.00E+00	0			7.00E-0	1 0.00E+00	0	
33			7.50E-0	1 0.00E+00	0			7.50E-0	1 0.00E+00	0)
34			8.00E-0	1 0.00E+00	0			8.00E-0	1 0.00E+00	C)
35			8.50E-0	1 0.00E+00	0			8.50E-0	1 0.00E+00	0)
36			9.00E-0	1 0.00E+00	0			9.00E-0	1 0.00E+00	C).
37			9.50E-0	1 0.00E+00	0			9.50E-0	1 0.00E+00	0)
38		-	1.00E+0	0 0.00E+00	0			1.00E+0	0 0.00E+00	0)
39		- grant	1.05E+0	0 0.00E+00	0			1.05E+0	0 0.00E+00	0)
40			1.10E+0	0 0.00E+00	0			1.10E+0	0 0.00E+00	0)
41	-		1.15E+0	0 0.00E+00	0			1.15E+0	0 0.00E+00	C)
42			1.20E+0	0 0.00E+00	0			1.20E+0	0 0.00E+00	0)
43	-		1.25E+0	0 0.00E+00	0			1.25E+0	0 0.00E+00	()
44			1.30E+0	0, 0.00E+00	0			1.30E+0	0 0.00E+00	()
45			1.35E+0	0 0.00E+00	0			1.35E+0	0 0.00E+00	()
46			1.40E+0	0 0.00E+00	0			1.40E+0	00 0.00E+00	()
47			1.45E+0	0 0.00E+00	0			1.45E+0	0 0.00E+00	()
48			1.50E+0	0 0.00E+00	0			1.50E+0	00 0.00E+00	()
49			1.55E+0	0.00E+00	0			1.55E+0	00 0.00E+00	()
50			1.60E+0	0 0.00E+00	0			1.60E+0	00 0.00E+00	()
51			1.65E+0	0 0.00E+00	0	-		1.65E+0	00 0.00E+00	()
52			1.70E+0	0_0.00E+00	0			1.70E+0	00 0.00E+00	()
53			1.75E+0	0 0.00E+00	0			1.75E+0	00 0.00E+00	()
54			1.80E+0	0 0.00E+00	0			1.80E+0	00 0.00E+00	().
55			1.85E+0	0_0.00E+00	0			1.85E+0	00 0.00E+00	()
56			1.90E+0	0 0.00E+00	0			1.90E+0	00 0.00E+00	()
57		1	1.95E+0	0 0.00E+00	0			1.95E+(00 0.00E+00	()
58			2.00E+0	0 0.00E+00	0			2.00E+0	0 0.00E+00	()!
59		-	total	4.52E-01	0.0002			total	4.52E-01	0.0002	2
60											

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	CK	CL	CM	CN	CO	CP	CQ	CR	CS	СТ	CU
61			1	C 10001					C 12001		
62			Filename	fid280b				Filename	fid300b		
63		-14	Itally 8	ne = 121785	20			Itally 8	- 432287	01	-
65	hution	uni	tally ty	ps = 451765	eight distr	ibution	uni	tally ty	ne 8 nulse l	neight distr	ibution
66	Dution.	um	tally for	r photons	ieignt distr	ioution.		tally fo	r photons	leight dist	ioution.
67			-	photons				cany ro	, protono		
68		and the second	cell 2					cell 2			
69			energy	•			-	energy	T		
70			0.00E+00	0.00E+00	0		• • •	0.00E+00	0.00E+00	0	
71			5.00E-02	3.24E-01	0.0002			5.00E-02	3.33E-01	0.0002	
72			1.00E-01	2.68E-02	0.0009			1.00E-01	2.54E-02	0.0009	
73			1.50E-01	4.33E-02	0.0007			1.50E-01	3.85E-02	0.0008	
74			2.00E-01	1.56E-02	0.0012			2.00E-01	1.94E-02	0.0011	
75			2.50E-01	8.00E-03	0.0017			2.50E-01	6.52E-03	0.0019	_
76			3.00E-01	5.43E-02	0.0006			3.00E-01	4.89E-02	0.0007	
77			3.50E-01	0.00E+00	0			3.50E-01	1.99E-05	0.0341	
78			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	_ 0	
79	· .		4.50E-01	0.00E+00:	0			4.50E-01	0.00E+00		
80			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00		
81			5.50E-01	0.00E+00	0			5.50E-01	0.000000		
02			6 50E-01	0.00E+00	- 0			6 50E-01	0.00E+00	0	
84			7.00E-01	0.00E+00	· 0		•	7.00E-01	0.00E+00	0	
85	· · · · · · · · · · · · · · · · · · ·		7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	
86			8.00E-01	0.00E+00	0		4	8.00E-01	0.00E+00	0	
87			8.50E-01	0.00E+00	0		• • • • •	8.50E-01	0.00E+00	0	
88			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0	
89			9.50E-01	0.00E+00	0		• •	9.50E-01	0.00E+00	0	and the second s
90			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0,	
91			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
92			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0	
93			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0	
94			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	
95			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0	
96			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
97			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0	
98			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00		
99			1.45E+00	0.00E+00	0		• .	1.45E+00	0.00E+00	0	
100			1.50E+00	0.00E+00	0			1.500+00	0.000000	0	
101			1.55E+00	0.000000	0			1.55E+00	0.00E+00	- 0	
102			1.65E+00	0.00E+00	0		•	1.65E+00	0.00E+00	0	
104			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	
105			1.75E+00	0.00E+00	0		1	1.75E+00	0.00E+00	0	
106			1.80E+00	0.00E+00	- 0'		• • • • •	1.80E+00	0.00E+00	0	
107			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
108			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
109			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	
110			2.00E+00	0.00E+00	0		1	2.00E+00	0.00E+00	0	
111			total	4.72E-01	0.0002			total	4.72E-01	0.0002	
112	1										
113			-	ta unio	1		:				
114			Filename	fid280c			. =	Filename	fid300c		
115			1. 11 . 0		00			1. 11 0 -		10	_
116			Itally 8 r	ps = 439633	00			Itally 8 1	nps = 441348	13	
117	bution.	uni	tally typ	be 8 pulse h	leight distr	ibution.	uni	tally ty	pe 8 pulse l	height distr	ibution.
118	-			photons				tally for	photons		
119	C Inte		cell 2	· · · ·			-	0011 2	<u>هـ</u> ـــــــــــــــــــــــــــــــــــ		
120			cell Z					cell 2			

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	CK	CI	CM	CN	00	CP	T	00	CR	CS	CT	CU
121		00	energy	CIT		01	-	~~	energy			
121			0.00EL00	0.000.00	0.				0 00E+00	0.005+00	0	
122			0.00E+00	0.00E+00	0				0.00E+00	0.00E+00		
123			5.00E-02	3.28E-01	0.0002				5.00E-02	3.37E-01	0.0002	-
124			1.00E-01	2.75E-02	0.0009				1.00E-01	2.61E-02	0.0009	
125	1		1.50E-01	4.32E-02	0.0007		1		1.50E-01	3.86E-02	0.0008	
126			2.00E-01	1.47E-02	0.0012		I		2.00E-01	1.90E-02	0.0011	
127			2.50E-01	7.61E-03	0.0017				2.50E-01	6.13E-03	0.0019	
128			3.00E-01	6.03E-02	0.0006		1		3.00E-01	5.41E-02	0.0006	
129			3.50E-01	0.00E+00	ō				3.50E-01	2.16E-05	0.0324	
130			4 00F-01	0.00E+00	0		•		4.00E-01	0.00E+00	0	
131	+		4 50E-01	0.00E+00	0		9		4 50E-01	0.00E+00	0	
122			5.00E-01	0.000-00	0		4		5.00E-01	0.000000	0	
132			5.50E-01	0.000+00	0				5.50E-01	0.000000	0	
133			5.50E-01	0.00E+00	0				5.50E-01	0.00E+00	0	1
134			6.00E-01	0.00E+00	0				6.00E-01	0.00E+00	0	
135			6.50E-01	0.00E+00	0				6.50E-01	0.00E+00	0	-
136			7.00E-01	0.00E+00	0				7.00E-01	0.00E+00	0	
137			7.50E-01	0.00E+00	0				7.50E-01	0.00E+00	0	
138			8.00E-01	0.00E+00	0				8.00E-01	0.00E+00	0	
139			8.50E-01	0.00E+00	0				8.50E-01	0.00E+00	Ō	
140	-		9 00F-01	0.00E+00	0				9.00F-01	0.00F+00	0	
141			9 50F-01	0.00E+00	0				9 50E-01	0.00E+00	0	
142			1.00E+00	0.00E+00	0				1.00E+00	0.00E+00	0	
142	*		1.00000	0.000+00	0			-	1.000+00	0.000100	0	
143			1.05E+00	0.00E+00	0			-	1.03E+00	0.00E+00	0	
144			1.10E+00	0.00E+00	0			_	1.10E+00	0.00E+00	0	
145			1.15E+00	0.00E+00	0				1.15E+00	0.00E+00	0	
146			1.20E+00	0.00E+00	0				1.20E+00	0.00E+00	0	
147			1.25E+00	0.00E+00	0				1.25E+00	0.00E+00	0	
148			1.30E+00	0.00E+00	0				1.30E+00	0.00E+00	0	
149			1.35E+00	0.00E+00	0				1.35E+00	0.00E+00	0	
150	+		1.40E+00	0.00E+00	0		•		1.40E+00	0.00E+00	0	
151			1.45E+00	0.00E+00	0				1.45E+00	0.00E+00	0	
152			1.50E+00	0.00E+00	0		*		1.50E+00	0.00E+00	0	
153			1.55E+00	0.00E+00	0 [°]				1 55E+00	0.00E+00	0	1
154			1.605+00	0.000000	0				1.605±00	0.0000-00		
154	-		1.000+00	0.000+00	0				1.000+00	0.000000	-0	
155			1.05E+00	0.00E+00	0				1.03E+00	0.00E+00	0	
156			1.70E+00	0.00E+00	0			-	1.70E+00	0.00E+00	0	
157			1.75E+00	0.00E+00	0				1.75E+00	0.00E+00	- 0	
158	-1-		1.80E+00	0.00E+00	0				1.80E+00	0.00E+00	0	
159			1.85E+00	0.00E+00	0				1.85E+00	0.00E+00	0	
160			1.90E+00	0.00E+00	0		-		1.90E+00	0.00E+00	0	
161			1.95E+00	0.00E+00	0				1.95E+00	0.00E+00	0	
162			2.00E+00	0.00E+00	0		4		2.00E+00	0.00E+00	0	-
163			total	4.81E-01	0.0002			-	total	4.81E-01	0.0002	At
164								-				
165	+-									• •		
166	+		Filename	fid280d				-	Filenama	fid300d		
167			I fichatile	102000			+		ritename	nusoou		
10/			1.11.0	452102	Ē		6	-	1, 11 0	450000	70	
108	1		Itally 8 n	ps = 452192	34				Itally 8 1	ps = 450096	19	
169	bution.	uni	tally typ	e 8 pulse h	eight distrit	oution.		uni	tally typ	pe 8 pulse	height distr	ibution.
170			tally for	photons					tally for	r photons		
171			+	1								
172			cell 2						cell 2			
173	ŧ		energy	1					energy			
174		-	0.00E+00	0.00E+00	0		ł	-	0.00E+00	0.00E+00	0	
175	-+		5.00E-02	3.29E-01	0.0002		,		5.00E-02	3.39E-01	0.0002	
176	•		1.00F-01	2 80F-02	0.0000		•	-	1.00E-01	2 66F-02	0.0000	
177			1 505 01	4 20E 02	0.0007				1 505 01	3 84E 02	0.0009	-
177			1.50E-01	1.295-02	0.0007				1.50E-01	J.04E-02	0.0007	
178			2.00E-01	1.38E-02	0.0013		*		2.00E-01	1.84E-02	0.0011	
179			2.50E-01	7.07E-03	0.0018				2.50E-01	5.64E-03	0.002	
180		1.000	3.00E-01	6.53E-02	0.0006				3.00E-01	5.85E-02	0.0006	

	CK	CL	CM	CN	CO	СР	CQ	CR	CS	CT	CU
181			3.50E-01	0.00E+00	0			3.50E-01	2.14E-05	0.0323	
182		+	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	
183		•	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0	
184		•	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	
185			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	
186		-	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0	
187		•	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0	
188			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0	
189			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	
190			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0	
191	-	•	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0	
192			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0	
193	-	••••	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	
194			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	-
195			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
196			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0	
197			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0	
198			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	
199			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0	-
200			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
201	-	-	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0	
202		•	1.40E+00	0.00E+00	0		•	1.40E+00	0.00E+00	0	
203			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0	
204		-	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0	
205		•	1.55E+00	0.00E+00	0		•	1.55E+00	0.00E+00	0	
206		• -	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0	
207			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
208			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	
209		-	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0	
210			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0	
211	-		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
212		• •	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
213			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	
214			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0	
215			total	4.86E-01	0.0002			total	4.86E-01	0.0002	-

	ĊV	CW	CX	CY	CZ	DA	DB	DC	DD	DE	DF
1											
2	-	۲									
3		,									-
4											
5			•								
6	-	-					, 1				
7		•				,					
8		-									
9			-	,							
10		Filename	fid320a	1			Filename	fid340a			
11			-					1			
12		Itally 8	nps = 418432	78			Itally 8 n	ps = 418907	20		
13	un	i tally ty	pe 8 pulse h	eight distri	bution.	uni	tally typ	e 8 pulse h	neight distri	bution.	uni
14		tally fo	or photons				tally for	photons			
15											1.1
16		cell 2					cell 2				
17		energy					energy				
18		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0		-
19		5.00E-02	2 3.30E-01	0.0002			5.00E-02	3.36E-01	0.0002		
20		1.00E-01	2.30E-02	0.001			1.00E-01	2.18E-02	0.001		
21		1.50E-01	3.31E-02	0.0008			1.50E-01	2.90E-02	0.0009		
22		2.00E-01	2.25E-02	0.001			2.00E-01	2.52E-02	0.001		
23		2.50E-01	6.29E-03	0.0019			2.50E-01	6.11E-03	0.002		
24		3.00E-01	6.78E-03	0.0019			3.00E-01	3.80E-03	0.0025		
25		3.50E-01	3.09E-02	0.0009			3.50E-01	3.04E-02	0.0009		
26		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0		
27		4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0		
28		5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0		
29		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0		
30		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0		1
31		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		
32		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0		
33		7.50E-0	0.00E+00	0			7.50E-01	0.00E+00	0		
34		8.00E-0	0.00E+00	0			8.00E-01	0.00E+00	0		_
35		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0		
36		9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0:		
37		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0		
38		1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0		
39		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0		
40		1.10E+00	0_0.00E+00	0			1.10E+00	0.00E+00	0		
41		1.15E+00	0 0.00E+00	0			1.15E+00	0.00E+00	0		
42		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0		
43		1.25E+00	0_0.00E+00	0			1.25E+00	0.00E+00	0		-
44		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	-	
45		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0		4
46		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0		
47		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		
48	1	1.50E+00	0_0.00E+00	0			1.50E+00	0.00E+00	0		
49	-	1.55E+00	0 0.00E+00	0			1.55E+00	0.00E+00	0	_	
50	_	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0		
51		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0		
52		1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0		4
53		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		
54		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0		-
55		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0		+
56		1.90E+0	0.00E+00	0			1.90E+00	0.00E+00	0		
57		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	- 0		
58		2.00E+0	0.00E+00	0			2.00E+00	0.00E+00	0 0000		
59		total	4.52E-01	0.0002			total	4.52E-01	0.0002		
60											•

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	CV	CW	CX	CY	CZ	DA	DB	DC	DD	DE	DF
61			+			-1					
62		Filename	fid320b			1	Filename	fid340b			
63		1. 1. 0	120022	00			Ideallar 0	424207			4
64		Itally 8 I	aps = 429023	Uð eight distr	ibution	uni	tally tyr	ps = 424207	20 eight distri	bution	- 1111
66	um	tally for	photons	leight uisu	oution.	um	tally for	photons	eight distri	oution.	
67		tuny io.	, priotono					photono			
68		cell 2					cell 2				
69		energy	τ				energy				
70	-	0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0		
71		5.00E-02	3.41E-01	0.0002			5.00E-02	3.48E-01	0.0002		
72		1.00E-01	2.41E-02	0.001			1.00E-01	2.29E-02	0.001		1
73		1.50E-01	3.37E-02	0.0008			1.50E-01	2.95E-02	0.0009		+
74		2.00E-01	2.32E-02	0.001			2.00E-01	2.03E-02	0.0009		
76		2.50E-01	7.255-03	0.0019		*	3.00E-01	3.75E-03	0.002		-
77		3 50E-01	3.67E-02	0.0008			3.50E-01	3.59E-02	0.0008		
78		4.00E-01	0.00E+00	0.			4.00E-01	0.00E+00	0.		·
79		4.50E-01	0.00E+00	0	-	2	4.50E-01	0.00E+00	0		÷
80		5.00E-01	0.00E+00	01			5.00E-01	0.00E+00	0		
81		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0		I
82		6.00E-01	0.00E+00	0		4	6.00E-01	0.00E+00	0		
83		6.50E-01	0.00E+00	0	-	1	6.50E-01	0.00E+00	0		
84		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	01		
85		7.50E-01	0.00E+00				7.50E-01	0.00E+00	0		
80		8.00E-01	0.00E+00	0			8.50E-01	0.00E+00	0		
88		9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0	_	
89		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00			1
90		1.00E+00	0.00E+00	0		· 3	1.00E+00	0.00E+00	0		
91		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0		
92		1.10E+00	0.00E+00	0	-		1.10E+00	0.00E+00	0		
93		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0		
94		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0		
95		1.25E+00	0.00E+00	0		:	1.25E+00	0.00E+00	0		
96		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0		
97	-	1.33E+00	0.00E+00	0.			1.40E+00	0.00E+00	0		
99		1.45E+00	0.00E+00	0.		: .	1.45E+00	0.00E+00	0		
100		1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0		
101		1.55E+00	+ 0.00E+00	0			1.55E+00	0.00E+00	0		
102		1.60E+00	0.00E+00	_0			1.60E+00	0.00E+00	0		
103		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0		1
104		1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0		1
105		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		
106		1.80E+00	0.00E+00			1	1.80E+00	0.00E+00	0		
107		1.85E+00	0.00E+00	0		+	1.85E+00	0.00E+00	0		
108		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0		1
110		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0		
111		total	4.72E-01	0.0002			total	4.72E-01	0.0002		1 -
112			+ +	-							1
113			1								+
114		Filename	fid320c				Filename	fid340c			
115						1					
116		Itally 8 1	nps = 437551	90			Itally 8 r	nps = 436904	.04		* * * * *
117	uni	tally typ	pe 8 pulse l	neight distr	ibution.	uni	tally typ	be 8 pulse h	neight distr	ibution.	uni
118		tally for	r pnotons	1		1	tally for	pnotons	- 4		+
120		cell 2					cell 2		_ •		
120	in the second se	2011 2									

	CV CV	v	CX	CY	CZ	DA	DB	DC	DD	DE	DF
121	ener	gy				10 M	energy				
122	0.0	DE+00 0	0.00E+00	0			0.00E+00	0.00E+00	0		
123	5.0	0E-02	3.45E-01	0.0002			5.00E-02	3.52E-01	0.0002		
124	1.0	0E-01	2.48E-02	0.0009			1.00E-01	2.36E-02	0.001		•
125	1.5	0E-01	3.37E-02	0.0008			1.50E-01	2.96E-02	0.0009		
126	- 2.0	0E-01	2.32E-02	0.001			2.00E-01	2.67E-02	0.0009		
127	2.5	0E-01	5.89E-03	0.002			2.50E-01	5.85E-03	0.002		
128	* 3.0	0E-01	7.43E-03	0.0017		i	3.00E-01	3.55E-03	0.0025		
129	3.5	0E-01	4.10E-02	0.0007			3.50E-01	4.00E-02	0.0007		+
130	4.0	0E-01 0	0.00E+00	0			4.00E-01	0.00E+00	0		-1
131	4.5	0E-01 0).00E+00	0		•	4.50E-01	0.00E+00	0		1
132	5.0	0E-01 0	0.00E+00	0	•	•	5.00E-01	0.00E+00	0		1.
133	5 4	0E-01 0	00E+00	0			5.50E-01	0.00E+00	0		
134	- 6(0F-01 0	0.00E+0.00	0			6.00E-01	0.00E+00	0		1
135	6.5	0E-01 0	0.000 ± 0.000	0			6.50E-01	0.00E+00	0		
136	7 (0E-01 0	00E+00	0			7.00E-01	0.00E+00	0		-
127	. 7.6	05-01 0	00E+00	0			7.50E-01	0.00E+00	0		-
120		0E-01 0	00E+00	0			8 00F-01	0.00E+00	0		
120	0.0	0E-01 0	000000	0			8 50E-01	0.00E+00	0		-
139	0.0		00000000	0			9.00E-01	0.0000+00	0		
140	9.0	OF OI C	0000000	0			9.50E-01	0.000000	- 0		7
141	. 9.3	UE-UI U	00E+00	0			9.50E-01	0.000+00	0		- 1 D
142	1.0	JE+00 0	D.00E+00	0			1.00E+00	0.00E+00	0		+
143	1.0	5E+00 0	0.00E+00	0			1.05E+00	0.00E+00	0		-
144	1.1	DE+00 0	0.00E+00	0			1.10E+00	0.000000	0		
145	1.1	5E+00 0).00E+00	0			1.15E+00	0.00E+00	0		
146	1.2	DE+00 0	0.00E+00	0			1.20E+00	0.00E+00	0		
147	1.2	5E+00 0).00E+00	0			1.25E+00	0.00E+00	0		
148	1.3	DE+00 0	0.00E+00	0			1.30E+00	0.00E+00	0		
149	1.3	5E+00 0	0.00E+00	0			1.35E+00	0.00E+00	0		
150	1.4	DE+00 0	0.00E+00	0		1	1.40E+00	0.00E+00	0.		
151	1.4	5E+00 0	0.00E+00	0		1. C	1.45E+00	0.00E+00	0		-
152	1.5	0E+00 0).00E+00	0		4	1.50E+00	0.00E+00	0		
153	1.5	5E+00 0	0.00E+00	0			1.55E+00	0.00E+00	_ 0		
154	1.6	0E+00_0	0.00E+00	0			1.60E+00	0.00E+00	0		
155	1.6	5E+00 0	0.00E+00	0			1.65E+00	0.00E+00	0		
156	1.7	DE+00 0).00E+00	0			1.70E+00	0.00E+00	0		
157	1.7	5E+00 0).00E+00	0			1.75E+00	0.00E+00	0		
158	1.8	0E+00 0	0.00E+00	0			1.80E+00	0.00E+00	0		
159	1.8	5E+00 0	0.00E+00	0			1.85E+00	0.00E+00	0		
160	1.9	0E+00 0	0.00E+00	0			1.90E+00	0.00E+00	0		
161	1.9	5E+00 0	0.00E+00	0			1.95E+00	0.00E+00	0		
162	2.0	0E+00 0	0.00E+00	0			2.00E+00	0.00E+00	0		
163	total		4.81E-01	0.0002			total	4.81E-01	0.0002		
164									_		
165			,					+	1		
166	Filenan	ne fi	d320d				Filename	fid340d			
167	-+						• •				1
168	Itally	8 nps	s = 444945	52		,	Itally 8 m	ps = 442272	10		ī
169	uni' t	ally type	8 pulse h	eight distr	ibution.	u	ni tally typ	e 8 pulse l	neight distr	ibution.	uni
170	t	ally for r	photons				tally for	photons			
171						•					i
172	cell 2	-					cell 2				
173	-+-	gv					energy		-		
174		0F+00 0	00E+00	0			0.00F+00	0.00F+00	0		
175		0F-02	3 47F_01	0.0002			5 00F-02	3 54F-01	0.0002		
175	1.	0E-01	2 545-02	0.0002			1.00E-02	2 425 02	0.0002		+
170	1.4	0E-01	2.34E-02	0.0009			1.50E-01	2.420-02	0.000		+
177		OF OI	3.30E-02	0.0008			1.50E-01	2.95E-02	0.0009		
178	2.0	OF OI	2.31E-02	0.001			2.00E-01	2.08E-02	0.0009		
179	2.5	0E-01	5.52E-03	0.002			2.50E-01	5.56E-03	0.002		
180	3.0	0E-01	1.45E-03	0.0017			3.00E-01	3.27E-03	0.0026		

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	CV	CW	CX	CY	CZ	DA	DB	DC	DD	DE	DF
181		3.50E-01	4.47E-02	0.0007			3.50E-01	4.35E-02	0.0007		
182	-	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	JL -	
183		4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0		
184		5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0		
185		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0		
186		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0		······
187		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		
188		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0		
189	• • • •	7.50E-01	0.00E+00	0		*	7.50E-01	0.00E+00	0		
190		8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0		
191		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0		
192		9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0		
193		9.50E-01	0.00E+00	0		*	9.50E-01	0.00E+00	0		
194		1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0		
195		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0.		
196		1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0		
197		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0		
198		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0		
199		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		
200		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	- 0		
201		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0		
202		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0		
203		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		
204		1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0		
205		1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0		
206	<u>-</u>	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0		
207		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0		
208		1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0		
209		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		
210		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0		
211		1.85E+00	0.00E+00	0	-		1.85E+00	0.00E+00	0		
212		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0		
213		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0		
214		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0		
215		total	4.86E-01	0.0002			total	4.86E-01	0.0002		

	DG	DH	DI	D.J	DK	DL	DM	DN	DO	DP	DQ
1			- 10 10					- 1			
2											
3	1									_	
4								-			
5			-					1			
6	1										
7	1							4			
8									_		
9			1								
10	Filename	fid360a				Filename	fid380a				Filename
11	44++-4										
12	Itally 8 r	hps = 417247	42			Itally 8 r	nps = 418313	350	_		Itally 8
13	tally typ	be 8 pulse h	neight distribut	ution.	uni	tally typ	pe 8 pulse	height distr	ibution.	uni	tally ty
14	tally for	photons				tally for	r photons				tally fo
15											
16	cell 2					cell 2					cell 2
17	energy					energy					energy
18	0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0			0.00E+00
19	5.00E-02	3.42E-01	0.0002			5.00E-02	3.46E-01	0.0002		-	5.00E-02
20	1.00E-01	2.08E-02	0.0011	1		1.00E-01	1.98E-02	0.0011			1.00E-01
21	1.50E-01	2.53E-02	0.001			1.50E-01	2.35E-02	0.001	S		1.50E-01
22	2.00E-01	2.56E-02	0.001			2.00E-01	2.39E-02	0.001	di la contra da		2.00E-01
23	2.50E-01	7.89E-03	0.0017	•		2.50E-01	1.01E-02	0.0015			2.50E-01
24	3.00E-01	3.56E-03	0.0026	ŧ		3.00E-01	3.38E-03	0.0027			3.00E-01
25	3.50E-01	4.45E-03	0.0023			3.50E-01	2.79E-03	0.0029			3.50E-01
26	4.00E-01	2.32E-02	0.001			4.00E-01	2.20E-02	0.001	-		4.00E-01
27	4.50E-01	0.00E+00	0	1		4.50E-01	0.00E+00	0			4.30E-01
28	5.00E-01	0.00E+00		ł		5.00E-01	0.00E+00	0		-	5.50E-01
29	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00			: 	5.30E-01
30	6.00E-01	0.00E+00	0			6.00E-01	0.000000	0			6 50E-01
22	0.50E-01	0.000000	0	ą		7.00E-01	0.00E+00	0		+	7.00E-01
32	7.00E-01	0.000000	0	à		7.50E-01	0.00E+00	0		+	7.50E-01
33	7.50E-01	0.000000				8 00E-01	0.00E+00	0		+	8.00E-01
25	8.00E-01	0.000000	0			8 50F-01	0.00E+00	0			8.50E-01
26	0.00E.01	0.000000	0			9.00E-01	0.00E+00	0		•	9.00E-01
37	9.00E-01	0.00E+00	0			9 50F-01	0.00E+00	0			9.50E-01
30	1.00E+00	0.00E+00	0			1.00F+00	0.00E+00	0			1.00E+00
30	1.00E+00	0.00E+00	0	†		1.05E+00	0.00E+00	0			1.05E+00
40	1.05E+00	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00
41	1.15E+00	0.00E+00	0.	+		1.15E+00	0.00E+00	0			1.15E+00
42	1.10E+00	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00
43	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		• •	1.25E+00
44	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	- 0			1.30E+00
45	1.35E+00	0.00E+00	0	-		1.35E+00	0.00E+00	Ō			1.35E+00
46	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0		+	1.40E+00
47	1.45E+00	0.00E+00	- 0	ì		1.45E+00	0.00E+00	0			1.45E+00
48	1.50E+00	0.00E+00	0	4		1.50E+00	0.00E+00	0			1.50E+00
49	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+00
50	1.60E+00	0.00E+00	0	-4		1.60E+00	0.00E+00	0			1.60E+00
51	1.65E+00	0.00E+00	0	-4		1.65E+00	0.00E+00	0		1	1.65E+00
52	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0		1	1.70E+00
53	1.75E+00	0.00E+00	0	4		1.75E+00	0.00E+00	0			1.75E+00
54	1.80E+00	0.00E+00	0	4		1.80E+00	0.00E+00	0			1.80E+00
55	1.85E+00	0.00E+00	0	-4		1.85E+00	0.00E+00	0			1.85E+00
56	1.90E+00	0.00E+00	0	+		1.90E+00	0.00E+00	0			1.90E+00
57	1.95E+00	0.00E+00	0	4		1.95E+00	0.00E+00	0		1	1.95E+00
58	2.00E+00	0.00E+00	0	,		2.00E+00	0.00E+00	0	1		2.00E+00
59	total	4.52E-01	0.0002			total	4.52E-01	0.0002			total
60											

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	DG	DH	DI	DJ	DK	DL	DM	DN	DO	DP	DQ
61											
62	Filename	fid360b				Filename	fid380b	+-			Filename
63	14-11-0					Itally 9	- A16777	00 1	·		Itally 9
65	tally tally tw	nps = 42/15/2	24	bution	uni	tally type	ne 8 nulse h	eight distril	aution	uni	tally ty
66	tally ty	r photons	leight uistri	Julion.	un	tally for	r nhotons	leight distric	1		tally fo
67	tany io	i photons				. turiy ioi	, photons	•			
68	cell 2					cell 2	-+		++		cell 2
69	energy					energy			-		energy
70	0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0		_	0.00E+00
71	5.00E-02	3.53E-01	0.0002			5.00E-02	3.58E-01	0.0002			5.00E-02
72	1.00E-01	2.18E-02	0.001			1.00E-01	2.08E-02	0.0011	-	and the second second	1.00E-01
73	1.50E-01	2.57E-02	0.0009			1.50E-01	2.39E-02	0.001			1.50E-01
74	2.00E-01	2.68E-02	0.0009			2.00E-01	2.49E-02	0.001			2.00E-01
.75	2.50E-01	8.28E-03	0.0017			2.50E-01	1.10E-02	0.0015			2.50E-01
76	3.00E-01	3.56E-03	0.0026			3.00E-01	3.42E-03	0.0026	-		3.00E-01
77	3.50E-01	4.85E-03	0.0022			3.50E-01	2.87E-03	0.0029	-		3.50E-01
78	4.00E-01	2.77E-02	0.0009			4.00E-01	2.68E-02	0.0009			4.00E-01
79	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0			4.50E-01
80	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01
81	5.50E-01	0.00E+00	0:			5.50E-01	0.00E+00	0;			5.50E-01
82	6.00E-01	0.00E+00				6.00E-01	0.00E+00	0			6.00E-01
83	6.50E-01	0.00E+00				0.50E-01	0.00E+00				0.30E-01
84	7.00E-01	0.00E+00	0			7.002-01	0.00E+00	0			7.00E-01
85	7.50E-01	0.00E+00				8 00E-01	0.00E+00	0			8 00F-01
87	8.00E-01	0.00E+00	0			8.50E-01	0.00E+00	0			8 50E-01
88	9.00E-01	0.00E+00	0			9.00F-01	0.00E+00				9.00E-01
89	9.50E-01	0.00E+00	0	-		9.50E-01	0.00E+00	0.			9.50E-01
90	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	01			1.00E+00
91	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	01			1.05E+00
92	1.10E+00	0.00E+00	0	-		1.10E+00	0.00E+00	0			1.10E+00
93	1.15E+00	0.00E+00	0 [°]			1.15E+00	0.00E+00	O.	1		1.15E+00
94	1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00
95	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00
96	1.30E+00	0.00E+00	0.			1.30E+00	0.00E+00	0			1.30E+00
97	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00
98	1.40E+00	0.00E+00	0	_		1.40E+00	0.00E+00	0			1.40E+00
99	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0	-4	-	1.45E+00
100	1.50E+00	. 0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00
101	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0	\$		1.55E+00
102	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0.			1.60E+00
103	1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0.			1.65E+00
104	1.70E+00	0.00E+00	- 0			1.70E+00	0.00E+00	01			1.70E+00
105	1./SE+00	0.00E+00	0			1.75E+00	0.00E+00	0			1.752+00
100	1.80E+00	0.00E+00	0			1.800-00	0.00E+00	0			1.800-00
107	1.00E+00	0.00E+00	0			1.050+00	0.00E+00	0			1.001-100
100	1.90E+00	0.00E+001	0			1.95E+00	0.00E+00	0			1.95E+00
110	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00
111	total	4.72E-01	0.0002			total	+ 4.72E-01	0.0002			total
112					-						
113						• -• •	1				
114	Filename	fid360c				Filename	fid380c				Filename
115		1					1				
116	Itally 8	nps = 4350972	20			Itally 8 r	nps = 435350	35			Itally 8
117	tally ty	pe 8 pulse h	eight distri	bution.	uni	tally typ	pe 8 pulse h	eight distril	bution.	uni	tally ty
118	tally fo	r photons	Ì			tally for	r photons				tally fo
119			- 4								
120	cell 2					cell 2					cell 2

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

-	DG	DH	DI	DJ	DK	DL	DM	DN	DO	DP	DQ
121	energy					energy	1de				energy
122	0.00F+00	0.00F+00	0			0.00E+00	0.00E+00	0		+	0.00E+00
122	5.00E-02	3 58E-01	0.0002	1		5 00F-02	3.63E-01	0.0002		E	5 00F-02
120	1.00E-02	2.255.02	0.0002			1.00E-01	2 15E-02	0.001			1.00E-01
124	1.50E 01	2.25E-02	0.000	*		1.50E-01	2.10E-02	0.001		+	1.50E-01
125	1.502-01	2.300-02	+ 0.0009			1.JOL-01	2.401-02	0.000			2.00E.01
120	2.00E-01	2.72E-02	0.0009	3		2.006-01	2.52E-02	0.0009			2.00E-01
127	2.50E-01	8.40E-03	0.0016			2.30E-01	1.15E-02	0.0014		-	2.50E-01
128	3.00E-01	3.43E-03	0.0026			3.00E-01	3.33E-03	0.0020			3.00E-01
129	3.50E-01	5.05E-03	0.0021	i		3.50E-01	2.85E-03	0.0028		+	3.50E-01
130	4.00E-01	3.11E-02	0.0008			4.00E-01	3.01E-02	0.0009		1	4.00E-01
131	4.50E-01	0.00E+00	· 0	1		4.50E-01	0.00E+00	0		1	4.50E-01
132	5.00E-01	0.00E+00	0.			5.00E-01	0.00E+00	0	_		5.00E-01
133	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01
134	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0		+	6.00E-01
135	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01
136	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01
137	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01
138	8.00E-01	0.00E+00	0:			8.00E-01	0.00E+00	0.			8.00E-01
139	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-01
140	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01
141	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0		•	9.50E-01
142	1.00E+00	0.00E+00	0.			1.00E+00	0.00E+00	0			1.00E+00
143	1.05E+00	0.00E+00	. 0	*		1.05E+00	0.00E+00	0		1	1.05E+00
144	1.10E+00	0.00E+00	. 0			1.10E+00	0.00E+00	0		***	1.10E+00
145	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0.		+	1.15E+00
146	1 20E+00	0.00E+00	0			1 20E+00	0.00E+00	0		• •• •••	1.20E+00
147	1.25E+00	0.00E+00	O			1.25E+00	0.00E+00	0		····	1.25E+00
147	1.30E+00	0.00E+00	· 0'	+		1 30E+00	0.00E+00	- 0		<u> </u>	1.30E+00
140	1.30E+00	0.00E+00				1.35E+00	0.00E+00	0			1 35E+00
149	1.405+00	0.00E+00	t · 0	4		1.40E+00	0.00E+00	0			1.40E+00
150	1.402+00	0.000000	· 0.			1.400,000	0.00E+00	0			1.402100
151	1.4505+00	0.000000	0			1.400-00	0.000000	0			1.40E+00
152	1.50E+00	0.00E+00	0			1.500+00	0.000000	0			1.500+00
155	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	- 0:		l	1.536+00
154	1.60E+00	0.00E+00	r 0	*		1.60E+00	0.00E+00			-	1.00E+00
155	1.65E+00	0.00E+00	0	*		1.65E+00	0.00E+00	0			1.65E+00
156	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	_	J	1.70E+00
157	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		+	1.75E+00
158	1.80E+00	0.00E+00	. 0			1.80E+00	0.00E+00	0	_	-	1.80E+00
159	1.85E+00	0.00E+00	. 0			1.85E+00	0.00E+00	0			1.85E+00
160	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00
161	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00
162	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00
163	total	4.81E-01	0.0002			total	4.81E-01	0.0002			total
164				+							
165			r	- ,				-			
166	Filename	fid360d	-			Filename	fid380d			1	Filename
167			1	*			• +		-		
168	Itally 8 n	ps = 44108	495	•		Itally 8	nps = 441349	23			Itally 8
169	tally typ	e 8 pulse	height distri	bution.	u	ni tally ty	pe 8 pulse h	neight distri	bution.	un	i. tally ty
170	tally for	photons		,		tally fo	r photons	0			tally fo
171		photono		4		unj 10	+	+			
172	cell 2					cell 2	1 merel				cell 2
173	energy		-	-		energy	• •••• •				energy
174	0.005+00	0.00E+00		-		0.005+00	0.00E+00	- 0 [†]			0.005+00
174	5 00E 02	3 60E 01	0.0002			5 00E 00	3 655 01	0.0002		+	5 00E 00
175	1.00E-02	2 31E 02	0.0002	,		1.00E-02	2 20E 02	0.0002			1 OOE 01
170	1.002-01	2.512-02	0.001			1.00E-01	2.20E-02	0.001			1.00E-01
177	1.50E-01	2.396-02	0.0009			1.50E-01	2.40E-02	0.001		3	1.50E-01
178	2.00E-01	2.73E-02	0.0009			2.00E-01	2.52E-02	0.0009	_	+	2.00E-01
179	2.50E-01	8.41E-03	0.0016			2.50E-01	1.19E-02	0.0014		+	2.50E-01
180	3.00E-01	3.23E-03	0.0026			3.00E-01	3.20E-03	0.0027			3.00E-01

	DG	DH	DI	DJ	DK	DL	DM	DN	DO	DP	DQ
181	3.50E-01	5.13E-03	0.0021			3.50E-01	2.73E-03	0.0029			3.50E-01
182	4.00E-01	3.40E-02	0.0008			4.00E-01	3.28E-02	0.0008			4.00E-01
183	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0		•	4.50E-01
184	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01
185	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01
186	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0	-	• •••	6.00E-01
187	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01
188	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01
189	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0		•	7.50E-01
190	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0		*	8.00E-01
191	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-01
192	9.00E-01	0.00E+00	0		•	9.00E-01	0.00E+00	0			9.00E-01
193	9.50E-01	0.00E+00	0		•	9.50E-01	0.00E+00	0			9.50E-01
194	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+00
195	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00
196	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00
197	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00
198	1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00
199	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		•	1.25E+00
200	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00
201	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00
202	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00
203	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00
204	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00
205	1.55E+00	0.00E+00	0		-	1.55E+00	0.00E+00	0			1.55E+00
206	1.60E+00	0.00E+00	0		•	1.60E+00	0.00E+00	0			1.60E+00
207	1.65E+00	0.00E+00	0		-	1.65E+00	0.00E+00	0	-		1.65E+00
208	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00
209	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00
210	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00
211	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	-		1.85E+00
212	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00
213	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00
214	2.00E+00	0.00E+00	0		-	2.00E+00	0.00E+00	0			2.00E+00
215	total	4.87E-01	0.0002			total	4.87E-01	0.0002		•	total

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	DR	DS	DT	DU	DV	DW	DX	DY	DZ	EA	EB
1			- +		ł	,			t		
2					4					+	
3					•		- il:				
4	-										-
5							۲		1	+	
7					*		4			in	
8					,		• 				
9					L	• · · ·		-	<u> </u>		
10	fid400a				Filename	fid420a				Filename	fid440a
11										+	
12	ps = 4072140	4			Itally 8 r	nps = 419383	348			Itally 8	nps = 4195
13	e 8 pulse he	eight distr	ibution.	uni	tally typ	be 8 pulse	height distri	bution.	un	tally t	ype 8 pulse
14	photons				tally for	photons .				tally f	or photons
15										:	
10					cell 2					energy	
10	0.005+00	-0	· ·		0.00F+00	0.00F+00	0		•	0.00E+0	0 0.00E+00
10	3 51F-01	0.0002			5.00E-02	3.54E-01	0.0002			5.00E-0	2 3.57E-01
20	1.89E-02	0.0011			1.00E-01	1.81E-02	0.0011			1.00E-0	1 1.73E-02
21	2.22E-02	0.001			1.50E-01	2.10E-02	0.0011			1.50E-0	1 2.00E-02
22	2.23E-02	0.001			2.00E-01	2.09E-02	0.0011			2.00E-0	1 1.97E-02
23	1.18E-02	0.0014	-+		2.50E-01	1.14E-02	0.0014			2.50E-0	1 1.05E-02
24	3.32E-03	0.0027	1		3.00E-01	4.94E-03	0.0022			3.00E-0	1 6.90E-03
25	2.30E-03	0.0033			3.50E-01	2.21E-03	0.0033			3.50E-0	1 2.15E-03
26	2.11E-02	0.0011			4.00E-01	3.06E-03	0.0028			4.00E-0	1 1.57E-03
27	8.13E-06	0.055	-		4.50E-01	1.65E-02	0.0012			4.50E-0	1 1.67E-02
28	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-0	1 0.00E+00
29	0.00E+00	0			5.50E-01	0.00E+00	0	-		5.50E-0	1 0.00E+00
30	0.00E+00	0	_ •		6.00E-01	0.00E+00	0	_	1	6 50E-0	1 0.00E+00
31	0.00000	0			7 00F-01	0.00E+00	0		4	7.00E-0	1 0.00E+00
33	0.00E+00	- 0			7.50E-01	0.00E+00	0			7.50E-0	1 0.00E+00
34	0.00E+00	- 0		-	8.00E-01	0.00E+00	0			8.00E-0	1 0.00E+00
35	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-0	1 0.00E+00
36	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-0	1 0.00E+00
37	0.00E+00	0			9.50E-01	0.00E+00	0			9.50E-0	1 0.00E+00
38	0.00E+00	0	-		1.00E+00	0.00E+00	0		1	1.00E+0	0' 0.00E+00
39	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+0	0 0.00E+00
40	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+0	0 0.00E+00
41	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+0	0_0.00E+00
42	0.00E+00	0			1.20E+00	0.00E+00	0	-		1.200+0	0 0.00E+00
43	0.00E+00	- 0			1.25E+00	0.000+00	0			1.20E+0	0 0.00E+00
44	0.000+00	0			1.30E+00	0.00E+00	0	100 million (100 million)		1.35E+0	0 0.00E+00
45	0.00E+00	0			1.40E+00	0.00E+00	0.			1.40E+0	0 0.00E+00
47	0.00E+00	0	L		1.45E+00	0.00E+00	0		-+	+ 1.45E+0	0 0.00E+00
48	0.00E+00	0	L		1.50E+00	0.00E+00	0			1.50E+0	0 0.00E+00
49	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+0	0.00E+00
50	0.00E+00	0			1.60E+00	0.00E+00	0		*	1.60E+0	0.00E+00
51	0.00E+00	0	-		1.65E+00	0.00E+00	0			1.65E+0	00 0.00E+00
52	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+0	00 0.00E+00
53	0.00E+00	0			1.75E+00	0.00E+00	0		1	1.75E+0	0 0.00E+00
54	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+0	0 0.00E+00
55	0.00E+00	0			1.85E+00	0.00E+00	0	-	4	1.85E+0	0 0.00E+00
56	0.00E+00	0			1.90E+00	0.00E+00	0			+ 1.90E+(0.00E+00
57	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+(0.00E+00
50	0.00E+00	0 0002			2.00E+00	4 52E 01	0.0002		-	total	4 52F-01
60	4.52E-01	0.0002			,	1.522-01	0.0002			4	

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	DR	DS	DT	DU	DV	DW	DX	DY	DZ	EA	EB
61											
62	fid400b		1	·	Filename	fid420b				Filename	fid440b
63			ular mute	• •			1				
64	ps = 4257993	31		-	Itally 8 1	ps = 427403	350			Itally 8 r	nps = 4280
65	e 8 pulse h	eight dist	ribution.	uni	tally typ	be 8 pulse l	height distr	ibution.	uni	tally typ	be 8 pulse
66	photons	-		l. i	tally for	photons	٦			tally for	photons
67			•								
68			1-		cell 2		4			cell 2	
69				, 1	energy					energy	
70	0.00E+00	0	+		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
71	3.63E-01	0.0002			5.00E-02	3.67E-01	0.0002			5.00E-02	3.70E-01
72	1.99E-02	0.0011			1.00E-01	1.90E-02	0.0011			1.00E-01	1.82E-02
73	2.26E-02	0.001			1.50E-01	2.14E-02	0.001			1.50E-01	2.03E-02
74	2.32E-02	0.001		•	2.00E-01	2.17E-02	0.001			2.00E-01	2.05E-02
75	1.30E-02	0.0013		· ·	2.50E-01	1.26E-02	0.0014			2.50E-01	1.15E-02
76	3.40E-03	0.0026		,	3.00E-01	5.38E-03	0.0021			3.00E-01	7.78E-03
77	2.32E-03	0.0032			3.50E-01	2.26E-03	0.0032			3.50E-01	2.24E-03
78	2.50E-02	0.001			4.00E-01	3.38E-03	0.0026		_	4.00E-01	1.60E-03
79	9.89E-06	0.0487			4.50E-01	1.97E-02	0.0011			4.50E-01	1.99E-02
80	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00
81	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00
82	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00
83	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00
84	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
85	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00
86	0.00E+00	0	1	1	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00
87	0.00E+00	0	1		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00
88	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00
89	0.00E+00	0			9.50E-01	0.00E+00	0.		-	9.50E-01	0.00E+00
90	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00
91	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
92	0.00E+00				1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
93	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
94	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
95	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
96	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
97	0.00E+00	0			1.35E+00	0.00E+00	0	, ÷.	L	1.35E+00	0.00E+00
98	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00	0.0000000
99	0.00E+00	0	-		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
100	0.00E+00	- 0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
101	0.00E+00	0			1.551+00	0.00E+00	0			1.55E+00	0.00E+00
102	0.00E+00	0	4		1.00E+00	0.00E+00	0			1.60E+00	0.00E+00
103	0.00E+00				1.05E+00	0.00E+00	0	- 1		1.05E+00	0.00E+00
104	0.002+00	0		• •	1.700+00	0.00E+00	0			1.75E+00	0.00E+00
105	0.000000		-	}	1.750-00	0.000000	0			1.805+00	0.00E+00
100	0.00E+00	0		12	1.00E+00	0.00E+00				1.802+00	0.000000
10/	0.0000000				1.00E±00	0.000000	0			1 905+00	0.00E+00
108	0.000+00	0		ī	1.900+00	0.000000	0			1.900-00	0.00E+00
109	0.000000	0	+	-	2 00	0.000-00	0			2 005+00	0.00E+00
111	4.72E-01	0.0002	+	4 — — 4	total	4 72F-01	0.0002			total	4 72F-01
112	4.720-01	0.0002		+		4.72L-01	0.0002				1.721-01
112											
113	fid400c				Filename	fid420c	3			Filename	fid440c
114	1104000			1	Thename					1. Itenatile	nutrioc
115	DE = 134594	90	-	1	Itally 8	nns = 43381	849			Itally 8	nns = 4305
110	e 8 mulso h	eight dict	ribution	uni	tally tu	ne 8 nulce	height dist	ibution	110	tally ty	ne 8 nulse
119	nhotons	orgint uist	T T	, uni	tally fo	r photons	ineight uisti	, and the second second		tally fo	r nhotons
110	photons		1	-	tany 10	photons					photons
120					cell 2					cell 2	

Worksheet "MCNP	Data $p=1.5"$	of Workbook	"MCNP	Volume S	eneca.xls"

	DR	DS	DT	DU	DV	DW	DX	DY	DZ	EA	EB
121					energy					energy	
122	0.00E+00	0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
123	3.67E-01	0.0002			5.00E-02	3.71E-01	0.0002			5.00E-02	3.75E-01
124	2.05E-02	0.001			1.00E-01	1.96E-02	0.0011			1.00E-01	1.88E-02
125	2.27E-02	0.001			1.50E-01	2.15E-02	0.001			1.50E-01	2.04E-02
126	2.34E-02	0.001			2.00E-01	2.19E-02	0.001			2.00E-01	2.07E-02
127	1.38E-02	0.0013			2.50E-01	1.34E-02	0.0013			2.50E-01	1.21E-02
128	3.36E-03	0.0026			3.00E-01	5.62E-03	0.002			3.00E-01	8.38E-03
129	2.26E-03	0.0032			3.50E-01	2.23E-03	0.0032			3.50E-01	2.24E-03
130	2.79E-02	0.0009	_		4.00E-01	3.55E-03	0.0025			4.00E-01	1.55E-03
131	1.06E-05	0.0466		1	4.50E-01	2.22E-02	0.001			4.50E-01	2.23E-02
132	0.00E+001	0			5.00E-01	0.00E+00	0	_		5.00E-01	0.00E+00
133	0.00E+00	0			5.50E-01	0.00E+00	0	,		5.50E-01	0.00E+00
134	0.00E+00	0			6.00E-01	0.00E+00	0'			6.00E-01	0.00E+00
135	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00
136	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
137	0.00E+00	0		,	7.50E-01	0.00E+00	0		1	7.50E-01	0.00E+00
138	0.00E+00	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00
139	0.00E+00	0			8.50E-01	0.00E+00	0	-		8.50E-01	0.00E+00
140	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00
141	0.00E+00	0		i	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00
142	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00
143	0.00E+00	0	-		+ 1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
144	0.00E+00	0.			1.10E+00	0.00E+00	0.			1.10E+00	0.00E+00
145	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
140	0.00E+00	0		-	1.20E+00	0.00E+00	- 0			1.20E+00	0.00E+00
14/	0.00E+00	0			1.25E+00	0.000000	0			1.25E+00	0.00E+00
140	0.00E+00	0			1.300+00	0.000+00	0		ę	1.30E+00	0.00E+00
149	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
151	0.00E+00	0			1.40E+00	0.00E+00	0			1.45E+00	0.00E+00
152	0.00E+00	0			1 50E+00	0.00E+00	0	-		1.50E+00	0.00E+00
153	0.00E+00	0			1.55E+00	0.00E+00	0	_	•	1.55E+00	0.00E+00
154	0.00E+00	0			+ 1.60E+00	0.00E+00	0		÷	1.60E+00	0.00E+00
155	0.00E+00	0		-	1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
156	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
157	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
158	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
159	0.00E+00	0	-		+- 1.85E+00	0.00E+00	0+			1.85E+00	0.00E+00
160	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
161	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
162	0.00E+00	0			2.00E+00	0.00E+00	0		+	2.00E+00	0.00E+00
163	4.81E-01	0.0002			total	4.81E-01	0.0002			total	4.81E-01
164	L		-						1		
165		-									
166	fid400d				Filename	fid420d	-			Filename	fid440d
167											
168	ps = 440160	29			Itally 8 r	nps = 439900)34			Itally 8 r	nps = 4402
169	e 8 pulse h	eight distr	ibution.	uni	tally typ	be 8 pulse l	height distri	bution.	uni	tally typ	pe 8 pulse
170	photons				tally for	photons			·	tally for	r photons
171				_	+		-L				
172					cell 2					cell 2	
1/3	0.000.00				energy	0.000.00				energy	0.0000.000
174	2 60E 01	0.0002			5.00E+00	3 72E 01	0.0002			5 00E 00	3 77E 01
175	2 10E 02	0.0002			1.00E-02	2 01E 02	0.0002		•	1.005-01	1 02E 02
170	2.10E-02	0.001			1.00E-01	2.012-02	0.0011			1.505-01	2.05E 02
170	2.278-02	0.001		,	2.005-01	2.15E-02	0.001			2.005-01	2.05E-02
170	1.44E-02	0.0012			2.00E-01	1 40F-02	0.0013			- 2.50E-01	1.26E-02
180	3 28F-03	0.0012			3.00F-01	5.79E-03	0.002		•	3.00E-01	8.85F-03
1.00	0.201.00	010020			0.001 01		01002			0.000 01	

Worksheet "MCNP Data p=1.5"	of Workbook "MCNP	Volume Seneca.xls"
-----------------------------	-------------------	--------------------

	DR	DS	DT	DÜ	DV	DW	DX	DY	DZ	EA	EB
181	2.13E-03	0.0033		·	3.50E-01	2.16E-03	0.0032			3.50E-01	2.21E-03
182	3.04E-02	0.0009			4.00E-01	3.66E-03	0.0025			4.00E-01	1.46E-03
183	1.07E-05	0.046	-		4.50E-01	2.43E-02	0.001			4.50E-01	2.44E-02
184	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00
185	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00
186	0.00E+00	0		•	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00
187	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00
188	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
189	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00
190	0.00E+00	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00
191	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00
192	0.00E+00	0			9.00E-01	0.00E+00	0		•	9.00E-01	0.00E+00
193	0.00E+00	. 0			9.50E-01	0.00E+00	0		•	9.50E-01	0.00E+00
194	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00
195	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
196	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
197	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
198	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
199	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
200	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
201	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
202	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00
203	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
204	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
205	0.00E+00	0	-	;	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
206	0.00E+00	0	-	•	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00
207	0.00E+00	0	-	•	1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
208	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
209	0.00E+00	0	2		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
210	0.00E+00	0		•	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
211	0.00E+00	0		•	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
212	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
213	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
214	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00
215	4.87E-01	0.0002			total	4.87E-01	0.0002			total	4.87E-01

	EC	ED	EE	EF	EG	EH	EI	EJ	EK	EL	EM
1									-		
2			-			1					
3					·						
4		_						· •			
5	-		⊢					-	-	+	
6			*		, .						
7				*					-		
8										1	
9				·	·			1		10.1100	
10				Filename	fid460a			+	Filename	fid480a	
11	0.7			1	410(2)	4		+	14-11- 0	- 422264	02
12	07			Itally 8 1	nps = 419620			1	Itally 8	nps = 422204	93
13	neight distr	ibution.	- uni	tally typ	pe o puise	neight distri	ibution.	<u>u</u>	tally f	peo puisen	leight dist
14				tany io	r photons .	4		4	tally i	of photons	
15				cell 2					cell 2		
17	-			energy					energy		
18	0			0.00F+00	0.00F+00	0		2	0.00E+0	0.00E+00	0
10	0 0002			5 00E-02	3 60E-01	0.0002		•	5.00E-0	2 3.63E-01	0.0002
20	0.0002	-	•	1.00E-01	1.66E-02	0.0012		+	1.00E-0	1 1.60E-02	0.0012
21	0.0011			1.50E-01	1.90E-02	0.0011		÷.	1.50E-0	1 1.81E-02	0.0011
22	0.0011			2.00E-01	1.86E-02	0.0011			2.00E-0	1 1.77E-02	0.0011
23	0.0015			2.50E-01	9.86E-03	0.0015	-	+	2.50E-0	1 9.42E-03	0.0016
24	0.0019.			3.00E-01	8.38E-03	0.0017		1	3.00E-0	1 7.86E-03	0.0017
25	0.0033			3.50E-01	2.16E-03	0.0033		+	3.50E-0	1 3.85E-03	0.0025
26	0.0039		t	4.00E-01	1.57E-03	0.0039	-	1	4.00E-0	1' 1.53E-03	0.0039
27	0.0012		+	4.50E-01	2.24E-03	0.0033		•	4.50E-0	1 1.37E-03	0.0042
28	0.			5.00E-01	1.33E-02	0.0013			5.00E-0	1 1.33E-02	0.0013
29	0	-	-d+	5.50E-01	0.00E+00	0		-	5.50E-0	1 0.00E+00	0
30	0			6.00E-01	0.00E+00	0		-1-	6.00E-0	1 0.00E+00	0
31	0			6.50E-01	0.00E+00	0			6.50E-0	1 0.00E+00	0
32	0	-	da	7.00E-01	0.00E+00	0			7.00E-0	1 0.00E+00	0
33	0			7.50E-01	0.00E+00	0			7.50E-0	1 0.00E+00	0
34	0			8.00E-01	0.00E+00	0			8.00E-0	1 0.00E+00	0
35	0			8.50E-01	0.00E+00	0			8.50E-0	1 0.00E+00	0
36	0			9.00E-01	0.00E+00	0			9.00E-0	1 0.00E+00	0
37	0		-	9.50E-01	0.00E+00	0			9.50E-0	1 0.00E+00	0
38	0			1.00E+00	0.00E+00	0		i +	1.00E+0	0 0.00E+00	0
39	0			1.05E+00	0.00E+00	0			1.05E+0	0 0.00E+00	0
40	0			1.10E+00	0.00E+00	0			1.10E+0	0 0.00E+00	0
41	0			1.15E+00	0.00E+00	0			1.15E+0	0 0.00E+00	0
42	_ 0			1.20E+00	0.00E+00	0		1	1.20E+0	0 0.00E+00	0
43	0			1.25E+00	0.00E+00	0		+	1.25E+0	0_0.00E+00	0
44	0			1.30E+00	0.00E+00	0			1.30E+0	0 0.00E+00	0
45	0		4	1.35E+00	0.00E+00	0			1.35E+0	0 0.00E+00	0
46	0			1.40E+00	0.00E+00	0			1.40E+0	0_0.00E+00	0
47	0	-	1	1.45E+00	0.00E+00	0			1.45E+0	0 0.00E+00	0
48	0		+	1.50E+00	0.00E+00	0			1.50E+0	0 0.00E+00	0
49	- 0		4-	1.55E+00	0.00E+00	0		-	1.55E+0	0, 0.00E+00,	0
50	0		2	1.60E+00	0.00E+00	. 0			1.00E+0	0.00E+00	0
51	0		+	1.65E+00	0.00E+00	0		+	+ 1.05E+0	0 0.00E+00	0
52	0			1.70E+00	0.00E+00	0		•	+ 1.75E+0	0 0.00E+00	0
54	0			1.75E+00	0.00E+00	0			1.75E+0	0 0.00E+00	0
54	0			1.80E+00	0.00E+00	0			1.80E+0	0 0.00E+00	0
55	0			1.03E+00	0.00E+00	0		+	1.05E+0	0 0.000000	0
57	- 0			1.90E+00	0.000+00	0			1.900+0	0 0.00E+00	0
50	- 0		•	2 005+00	0.00E+00	0			- 2 00E+0	0 0.00E+00	
50	0.0002			total	4 52F-01	0.0002			total	4.52F-01	0 0002
60	0.0002			, otur		0.0002			, corus		0.0002
60										-	

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	EC	ED	EE	EF	EG	EH	EI	EJ	EK	EL	ЕM
61									<u></u>	1	
62	1	•	•	Filename	fid460b				Filename	fid480b	
63	1										
64	73			Itally 8	nns = 42789	915	,		Itally 8	nns = 42815	173
65	height dict	vibution		tolly ty		height dictr	ibution		tally ty	ne $nulse$	height dist
05	ineight uist	ibution.	u iii	. tany ty	pe a puise	neight uist	ibution.		tally ty	pe a puise	incigint dist
66	4			. tally to	r photons				tany to	r photons	
67											
68				cell 2					cell 2		
69				energy					energy		1
70	1 0		•	0.00E+00	0.00E+00	0		•	0.00E+00	0.00E+00	0
71	0.0002			5.00E-02	3.73E-01	0.0002		•	5.00E-02	3.76E-01	0.0002
72	0.0011	-		1.00E-01	1 75E-02	0.0011			1.00E-01	1.68E-02	0.0012
73	0.0011			1 50E-01	1.93E-02	0.0011		•	1 50F-01	1.84F-02	0.0011
73	0.0011		•	2 005 01	1.04E 02	0.0011			2 005 01	1.04E-02	0.0011
74	0.0011			2.000-01	1.746-02	0.0017			2.000-01	1.04E=02	. 0.0015
15	0.0014			2.50E-01	1.07E-02	0.0015		h.	2.50E-01	1.02E-02	0.0015
76	0.0017			3.00E-01	9.60E-03	0.0016			3.00E-01	8.99E-03	0.0016
77	0.0032			3.50E-01	2.28E-03	0.0032			3.50E-01	4.33E-03	0.0023
78	0.0038			4.00E-01	1.62E-03	0.0038			4.00E-01	1.62E-03	0.0038
79	0.0011	•		4.50E-01	2.52E-03	0.003			4.50E-01	1.46E-03	0.004
80	1 o			5.00E-01	1.60E-02	0,0012			5.00E-01	1.59E-02	0.0012
81	0	<u>i</u>		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	
82	0			6.00F-01	0.00E+00	0	· –	-	6.00F-01	0.00E+00	·0
02				6 50E-01	0.00E+00	0			6 50E 01	0.00E+00	
0.0				7.005.01	0.00E+00	0			7.00E-01	0.000,000	0
84	. 0			7.00E-01	0.00E+00	. 0			7.00E-01	0.00E+00	
85	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	
86	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	
87	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0
88	0			9.00E-01	0.00E+00	0		-	9.00E-01	0.00E+00	0
89	0	•		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0
90	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	ol
01				1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	
02			• •	. 1.105±00	0.002+00	0		•	1.052.00	0.00E+00	· -· · · ol
92	0			1.102+00	0.00E+00	. 0			1.102+00	0.000	
93				1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	
94	0			1.20E+00	0.00E+00	0	,		1.20E+00	0.00E+00	
95	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0
96	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0
97	1 o	•		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0
98	1 o			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0
99	0			1.45E+00	0.00E+00	0		-	1.45E+00	0.00E+00	
100	i o			1 50E+00	0.00E+00	0			1.50E+00	0.00E+00	
100	0	•	-	. 1.50E+00	0.0000000				1.500+00	0.002+00	· · ·
101				1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	
102	0			1.60E+00	0.00E+00	. 0			1.60E+00	0.00E+00	
103	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	. 0]
104	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0
105	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0
106	0	*	•	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0
107	0		• • • • •	1.85E+00	0.00E+00	. 0		•	1.85E+00	0.00E+00	ō
108	0			1.90F+00	0.00E+00	0			1.90F+00	0.00E+00	
100	0	*	• •	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	· · - 0
109				2 00 - 00	0.0000100	· 0	,		2 005 100	0.0000000	
110				2.00E+00	0.0000+00	0			2.002+00	0.00E+00	
111	0.0002	• -		total	4.72E-01	0.0002			total	4.72E-01	0.0002
112									-		
113											
114				Filename	fid460c				Filename	fid480c	
115		•						£ -			• • • • •
116	81			Itally 8	nns = 43369	000			Itally 8	ans = 42274	992
117	height dict-	ibution	uni	tally to	ne 8 nulco	height diet-	ibution		tally to	ne 8 nulce	height diet
110	mergin uisti		ulli	. tally ty	pe o puise	neight uisti	ioution.	um	tany ty	pe o puise	neight uist
118				. tally to	¹ photons				tally fo	pnotons	.
119				·							ł
120				cell 2					cell 2		

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	EC	ED	EE	EF	EG	EH	EI	EJ	EK	EL	EM
121				energy					energy		
122	0		,	0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0
123	0.0002	-		5.00E-02	3.78E-01	0.0002			5.00E-02	3.81E-01	0.0002
124	0.0011	+		1.00E-01	1.80E-02	0.0011			1.00E-01	1.73E-02	0.0012
125	0.0011			1.50E-01	1.94E-02	0.0011		'	1.50E-01	1.85E-02	0.0011
126	0.001	-		2.00E-01	1.96E-02	0.0011			2.00E-01	1.86E-02	0.0011
127	0.0014		•	2.50E-01	1.12E-02	0.0014			2.50E-01	1.06E-02	0.0015
128	0.0017			3.00E-01	1.05E-02	0.0015		1	3.00E-01	9.80E-03	0.0015
120	0.0032	•		3 50F-01	2 31E-03	0.0032		4	3.50E-01	4.63E-03	0.0023
130	0.0039			4.00E-01	1 60E-03	0.0038		1	4.00E-01	1.63E-03	0.0038
131	0.001			4.50E-01	2.67E-03	0.0029		1	4.50E-01	1.46E-03	0.004
132	0.001		•	5 00E-01	1.80F-02	0.0011			5.00E-01	1.79E-02	0.0011
133	0		-	5 50E-01	0.00E+00	0	-		5.50E-01	0.00E+00	0
134	0		4	6.00E-01	0.00E+00	0		4	6.00E-01	0.00E+00	0
135	0		•	6 50E-01	0.00E+00	0		•	6 50E-01	0.00E+00	0
135	0		-	7.00E-01	0.00E+00	0		· _ = 0	7.00E-01	0.00E+00	- 0
130	0			7.50E-01	0.00E+00	0		4	7 50E-01	0.00E+00	0
137	0			8.00E-01	0.00E+00	0			8 00F-01	0.00E+00	0
120	0			8 50E-01	0.00E+00	0			8 50E-01	0.00E+00	0
139	0		*	0.00E 01	0.000000	0		•	0.00E-01	0.00E+00	- 0
140	0		-	9.00E-01	0.000+00	0			9.00L-01	0.00E+00	
141	0			1.005+00	0.001.00	0		:	1.00E+00	0.00E+00	0
142	0			1.002+00	0.00E+00	0			1.00E+00	0.00L+00	0
143	0			1.105+00	0.000000	0		• •	1.105+00	0.000000	0
144	0		4	1.100+00	0.00E+00	0		+ -	1.10E+00	0.000+00	
145	0		- +	1.15E+00	0.00E+00	0		4 -	1.13E+00	0.000000	
140	0			1.202+00	0.000000	0		•	1.202+00	0.000000	0
14/	0			1.23E+00	0.00E+00	0		+	1.25E+00	0.00E+00	0
148	0			1.30E+00	0.00E+00	0	-	3	1.302+00	0.000000	0
149	0		1	1.35E+00	0.00E+00	0		+	1.35E+00	0.00E+00	0
150	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0
151	0			1.45E+00	0.00E+00	0	-		1.45E+00	0.00E+00	
152	0			1.50E+00	0.00E+00	0	-	+	1.50E+00	0.00E+00	0
153		· · · ·	-+	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0
154	0			1.60E+00	0.00E+00	0		+	1.60E+00	0.00E+00	0
155	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0
156	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0
157	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0
158	0			1.80E+00	0.00E+00	0	-	+	1.80E+00	0.00E+00	0
159	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0
160	0			1.90E+00	0.00E+00	0		-	1.90E+00	0.00E+00	0
161	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0
162	0		+	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0
163	0.0002		+	total	4.81E-01	0.0002		1	total	4.81E-01	0.0002
164										+ +	
165	_	-						4	+		
166				Filename	fid460d			4	Filename	fid480d	
167				1							
168	77	1		Itally 8 n	ps = 440950)84			Itally 8 r	ps = 441873	332
169	height distril	bution.	uni	tally typ	e 8 pulse	height distri	bution.	un	i tally typ	be 8 pulse	height dist
170				tally for	photons				tally for	photons	
171											
172				cell 2					cell 2		
173				energy		-			energy		
174	0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0
175	0.0002			5.00E-02	3.80E-01	0.0002		-	5.00E-02	3.83E-01	0.0002
176	0.0011			1.00E-01	1.84E-02	0.0011		-	1.00E-01	1.77E-02	0.0011
177	0.001			1.50E-01	1.95E-02	0.0011		1	1.50E-01	1.86E-02	0.0011
178	0.001			2.00E-01	1.96E-02	0.0011		1	2.00E-01	1.86E-02	0.0011
179	0.0013			2.50E-01	1.16E-02	0.0014			2.50E-01	1.09E-02	0.0014
180	0.0016			3.00E-01	1.12E-02	0.0014			3.00E-01	1.05E-02	0.0015

Worksheet "MCI	VP Data p=1.5	" of Workbook	"MCNP	Volume Seneca.xls"
----------------	---------------	---------------	-------	--------------------

гт	FC	FD	FF	FF	EG	FH 1	FI	FI	EK	FI	EM
181	0.0032			3.50E-01	2.31E-03	0.0031			3.50E-01	4.89E-03	0.0021
182	0.0039			4.00E-01	1.55E-03	0.0038			4.00E-01	1.61E-03	0.0037
183	0.001			4.50E-01	2.77E-03	0.0029			4.50E-01	1.43E-03	0.004
184	0			5.00E-01	1.98E-02	0.0011			5.00E-01	1.96E-02	0.0011
185	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0
186	0			6.00E-01	0.00E+00	0		,	6.00E-01	0.00E+00	0
187	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0
188	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0
189	0			7.50E-01	0.00E+00	0	-		7.50E-01	0.00E+00	0
190	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0
191	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0
192	. 0			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0
193	0		•	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0
194	0		•	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0
195	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0
196	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0
197	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0
198	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0
199	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0
200	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0
201	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0
202	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0
203	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0
204	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0
205	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0
206	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0
207	0			1.65E+00	0.00E+00	0	5		1.65E+00	0.00E+00	0
208	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0
209	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0
210	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0
211	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0
212	0	_		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0
213	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0
214	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0
215	0.0002			total	4.87E-01	0.0002			total	4.87E-01	0.0002

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	EN	EO	EP	EQ	ER	ES	ET	EU	EV
1									
2									
3									
4									
5									
6								1 .	
7								1 .	
8	_	+			1			+	
9			"Ettersone	+e.1500.	,			+ - ;	
10		- +	Fliename	10300a					
11		-1	Itally 8	nns = 423599	16		· _	+	
12	bution		uni tally ty	vpe 8 pulse h	eight distr	ibution.	un	its number	-
14	l'unon.		tally fo	or photons	B				
15	1			P			•	4 •	
16		-	cell 2				-		
17	1		energy						
18	1		0.00E+0	0 0.00E+00	0				1
19	1		5.00E-0	2 3.66E-01	0.0002				
20		1	1.00E-0	1, 1.54E-02	0.0012			1	
21			1.50E-0	1 1.73E-02	0.0012			*	
22			2.00E-0	1 1.68E-02	0.0012		4	-+	
23		+	2.50E-0	1 9.12E-03	0.0016				
24			3.00E-0	1 7.05E-03	0.0018				
25		-	3.50E-0	1. 5.61E-03	0.002			+	
26			4.00E-0	1 1.54E-03	0.0039			-+	
21			4.30E-0	1 1.10E-03	0.0043			+	
20			5.50E-0	1 5 10E-06	0.068			÷ • •	
30			6.00E-0	1 0.00E+00	- 0.000				
31			6.50E-0	1 0.00E+00	0	,			
32			7.00E-0	1 0.00E+00	0			+	
33			7.50E-0	1, 0.00E+00	0				
34		-,	8.00E-0	1 0.00E+00	0		-1	-}	
35		_	8.50E-0	1 0.00E+00	0		·		
36			9.00E-0	1 0.00E+00	0				
37			9.50E-0	1_0.00E+00	0		-		
38		+	1.00E+0	0 0.00E+00	0			+	
39			1.05E+0	0 0.00E+00	0				
40		+:	1.10E+0	0 0.00E+00	0				
41		-4	1.15E+0	0 0.00E+00	0				
42			1.20E+0	0 0.00E+00	0			1 -	
43			1.20E+0	0.00E+00	- 0	1	•	9 — H	-
45		-+	1.35E+0	0 0.00E+00	0				_
46			1.40E+0	0 0.00E+00	0		•	+	
47		+	1.45E+0	0 0.00E+00	0	•	5 mm	-+	
48			1.50E+0	0 0.00E+00	0	ŧ		· · · · · · · · · · · · · · · · · · ·	
49			1.55E+0	0 0.00E+00	0			1	
50			1.60E+0	0 0.00E+00	0			1	
51			1.65E+0	0 0.00E+00	0		1		
52			1.70E+0	0 0.00E+00	0			-	
53			1.75E+0	0 0.00E+00	0				
54		-	1.80E+0	0 0.00E+00	0				
55			1.85E+0	0 0.00E+00	0		,		
56			- 1.90E+0	0 0.00E+00	0			1	
57			1.95E+0	0 0.00E+00	0		÷	a —	_
58			2.00E+0	0 0.00E+00	0 0000	1		+	
59	-		totai	4.52E-01	0.0002		4		
100	1								

Worksheet "MCNP Data	p=1.5" of Workbook	"MCNP Volume	Seneca.xls"
----------------------	--------------------	--------------	-------------

	EN	EO	EP	EQ	ER	ES	ET	EU	EV
61									
62			Filename	fid500b					
63	·· _:			• -				··· · · - ·	
64		-	Itally 8 t	ns = 42864	480				
65	bution	uni	tally ty	ne 8 nulse	height distri	ibution	unit	number	
05		um	tally for	n nhotons	neight distri	ibution.	unit	·	· · ·
00			tany io	photons				,	1
6/									
68			cell 2						
69			energy	0.005.00					
70			0.00E+00	0.00E+00	0				1
71			5.00E-02	3.79E-01	0.0002				
72			1.00E-01	1.62E-02	0.0012				
73			1.50E-01	1.76E-02	0.0011				
74			2.00E-01	1.75E-02	0.0011				
75			2.50E-01	9.82E-03	0.0015				
76			3.00E-01	8.00E-03	0.0017				
77			3.50E-01	6.48E-03	0.0019				
78			4.00E-01	1.65E-03	0.0038				
79			4.50E-01	1.20E-03	0.0044				
80			5.00E-01	1.51E-02	0.0012				
81			5.50E-01	5.83E-06	0.0632				
82	· ·		6.00E-01	0.00E+00	. 0				
83			6 50E-01	0.00E+00	. 0				
84			7.00F-01	0.00E+00	0				
85			7.50E-01	0.00E+00	. 0		•	-	
0.5				0.001.00					· ··
07			8.00E-01	0.000000	. 0				
07			0.00E-01	0.0000.000	. 0.				
00			9.00E-01	0.000+00	. 0			-	
89			9.50E-01	0.000	. 0				
90			- 1.00E+00	0.00E+00	. 0				
91			1.05E+00	0.00E+00	. 0				
92			- 1.10E+00	0.000000	. 0				
93			1.15E+00	0.00E+00	. 0				
94			1.20E+00	0.00E+00	. 0				
95			1.25E+00	0.00E+00	0				
96			1.30E+00	0.00E+00	0				
97			1.35E+00	0.00E+00	. 0				
98			1.40E+00	0.00E+00	. 0				
99			1.45E+00	0.00E+00	0				
100			1.50E+00	0.00E+00	. 0				
101			1.55E+00	0.00E+00	. 0				
102			1.60E+00	0.00E+00	0				
103			1.65E+00	0.00E+00	. 0				
104			1.70E+00	0.00E+00	0		•		
105			1.75E+00	0.00E+00	0		•		
106			1.80E+00	0.00E+00	. 0				
107			1.85E+00	0.00E+00	. 0			-	·
108			1.90E+00	0.00E+00	0		. ,		
109			1.95E+00	0.00E+00	. 0			-	
110			2.00E+00	0.00E+00	. 0				
111	· -		total	4.72E-01	0,0002				
112	·				,				
113					• • •				
114			Filename	fid 500c					
114		-	, nename						
115			Itally 9	ans = A2Aco	400				
110	hution	·	tally o l	1ps - 42428	height dist-	bution		e number	-
11/	button.	un	tally (y)	ne o puise	neight distr	ioution.	unit	s number	
118			. tany to	photons					
119									
120			cell 2						

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	EN	EO	EP	EQ	ER	ES	ET	EU	EV
121			energy						
122			0.00E+00	0.00E+00	0				
123			5.00E-02	3.84E-01	0.0002				
124			1.00E-01	1.67E-02	0.0012				
125			1.50E-01	1.77E-02	0.0011				
126			2.00E-01	1.77E-02	0.0011				
127			2.50E-01	1.02E-02	0.0015				
128			3.00F-01	8.68E-03	0.0016				
120			3 50E-01	7 08F-03	0.0018				
130			4.00E-01	1.69E-03	0.0010				
130			4.00E-01	1 18E-03	0.0044		. ,		
132			5.00E-01	1.70E-02	0.0012				
132			5.00E-01	6.67E-06	0.0587				
133			. 5.50E-01	0.002+00	0.0507				·
134			6 50E-01	0.00E+00	0				
135			7.00E-01	0.00E+00	0				
130			7.00E-01	0.0000+00	0				
137			8.00E-01	0.0000000	0				
120			8.00E-01	0.00L+00	0				
139			0.00E-01	0.0000+00	0				
140			9.000-01	0.0000+00	0				
141			9.50E-01	0.000000	V.				
142			1.00E+00	0.0000+00	0				
143	-		1.05E+00	0.00E+00	0				
144			1.10E+00	0.00E+00	. 0				
145			1.15E+00	0.00E+00	0				
140		-	1.20E+00	0.00E+00	0				
14/	-		1.25E+00	0.0000+00	0				·
148			1.30E+00	0.00E+00	0				
149			1.35E+00	0.002+00	0				
150			1.40E+00	0.00E+00	0				
151			1.45E+00	0.00E+00	0				
152			1.50E+00	0.00E+00	0				
153			1.55E+00	0.00E+00	0				
154			1.60E+00	0.00E+00	0				
155			1.65E+00	0.00E+00	0				
156			I.70E+00	0.00E+00	0				
157			1.75E+00	0.00E+00	0				
158			1.80E+00	0.00E+00	0				
159			1.85E+00	0.00E+00	0				
160			1.90E+00	0.00E+00	0				
161			1.95E+00	0.00E+00	0				
162			2.00E+00	0.00E+00	0				
163			total	4.81E-01	0.0002				
164									
165			·						.
166			Filename	fid500d					
167			• • • •						
168			Itally 8 r	ps = 44107	757				
169	bution.	uni	tally typ	be 8 pulse	height distri	ibution.	uni	ts number	
170	-		tally for	photons					
171			-						
172			cell 2						
173	-		energy						
174	_		0.00E+00	0.00E+00	0		·		
175			5.00E-02	3.86E-01	0.0002				
176			1.00E-01	1.70E-02	0.0011				
177			1.50E-01	1.77E-02	0.0011				
178			2.00E-01	1.77E-02	0.0011				
179			2.50E-01	1.05E-02	0.0015				
180			3.00E-01	9.22E-03	0.0016				

Worksheet "MCNP Data p=1.5" of Workbook "MCNP Volume Seneca.xls"

	EN	EO	EP	EQ	ER	ES	ET	EU	EV
181			3.50E-01	7.60E-03	0.0017				
182	_		4.00E-01	1.71E-03	0.0036			•	
183			4.50E-01	1.13E-03	0.0045			-	
184	-		5.00E-01	1.85E-02	0.0011			•	·
185			5.50E-01	6.85E-06	0.0575				
186			6.00E-01	0.00E+00	0				
187			6.50E-01	0.00E+00	0				·
188			7.00E-01	0.00E+00	. 0				
189	-		7.50E-01	0.00E+00	. 0				
190	-		8.00E-01	0.00E+00	0				
191			8.50E-01	0.00E+00	0				
192	-	•	9.00E-01	0.00E+00	0				
193			9.50E-01	0.00E+00	. 0				1
194			1.00E+00	0.00E+00	0			•	
195			1.05E+00	0.00E+00	0			•	
196			1.10E+00	0.00E+00	0				
197			1.15E+00	0.00E+00	0				
198			1.20E+00	0.00E+00	0				
199			1.25E+00	0.00E+00	0				
200			1.30E+00	0.00E+00	0				·
201			1.35E+00	0.00E+00	0				
202			1.40E+00	0.00E+00	. 0				
203			1.45E+00	0.00E+00	0				
204			1.50E+00	0.00E+00	0				
205			1.55E+00	0.00E+00	0				
206			1.60E+00	0.00E+00	. 0				
207			1.65E+00	0.00E+00	0		*		
208			1.70E+00	0.00E+00	0			•	
209	-		1.75E+00	0.00E+00	0				
210			1.80E+00	0.00E+00	. 0				
211			1.85E+00	0.00E+00	. 0		*		
212			1.90E+00	0.00E+00	0		•		
213	-		1.95E+00	0.00E+00	. 0				
214		•	2.00E+00	0.00E+00	0			-	
215	-		total	4.87E-01	0.0002				

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

-	ABCD	T	E F	G	HII	J	K
1	This is the MCNP data for the Seneca Army	Depot vo	lume contamination	study.			
2	The goal is to determine the affect that volum	ne contan	nination would have	on the FIDLER	istrument used for	gamma spect	roscopy.
3	Filenames use the following format:	fid	energy (keV)	depth		Buinter	comp).
4	where denth is indicated by: 1	a = 1 cr	$n \cdot 2$ $h = 0.5 \text{ cm} \cdot 3$	$= 0.25 \text{ cm} \cdot 4)$	d = 0.1 cm		
5	as an example fid100c is the l	00 keVs	ource that is 0.25 cm	thick			
6	An air shield exists between the source and d	letector th	at is 0.265 cm (0.1 i)	nch) thick and	should not effect the	e results	
7	All runs were completed in 60 minutes of ru	n time	at 15 0.205 off (0.1 1	non) unon uno i	incure not entert in		
10	These run are with the 2 35 g/cc density	i time.		1.			
0	These run are with the 2.55 gree density.	4		•			
10	Filename Ifid10a	1	Filename	fid20a	~*	*	Filename
11		1		+		+	
12	1 tally 8 nns = 54135083	ŧ	Itally 8	nps = 4681106	4		Itally 8
13	tally type 8 pulse height distribution		un tally ty	me 8 pulse he	ight distribution	unit	tally ty
14	tally for photons		tally fo	or photons	ight distribution	-	tally fo
15	tury for protons		carry r			· · -	
16	cell 2		cell 2				cell 2
17	energy		energy				energy
18	0.00E+00 0.00E+00 0		0.00E+(0 0.00E+00	0		0.00E+00
19	5.00E-02 1.93E-03 0.0031		5.00E-0	2 3.58E-02	0.0008		5.00E-02
20	1.00E-01 0.00E+00 0	•	1.00E-0	01 0.00E+00	0		1.00E-01
21	1.50E-01 0.00E+00 0		1.50E-(01 0.00E+00	0		1.50E-01
22	2.00E-01 0.00E+00 0	•	2.00E-0	01 0.00E+00	0		2.00E-01
23	2.50E-01 0.00E+00 0		2.50E-0	01 0.00E+00	0	•	2.50E-01
24	3.00E-01 0.00E+00 0	1	3.00E-0	01 0.00E+00	0	+	3.00E-01
25	3.50E-01 0.00E+00 0		3.50E-0	0.00E+00	0		3.50E-01
26	4.00E-01 0.00E+00 0		4.00E-0	01 0.00E+00	0		4.00E-01
27	4.50E-01 0.00E+00 0	+	4.50E-0	0.00E+00	0		4.50E-01
28	5.00E-01 0.00E+00 0		5.00E-0	01 0.00E+00	0		5.00E-01
29	5.50E-01 0.00E+00 0		5.50E-0	01 0.00E+00	0	+	5.50E-01
30	6.00E-01 0.00E+00 0		6.00E-0	01 0.00E+00	0	-	6.00E-01
31	6.50E-01 0.00E+00 0		6.50E-0	01 0.00E+00	Ō		6.50E-01
32	7.00E-01 0.00E+00 0		7.00E-0	0.00E+00	0		7.00E-01
33	7.50E-01 0.00E+00 0	*	7.50E-0	0.00E+00	0		7.50E-01
34	8.00E-01 0.00E+00 0	٠	8.00E-0	01 0.00E+00	0		8.00E-01
35	8.50E-01 0.00E+00 0	;	8.50E-0	$0.00E+00^+$	0		8.50E-01
36	9.00E-01 0.00E+00 0	•	9.00E-0	01 0.00E+00	0		9.00E-01
37	9.50E-01, 0.00E+00 0		9.50E-0	01 0.00E+00	01		9.50E-01
38	1.00E+00 0.00E+00 0	,	1.00E+0	00 0.00E+00	0		1.00E+00
39	1.05E+00 0.00E+00 0		1.05E+0	0.00E+00	0		1.05E+00
40	1.10E+00 0.00E+00 0	-	1.10E+0	00 0.00E+00	0		1.10E+00
41	1.15E+00 0.00E+00 0		1.15E+(00 0.00E+00	0		1.15E+00
42	1.20E+00 0.00E+00 0		1.20E+0	00 0.00E+00	0	-	1.20E+00
43	1.25E+00. 0.00E+00 0		1.25E+(00 0.00E+00	0		1.25E+00
44	1.30E+00 0.00E+00 0		1.30E+(00 0.00E+00	0		1.30E+00
45	1.35E+00 0.00E+00 0		1.35E+(00 0.00E+00	0		1.35E+00
46	1.40E+00 0.00E+00 0		1.40E+0	0.00E+00	0	1.	1.40E+00
47	1.45E+00 0.00E+00 0	-	1.45E+(0.00E+00	0		1.45E+00
48	1.50E+00 0.00E+00 0	4.	1.50E+0	0.00E+00	0		1.50E+00
49	1.55E+00 0.00E+00 0	+	1.55E+(00 0.00E+00	0		1.55E+00
50	1.60E+00 0.00E+00 0		1.60E+0	00 0.00E+00	0		1.60E+00
51	1.65E+00 0.00E+00 0		1.65E+(00 0.00E+00	0	1	1.65E+00
52	1.70E+00 0.00E+00 0'	4	1.70E+0	0.00E+00	0		1.70E+00
53	1.75E+00 0.00E+00 0		1.75E+0	0.00E+00	0		1.75E+00
54	1.80E+00 0.00E+00 0		1.80E+0	00 0.00E+00	0		1.80E+00
55	1.85E+00 0.00E+00 0		1.85E+0	00 0.00E+00	0	11	1.85E+00
56	1.90E+00 0.00E+00 0		1.90E+0	00 0.00E+00	0		1.90E+00
57	1.95E+00 0.00E+00 0		1.95E+0	00 0.00E+00	0		1.95E+00
58	2.00E+00 0.00E+00 0		2.00E+0	00 0.00E+00	0		2.00E+00
59	total 1.93E-03 0.0031	,	total	3.58E-02	0.0008	+	total
1 60							

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	A	В	C	D	E	F	G	Н	I	J	K
61											
62	Filename	fid10b				Filename	tid20b				Filename
63		- 529612	21	- +	_	Itally 9 m	-1481868	1			Itally 8
65	tally tyr	ps = 550015	neight distril	oution	un	tally type	e^{8} nulse he	ight distrib	ution.	unit	tally ty
66	tally for	nhotons	ieiBitt distrit	1	-	tally for	photons	But brout to			tally fo
67		, priorono ,	- 1-	4 4-1			-+				
68	cell 2	1				cell 2					cell 2
69	energy	7				energy	1.1			-	energy
70	0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0			0.00E+00
71	5.00E-02	3.55E-03	0.0023			5.00E-02	6.45E-02	0.0006		-	5.00E-02
72	1.00E-01	0.00E+00	0			1.00E-01	0.00E+00	0	-		1.00E-01
73	1.50E-01	0.00E+00	0			1.50E-01	0.00E+00	0			1.50E-01
74	2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0	1		2.00E-01
75	2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0			2.50E-01
76	3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0		-	3.50E-01
70	3.50E-01	0.000000	0			3.50E-01	0.00E+00	0	1.0	-	4 00F-01
70	4.00E-01	0.00E+00	0	:		4.50E-01	0.00E+00:	0.	:		4.00E-01
80	4.30E-01	0.00E+00	0			5.00F-01	0.00E+00	0			5 00E-01
81	5.50E-01	0.00E+00	0	-		5 50E-01	0.00E+00	0			5.50E-01
82	6.00E-01	0.00E+00	0	- •		6.00E-01	0.00E+00	0			6.00E-01
83	6 50E-01	0.00E+00	- 0	+		6.50E-01	0.00E+00	0			6.50E-01
84	7.00E-01	0.00E+00	0	+		7.00E-01	0.00E+00	01			7.00E-01
85	7.50E-01	0.00E+00.	0.			7.50E-01	0.00E+00	0			7.50E-01
86	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	Ū,			8.00E-01
87	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	01			8.50E-01
88	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01
89	9.50E-01	0.00E+00	0:			9.50E-01	0.00E+00	0			9.50E-01
90	1.00E+00	0.00E+00	0	7		1.00E+00	0.00E+00	0			1.00E+00
91	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	Ō			1.05E+00
92	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00
93	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00
94	1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00
95	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00
96	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	1		1.30E+00
97	1.35E+00	0.00E+00	0	a. 7		1.35E+00	0.00E+00	0		_	1.35E+00
98	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00
99	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00
100	1.50E+00	0.00E+00	0	4 ·		1.50E+00	0.00E+00				1.50E+00
101	1.55E+00	0.00E+00	- 0			1.55E+00	0.00E+00	0			1.55E+00
102	1.60E+00	0.00E+00	- 0			1.60E+00	0.00E+00				1.60E+00
103	1.05E+00	0.00E+00	0			1.05E+00	0.002+00	- 0			1.05E+00
104	1.70E+00	0.000+00	0.	1		1.75E±00	0.00E+00	0			1.755+00
105	1.750+00	0.00E+00	- 0	-1		1.80F+00	0.00E+00	0			1.80F+00
100	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	- 0			1.85E+00
108	1.85E+00	0.00E+00	0			1.00E+00	0.00E+00				1.00E+00
100	1.95E+00	0.00E+00	- 0'			1.95E+00	0.00E+00	0			1.95E+00
110	2 00E+00	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00
111	total	3.55E-03	0.0023			total	6.45E-02	0.0006			total
112						-					
113						• • •					
114	Filename	fid10c				Filename	fid20c				Filename
115				+-	_						
116	Itally 8 1	nps = 527722	288	- t		Itally 8 n	ps = 4070949	5			Itally 8
117	tally typ	pe 8 pulse l	height distri	bution.	un	tally typ	e 8 pulse he	eight distrib	oution.	unit	tally ty
118	tally for	r photons				tally for	photons				tally fo
119											
120	cell 2					cell 2				_	cell 2

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	Δ	B	CT	DI	F	F	G	H	I	J	K
121	anaray	0	C	<u> </u>	L	energy					energy
121	energy	OF LOO	0.			0.005+00	0.005+00	0		1	0.00E+00
122	0.00E+00 0.0	JUE+00	0			0.00E+00	1.17E 01	0.0004	~		5 00E 02
123	5.00E-02 6.	92E-03	0.0016			5.00E-02	1.1/E-01	0.0004			1.00E-01
124	1.00E-01 0.0	00E+00	- 0			1.00E-01	0.00E+00	0		-	1.00E-01
125	1.50E-01 0.0)0E+00	0	- 4		1.50E-01	0.00E+00		-	+	1.50E-01
126	2.00E-01 0.0)0E+00	0			2.00E-01	0.00E+00	0			2.00E-01
127	2.50E-01 0.0	00E+00	0	,		2.50E-01	0.00E+00	0			2.50E-01
128	3.00E-01 0.0	00E+00	0	-+		3.00E-01	0.00E+00	0			3.00E-01
129	3.50E-01 0.0	00E+00	0			3.50E-01	0.00E+00	0		+	3.50E-01
130	4.00E-01 0.0	00E+00	0			4.00E-01	0.00E+00	0		+	4.00E-01
131	4.50E-01 0.0	00E+00	0			4.50E-01	0.00E+00	0			4.50E-01
132	5.00E-01 0.0	00E+00	0			5.00E-01	0.00E+00	0			5.00E-01
133	5.50E-01 0.0	00E+00	0			5.50E-01	0.00E+00	0			5.50E-01
134	6.00E-01 0.0	00E+00	0			6.00E-01	0.00E+00	0			6.00E-01
135	6.50E-01 0.0	00E+00	0			6.50E-01	0.00E+00	0			6.50E-01
136	7.00E-01 0.0	00E+00	0			7.00E-01	0.00E+00	0			7.00E-01
137	7.50E-01 0.0	00E+00	0	•		7.50E-01	0.00E+00	0			7.50E-01
138	8.00E-01 0.0	00E+00	0	4		8.00E-01	0.00E+00	0			8.00E-01
139	8 50E-01 0 0	00E+00	0			8.50E-01	0.00E+00	0	_	+	8.50E-01
140	9.00E-01 0.0	0E+00	0	•		9.00E-01	0.00E+00	0.		+	9.00E-01
141	9 50E-01 0.0	0E+00	0	1		9 50F-01	0.00E+00	0		+	9.50E-01
141	1.005+00 0.0	0E+00	0	-		1.00E+00	0.00E+00	0	-	1	1.00E+00
142	1.055+00 0.0	NET-00		4		1.05E+00	0.00E+00	0	-		1.05E+00
143	1.0500 0.0	00000	0	1		1 105+00	0.00E+00	0.1		1	1 10E+00
144	1.10E+00 0.0	DOE+00	0	•		1.155+00	0.00E+00				1.15E+00
145	1.15E+00 0.0	DOC+00	0			1.100	0.000000	0			1.20E+00
146	1.20E+00 0.0	JUE+00	0	1		1.200+00	0.00000	0			1.20E+00
147	1.25E+00 0.0	JOE+00	0			1.25E+00	0.000000	0			1.20E+00
148	1.30E+00 0.0	JOE+00	0			1.30E+00	0.00E+00	0			1.301+00
149	1.35E+00 0.0	00E+00	0			1.35E+00	0.00E+00	0		-	+ 1.35E+00
150	1.40E+00 0.0	00E+00	0	4		1.40E+00	0.00E+00	0			1.40E+00
151	1.45E+00 0.0	00E+00	0	- +		1.45E+00	0.00E+00	0			1.45E+00
152	1.50E+00_0.0	00E+00	0			1.50E+00	0.00E+00	0		1	1.50E+00
153	1.55E+00 0.0	00E+00	0			1.55E+00	0.00E+00	0	-		1.55E+00
154	1.60E+00 0.0	00E+00	0			1.60E+00	0.00E+00	0		1	1.60E+00
155	1.65E+00 0.0	00E+00	0			1.65E+00	0.00E+00	0_			1.65E+00
156	1.70E+00 0.0	00E+00	0			1.70E+00	0.00E+00	0	-		1.70E+00
157	1.75E+00 0.0	00E+00	0			1.75E+00	0.00E+00	0		***	1.75E+00
158	1.80E+00 0.0	00E+00	0			1.80E+00	0.00E+00	0;			1.80E+00
159	1.85E+00 0.0	00E+00	0			1.85E+00	0.00E+00	0		_	1.85E+00
160	1.90E+00 0.0	00E+00	0			1.90E+00	0.00E+00	0			1.90E+00
161	1.95E+00 0.0	00E+00	0	4		1.95E+00	0.00E+00	0			1.95E+00
162	2.00E+00 0.0	00E+00	0	4		2.00E+00	0.00E+00	0,			2.00E+00
163	total 6.	92E-03	0.0016			total	1.17E-01	0.0004			total
164		• -	1					ī	-	1	
165		4		4		•	•	- 1			
166	Filename fid	10d				Filename	fid20d			-	Filename
167	, inclusion of the second seco	:	- 4-	,		'				+	+
168	Itally 8 nns	= 514822	185	-†		Itally 8 n	ns = 358413	62			Itally 8
160	tally type 8	nulcal	height distri	hution		tally typ	e 8 nulse l	eight distrik	oution	uni	t tally ty
170	tally type o	puise	leight distri	oution.	un	tally for	nhotons	ieiBitt district			tally fo
170	tany for pi	lotons		4		tany ion	photons	4		-	turiy io
171						anll 2					cell 2
172	cell 2					cen z					energy
173	energy		-			energy	0.000.00				O OOF LOO
174	0.00E+00 0.0	00E+00	0			0.00E+00	0.00E+00	0			0.00E+00
175	5.00E-02 1.	89E-02	0.001			5.00E-02	2.18E-01	0.0003		T	5.00E-02
176	1.00E-01 0.0	00E+00	0	~*		1.00E-01	0.00E+00	0		17	1.00E-01
177	1.50E-01 0.0	00E+00	0			1.50E-01	0.00E+00	0		-+	1.50E-01
178	2.00E-01 0.0	00E+00	0			2.00E-01	0.00E+00	0			2.00E-01
179	2.50E-01 0.0	00E+00	0			2.50E-01	0.00E+00	0		1	2.50E-01
180	3.00E-01 0.0	00E+00	0			3.00E-01	0.00E+00	0'			3.00E-01

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	A	В	C	D	E	F	G	H	I	J	K
181	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0:			3.50E-01
182	4.00E-01	0.00E+00	0,		-	4.00E-01	0.00E+00	0			4.00E-01
183	4.50E-01	0.00E+00	0	, .	- •	4.50E-01	0.00E+00	0			4.50E-01
184	5.00E-01	0.00E+00	0.		-	5.00E-01	0.00E+00	0	1		5.00E-01
185	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01
186	6.00E-01	0.00E+00	0	+	-	6.00E-01	0.00E+00	0			6.00E-01
187	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01
188	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01
189	7.50E-01	0.00E+00	0		1	7.50E-01	0.00E+00	0			7.50E-01
190	8.00E-01	0.00E+00	0		•	8.00E-01	0.00E+00	0	-		8.00E-01
191	8.50E-01	0.00E+00	0	~ 1		8.50E-01	0.00E+00	0			8.50E-01
192	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01
193	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0			9.50E-01
194	1.00E+00	0.00E+00	0'	+		1.00E+00	0.00E+00	0			1.00E+00
195	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	-		1.05E+00
196	1.10E+00	0.00E+00	0		-	1.10E+00	0.00E+00	0.			1.10E+00
197	1.15E+00	0.00E+00	0	*		1.15E+00	0.00E+00	0	-		1.15E+00
198	1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	+		1.20E+00
199	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00
200	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	- 1		1.30E+00
201	1.35E+00	0.00E+00	0		-	1.35E+00	0.00E+00	0			1.35E+00
202	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00·	0			1.40E+00
203	1.45E+00	0.00E+00	0		- +	1.45E+00	0.00E+00	0			1.45E+00
204	1.50E+00	0.00E+00	0	i	·	1.50E+00	0.00E+00	0		()	1.50E+00
205	1.55E+00	0.00E+00	0		1	1.55E+00	0.00E+00	0			1.55E+00
206	1.60E+00	0.00E+00	0.		4	1.60E+00	0.00E+00	0			1.60E+00
207	1.65E+00	0.00E+00	0,	and the set of the set		1.65E+00	0.00E+00	0	1		1.65E+00
208	1.70E+00	0.00E+00	0	- 4		1.70E+00	0.00E+00	0			1.70E+00
209	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0	1		1.75E+00
210	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00
211	1.85E+00	0.00E+00	0	+-		1.85E+00	0.00E+00	0			1.85E+00
212	1.90E+00	0.00E+00	0	ł		1.90E+00	0.00E+00	0			1.90E+00
213	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0		-	1.95E+00
214	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00
215	total	1.89E-02	0.001		total		2.18E-01	0.0003			total

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	L	M	N	0	Р	Q	R	S	Т	U	V
1											
2											
3		-8			1 -	*	4				
4	a de la companya de la compa	8	4				,				
5	- •	-					8				
6	a aka	,				•		-+			
7		4	*		*		+				+
8	-						1				1
9					•	,	-+			+	
10	fid30a	4	-		Filename	fid40a	+			Filename	fid50a
11	r	+	-				1			1.	
12	$p_s = 3629761$	15			Itally 8	nps = 25651	719 - +			Itally 8	nps = 2202
13	e 8 pulse h	eight distril	bution.	uni	tally ty	pe 8 pulse	height distri	bution.	un	tally ty	pe 8 pulse
14	photons	0			tally fo	r photons				tally fo	or photons
15			'				-1				
16	-				cell 2					cell 2	
17					energy					energy	
18	0.00E+00	0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
19	1.20E-01	0.0004	1		5.00E-02	2.21E-01	0.0004	-		5.00E-02	2 2.99E-01
20	0.00E+00	0			1.00E-01	0.00E+00	0			1.00E-01	1.91E-04
21	0.00E+00	0			1.50E-01	0.00E+00	0			1.50E-01	0.00E+00
22	0.00E+00	0			2.00E-01	0.00E+00	0			2.00E-01	0.00E+00
23	0.00E+00	0.	4		2.50E-01	0.00E+00	0			2.50E-01	0.00E+00
24	0.00E+00	01			3.00E-01	0.00E+00	0			3.00E-0	0.00E+00
25	0.00E+00	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
26	0.00E+00	0			4.00E-01	0.00E+00	01			4.00E-01	0.00E+00
27	0.00E+00	0			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00
28	0.00E+00	0		8°-8	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00
29	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-0	0.00E+00
30	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-0	0.00E+00
31	0.00E+00	0			6.50E-01	0.00E+00	0	4		6.50E-0	0.00E+00
32	0.00E+00	0			7.00E-01	0.00E+00	0	-		7.00E-0	0.00E+00
33	0.00E+00	0			7.50E-01	0.00E+00	0	+		7.50E-0	0.00E+00
34	0.00E+00	0			8.00E-01	0.00E+00	0	•		8.00E-0	0.00E+00
35	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-0	0.00E+00
36	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-0	0.00E+00
37	0.00E+00	0			9.50E-01	0.00E+00	0		N	9.50E-0	0.00E+00
38	0.00E+00	0			1.00E+00	0.00E+00	0	-		1.00E+00	0 0.00E+00
39	0.00E+00	0	~-4		1.05E+00	0.00E+00	0			1.05E+0	0 0.00E+00
40	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+0	0 0.00E+00
41	0.00E+00	- 0			1.15E+00	0.00E+00		-		1.15E+0	0 0.00E+00
42	0.00E+00	0			1.20E+00	0.00E+00	0	-		1.20E+0	0 0.00E+00
43	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+0	0 0.00E+00
44	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+0	0 0.00E+00
45	0.00E+00	0	+		1.35E+00	0.00E+00	0,			1.35E+0	0 0.00E+00
46	0.00E+00	0	+		1.40E+00	0.00E+00	0			1.40E+0	0 0.00E+00
47	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+0	0 0.00E+00
48	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+0	0 0.00E+00
49	0.00E+00	0			+ 1.55E+00	0.00E+00	-0			1.55E+0	0.00E+00
50	0.00F+00	0	- •		1.60E+00	0.00E+00	0			1.60E+0	0 0.00E+00
51	0.00E+00	0			+ 1.65E+00	0,00E+00	01			1.65E+0	0 0.00E+00
52	0.00E+00	0	1		1.70E+00	0.00E+00	0			1.70E+0	0 0.00E+00
53	0.00E+00	0			1.75E+00	0.00E+00	0			+ 1.75E+0	0 0.00E+00
54	0.00F+00	0 ⁺	1		1.80E+00	0.00E+00	0	!		1.80E+0	0 0.00E+00
55	0.00E+00	- 0	-		1.85E+00	0.00E+00	0			1.85E+0	0 0.00E+00
56	0.00E+00	- 0			1.90E+00	0.00E+00	0			1.90E+0	0 0.00E+00
57	0.00E+00	0		-	1.95E+00	0.00E+00	0			1.95E+0	0 0.00E+00
59	0.00E+00	0			2 00E+00	0.00E+00	0			2.00E+0	0 0.00E+00
50	1 20F-01	0.0004	-		total	2.21E-01	0.0004	-4		total	2.99E-01
60	+	0.0004 +-					0.0004		-		
100											

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Senec	a.xls"
---	--------

	L	М	N	0	Р	Q	R	S	Т	U	V
61								_	D.		
62	fid30b			a data analaria arabitat	Filename	fid40b	_			Filename	fid50b
63											
64	ps = 341429	905	. 1		Itally 8	nps = 24065	109		1	Itally 8	nps = 2178
65	e 8 pulse	height distr	ribution.	uni	tally typ	pe 8 pulse	height distr	ibution.	un	tally ty	pe 8 pulse
66	photons				tally for	r photons				tally fo	r photons
67			1				t		+		
68					cell 2		_		4	cell 2	
69					energy				1	energy	1
70	0.00E+00	. 0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
71	1.90E-01	0.0004	1		5.00E-02	2.99E-01	0.0003		1	5.00E-02	3.66E-01
72	0.00E+00	0	+ • - •		1.00E-01	0.00E+00	0			1.00E-01	2.63E-04
73	0.00E+00	0	+· ·		1.50E-01	0.00E+00	0		1	1.50E-01	0.00E+00
74	0.00E+00	0			2.00E-01	0.00E+00	0		-	2.00E-01	0.00E+00
75	0.00E+00	0	() · · · · ·		2.50E-01	0.00E+00	0			2.50E-01	0.00E+00
76	0.00E+00	0	É l		3.00E-01	0.00E+00	0		:	3.00E-01	0.00E+00
77	0.00E+00	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
78	0.00E+00	0			4.00E-01	0.00E+00	0		1	4.00E-01	0.00E+00
79	0.00E+00	0	i		4.50E-01	0.00E+00	0		-	4.50E-01	0.00E+00
80	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00
81	0.00E+00	0			5.50E-01	0.00E+00	07		1	5.50E-01	0.00E+00
82	0.00E+00	0			6.00E-01	0.00E+00	0		1	6.00E-01	0.00E+00
83	0.00E+00	0	†		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00
84	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
85	0.00E+00	0			7.50E-01	0.00E+00	0		1	7.50E-01	0.00E+00
86	0.00E+00	0			8.00E-01	0.00E+00	0		5	8.00E-01	0.00E+00
87	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00
88	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00
89	0.00E+00	0			9.50E-01	0.00E+00	0		1	9.50E-01	0.00E+00
90	0.00E+00	0			1.00E+00	0.00E+00	0		1	1.00E+00	0.00E+00
91	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
92	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
93	0.00E+00	0			1.15E+00	0.00E+00	0		1	1.15E+00	0.00E+00
94	0.00E+00	0	t- •		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
95	0.00E+00	0			1.25E+00	0.00E+00	0		1	1.25E+00	0.00E+00
96	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
97	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
98	0.00E+00	0			1.40E+00	0.00E+00	0		1	1.40E+00	0.00E+00
99	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
100	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
101	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
102	0.00E+00	0			1.60E+00	0.00E+00	0		1	1.60E+00	0.00E+00
103	0.00E+00	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
104	0.00E+00	0			1.70E+00	0.00E+00	0	-		1.70E+00	0.00E+00
105	0.00E+00	. 0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
106	0.00E+00.	0		_	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
107	0.00E+00	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
108	0.00E+00	0	I		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
109	0.00E+00	0			1.95E+00	0.00E+00	0		1	1.95E+00	0.00E+00
110	0.00E+00	0			2.00E+00	0.00E+00	0		1	2.00E+00	0.00E+00
111	1.90E-01	0.0004			total	2.99E-01	0.0003			total	3.67E-01
112					-						
113									1		
114	fid30c				Filename	fid40c				Filename	fid50c
115											1
116	ps = 313289	998			Itally 8	nps = 22565	602		1	Itally 8	nps = 2114
117	e 8 pulse	height distr	ribution.	uni	tally typ	pe 8 pulse	height distr	ibution.	un	tally ty	pe 8 pulse
118	photons	_			tally for	r photons	1			tally fo	r photons
119			I							·	
120					cell 2					cell 2	

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

<u> </u>	1 1	M	N	<u> </u>	D	0	R	S	T	U	V
121	L	IVI	14	0						energy	·
121	0.005.00	0			energy	0.005.00	0				0.005+00
122	0.00E+00	0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
123	2.70E-01	0.0003			5.00E-02	3.64E-01	0.0003			5.00E-02	4.14E-01
124	0.00E+00	0			1.00E-01	0.00E+00	0			1.00E-01	3.20E-04
125	0.00E+00	0			1.50E-01	0.00E+00	0			1.50E-01	0.00E+00
126	0.00E+00	0			2.00E-01	0.00E+00	0			2.00E-01	0.00E+00
127	0.00E+00	0			2.50E-01	0.00E+00	0			2.50E-01	0.00E+00
128	0.00E+00	0			3.00E-01	0.00E+00	0			3.00E-01	0.00E+00
120	0.00E+00	0			3 50F-01	0.00E+00	0			3.50E-01	0.00E+00
120	0.00E+00	0			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00
121	0.0000	0			4.50E-01	0.00E+00	ů.			4 50E-01	0.00F+00
131	0.00E+00	0			5.00E.01	0.002+00	0.			5.00E-01	0.005+00
132	0.00E+00	0			5.00E-01	0.002+00	0			5.50E-01	0.000 000
133	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01	0.000 000
134	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00
135	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00
136	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
137	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00
138	0.00E+00	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00
139	0.00E+00	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00
140	0.00E+00	0			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00
141	0.00E+00	0			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00
142	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00
1/12	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
143	0.000000	0			1.10E+00	0.00E+00	0			1 10E+00	0.00F+00
144	0.00E+00	0			1.16E+00	0.000 000	0			1.10E 00	0.00E+00
145	0.00E+00	0			1.15E+00	0.00E+00	0			1.150-00	0.000
146	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00	0.002+00
147	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00	0.002+00
148	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
149	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
150	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00
151	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
152	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
153	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
154	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00
155	0.00E+00	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
156	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
157	0.00000	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
157	0.002+00	0			1.752+00	0.0000	0			1.80E+00	0.00E+00
158	0.00E+00	0			1.802+00	0.00E+00	0			1.80E+00	0.00E+00
159	0.00E+00	0			1.65E+00	0.002+00	0			1.00E+00	0.000
160	0.00E+00	0			1.90E+00	0.00E+00	0			1.902+00	0.002+00
161	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
162	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00
163	2.70E-01	0.0003			total	3.64E-01	0.0003			total	4.14E-01
164											
165											
166	fid30d				Filename	fid40d		•		Filename	fid50d
167									*		
168	ps = 293818	52		*	Itally 8	nps = 21608	132			Itally 8	nps = 2104
169	e 8 nulse h	eight dist	ibution	uni	tally ty	, pe 8 pulse	height dist	ribution.	un	tally ty	pe 8 pulse
170	nhotons	eigni dien	ie attent		tally fo	r nhotons	0			tally fo	r photons
171	photons .					photono					Prototo
171					cell 2					cell 2	
1/2										energy	-
173	0.005.00	-			energy	0.005.00				o oor oo	0.005.00
174	0.00E+00	0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
175	3.60E-01	0.0002			5.00E-02	4.24E-01	0.0003			5.00E-02	4.52E-01
176	0.00E+00	0			1.00E-01	0.00E+00	0			1.00E-01	3.14E-04
177	0.00E+00	0			1.50E-01	0.00E+00	0			1.50E-01	0.00E+00
178	0.00E+00	0			2.00E-01	0.00E+00	0			2.00E-01	0.00E+00
179	0.00E+00	0			2.50E-01	0.00E+00	0	-		2.50E-01	0.00E+00
180	0.00E+00	0		•	3.00E-01	0.00E+00	0			3.00E-01	0.00E+00

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume 3	Seneca.xls"
---	-------------

	L	M	N	0	P	Q	R	S	T	U	V
181	0.00E+00	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
182	0.00E+00	0			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00
183	0.00E+00	0	-		4.50E-01	0.00E+00	0'			4.50E-01	0.00E+00
184	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00
185	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00
186	0.00E+00	0			6.00E-01	0.00E+00	0		1	6.00E-01	0.00E+00
187	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00
188	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
189	0.00E+00	0	-	-	7.50E-01	0.00E+00 ¹	0			7.50E-01	0.00E+00
190	0.00E+00	0	1		8.00E-01	0.00E+00	0			8.00E-01	0.00E+00
191	0.00E+00	0			8.50E-01	0.00E+00	0	and a state of the		8.50E-01	0.00E+00
192	0.00E+00	0	-		9.00E-01	0.00E+00	0		1	9.00E-01	0.00E+00
193	0.00E+00	0			9.50E-01	0.00E+00	0	-		9.50E-01	0.00E+00
194	0.00E+00	0			1.00E+00	0.00E+00	0	1		1.00E+00	0.00E+00
195	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
196	0.00E+00	0		4	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
197	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
198	0.00E+00	0			1.20E+00	0.00E+00	0,			1.20E+00	0.00E+00
199	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
200	0.00E+00	0			1.30E+00	0.00E+00	0	-		1.30E+00	0.00E+00
201	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
202	0.00E+00	0			1.40E+00	0.00E+00	0		4	1.40E+00	0.00E+00
203	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
204	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
205	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
206	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00
207	0.00E+00	0:			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
208	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
209	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
210	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
211	0.00E+00	0	_		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
212	0.00E+00	0			1.90E+00	0.00E+00	0	-		1.90E+00	0.00E+00
213	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
214	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00
215	3.60E-01	0.0002		-	total	4.24E-01	0.0003			total	4.52E-01

	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG
1											
2		+						1			
3											_
4		*			۰ ،						2
5	1								•		
6											
7											
8						*				1	
9											
10	-			Filename	fid60a				Filename	fid70a	
11	- 1	•	- 1								
12	03		1	Itally 8	nps = 202196	40			Itally 8 n	ps = 192777	74
13	height distribu	tion.	uni	tally typ	pe 8 pulse h	eight distri	ibution.	uni	tally typ	e 8 pulse h	leight dist
14				tally for	r photons				tally for	photons	
15		*									
16				cell 2					cell 2		
17				energy					energy		
18	0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0
19	0.0003	4	•	5.00E-02	7.34E-02	0.0008			5.00E-02	6.48E-02	0.0009
20	0.0154	-1	4	1.00E-01	2.78E-01	0.0004			1.00E-01	3.19E-01	0.0003
21	0	*		1.50E-01	0.00E+00	0		:	1.50E-01	0.00E+00	0
22	0			2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0
23	0.	+		2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0
24	0			3.00E-01	0.00E+00	0		1	3.00E-01	0.00E+00	0
25	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0
26	0.	- +		4.00E-01	0.00E+00	0		•	4.00E-01	0.00E+00	0
27	0'	-	,	4.50E-01	0.00E+00	0		•	4.50E-01	0.00E+00	0
28	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0
29	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0
30	0	1		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0
31	0			6.50E-01	0.00E+00	0		*	6.50E-01	0.00E+00	0
32	0:	i		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0
33	0			7.50E-01	0.00E+00	0	_		7.50E-01	0.00E+00	0
34	0		+	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00,	0
35	0	1		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0
36	0	*		9.00E-01	0.00E+00	0		+	9.00E-01	0.00E+00	0
37	0	- +	1	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0
38	0		- •	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0
39	Ō	-		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0
40	0		,	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0
41	0		4	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0
42	0	-*		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0
43	0	j.	1	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0
44	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0
45	0	+		1.35E+00	0.00E+00	0		-	1.35E+00	0.00E+00	Ō
46	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0
47	0	- 1		1.45E+00	0.00E+00	0	_		1.45E+00	0.00E+00	0
48	0	1		1.50E+00	0.00E+00	0	-	ł	1.50E+00	0.00E+00	0
49	0			1.55E+00	0.00E+00	0		-	1.55E+00	0.00E+00	0
50	0			1.60E+00	0.00E+00	0		1	1.60E+00	0.00E+00	0
51			1	1.65E+00	0.00E+00	0	-	•	1.65E+00	0.00E+00	0
52				1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0
53		-+		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0
54	0	-+	,	1.80E+00	0.00E+00	0	-	1	1.80E+00	0.00E+00	
55	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0
56	0	1		1.05E+00	0.00E+00	0	1		1.05E+00	0.00E+00	- 0
57	0			1.900+00	0.000-000	0		1	1.955+00	0.00E+00	
50	0			2 005+00	0.00E+00	0			2 005+00	0.00E+00	- 0
50	0.0003	~ 1		2.00E+00	3 51F-01	0 0003		3	total	3 84F-01	0.0002
60	0.0005	•		totai	5.512-01	0.0003			total	5.041.401	0.0003
00											

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG
61		t	41						-		
62		+		Filename	fid60b		annual in the same	Sec = 1980-108-8 area interaction and an area	Filename	fid70b	
63		·	+-	14-11-1 9			-		14-11- 0	200280	00
64	t 03		tally 8	nps = 206174	424 haight distrik	ution		tolly to	nps = 200289	vo	
66	neight disti	noution.	uni	tally ty	pe o puise	neight distrit	um	tally ty	r photons	leight dist	
67			•	tany io	, photons .				tany io	photons	
68	· · · ·			cell 2					cell 2		
69			Ť	energy	· · ·				energy		
70	0	h		0.00E+00	0.00E+00	0	-		0.00E+00	0.00E+00	0
71	0.0003		1	5.00E-02	8.07E-02	0.0007			5.00E-02	7.14E-02	0.0008
72	0.0132	r —	1	1.00E-01	3.25E-01	0.0003			1.00E-01	3.58E-01	0.0003
73	0		1	1.50E-01	0.00E+00	0	100		1.50E-01	0.00E+00	0
74	0			2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0
75	0		1	2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0
76	0			3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0
77	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	_ 0
78	0			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0
79	0			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0
80	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0
81	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0
82	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0
83	0		d	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0
84	0		<u>+</u>	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0
85	0		·	7.50E-01	0.00E+00	0.			7.50E-01	0.00E+00	
86	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0
8/	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	
88	0			9.00E-01	0.00E+00	0	-		9.00E-01	0.000000	0
09	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	
90	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0
92	0	1	<u> </u>	1 10E+00	0.00E+00	0			1 10E+00	0.00E+00	0
93	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0
94	0	t		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0
95	0	<u> </u>	1	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0
96	0	4		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0
97	0	··················	+	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0
98	0	f		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0
99	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0
100	0			1.50E+00	0.00E+00	0	-		1.50E+00	0.00E+00	0
101	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0
102	0	-	ni a te	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0
103	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0
104	0		+	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0
105	0	·	4	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0
106	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0
107	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0
108	0			1.90E+00	0.00E+00	- 0	_		1.90E+00	0.00E+00	0
109	0	·		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0
110	0.0003	·		2.00E+00	1.00E+00	0.0002			2.00E+00	1 20E 01	0.0002
111	0.0003			total	4.00E-01	0.0003	<u> </u>		iotai	4.29C-01	0.0003
112											
113		1		Filename	fid60c				Filename	fid70c	
114				rnename	indooc				rnename	nu/oc	
116	36			Itally 8	$l_{105} = 204970$	076			Itally 8	nns = 202107	76
117	height distr	ibution.	uni	tally ty	pe 8 nulse l	height distrib	oution	uni	tally ty	ne 8 nulse h	neight dist
118				tally for	photons	Bin distale			tally fo	photons	But oust
119				1 101	Fridadio	1				T	
120	· · · · · · · · · · · · · · · · · · ·	lesses a sector	de a contrate coloris a	cell 2	*				cell 2		
-	WI	x	Y Z	AA	AB	AC	AD	AE	AF	AG	
-----	--------------------	------	-------------	---------------------------------------	----------------	-------	------	------------	--------------	-------------	
121			energy					energy			
121	- 0-		Chergy	0 000000	0	-+		0.005+00	0.005+00	0	
122	0	- 45	0.0000	0 0.00E+00	0			0.00E+00	7.665.02	0.0000	
123	0.0003		5.00E-0	JZ 8.43E-02	0.0007	1		5.00E-02	7.55E-02	0.0008	
124	0.0122		1.00E-0	01 3.57E-01	0.0003			1.00E-01	3.80E-01	0.0003	
125	0,	-+	1.50E-0	0.00E+00	0			1.50E-01	0.00E+00	0	
126	0		2.00E-0	01 0.00E+00	0	4		2.00E-01	0.00E+00	0	
127	0		2.50E-0	01 0.00E+00	0			2.50E-01	0.00E+00	0	
128	0'		3.00E-0	01 0.00E+00	0	1		3.00E-01	0.00E+00	0	
129	0		3.50E-0	0.00E+00	0			3.50E-01	0.00E+00	0	
130	0		4.00E-0	01 0.00E+00	0			4.00E-01	0.00E+00	0	
131	0	•	4.50E-0	01 0.00E+00	0	-	-	4.50E-01	0.00E+00	0	
132	0	-+	5.00F-($1^{+}0.00E+00$	0	+	-	5 00E-01	0.00E+00	0	
122	- 0+	+	5.50E-(0.00E+00	0.	14		5 50E-01	0.00E+00	0	
124	0	-	- 5.50L-0	0.00E+00	0	+	-	6.00E-01	0.00E+00	0	
134	- 0	+	0.00E-0		0	-		6.50E 01	0.000100		
135	0		0.50E-0	0.00E+00	0			0.30E-01	0.00E+00	0	
136	0		7.00E-0	1 0.00E+00	0			7.00E-01	0.00E+00	0	
137	0		7.50E-0	0.00E+00	0			7.50E-01	0.00E+00	0	
138	0		8.00E-0	01: 0.00E+00	0	:		8.00E-01	0.00E+00	0	
139	01		8.50E-0	01 0.00E+00	0			8.50E-01	0.00E+00	0	
140	0		9.00E-0	01 0.00E+00	0			9.00E-01	0.00E+00	0	
141	0	-	9.50E-0	01 0.00E+00	0		-	9.50E-01	0.00E+00	0	
142	0'		1.00E+0	0 0.00E+00	0			1.00E+00	0.00E+00	0	
143	0		1.05E+(0. 0.00E+00	0	4		1.05E+00	0.00E+00	0	
144	0		1 10E+0	$00^{1} 0.00E+00^{1}$	0	- i		1.10E+00	0.00E+00	0	
145	0		1 15E+(0 0 00E+00	0	ŀ		115E+00	0.00E+00	- 0	
145	0		+ 1.20E+(0.00E+00	0	-1		1.205+00	0.00E+00	0	
140	0		1.200-1		0	1	-	1.201-00	0.000000		
147	0		1.25E+0	0.00E+00	0			1.25E+00	0.00E+00	0	
148	0.		1.30E+0	00 0.00E+00	0			1.30E+00	0.00E+00	- 0	
149	0		1.35E+(0, 0.00E+00	0			1.35E+00	0.00E+00	0	
150	0	+	1.40E+0	00: 0.00E+00	0			1.40E+00	0.00E+00	0	
151	0		1.45E+(00 0.00E+00	0	- 4		1.45E+00	0.00E+00	0	
152	0	-	1.50E+0	0 0.00E+00	0			1.50E+00	0.00E+00	0	
153	0		1.55E+(0 0.00E+00	0	+		1.55E+00	0.00E+00	0	
154	0		1.60E+(0 0.00E+00	0	-+		1.60E+00	0.00E+00	0	
155	0		1.65E+(0 0.00E+00	0			1.65E+00	0.00E+00	0	
156	0		1.70E+(0 0.00E+00	0	,		1.70E+00	0.00E+00	0	
157	0		1 75E+(0 00E+00	0	1		175E+00	0.00E+00	0	
150	0,	-	1.80E+0	0 0.00E+00	0	4		1.805+00	0.00E+00	0	
150	0		1.001-1	0 0.000000	0.	le le	-	1.802-00	0.000000		
159	0 -	-	1.03E+0	0 0.00E+00	0	-		1.000000	0.000000		
160		1	1.90E+0	00 0.00E+00	0	-+		1.90E+00	0.00E+00	0	
161	0	-+	1.95E+0	00 0.00E+00	0			1.95E+00	0.00E+00	0	
162	0		2.00E+0	00 0.00E+00	0		_	2.00E+00	0.00E+00	0	
163	0.0003		total	4.41E-01	0.0002			total	4.56E-01	0.0002	
164											
165		1	-1		*	T					
166			Filename	fid60d		4	_	Filename	fid70d		
167	-1		4-			+					
168	43	-+	Itally 8	nns = 208329		-		Itally 8 r	nns = 208034	508	
169	height distributio		uni tally t	vne 8 pulse l	height distrib	ution	uni	tally tyr	e 8 nulse	height dist	
170	asigne distributio	-	tally	for photons		auon.	ulli	tally for	nhotone	Bin dist	
170			tally	ior photons		-		tany ioi	photons		
171				4							
172			cell 2					cell 2			
173			energy			-14		energy			
174	0		0.00E+0	00 0.00E+00	0			0.00E+00	0.00E+00	0	
175	0.0002		5.00E-0	02 8.69E-02	0.0007	1		5.00E-02	7.94E-02	0.0007	
176	0.0123		1.00E-0	01 3.80E-01	0.0003	-		1.00E-01	3.95E-01	0.0003	
177	0+-		1.50E-0	01 0.00E+00	0	•		1.50E-01	0.00E+00	Ō	
178	0	+	2.00E-0	0.00E+00	0			2.00E-01	0.00E+00	0	
179	0		2.50E-0	0.00E+00	0			2,50E-01	0.00E+00	0	
180	0		3.00F-0	0.00000000000000000000000000000000000	0			3.00E-01	0.00E+00	0	

Worksheet "MCNP Data	p=2.35" of Workbook	"MCNP Volume	Seneca.xls"
----------------------	---------------------	--------------	-------------

T	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG
181	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0
182	0	-		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0
183	0		+ -	4.50E-01	0.00E+00	0		1	4.50E-01	0.00E+00	0
184	0		**	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0
185	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0
186	0			6.00E-01	0.00E+00	0	and an interesting		6.00E-01	0.00E+00	0
187	0	-	1	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0
188	01		t	7.00E-01	0.00E+00	0		-	7.00E-01	0.00E+00	0
189	01			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0
190	0			8.00E-01	0.00E+00	0		_	8.00E-01	0.00E+00	0
191	0		1	8.50E-01	0.00E+00	0		1	8.50E-01	0.00E+00	0
192	0		•	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0
193	0			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0
194	0			1.00E+00	0.00E+00	0		·	1.00E+00	0.00E+00	0
195	0	-	•	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0
196	0		1	1.10E+00	0.00E+00	0		1	1.10E+00	0.00E+00	0
197	0		•	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0
198	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0
199	0		•	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0
200	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0
201	0		÷ .	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0
202	0			1.40E+00	0.00E+00	0		+	1.40E+00	0.00E+00	0
203	0		1	1.45E+00	0.00E+00	0		1	1.45E+00	0.00E+00	0
204	0		+	1.50E+00	0.00E+00	0.		+	1.50E+00	0.00E+00	0
205	0		+	1.55E+00	0.00E+00	0		1	1.55E+00	0.00E+00	0
206	0			1.60E+00	0.00E+00	0	Jame Ad The opposite		1.60E+00	0.00E+00	0
207	0.			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0
208	0			1.70E+00	0.00E+00	0		1	1.70E+00	0.00E+00	0
209	0			1.75E+00	0.00E+00	0		1	1.75E+00	0.00E+00	0
210	0		-1	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0
211	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0
212	0	-		+ 1.90E+00	0.00E+00	ō	_		1.90E+00	0.00E+00	0
213	0			1.95E+00	0.00E+00	0	-		1.95E+00	0.00E+00	0
214	0			2.00E+00	0.00E+00	0		1	2.00E+00	0.00E+00	0
215	0.0002			total	4.67E-01	0.0002		4	total	4.74E-01	0.0002

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
1										-	
2								_	4 -		
3										4	
4											
5		-1								+	
6											
7									1		
8	-	+	+				-	-	+ +		
9			Filmente	6.4900				Filenama			
10		•	Filename	ndeva				rnename	IIusua		
12			Itally 8	$n_{\rm c} = 186014$	550		1	Itally 8	nns = 1822279	99	
12	bution	un	i tally tyr	e 8 pulse	height distr	ibution	uni	tally ty	pe 8 pulse h	eight distri	bution.
14	oution.		tally for	photons	no.Bitt dibt.	io uno m		tally fo	r photons		
15		,		photono .					i ·		_
16			cell 2					cell 2	L	1	
17			energy					energy	-		
18			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0	
19			5.00E-02	4.50E-02	0.0011			5.00E-02	5.24E-02	0.001	
20			1.00E-01	3.60E-01	0.0003		1	1.00E-01	3.66E-01	0.0003	
21			1.50E-01	0.00E+00	0			1.50E-01	0.00E+00	0	
22			2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0	
23			2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0	
24		-	3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0	
25			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0	
26			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	
27		+ -	4.50E-01	0.00E+00	0		L	4.50E-01	0.00E+00	01	
28		1.12	_5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	
29	-		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	
30			6.00E-01	0.00E+00	. 0			6.00E-01	0.00E+00	0	_
31		-	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0	
32			7.00E-01	0.00E+00	- 0			7.00E-01	0.00E+00	ō+	
35	1.1.1		7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	
34		- 11 C	8.00E-01	0.000000	0		·	8 50E-01	0.00E+00	0	
26			0.00E-01	0.00E+00	0			9.00F-01	0.00E+00	0	
37			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	-
38			1.00F+00	0.00E+00	0		,	1.00E+00	0.00E+00	0	
39		-	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
40			1.10E+00	0.00E+00	0		•	1.10E+00	0.00E+00	0	
41	-	-	1.15E+00	0.00E+00	0		4	1.15E+00	0.00E+00	0	
42			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	_
43		21 E- E	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0:	
44		-	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
45			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0	
46			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0	
47	1		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0	
48			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0	
49		-	1.55E+00	0.00E+00	0		4	1.55E+00	0.00E+00	0	
50		-	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0	
51		-	1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
52		1	1.70E+00	0.00E+00	0	4	1	1.70E+00	0.00E+00	0	
53		+	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0	
54		-	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0	
55			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
56	-	1	1.90E+00	0.00E+00	0		. –	1.90E+00	0.00E+00	0	
57			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	
58			2.00E+00	0.00E+00	0			2.00E+0(0.00E+00	0 0002	_
59		4	total	4.05E-01	0.0003			total	4.19E-01	0.0003	
60											

	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
61			\$ 10.								
62			Filename	fid80b				Filename	fīd90b		
63			·	105755	00			1, 11, 0	102205	101	
64	Instinu		Italiy 8 I	s = 195/55	92	ibution		Itany 8	nps = 192387	91 naight distri	hution
65	bution.	un	tally typ	be 8 puise i	leight distr	ibution.	uni	tally fo	pe o puise i	leight distri	button.
67	. — — — — — — — — — — — — — — — — — — —		tany io	photons				. tany io.			
60			call 2					cell 2	}		
60			cell 2	,		:		energy	······		
70			0.00E+00	0.00F+00	0		-	0.00F+00	0.00E+00	0	
71			5 00F-02	4 57E-02	0.001	- *	•	5.00E-02	5.34E-02	0.001	
72	·		1.00E-01	3.98E-01	0.0003	4	-	1.00E-01	3.99E-01	0.0003	
73		-	1.50E-01	0.00E+00	0			1.50E-01	0.00E+00	0	
74		-	2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0	
75	— ·		* 2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0	
76			3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0	
77	•		3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0	
78			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	
79			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0	
80			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	
81	-		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	
82			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0	
83			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0	
84			7.00E-01	0.00E+00	0	-		7.00E-01	0.00E+00	0	
85			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	
86			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0	
87	1		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0	
88			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0	
89			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	
90			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	
91			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
92			1.10E+00	0.00E+00	- 0			1.10E+00	0.00E+00	0	
93	+		1.15E+00	0.00E+00				1.15E+00	0.00E+00	0	
94	+		1.20E+00	0.00E+00	- 0	,		1.20E+00	0.00E+00	0	
95			1.25E+00	0.00E+00	0		_	1.25E+00	0.000000	0	
96			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
97			1.33E+00	0.00E+00	0			1.35E+00	0.00E+00		
90			1.40E+00	0.00E+00	- 0		-	1.45E+00	0.00E+00	0	
100		-	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0	
100	t		1.50E+00	0.00E+00	0			1.55E+00	0.00E+00	0	
102			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0	
102			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
104			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	
105			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0	
106			1.80E+00	0.00E+00	0	*		1.80E+00	0.00E+00	0	
107			1.85E+00	0.00E+00	0	-		1.85E+00	0.00E+00	0	
108			1.90E+00	0.00E+00	0	- 1 t		1.90E+00	0.00E+00	0	
109			1.95E+00	0.00E+00	0	1		1.95E+00	0.00E+00	0	
110			2.00E+00	0.00E+00	0	3		2.00E+00	0.00E+00	0	
111			total	4.44E-01	0.0003			total	4.53E-01	0.0003	
112			1					,			
113	· · · · · · · · · · · · · · · ·		1	- 1-		1					
114		_	Filename	fid80c		-1		Filename	fid90c		
115						1		1			
116			Itally 8 r	ps = 199206	58	1		Itally 8	nps = 196634	80	
117	bution.	un	i tally typ	be 8 pulse h	eight distr	ibution.	uni	tally ty	pe 8 pulse l	neight distri	bution.
118			tally for	photons	_			tally fo	r photons		
119			1		-	1		1			
120			cell 2					cell 2			

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AO	AR
121			energy					energy			
122			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0	
123			5 00E-02	4 51E-02	0.001			5.00F-02	5 31E-02	0.001	
120			1.00E-01	4.31E-02	0.001			1.00E-02	4.17E-01	0.0003	
124	-		1.00E-01	4.201-01	0.0005			1.00E-01	4.17L-01	0.0005	
125		_	1.50E-01	0.00E+00	0		1	1.JOE-01	0.000000		
126	-		2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0	
127		-	2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0	
128			3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0	
129			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0,	
130			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	
131			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0	
132			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	
133			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	
134			6.00E-01	0.00E+00	0		÷	6.00E-01	0.00E+00	0	
135	1.11		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0	
136			7 00E-01	0.00E+00	0			7.00E-01	0.00E+00	0	
137			7.50E-01	0.00E+00	0 [°]		1	7 50E-01	0.00E+00	0	
120	·		8 00E-01	0.0000-00	0		•	8 00E-01	0.005+00	0	
120	· · ·		9 50E 01	0.00E+00	0		•	9 50E 01	0.001-00	0;	
139			0.00E-01	0.00E+00	0			0.JUE-UI	0.00000	0	
140	-		9.00E-01	0.000+00	0			9.00E-01	0.002+00	0	
141			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	
142			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	_
143			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
144			1.10E+00	0.00E+00	_ 0			1.10E+00	0.00E+00	0	
145			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0	
146			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	
147			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0	
148			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
149		-	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0	-
150			1.40E+00	0.00E+00	0		•	1.40E+00	0.00E+00	0	
151	-	-	1 45E+00	0.00E+00	0			1 45F+00	0.00E+00	0	
152			1.50E+00	0.00E+00	0			1 50E+00	0.00E+00	0.	
152			1.500+00	0.00000	0.			1.555+00	0.000000	0	
155	-	-	1.53E+00	0.000000	0			1.552+00	0.000000	0	
154			1.00E+00	0.000000	0			1.00E+00	0.000000	0	
155			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
156		_	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	
157			1.75E+00	0.00E+00	0			+ 1.75E+00	0.00E+00	0	
158			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0	
159			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
160			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
161	-		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	
162	-		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0	
163	- +		total	4.65E-01	0.0002			total	4.70E-01	0.0002	
164	4			1				+	- +		-
165				4			•		·		-
166			Filename	fid80d			· _	Filename	fid90d	-	
167				+	•				- +		
169			Itally 8	ns = 206116	52			Itally 8	$h_{\rm ms} = 204250$	12 +-	
160	hution		tollu to	PS - 200110.	aight distail	ution	_	tollu to	204239	eight distail	hution
109	oution.	un	tally typ	nhotom	eight distrit	ution.			puise n	eight uistri	button.
170			tally for	photons				+	photons		
1/1	1										
172			cell 2					cell 2			
173			energy	+				energy	++		
174			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0	
175	Т	_	5.00E-02	4.41E-02	0.001			5.00E-02	5.23E-02	0.0009	
176	-		1.00E-01	4.34E-01	0.0003			1.00E-01	4.29E-01	0.0003	
177			1.50E-01	0.00E+00	0			1.50E-01	0.00E+00	0	
178	-		2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0	
179	-		2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0	
180	9		3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0	

T	AH	Al	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
181			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0.	
182			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	01	
183	to over mercenness		4.50E-01	0.00E+00	0		-	4.50E-01	0.00E+00	0,	
184			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	01	
185			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	
186			6.00E-01	0.00E+00	0		*	6.00E-01	0.00E+00	0	
187		-	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0	
188	-		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0	
189			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	
190			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0	
191	-		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0,	
192			9.00E-01	0.00E+00	0		** mm #****	9.00E-01	0.00E+00	0	
193			9.50E-01	0.00E+00	0			9.50E-01	0.00E+001	0	
194			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	
195			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
196			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0	1
197			1.15E+00	0.00E+00	0.			1.15E+00	0.00E+00	0:	
198			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	
199		-	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0	
200	. 7		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	-
201			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0	
202			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0	
203			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0	
204			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0	
205			1.55E+00	0.00E+00	0		+ -	1.55E+00	0.00E+00	0	
206			1.60E+001	0.00E+00	0		-,	1.60E+00	0.00E+00	0	
207			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
208			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	
209			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0	
210			1.80E+00	0.00E+00	0		-	1.80E+00	0.00E+00	0	
211			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
212			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
213			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	
214			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0	
215			total	4.79E-01	0.0002			total	4.81E-01	0.0002	

	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC
1											
2							-				
3			+ ,	•							
4				*					*		
5							, ,		1		
6			4 - •								
7			1	5				*			
8	-						1	-	ľ	- 1	
9							ł				
10		Filename	fid100a				Filename	fid120a	-	-	
11		1 menuine			•			•			
12		Itally 8	nns = 1783899	98	•		Itally 8 n	ps = 171557	68		
12	uni	tally ty	ne 8 nulse h	eight distri	ibution.	uni	tally typ	e 8 pulse h	eight distr	ibution.	uni
14	um	tally fo	r photons				tally for	photons			
15		turiy io	- photons		,			1			
16		cell 2					cell 2			_	
17	-	energy					energy		_		
18	-	0.00E+00	0.00F+00	0			0.00E+00	0.00E+00	0	-	
10		\$ 00E-02	7 19F-02	0 0009			5 00E-02	1.16E-01	0.0007		
20		1 00E-02	3 56F-01	0.0003			1.00E-01	1.04E-01	0.0007		
21		1.50E-01	1 225-04	0.0214			1.50F-01	2.20E-01	0.0005	_	
21		2 005-01	0.00F+00	0.0214			2.00E-01	0.00E+00	0		jer — 10.000
22		2.00E-01	0.00E+00	- 0 ¹	- 1		2.50E-01	0.00E+00	- 0		
23		3 00E-01	0.00E+00	0	1		3 00F-01	0.00E+00	0		
24		2 50E-01	0.00E+00	ů,	- 4		3 50E-01	0.00E+00	Ő		
25		1.00E 01	0.000000	0	- +		4.00E-01	0.00E+00	0		-
20		4.000-01	0.00000	0			4.00E-01	0.00E+00	0.		
21		4.50E-01	0.000000	0			5.00E-01	0.00E+00	0		
20	-	5.00E-01	0.00E+00	0			5.50E-01	0.00E+00	0		
29	-	5.50E-01	0.000000	0	-		6.00E-01	0.00E+00	0		,
21		6.50E-01	0.000000	0			6 50E-01	0.00E+00	- 0		
31		0.50E-01	0.000000	0			7.00E-01	0.00E+00	0		
32		7.00E-01	0.00E+00	0			7.50E-01	0.00E+00	0		
33		7.50E-01	0.000000	0	+		8 00E-01	0.00E+00	- 0		
34		8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	- 0	-	
33		8.50E-01	0.000000	0			0.00E-01	0.000000	0	-	
30		9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0		
3/		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	- 0		
38		1.00E+00	0.00E+00	0			1.000+00	0.000+00	0		
39		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0		
40		1.10E+00	0.00E+00	0			1.150.00	0.001+00	0		<u> </u>
41		1.15E+00	0.00E+00	0			1.13E+00	0.000000	0		
42		1.20E+00	0.00E+00	0		,	1.20E+00	0.000000	0		
43	_	1.25E+00	0.00E+00	0			1.2505+00	0.000000	0		
44	100	1.30E+00	0.00E+00	0			1.30E+00	0.000000	- 0		
45		1.35E+00	0.00E+00				1.35E+00	0.000000	0		
46		1.40E+00	0.00E+00	0			1.40E+00	0.0000000	0		
47		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		
48		1.50E+00	0.00E+00	0	-		1.50E+00	0.00E+00	0		
49		1.55E+00	0.00E+00				1.55E+00	0.00E+00	0		
50		1.60E+00	0.00E+00	0	-		1.60E+00	0.00E+00	0		
51	-	1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0		
52		1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0		
53		1.75E+00	0.00E+00	0	5-11-1		1.75E+00	0.00E+00	0		
54		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0		4
55		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	,	
56		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0		+
57		1.95E+00	0.00E+00	0		-	1.95E+00	0.00E+00	0	-	
58		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0		+
59		total	4.28E-01	0.0003			total	4.39E-01	0.0003		+
60											

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC
61											
62		Filename	fid100b				Filename	fid120b			1
63	-								_		
64		Itally 8	nps = 188937	36			Itally 8 n	ps = 181592	.59	1	
65	un	i' tally ty	pe 8 pulse h	neight distri	bution.	uni	tally typ	e 8 pulse h	neight distr	ibution.	uni
66		tally fo	r photons				tally for	photons			
67											
68		cell 2	-				cell 2				
69	description of the second	energy					energy				
70		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0		
71		5.00E-02	7.46E-02	0.0008			5.00E-02	1.21E-01	0.0006		
72		1.00E-01	3.84E-01	0.0003			1.00E-01	9.51E-02	0.0007		
73	-	1.50E-01	1.55E-04	0.0185			1.50E-01	2.49E-01	0.0004	f	
74		2.00E-01	0.00E+00	0			2.00E-01	0.00E+00	0	1	
75		2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0		
76		3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0		
77		3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0		
78		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0		-
79		4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0		1
80		5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	**	
81	-	5.50E-01	0.00E+00	0.			5.50E-01	0.00E+00	0	-	
82		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0		
83		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		
84		7.00E-01	0.00E+00	-0			7.00E-01	0.00E+00	0	1	1
85		7.50E-01	0.00E+00	- 0 ¹			7.50E-01	0.00E+00	0		
86		8.00E-01	0.00E+00	$\overline{0}^{+}$			8.00E-01	0.00E+00	0		1
87		8.50E-01	0.00E+00	0		, ,	8.50E-01	0.00E+00	0		
88		9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0		
89		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	••••••	
90	11 Mar 14	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	·····	
91		1.05E+00	0.00E+00	0		. :	1.05E+00	0.00E+00	0		
92		1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0		
93		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0	10.000	
94		1 20E+00	0.00E+00	0			1.20E+00	0.00E+00	0		
95		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		1
96		1.30E+00	0.00E+00	0	3		1.30E+00	0.00E+00	0		
97		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0	r	
98	-	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0	t <u>e</u>	+
99		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		1
100		1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	Ō		1
101		1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0		1
102		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0		
103	-	1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	4	
104		1.70E+00	0.00E+00	0	· · ·		1.70E+00	0.00E+00	0		
105		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		
106		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0		1
107		1.85E+00	0.00E+00	0	-		1.85E+00	0.00E+00	0		
108		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0		1
109		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0		
110		2.00E+00	0.00E+00	0.			2.00E+00	0.00E+00	0		
111		total	4.59E-01	0.0003			total	4.65E-01	0.0003		1
112			+ +								
113										1	
114		Filename	fid100c	1			Filename	fid120c			1
115			+ +								
116		Itally 8	nps = 193341	60			Itally 8 m	ps = 185764	78	*	
117	1177	i tally ty	ne 8 milse h	neight distri	bution	uni	tally typ	e 8 nulse	height dist	ribution	uni
119	un	tally fo	r photons	Bin distri	Catroll.	un	tally for	photons	But anoth		1
110		tany 10		- 1	-		turiy ioi				
120		cell 2	4 +				cell 2			l	L
120											

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	AS AT	AU	AV	AW	<u> </u>	AX	AY	AZ	BA	BB	BC
121	energy				-		energy				
122	0.00E+	00 0.00E+00	0		-		0.00E+00	0.00E+00	0		
123	5.00E-	02. 7.55E-02	0.0008		•	•	5.00E-02	1.23E-01	0.0006		-
124	1.00E-	01 3.98E-01	0.0003				1.00E-01	8.60E-02	0.0008		
125	1.50E-	01 1.73E-04	0.0173		*	•	1.50E-01	2.68E-01	0.0004		
126	2.00E-	01 0.00E+00	0		•		2.00E-01	0.00E+00	0		1
127	2.50E-	01 0.00E+00	0				2.50E-01	0.00E+00	0		
128	3.00E-	01 0.00E+00	0				3.00E-01	0.00E+00	0		
129	3.50E-	01 0.00E+00	0				3.50E-01	0.00E+00	0		
130	4.00E-	01: 0.00E+00	0				4.00E-01	0.00E+00	0		-
131	4.50E-	01 0.00E+00	0				4.50E-01	0.00E+00	0		-
132	5.00E-	01 0.00E+00	0		•		5.00E-01	0.00E+00	0		
133	5.50E-	01, 0.00E+00	- 0				5.50E-01	0.00E+00	0		-
134	6.00E-	01 0.00E+00	0		•		6.00E-01	0.00E+00	0		
135	6.50E-	01 ⁺ 0.00E+00	0			•	6.50E-01	0.00E+00	0		10000
136	7.00E-	01 0.00E+00	0				7.00E-01	0.00E+00	0		1
137	7.50E-	01 0.00E+00	0				7.50E-01	0.00E+00	0		-
138	8.00E-	01 0.00E+00	0				8.00E-01	0.00E+00	0		
139	8.50E-	01 0.00E+00	0		-		8.50E-01	0.00E+00	0		
140	9 00E-	01 0.00E+00	0		•	ł	9.00E-01	0.00E+00	0		
141	9 SOF-	01: 0.00E+00	0		•		9.50E-01	0.00E+00	0		:
142	1 00E+	00 0 00E+00	0				1.00E+00	0.00E+00	0		1
142	1.05E+	00 0.00E+00	0		•	•	1.05E+00	0.00E+00	0		1
144	1.00E+	00 0.00E+00	- 0		•	•	1.10E+00	0.00E+00	0		
145	1.10E+	001 0 00E+00	0		•	•	1.15E+00	0.00E+00	0		-
145	1.10E+	00. 0.00E+00	01				1.20E+00	0.00E+00	0		;
147	1.20E+	00 0.00E+00	0+		11	,	1.25E+00	0.00E+00	0		
149	1.20E+	00 0.00E+00	0				1.30E+00	0.00E+00	0		
140	1.30E+	00 0.00E+00	0		*	*	1.35E+00	0.00E+00	0		
150	1.55E+	00 0.00E+00	0		•	1	1.40E+00	0.00E+00	0		
151	1.40E+	00 0.00E+00	_ 0		•		1.45E+00	0.00E+00	0		1
152	1.40E+	00 0.00E+00	0		-	•	1.50E+00	0.00E+00	ō		1
152	1.50E+	00 0.00E+00	- 0		-		1.55E+00	0.00E+00	0	4	
154	1.50E+	00 0.00E+00			-	. •	1.60E+00	0.00E+00	0	L	
155	1.65E+	00 0.00E+00	0		•		1.65E+00	0.00E+00	0	1	
156	1.05E+	00 0.00E+00	0	-			1.70E+00	0.00E+00	0	++	-
157	1.70E+	00 0.00E+00	0				1 75E+00	0.00E+00	0		
158	1.75E+	00 0.00E+00	0			1	1.80E+00	0.00E+00	0	1	
150	1.85E+	00 0.00E+00	0 [°]		•		1 85F+00	0.00E+00	0		-t
160	1.00E+	00 0.00E+00	0		•		1 90E+00	0.00E+00	0	•	
161	1.90E+	00 0.00E+00	0		•	-	1.95E+00	0.00E+00	0		•
162	2 00E+	00 0.00E+00	0			•	2.00E+00	0.00E+00	0		7
163	total	4 74F-01	0.0002		•	tot	al	4.78E-01	0.0002	4	1
164		+ - +	0.0002		+				0.0001	+	
165			4			1	-				
166	Filename	fid100d	4		1	Fi	lename	fid120d			
167	Thename	+ +			4	,		1101200		+-	
169	Itally 8	nns = 201152	66 L		8			ms = 193339	90	+ -	
160	uni tally	type & pulse b	eight distril	ution		uni	tally typ	e 8 pulse h	eight dist	ribution	uni
170	tally	for photons	leight distri	Junion.	•	T	tally for	nhotons	eight dist	1	-
170	tally		- +		*		tany tor	photons		1	
172	- i coll 2		1				11 2				-
172	cell 2						onorqu		-		
173	energy	00 0.005.00			+		0 00E+00	0.005+00			
174	0.00E+	00 0.00E+00	0.0000		•		5 00E 00	1 255 01	0.0006		
175	5.00E-	01 + 407E 01	0.0008		•		1.00E-02	7 755 02	0.0000	+	+
176	1.00E-	01 4.0/E-01	0.0003				1.50E-01	2 82E 01	0.0008		¥
177	1.50E-	01 0.005.00	0.0172				2.000 01	2.03E-01	0.0004	+-	
178	2.00E-	01 0.0000000	0				2.002-01	0.000-00	0		
1/9	2.50E-	01 0.00E+00	0				2.000-01	0.00E+00	0	6	
11801	3.00E-	01 0.00E+00	0				J.00E-01	0.000-000	0		

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

ГТ	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC
181	1000	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0		1
182		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0		1
183		4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0		
184		5.00E-01	0.00E+00	0		*	5.00E-01	0.00E+00	0	-	
185		5.50E-01	0.00E+00	0	-		5.50E-01	0.00E+00	0		
186		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0		
187		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		
188		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0		
189		7.50E-01	0.00E+00	0		•	7.50E-01	0.00E+00	0		
190		8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0		
191		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0		
192		9.00E-01	0.00E+00	0.		4	9.00E-01	0.00E+00	0		
193		9.50E-01	0.00E+00	0'		ŧ	9.50E-01	0.00E+00	0	_	
194		1.00E+00	0.00E+00	0	-		1.00E+00	0.00E+00	0		
195		1.05E+00	0.00E+00	0:		•	1.05E+00	0.00E+00	0		
196	-	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0		•
197	-	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0		
198		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0		
199	-	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00 [°]	0	_	
200		1.30E+00	0.00E+00	0		, .	1.30E+00	0.00E+00	0		
201	_	1.35E+00	0.00E+00	0		•	1.35E+00	0.00E+00	0		
202		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0		
203		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		
204		1.50E+00	0.00E+00	0		1	1.50E+00	0.00E+00	0		
205		1.55E+00	0.00E+00	0		•	1.55E+00	0.00E+00	0		
206		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0	_	
207		1.65E+00	0.00E+00	0		•	1.65E+00	0.00E+00	0		
208		1.70E+00	0.00E+00	0		*	1.70E+00	0.00E+00	0	· · · · · · · · · · · · · · · · · · ·	1
209		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		
210		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0		
211		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0		
212		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0		
213		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0		
214		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0		1
215		total	4.83E-01	0.0002			total	4.85E-01	0.0002		

	BD	BE	BF	BG	BH	BI	BJ	BK	BL	BM	BN
1											
2								T			
3							• •	4			
4											
5		-	1								
6			1				* **				4-
7							, .				-
8		-	- 4			4					
9								,	- 4		-
10	Filename	fid140a	+			Filename	fid160a				Filename
11			+			1	1,000	-+			1. 11 0
12	Itally 8	nps = 16595	968			Itally 8 r	1ps = 160836	54			Itally 8
13	tally typ	pe 8 pulse	height distri	bution.	un	tally typ	be 8 pulse	neight distribu	ution.	uni	tally ty
14	tally fo	photons				. tany lor	photons ,				tany io
15	aall 2					cell 2					cell 2
10	cell 2					energy		4-10-10-			energy
18	0.005+00	0.00E+00				0.00F+00	0.00F+00	0			0.00F+00
10	5.00F-02	1.60F-01	0.0006			5.00E-02	1.95E-01	0.0005	1		5.00E-02
20	1.00E-02	674E-02	0.0009			1.00E-01	4.86E-02	0.0011			1.00E-01
21	1.50E-01	2.18E-01	0.0005	-		1.50E-01	7.89E-02	0.0009	- +		1.50E-01
22	2.00E-01	0.00E+00	0	_		2.00E-01	1.26E-01	0.0007			2.00E-01
23	2.50E-01	0.00E+00	0		-	2.50E-01	0.00E+00	0			2.50E-01
24	3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0	1		3.00E-01
25	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0	to.		3.50E-01
26	4.00E-01	0.00E+00	0,			4.00E-01	0.00E+00	0			4.00E-01
27	4.50E-01	0.00E+00	0		-	4.50E-01	0.00E+00	0			4.50E-01
28	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01
29	5.50E-01	0.00E+00	0		-	5.50E-01	0.00E+00	0			5.50E-01
30	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0.			6.00E-01
31	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01
32	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0	+-	_	7.00E-01
33	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0		_	7.50E-01
34	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0		-	8.00E-01
35	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0	1		8.50E-01
36	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0			· 9.00E-01
37	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	1		9.50E-01
38	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+00
39	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0		-	1.05E+00
40	1.10E+00	0.00E+00	- 0			1.10E+00	0.00E+00	0			1.10E+00
41	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0			1.13E+00
42	1.20E+00	0.00E+00	0			1.200+00	0.000000	0			1.20E+00
43	1.25E+00	0.000000	0			1.25E+00	0.00E+00	0	18		1.30E+00
44	1.35E+00	0.00E+00	- 0 [*]		**	1.35E+00	0.00E+00	0	٢		1.35E+00
46	1.40E+00	0.00E+00	- 0			1.40E+00	0.00E+00	0	+		1.40E+00
40	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00
48	1.50E+00	0.00E+00	0		-	1.50E+00	0.00E+00	0			1.50E+00
49	1.55E+00	0.00E+00	0.			1.55E+00	0.00E+00	0			1.55E+00
50	1.60E+00	0.00E+00	0			+ 1.60E+00	0.00E+00	0	+		1.60E+00
51	1.65E+00	0.00E+00	0		-	1.65E+00	0.00E+00	0			1.65E+00
52	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00
53	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	Ō,	_		1.75E+00
54	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00
55	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0			1.85E+00
56	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	1		1.90E+00
57	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	-		1.95E+00
58	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0	-		2.00E+00
59	total	4.45E-01	0.0003			total	4.49E-01	0.0003			total
60					-						

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	BD	BE	BF	BG	BH	Bl		BJ	BK	BL	BM	BN
61												
62	Filename	fid140b				Filename		fid160b				Filename
63			+				*	-		-		
64	Itally 8	nns = 175248	808	•		Itally 8	'n	$p_{s} = 16914$	761		1	Itally 8
65	tally ty	ne 8 nuise	height distri	ibution.	uni	tally	tvn	e 8 pulse	height distr	ibution.	uni	tally ty
66	tally for	r photons	ine Gine Gine Gine Gine Gine Gine Gine G	ioution.	um	tally	for	nhotons	norgen and		1	tally fo
67	tany io	photons				tun.	101	photons			1	
60	an11 2			*		0011 2		-				cell 2
00	Cell 2	т — т		-		energy						energy
09	energy	0.000.00	0			0.00E	L00	0.0000	Ō			0.00F+00
70	0.00E+00	0.00E+00	0.0005	+		5.000	00	2.04E 01	0.0005			5.00E-02
/1	5.00E-02	1.0/E-01	0.0005	1		1.000	-02	4.22E 02	0.0005		7	1.00E-02
12	1.00E-01	5.88E-02	0.001	5		1.000	-01	4.33E-02	0.0011	h		1.00E-01
73	1.50E-01	2.43E-01	0.0004			1.505	-01	1.48E-02	0.0009			1.50E-01
74	2.00E-01	0.00E+00	0			2.00E	-01	1.49E-01	0.0006	i	1	2.00E-01
75	2.50E-01	0.00E+00	0			2.50E	-01	0.00E+00	0		+	2.50E-01
76	3.00E-01	0.00E+00	0	:		3.00E	-01	0.00E+00	0	1.	1-	3.00E-01
77	3.50E-01	0.00E+00	0			3.50E	-01	0.00E+00	0		1	3.50E-01
78	4.00E-01	0.00E+00.	0			4.00E	-01	0.00E+00	0			4.00E-01
79	4.50E-01	0.00E+00	0			4.50E	-01	0.00E+00	0			4.50E-01
80	5.00E-01	0.00E+00	0			5.00E	-01	0.00E+00	0			5.00E-01
81	5.50E-01	0.00E+00	0			5.50E	-01	0.00E+00	0		· · · · · · · · · · · · · · · · · · ·	5.50E-01
82	6.00E-01	0.00E+00	0			6.00E	-01	0.00E+00	0			6.00E-01
83	6.50E-01	0.00E+00	0			6.50E	-01	0.00E+00	0			6.50E-01
84	7.00E-01	0.00E+00	0			7.00E	-01	0.00E+00	0			7.00E-01
85	7.50E-01	0.00E+00,	0	4-		7.50E	-01	0.00E+00	0		1	7.50E-01
86	8.00E-01	0.00E+00	0			8.00E	-01	0.00E+00	0			8.00E-01
87	8.50E-01	0.00E+00	0			8.50E	-01	0.00E+00	0		-	8.50E-01
88	9.00E-01	0.00E+00	0			9.00E	-01	0.00E+00	0			9.00E-01
89	9.50E-01	0.00E+00	0			9.50E	-01	0.00E+00	0	4		9.50E-01
90	1.00E+00	0.00E+00	0			1.00E	+00	0.00E+00	0			1.00E+00
91	1.05E+00	0.00E+00	0			1.05E	+00	0.00E+00	0		1	1.05E+00
92	1 10F+00	0.00E+00	0			1.10E	+00	0.00E+00	0	1	1	1.10E+00
03	115E+00	0.00E+00	0.	4		115E	+00	0.00E+00	0		··· •	1.15E+00
95	1.705+00	0.00E+00	0			1.10E	+00	0.00E+00	0			1 20F+00
94	1.201100	0.000000	0			1.200	+00	0.00E+00	0	+ - ·		1.25E+00
95	1.2500	0.000000	0			1.20E	+00	0.00E+00	0			1.30E+00
90	1.300-00	0.000000	0			1.300	+00°	0.000000	0	+	-+	1.35E+00
91	1.35E+00	0.00E+00	0	8		1.33E		0.000000	- 0			1.40E+00
98	1.40E+00	0.00E+00				1.40E	+00	0.00E+00	- 0			1.402+00
99	1.45E+00	0.00E+00	0			1.45E	+00	0.00E+00		4 ·		1.4505.00
100	1.50E+00	0.00E+00	- 0	*		1.50E	+00	0.00E+00	0		4	1.50E+00
101	1.55E+00	0.00E+00	0	+		1.55E	+00	0.00E+00	0		-4	1.55E+00
102	1.60E+00	0.00E+00	- 0.	,		1.60E	+00	0.00E+00	0			1.60E+00
103	1.65E+00	0.00E+00	0			1.65E	+00	0.00E+00	0	+	-1	1.65E+00
104	1.70E+00	0.00E+00	0			1.70E	+00	0.00E+00	0			1.70E+00
105	1.75E+00	0.00E+00	0			1.75E	+00	0.00E+00	0	·		1.75E+00
106	1.80E+00	0.00E+00	0	4-		1.80E	+00	0.00E+00	0			1.80E+00
107	1.85E+00	0.00E+00	0		_	1.85E	+00	0.00E+00	0	1	1	1.85E+00
108	1.90E+00	0.00E+00	0	-1-		1.90E	+00	0.00E+00	0			1.90E+00
109	1.95E+00	0.00E+00	0	1	_	1.95E	+00	0.00E+00	0	1		1.95E+00
110	2.00E+00	0.00E+00	0			2.00E	+00	0.00E+00	0			2.00E+00
111	total	4.69E-01	0.0003	8		total	+	4.71E-01	0.0003	1		total
112		1 - 1		~			1		,			
113		1		1								
114	Filename	fid140c			-	Filename	-4	fid160c				Filename
115		1		-			!				1	
116	Itally 8	nps = 17900	129			Itally 8	n	ps = 17220	850			Itally 8
117	tally ty	pe 8 pulse	height distri	ibution	uni	tall	v tvr	e 8 nulse	height dist	ribution.	uni	tally ty
118	tally fo	r photons	T		um	tall	v for	photons	Bit aibt	1		tally fo
110	tany 10	- protons +				turi		Photoita				
119	cell 2		200			cell 2	j			·		cell 2
120	CCII Z					UCH 2						John L

	BD	BE	BF	BG	BH	Bl	BJ	BK	BL	BM	BN
121	energy					energy				1.1.1.1	energy
122	0.00E+00	0.00E+00	0	4		0.00E+00	0.00E+00	0			0.00E+00
123	5.00E-02	1.70E-01	0.0005	•		5.00E-02	2.07E-01	0.0005			5.00E-02
124	1.00E-01	5.09E-02	0.001			1.00E-01	3.93E-02	0.0012			1.00E-01
125	1.50E-01	2.58E-01	0.0004			1.50E-01	6.84E-02	0.0009			1.50E-01
126	2.00E-01	0.00E+00	0	4		2.00E-01	1.66E-01	0.0005			2.00E-01
127	2.50E-01	0.00E+00	0	,		2.50E-01	0.00E+00	0			2.50E-01
128	3.00E-01	0.00E+00	0	+		3.00E-01	0.00E+00	0,		1	3.00E-01
129	3.50E-01	0.00E+00	0	4		3.50E-01	0.00E+00	0		4+	3.50E-01
130	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0			4.00E-01
131	4.50E-01	0.00E+00	0	+		4.50E-01	0.00E+00	0	an and the second second		4.50E-01
132	5.00E-01	0.00E+00	0	ł	+	5.00E-01	0.00E+00	0		+	5.00E-01
133	5 50E-01	0.00E+00	0		*	5.50E-01	0.00E+00	0			5.50E-01
134	6.00E-01	0.00E+00	0	+	1	6.00E-01	0.00E+00	0		4	6.00E-01
135	6 50E-01	0.00E+00	- 0	ŧ		6 50E-01	0.00E+00	0.	-	-1	6.50E-01
136	7.00F-01	0.00E+00	0	*		7.00E-01	0.00E+00	0	-		7.00E-01
137	7 50F-01	0.00E+00	0			7 50E-01	0.00E+00	0			7.50E-01
138	8 00F-01	0.00E+00	0	*		8 00E-01	0.00E+00	0	-	+	8.00E-01
130	8 50F-01	0.00E+00	0	7		8 50E-01	0.00E+00	0			8 50E-01
140	0.00E.01	0.000.00	0	:	-	0.00E-01	0.00E+00	0			9 00E-01
140	9.00E-01	0.00E+00	0			9.00L-01	0.000-00	- 0	-		9 50F-01
141	9.500-01	0.00E+00	0	+		1.005+00	0.000-00	0	-		1.00E+00
142	1.00E+00	0.00E+00	0		1	1.000-00	0.000000				1.05E+00
143	1.05E+00	0.00E+00	0			1.105+00	0.00E+00	0			1.052+00
144	1.100+00	0.00E+00	0	-		1.100+00	0.000000	0			1.10E+00
145	1.15E+00	0.00E+00	0	· ·		1.1505.00	0.00E+00	0			1.132+00
140	1.20E+00	0.00E+00	0		- •	1.20E+00	0.00E+00	0			1.200-00
147	1.25E+00	0.00E+00				1.25E+00	0.000+00	0		1	1.232+00
148	1.30E+00	0.00E+00	- 0		-1	1.30E+00	0.00E+00	0			1.300+00
149	1.35E+00	0.00E+00	- 0			1.35E+00	0.00E+00	0			1.35E+00
150	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00
151	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0			1.45E+00
152	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00
153	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0		+	1.55E+00
154	1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0		+	1.60E+00
155	1.65E+00	0.00E+00	0		4	1.65E+00	0.00E+00	0,		-+ <u>-</u>	1.65E+00
156	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0		+	1.70E+00
157	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00
158	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00
159	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0			1.85E+00
160	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00
161	1.95E+00	0.00E+00	0	~ •	4	1.95E+00	0.00E+00	0			1.95E+00
162	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0		1	2.00E+00
163	total	4.80E-01	0.0002			total	4.81E-01	0.0003			total
164				-9	*			_			
165			1					1			
166	Filename	fid140d			1	Filename	fid160d				Filename
167		1	_	- 1			-	+			-
168	Itally 8 r	lps = 523044	131		4	Itally 8 m	ps = 500980	82			Itally 8
169	tally tyr	e 8 pulse l	height distrib	ution.	uni	tally typ	e 8 pulse h	neight distri	bution.	ur	i tally ty
170	tally for	photons	- 1	10	1	tally for	photons				tally fo
171		P	+		4						
172	cell 2	L			1	cell 2	L				cell 2
173	energy	1			4	energy					energy
174	0.005+00	0.00E+00	- 0		1	0.00F+00	0.00F+00	0	-	-+	0.00E+00
175	5.00E.02	1 725-01	0.0003	,		5.00E-02	2.09F-01	0.0003		L	5 00E-02
175	1.00E-01	1.72L-01	0.0005	*		1.00E-01	3.63E-02	0.0005			1.00E-02
170	1.50E-01	4.41E-02	0.0000	,		1.50E-01	6 12E 02	0.0007	27111		1.00L-01
177	1.50E-01	2.70E-01	0.0002			1.50E-01	0.13E-02	0.0000			1.50E-01
178	2.00E-01	0.00E+00	0			2.00E-01	1.80E-01	0.0003			2.00E-01
179	2.50E-01	0.00E+00	0			2.50E-01	0.00E+00	0			2.50E-01
180	3.00E-01	0.00E+00	0			3.00E-01	0.00E+00	0			3.00E-01

	BD	BE	BF	BG	BH	B1	BJ	BK	BL	BM	BN
181	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0			3.50E-01
182	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0		•	4.00E-01
183	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0			4.50E-01
184	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01
185	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01
186	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01
187	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		•	6.50E-01
188	7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01
189	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01
190	8.00E-01	0.00E+00	- 0			8.00E-01	0.00E+00	0			8.00E-01
191	8.50E-01	0.00E+00	0		•	8.50E-01	0.00E+00	0	-		8.50E-01
192	9.00E-01	0.00E+00	. 0			9.00E-01	0.00E+00	0			9.00E-01
193	9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0		• •	9.50E-01
194	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	. 0			1.00E+00
195	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00
196	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0		*	1.10E+00
197	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00
198	1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0		*	1.20E+00
199	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		• • • •	1.25E+00
200	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00
201	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00
202	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00
203	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		•	1.45E+00
204	1.50E+00	0.00E+00	. 0		•	1.50E+00	0.00E+00	0			1.50E+00
205	1.55E+00	0.00E+00	0		•	1.55E+00	0.00E+00	0		• • • • •	1.55E+00
206	1.60E+00	0.00E+00	0		•	1.60E+00	0.00E+00	0			1.60E+00
207	1.65E+00	0.00E+00	0		•	1.65E+00	0.00E+00	0			1.65E+00
208	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00
209	1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		•	1.75E+00
210	1.80E+00	0.00E+00	0		•	1.80E+00	0.00E+00	- 0		•	1.80E+00
211	1.85E+00	0.00E+00	0		•	1.85E+00	0.00E+00	0			1.85E+00
212	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00
213	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00
214	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00
215	total	4.86E-01	0.0001			total	4.86E-01	0.0001			total

	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY
1			-							+	+
2		-	1						_	-	_
3										-	
4											à
5							- 1			1	
6							,		-		
1		+					1			-	
8							1			• •	
10	641900			-	Filonomo	fid200a	•		-	Filenome	fid220a
11	Iluiova	1			ritenanie	1102000	÷	-		Filenanic	1102204
12	ns = 1573136	5			Itally 8	nns = 154587	39			Itally 8	nns = 1527
13	e 8 pulse he	eight distrik	oution.	uni	tally ty	ne 8 nulse h	eight distri	bution.	ur	i tally ty	ne 8 pulse
14	photons		-		tally for	r photons		outronn		tally fo	pr photons
15		t-		1			-1				
16				i i	cell 2		*			cell 2	L-
17					energy					energy	
18	0.00E+00	0			0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
19	2.25E-01	0.0005	*		5.00E-02	2.49E-01	0.0004			5.00E-02	2.69E-01
20	4.13E-02	0.0012			1.00E-01	3.93E-02	0.0013	•		1.00E-0	3.75E-02
21	6.62E-02	0.0009			1.50E-01	5.79E-02	0.001			1.50E-0	5.30E-02
22	1.18E-01	0.0007		_	2.00E-01	1.05E-01	0.0007			2.00E-0	2.57E-02
23	0.00E+00	0		1	2.50E-01	3.83E-05	0.0411			2.50E-0	6.77E-02
24	0.00E+00	0			3.00E-01	0.00E+00	0			3.00E-0	0.00E+00
25	0.00E+00	0		;	3.50E-01	0.00E+00	0			3.50E-0	0.00E+00
26	0.00E+00	0			4.00E-01	0.00E+00	0			4.00E-0	0.00E+00
27	0.00E+00	0			4.50E-01	0.00E+00	0			4.50E-0	0.00E+00
28	0.00E+00	0		,	5.00E-01	0.00E+00	0			5.00E-0	0.00E+00
29	0.00E+00	0	-		5.50E-01	0.00E+00	0			5.50E-0	0.00E+00
30	0.00E+00	0	,	:	6.00E-01	0.00E+00	0	-		6.00E-0	0.00E+00
31	0.00E+00	0		-	6.50E-01	0.00E+00	0			6.50E-0	0.00E+00
32	0.00E+00	0	~ 1		7.00E-01	0.00E+00	0	-	-	7.00E-0	0.00E+00
24	0.00E+00				7.50E-01	0.0000+00	0			7.30E-0	0.00E+00
25	0.00E+00	- 0	•		8.00E-01	0.000000	- 0		-	8.00E-0	0.000000
36	0.00E+00	0	-		9.00E-01	0.0000+00	0			9.00E-0	0.00E+00
37	0.00E+00	0			9 50F-01	0.000000	0			9 50E-0	0.00E+00
38	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+0	0.00E+00
39	0.00E+00	0		- •	1.05E+00	0.00E+00	0			+ 1.05E+00	0.00E+00
40	0.00E+00	-0			1.10E+00	0.00E+00	0		-	1.10E+00	0.00E+00
41	0.00E+00	0		4	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
42	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
43	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
44	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
45	0.00E+00	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
46	0.00E+00	0	-		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00
47	0.00E+00	0	1		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
48	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
49	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
50	0.00E+00	0.	1		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00
51	0.00E+00	0	1		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
52	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+0	0.00E+00
53	0.00E+00	0		-	1.75E+00	0.00E+00	0		_	1.75E+00	0, 0.00E+00
54	0.00E+00	0		4	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
55	0.00E+00	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
56	0.00E+00	0	4		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
57	0.00E+00	0	-		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
38	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00
59	4.51E-01	0.0003			total	4.52E-01	0.0003			total	4.53E-01
60	Constant and the										1.0

	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY
61						-	- 4	-			C 10001
62	fid180b			4	Filename	fid200b	4			Filename	1102206
63	1(4020	4.4	1		1tolly 9	- 1616343			·	tally 8 r	ns = 1592
64	ps = 164939	44	tribution	uni	tally tyr	$p_s = 101034$	eight distri	bution	uni	tally typ	ne 8 pulse
66	nhotons	leight uis	uiouion.	un -	tally for	photons	eight distri	oution.		tally for	photons
67	photons		-			,				1	
68		-			cell 2					cell 2	
69			-	•	energy		Г			energy	
70	0.00E+00		0	-	0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
71	2.34E-01	0.000	4		5.00E-02	2.60E-01	0.0004			5.00E-02	2.80E-01
72	3.81E-02	0.001	2		1.00E-01	3.76E-02	0.0013		1	1.00E-01	3.67E-02
73	6.17E-02	0.00	1		1.50E-01	5.38E-02	0.001		1	1.50E-01	4.96E-02
74	1.38E-01	0.000	6		2.00E-01	1.22E-01	0.0007		i	2.00E-01	2.55E-02
75	0.00E+00		0	4	2.50E-01	4.79E-05	0.0359	_		2.50E-01	8.10E-02
76	0.00E+00		0		3.00E-01	0.00E+00	0		-	3.00E-01	0.00E+00
77	0.00E+00		0.	:	: 3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
78	0.00E+00		0		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00
79	0.00E+00		0		4.50E-01	0.00E+00	0		de	4.30E-01	0.00E+00
80	0.00E+00	-	0	a -	5.00E-01	0.00E+00	-0			5.50E-01	0.00E+00
81	0.00E+00		0		6.00E-01	0.00E+00	0		1.2	6.00E-01	0.00E+00
02	0.000000	-	<u> </u>		6 50E-01	0.00E+00	- 0		+ -	6 50E-01	0.00E+00
84	0.00E+00		0	•	7 00E-01	0.00E+00	0			7.00E-01	0.00E+00
85	0.00E+00	-	0	4	7.50E-01	0.00E+00	0		+	7.50E-01	0.00E+00
86	0.00E+00		0		8.00E-01	0.00E+00	0		+	8.00E-01	0.00E+00
87	0.00E+00		0	Ł	8.50E-01	0.00E+00	0	-		8.50E-01	0.00E+00
88	0.00E+00		0	-1 -	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00
89	0.00E+00		0		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00
90	0.00E+00		0	7 -	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00
91	0.00E+00		0	+	1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
92	0.00E+00		0	-	1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
93	0.00E+00		0		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
94	0.00E+00	_	0		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
95	0.00E+00		0	1	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
96	0.00E+00	_	0.		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
97	0.00E+00		0	; +· ·	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00
98	0.00E+00		0	-	1.40E+00	0.00E+00	0			1.40E+00	0.00E+00
99	0.00E+00		0	· 8	1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
100	0.00E+00		0		1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
101	0.00E+00		0	•	1.55E+00	0.00E+00	0		•	1.60E+00	0.00E+00
102	0.00E+00		0	1	1.65E+00	0.00E+00	0	-	1	1.65E+00	0.00E+00
103	0.00E+00		0	11	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
104	0.00E+00		0		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
105	0.00E+00		0	· _=	1 1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
107	0.00E+00		0	*	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
108	0.00E+00		0		1.90E+00	0.00E+00	0		£	1.90E+00	0.00E+00
109	0.00E+00		0	1	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
110	0.00E+00		0	+	2.00E+00	0.00E+00	0		1	2.00E+00	0.00E+00
111	4.72E-01	0.000	3		total	4.73E-01	0.0003		1	total	4.73E-01
112			-	1		1					
113											
114	fid180c				Filename	fid200c			1	Filename	fid220c
115			i		1				4		1
116	ps = 167658	374		1	Itally 8	1ps = 163931	06		1	Itally 8	nps = 1615
117	e 8 pulse l	neight dis	stribution.	uni	tally ty	pe 8 pulse h	eight distr	ibution.	un	tally ty	pe 8 pulse
118	photons			ł	tally for	photons			+	tally fo	r photons
119			4	1	+- and 1 2				a	call 2	
120					cell 2					cell 2	34

	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY
121					energy					energy	
122	0.00E+00	0			0.00E+00	0.00E+00	0		-	0.00E+00	0.00E+00
123	2.39E-01	0.0004			5.00E-02	2.64E-01	0.0004			5.00E-02	2.85E-01
124	3.59E-02	0.0013			1.00E-01	3.65E-02	0.0013			1.00E-01	3.64E-02
125	5.56E-02	0.001			1.50E-01	4.89E-02	0.0011			1.50E-01	4.57E-02
126	1.52E-01	0.0006	,	1	2.00E-01	1.33E-01	0.0006			2.00E-01	2.43E-02
127	0.00E+00	0	'		2.50E-01	5.51E-05	0.0333			2.50E-01	9.09E-02
128	0.00E+00	0	-	-	3.00E-01	0.00E+00	01			3.00E-01	0.00E+00
129	0.00E+00	0	Ť	1	3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
130	0.00E+00	0		1	4.00E-01	0.00E+00	0		1	4.00E-01	0.00E+00
131	0.00E+00	0	1		4.50E-01	0.00E+00	0			4.50E-01	0.00E+00
132	0.00E+00	0			5.00E-01	0.00E+00	0		d	5.00E-01	0.00E+00
133	0.00E+00	0		,	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00
134	0.00E+00	0	+	,	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00
135	0.00E+00	- 0	•	•	6.50E-01	0.00E+00	0		+	6.50E-01	0.00E+00
136	0.00E+00	0	*		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
137	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00
138	0.00E+00	0		,	8 00E-01	0.00E+00	0			8.00E-01	0.00E+00
130	0.00E+00	0	:	;	8.50E-01	0.00E+00	0			8.50E-01	0.00E+00
140	0.00E+00	0.	•	1-	9.00E-01	0.00E+00	0.			9.00E-01	0.00E+00
140	0.00E+00	0.	1	+-	9 50E-01	0.00E+00	0			9.50E-01	0.00E+00
142	0.00E+00	0		+	1.00E+00	0.00E+00	- 0,+-			1.00E+00	0.00E+00
142	0.00E+00	0		+	1.05E+00	0.00E+00	0		+	1.05E+00	0.00E+00
143	0.000000	0			1.05E+00	0.000000	0			1 10E+00	0.00E+00
144	0.00E+00	0			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00
145	0.00E+00	0			1.10E+00	0.00E+00	-01			1 20E+00	0.00E+00
140	0.00E+00		+		1.20E+00	0.00E+00	0		1	1.25E+00	0.00E+00
147	0.00E+00	0			1.252.00	0.00E+00	0			1 30F+00	0.00E+00
140	0.00E+00		•		1.302+00	0.000000	0			1.35E+00	0.00E+00
149	0.00E+00				1.332+00	0.00E+00	0		+	1.40E+00	0.00E+00
150	0.00E+00	0			1.402+00	0.00E+00	0			1.40E+00	0.00E+00
151	0.00E+00	- 0			1.432+00	0.00E+00	0	-	1	1.45E+00	0.00E+00
152	0.00E+00				1.50E+00	0.00000	0			1.50L+00	0.00L+00
153	0.00E+00	0		,	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
154	0.00E+00	0			1.60E+00	0.00E+00	0		-	1.60E+00	0.000000
155	0.00E+00	- 0			1.65E+00	0.00E+00	0			1.05E+00	0.00E+00
156	0.00E+00	0		,	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
157	0.00E+00	0			1.75E+00	0.00E+00	U		-	1.73E+00	0.00E+00
158	0.00E+00	0	6		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
159	0.00E+00	- 0			1.85E+00	0.00E+00	0		-	1.85E+00	0.00E+00
160	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
161	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
162	0.00E+00	0,	4		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00
163	4.82E-01	0.0003			total	4.82E-01	0.0003			total	4.82E-01
164			1								L
165							-				
166	fid180d				Filename	fid200d		_		Filename	fid220d
167			-				- +		1		
168	ps = 4856265	50			Itally 8 r	nps = 471239	45		1	Itally 8 1	nps = 4640
169	e 8 pulse he	eight distrib	oution.	uni	tally typ	pe 8 pulse h	neight distri	bution.	uni	tally ty	pe 8 pulse
170	photons				tally for	r photons				tally for	r photons
171			1								
172					cell 2					cell 2	
173	1	1		T	energy				1	energy	1
174	0.00E+00	0		~ •	0.00E+00	0.00E+00	0			0.00E+00	0.00E+00
175	2.40E-01	0.0003			5.00E-02	2.66E-01	0.0002			5.00E-02	2.87E-01
176	3.44E-02	0.0008		•	1.00E-01	3.59E-02	0.0008		-	1.00E-01	3.64E-02
177	4.92E-02	0.0006		1	1.50E-01	4.37E-02	0.0007			1.50E-01	4.16E-02
178	1.63E-01	0.0003		+	2.00E-01	1.41E-01	0.0004			2.00E-01	2.28E-02
179	0.00E+00	0		4	2.50E-01	5.83E-05	0.0191		•	2.50E-01	9.95E-02
180	0.00E+00	0			3.00E-01	0.00E+00	0			3.00E-01	0.00E+00

	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY
181	0.00E+00	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00
182	0.00E+00	0			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00
183	0.00E+00	0			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00
184	0.00E+00	0			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00
185	0.00E+00	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00
186	0.00E+00	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00
187	0.00E+00	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00
188	0.00E+00	0			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00
189	0.00E+00	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00
190	0.00E+00	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00
191	0.00E+00	0			8.50E-01	0.00E+00	0		•	8.50E-01	0.00E+00
192	0.00E+00	0			9.00E-01	0.00E+00	0	-		9.00E-01	0.00E+00
193	0.00E+00	0	-		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00
194	0.00E+00	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00
195	0.00E+00	0			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00
196	0.00E+00	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00
197	0.00E+00	0			1.15E+00	0.00E+00	0		•	1.15E+00	0.00E+00
198	0.00E+00	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00
199	0.00E+00	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00
200	0.00E+00	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00
201	0.00E+00	0			1.35E+00	0.00E+00	0		•	1.35E+00	0.00E+00
202	0.00E+00	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00
203	0.00E+00	0	-		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00
204	0.00E+00	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00
205	0.00E+00	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00
206	0.00E+00	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00
207	0.00E+00	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00
208	0.00E+00	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00
209	0.00E+00	0			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00
210	0.00E+00	0			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00
211	0.00E+00	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00
212	0.00E+00	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00
213	0.00E+00	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00
214	0.00E+00	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00
215	4.87E-01	0.0001			total	4.87E-01	0.0001			total	4.87E-01

	BZ	CA	CB	CC	CD	CE	CF	CG	СН	CI	CJ
1	_	_			-					- +	
2			+	,		1		1		ة 	
3											
4			1.			*			-		
3		_			4 4	1		·	1		
7			۰.						-	+	
8			r		1				1		
9			-			•				•	
10			-	Filename	fid240a				Filename	fid260a	
11			1	1 -	1 4	•			1	+ +- I	
12	24		1	Itally 8	nps = 151565	81			Itally 8	nps = 150594	99
13	height distri	bution.	uni	i tally ty	pe 8 pulse h	neight distri	bution.	uni	tally ty	pe 8 pulse h	leight dist
14				tally fo	or photons				tally fo	r photons	
15										. <u> </u>	
16				cell 2					cell 2	······	
17	0.			energy	0.000.00	0		-	energy	0.0000.000	0
18	0 0004		•	0.00E+00	2.00E+00	0 0001			5 00E 02	2.00E+00	0 0004
20	0.0004			1.00E-02	2.05E-01	0.0004		1	1.00E-02	3.03E-01	0.0004
20	0.0011			1.50E-01	\$ 12E-02	0.0011		+	1.50E-01	4 92E-02	0.0011
22	0.0016	-	+	2.00E-01	1.86E-02	0.0019		+	2.00E-01	1.82E-02	0.0019
23	0.0009			2.50E-01	6.51E-02	0.001		+	2.50E-01	1.32E-02	0.0022
24	0		+	3.00E-01	0.00E+00	0	. –	1	3.00E-01	4.47E-02	0.0012
25	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0
26	0		1	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0
27	0			4.50E-01	0.00E+00	0		1	4.50E-01	0.00E+00	0
28	0		1	5.00E-01	0.00E+00	0	_	1-	5.00E-01	0.00E+00	0
29	0			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0
30	0		-	6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0
31	0		+	6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0
32	0!			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0
33	0			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0
34	0			8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0
35	- 0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0
30	0			9.00E-01	0.00E+00	0		·	9.00E-01	0.00E+00	0
37	0			9.50E=01	0.00E+00	0		t	1.00E+00	0.00E+00	
30	0			1.00E+00	0.00E+00	0			1.05E+00	0.00E+00	0
40	0			1.10E+00	0.00E+00	0		4	1.10E+00	0.00E+00	0
41	0		4	1.15E+00	0.00E+00	0		+	1.15E+00	0.00E+00	0
42	0		L	1.20E+00	0.00E+00	0 [°]			1.20E+00	0.00E+00	0
43	0		- · -	1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0
44	0		to	1.30E+00	0.00E+00	0		t -	1.30E+00	0.00E+00	Ō
45	0			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0
46	0			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0
47	0			1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0
48	0		Ļ	1.50E+00	0.00E+00	0	-		1.50E+00	0.00E+00	0
49	0	_		1.55E+00	0.00E+00	0		1	1.55E+00	0.00E+00	0
50	0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0
51	0			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0
52	0			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0
54	0			1.00000	0.00E+00	0		+	1.000-00	0.000000	
55	0		4	1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0
56	0		4	1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0
57	0.	-	+	1.95E+00	0.00E+00	0		⊢	1.95E+00	0.00E+00	0
58	0			2.00E+00	0.00E+00	0		+ -	2.00E+00	0.00E+00	0
59	0.0003			total	4.54E-01	0.0003		4	total	4.54E-01	0.0003
60	_		•							4	

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	BZ	CA	CB	CC	CD	CE	CF	CG	СН	CI	CJ
61					· · · · · · · · · · · · · · · · · · ·				• • • • • • • • • • • • • • • • • • • •		
62			4	Filename	fid240b				Filename	fid260b	
63			4								
64	89		•	Itally 8 r	nps = 15771	720		•	Itally 8	nps = 14932	828
65	height distr	ibution.	uni	tally typ	be 8 pulse	height distr	ibution.	uni	tally ty	pe 8 pulse	height dist
66				tally for	photons				tally fo	r photons	
67								•	•		
68				cell 2					cell 2		· -
69				energy	,				energy		
70	0			0.00E+00	0.00E+00	0	-		0.00E+00	0.00E+00	0
71	0.0004	•	• •	5.00E-02	2.97E-01	0.0004			5.00E-02	3.11E-01	0.0004
72	0.0013		-	1.00E-01	3.28E-02	0.0014			1.00E-01	2.98E-02	0.0015
73	0.0011			1.50E-01	4.92E-02	0.0011			1.50E-01	4.80E-02	0.0012
74	0.0015		-	2.00E-01	1.74E-02	0.0019			2.00E-01	1.71E-02	0.002
75	0.0008	:		2.50E-01	7.71E-02	0.0009			2.50E-01	1.36E-02	0.0022
76	0			3.00E-01	0.00E+00	0			3.00E-01	5.44E-02	0.0011
77	0			3.50E-01	0.00E+00	. 0			3.50E-01	0.00E+00	0
78	0			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0
79	0			4.50E-01	0.00E+00	. 0			4.50E-01	0.00E+00	· 0
80				5.00E-01	0.00E+00	. 0			5.00E-01	0.00E+00	0
81	- 0		•	5 50E-01	0.00E+00	. 0			5.50E-01	0.00E+00	0
82				6 00F-01	0.00E+00	. 0			6.00E-01	0.00E+00	0
02				6 50E-01	0.00E+00	. 0			6.50F-01	0.00E+00	. 0
0.0			• •	7.00F-01	0.00E+00	0			7.00E-01	0.00E+00	. 0
04				7.50E-01	0.0000.000	. 0			7.50E-01	0.00E+00	··· - 0
00	0		*	7.50E-01	0.000	0		•	8 00E-01	0.00E+00	· ol
80	i i		•	8.00E-01	0.00E+00	0			8.50E-01	0.00E+00	·- · 0
8/	0			8.30E-01		· 0			. 9.00E-01	0.00E+00	. 0
88	0			9.00E-01	0.000+00	. 0			9.00E-01	0.00E+00	
89	Û Ô			9.50E-01	0.00E+00	. 0		· ·	9.50L-01	0.0000000	
90				1.00E+00	0.0000+00	. 0			1.00E+00	0.00E+00	
91	0			1.05E+00	0.00E+00	0			. 1.10E+00	0.000+00	
92			• •	1.10E+00	0.00E+00	. 0			1.102+00	0.000+00	
93	0			1.15E+00	0.00E+00	. 0			1.13E+00		
94	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	
95	0			1.25E+00	0.00E+00	0					ö
96	- 0			1.30E+00	0.00E+00	. 0			1.30E+00		0
97	0			1.35E+00	0.00E+00	. 0		•	1.35E+00		
98	0			1.40E+00	0.00E+00	. 0			1.40E+00	0.00E+00	
99	0			1.45E+00	0.00E+00	0		-	1.45E+00		. 0
100	0			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0
101	0			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	. 0
102	0			1.60E+00	0.00E+00	. 0			1.60E+00	0.00E+00	- 0
103	0		F	1.65E+00	0.00E+00	. 0			1.65E+00	0.00E+00	. 0
104	0	•		1.70E+00	0.00E+00	0		;	1.70E+00	0.00E+00	
105	0			1.75E+00	0.00E+00	. 0			1.75E+00	0.00E+00	0
106	0			1.80E+00	0.00E+00	. 0			1.80E+00	0.00E+00	
107	0		-	1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	
108	0			1.90E+00	0.00E+00	. 0			1.90E+00	0.00E+00	0
109	0			1.95E+00	0.00E+00	. 0			1.95E+00	0.00E+00	. 0
110	0			2.00E+00	0.00E+00	. 0			2.00E+00	0.00E+00	0
111	0.0003	,	4	total	4.74E-01	0.0003		·	total	4.74E-01	0.0003
112								. –			
113					•			· 			
114			-	Filename	fid240c				Filename	fid260c	
115									·		
116	22			Itally 8	nps = 15949	9188			Itally 8	nps = 15821	370
117	height distr	ibution.	uni	tally ty	pe 8 pulse	height dist	ribution.	un	i tally ty	pe 8 pulse	height dist
118				tally fo	r photons				tally fo	or photons	
119		•	-								
120	1			cell 2					cell 2		

Page	87	of	108	

	BZ CA	CB	CC	CD	CE	CF	CG	СН	CI	CJ
121			energy		-		1	energy	0.007.001	
122	0'		0.00E+00	0.00E+00	0		1	0.00E+0	0 0.00E+00	0
123	0.0004		5.00E-02	3.02E-01	0.0004			5.00E-0	2 3.16E-01	0.0004
124	0.0013		1.00E-01	3.26E-02	0.0014			1.00E-0	1 2.98E-02	0.0014
125	0.0011	_	1.50E-01	4.64E-02	0.0011		-	1.50E-0	1 4.62E-02	0.0011
126	0.0016		2.00E-01	1.55E-02	0.002			2.00E-0	1 1.55E-02	0.002
127	0.0008		2.50E-01	8.60E-02	0.0008			2.50E-0	1 1.34E-02	0.0022
128	0		3.00E-01	0.00E+00	0			3.00E-0	1 6.19E-02	0.001
129	0		3.50E-01	0.00E+00	0			3.50E-0	1: 0.00E+00	0
130	0	- r	4.00E-01	0.00E+00	0			4.00E-0	1, 0.00E+00	0
131	0		4.50E-01	0.00E+00	0		1	4.50E-0	1 0.00E+00	(
132	0	ł	5.00E-01	0.00E+00	0			5.00E-0	1 0.00E+00	0
133	0	L	5.50E-01	0.00E+00	0			5.50E-0	1 0.00E+00	C
134	0		6.00E-01	0.00E+00	0		11	6.00E-0	1 0.00E+00	0
135	0	-1-	6.50E-01	0.00E+00	0		1	6.50E-0	1 0.00E+00	C
136	0		7.00E-01	0.00E+00	0		1	7.00E-0	1 0.00E+00	0
137	0		7.50E-01	0.00E+00	0			7.50E-0	1 0.00E+00	0
138	0	•	8 00F-01	0.00E+00	0			8 00E-0	1 0.00E+00	0
130	- 0,	7	8 50F-01	0.00E+00	0		-1 -*	8 50F-0	1 0.00E+00	- 0
140	0	- #-	0.00E-01	0.000000	0.			9.00E-0	1 0.00E+00	0
140	0		0 50E 01	0.000000	0		4	9.50E-0	1 0.00E+00	0
141	0		3.50E-01	0.000000	0		-	9.JOL-0	0.00E+00	0
142	01		1.00E+00	0.00E+00	0			1.000-0	0. 0.00E+00	0
143	0		1.05E+00	0.00E+00	0		1 .	1.05E+0	0, 0.00E+00	0
144	0		1.10E+00	0.00E+00	0			1.10E+0	0 0.00E+00	0
145	0		1.15E+00	0.00E+00	0		-	1.15E+0	0: 0.00E+00	0
146	0,	+	1.20E+00	0.00E+00	0			1.20E+0	0 0.00E+00	0
147	0		1.25E+00	0.00E+00	0		+	1.25E+0	0 0.00E+00	0
148	0		1.30E+00	0.00E+00	0		-	1.30E+0	0 0.00E+00	0
149	0.		1.35E+00	0.00E+00	0			1.35E+0	0 0.00E+00	0
150	0		1.40E+00	0.00E+00	0		+	1.40E+0	0_0.00E+00	0
151	0		1.45E+00	0.00E+00	0			1.45E+0	0 0.00E+00	0
152	0		1.50E+00	0.00E+00	0			1.50E+0	0_0.00E+00	0
153	0		1.55E+00	0.00E+00	0			1.55E+0	0 0.00E+00	0
154	0		1.60E+00	0.00E+00	0		+	1.60E+0	0 0.00E+00	0
155	0		1.65E+00	0.00E+00	0			1.65E+0	0, 0.00E+00	0
156	0		1.70E+00	0.00E+00	0			1.70E+0	0 0.00E+00	0
157	0		1.75E+00	0.00E+00	0			1.75E+0	0 0.00E+00	0
158	0	-	1.80E+00	0.00E+00	0		•	1.80E+0	0 0.00E+00	0
159	0		1.85E+00	0.00E+00	0			1.85E+0	0 0.00E+00	0
160	0	-	1.90E+00	0.00E+00	0		*	1.90E+0	0 0.00E+00	0
161	0	X	1.95E+00	0.00E+00	0			1.95E+0	0 0.00E+00	0
162	0'		2.00E+00	0.00E+00	0			2.00E+0	0 0.00E+00	0
163	0.0003	•	total	4 83F-01	0.0003	-	+ -	Itotal	4 83E-01	0.0003
164	0.0005.		total	1 1.052-01	0.0005	-	÷	+	+ + +	0.0005
165					,		8 M 10		++	
166			Filonomo	642404				Filanama	6d260d	
167		-1	rnename	1102400	ŀ			rnename	1102000	
10/	12		140110 0	15006	:02			Itally 0		222
100	13		tally o	nps - 438003	haight distri	hution		fially o	nps - 443/4	haight dist
109 1	eight distribution	uni	tally typ	pe 8 puise i	neight distri	oution.			ype 8 puise	neight dist
170			tally for	pnotons	,			tally f	or photons	
1/1			+ =	L			ı	- 11.0	1	
172			cell 2			-		cell 2		
173			energy	r	1	100		energy	1	
174	0		0.00E+00	0.00E+00	0,		+	0.00E+0	0 0.00E+00	(
175	0.0002		5.00E-02	3.04E-01	0.0002			5.00E-0	2 3.18E-01	0.0002
176	0.0008		1.00E-01	3.27E-02	0.0008			1.00E-0	1 3.00E-02	0.0009
177	0.0007		1.50E-01	4.36E-02	0.0007			1.50E-0	1 4.43E-02	0.0007
178	0.001		2.00E-01	1.35E-02	0.0013		,	2.00E-0	1 1.38E-02	0.0013
179	0.0004		2.50E-01	9.36E-02	0.0005			2.50E-0	1 1.28E-02	0.0013
190	0	0	3 00E-01	0.005+00	0		1	3 00F-0	1 6 86E-02	0.0006

Worksheet "MCNP Data p=2.3	5" of Workbook	"MCNP Volume	Seneca.xls"
----------------------------	----------------	--------------	-------------

	BZ	СА	CB	CC	CD	CE	CF	CG	СН	CI	CJ
181	0			3.50E-01	0.00E+00	0			3.50E-01	0.00E+00	0
182	0		•	4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0
183	0		•	4.50E-01	0.00E+00	0		•	4.50E-01	0.00E+00	0
184	0		*	5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0
185	0		•	5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0
186	0			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0
187	0			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0
188	0			7.00E-01	0.00E+00	0		•	7.00E-01	0.00E+00	0
189	0	-	•	7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	Ö
190	0		-	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0
191	0			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0
192	0		•	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0
193	0			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0
194	0			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0
195	0			1.05E+00	0.00E+00	0		•	1.05E+00	0.00E+00	0
196	0			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0
197	0		•	1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0
198	0			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0
199	0			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0
200	0			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0
201	0		•	1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0
202	0	-		1.40E+00	0.00E+00	0		• • • •	1.40E+00	0.00E+00	0
203	0			1.45E+00	0.00E+00	0		•	1.45E+00	0.00E+00	0
204	0		-	1.50E+00	0.00E+00	0		•	1.50E+00	0.00E+00	0
205	0		*	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0
206	- 0			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0
207	0			1.65E+00	0.00E+00	0		•	1.65E+00	0.00E+00	0
208	0	-	•	1.70E+00	0.00E+00	0		• •	1.70E+00	0.00E+00	0
209	0			1.75E+00	0.00E+00	0		•	1.75E+00	0.00E+00	0
210	0			1.80E+00	0.00E+00	0		•	1.80E+00	0.00E+00	- 0
211	0			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0
212	0			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0
213	0			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0
214	0			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0
215	0.0002			total	4.87E-01	0.0002			total	4.87E-01	0.0002

	CK	CL	СМ	CN	CO	CP	CQ	CR	CS	СТ	CU
1											
2	-		•			•					
3			+ •			,			1		
4			•						1	*	
5									1		
6											-
7											
8	+				•						
9	1	-	£		*						
10			Filename	fid280a		•		Filename	fid300a		
11	· · · · ·	-									
12		-	Itally 8 n	ns = 149981	95			Itally 8	nns = 1494181	13	
13	hution	uni	tally typ	e 8 nulse h	eight distri	hution	uni	tally ty	ne 8 pulse h	eight distri	bution.
14		um	tally for	photons	-Bill -Ibill			tally fo	or photons		
15	-			photono .					T		
16			cell 2					cell 2	-	-	
17			con 2					energy	:		-
18	÷		0.00F+00	0.00E+00	0			0.00E+0	0 00E+00	0	
19			5 00F-02	3.09F-01	0.0004			5.00F-0	2 3 18F-01	0.0004	
20		-	1 00F-01	2.82F-02	0.0015	,	-	1 00F-0	1 2.65E-02	0.0016	
20		-	1 50F-01	4 64F-02	0.0012		1000	1.50E-0	1 4 14F-02	0.0012	
22			2 00F-01	1.84E-02	0.0012			2 00F-0	1 2.12F-02	0.0012	
22		_	2.50E-01	0 33E-03	0.0017			2.00E-0	1 7.83E-02	0.0029	
20			3.00E-01	A 27E-02	0.0027	+-		3.00E-0	1 3.02E-03	0.0022	
25			3 50E-01	0.00E+00	0.0012	+-		3.50E-0	1 1.65E-02	0.0638	
26			4.00E-01	0.00E+00	0			4.00E-0	1 0.00E+00	0.0038	
20			4.00E-01	0.0000	- 0'			4.00E-0	1 0.00E+00		
20			4.50E-01	0.00E+00	0			4.50E-0	1 0.00E+00	0	
20	+-		5.50E-01	0.000+00	0			5.50E-0	1 0.00E+00	0	
29			6.00E.01	0.000000	0		-	5.50E-0	1 0.00E+00	0	
21			6.50E-01	0.00E+00	0			6.00E-0	1 0.00E+00	0	
22			0.30E-01	0.00000	0			0.50E-0	1 0.00E+00	0	
32	+		7.00E-01	0.00E+00	0			7.00E-0	1 0.00E+00		
33			7.50E-01	0.00E+00	0			7.50E-0	1 0.00E+00	0	
34			8.00E-01	0.00E+00	0	t		8.00E-0	1 0.00E+00	0	
33			8.50E-01	0.00E+00	0			8.50E-0	1 0.00E+00	0	
30			9.00E-01	0.00E+00	0			9.00E-0	1 0.00E+00	0	
3/	_		9.50E-01	0.00E+00	0			9.50E-0	1 0.00E+00	0	
38			1.00E+00	0.00E+00	0			1.00E+0	0 0.00E+00	0	
39			1.05E+00	0.00E+00	0			1.05E+0	0 0.00E+00	0	
40	+		1.10E+00	0.00E+00	- 0	•		1.10E+0	0 0.00E+00	0	
41	- +		1.15E+00	0.00E+00	0			1.15E+0	0 0.00E+00	0	
42			1.20E+00	0.00E+00	0			1.20E+0	0.00E+00	0.	
43			1.25E+00	0.00E+00	0	-		1.25E+0	0.00E+00	0	
44			1.30E+00	0.00E+00	0	,		1.30E+0	0.00E+00	0	
45		1	1.35E+00	0.00E+00	0	ł	-	1.35E+0	0.00E+00	0	
46			1.40E+00	0.00E+00	0	i i		1.40E+0	0 0.00E+00	0	
47			1.45E+00	0.00E+00	0			1.45E+0	0 0.00E+00	0	
48			1.50E+00	0.00E+00	0	+		1.50E+0	0 0.00E+00	0	
49			1.55E+00	0.00E+00	0	-		1.55E+0	0 0.00E+00	0	
50			1.60E+00	0.00E+00	0			1.60E+0	0 0.00E+00	0	
51			1.65E+00	0.00E+00	0			1.65E+0	0_0.00E+00	0	
52			1.70E+00	0.00E+00	0			1.70E+0	0 0.00E+00	0	
53			1.75E+00	0.00E+00	0	-		1.75E+0	0 0.00E+00	0	
54			1.80E+00	0.00E+00	0			1.80E+0	0 0.00E+00	0	
55			1.85E+00	0.00E+00	0			1.85E+0	0_0.00E+00	0	
56			1.90E+00	0.00E+00	0			1.90E+0	0' 0.00E+00'	0	
57			1.95E+00	0.00E+00	0			1.95E+0	0 ₁ 0.00E+00	0	
58		-	2.00E+00	0.00E+00	0			2.00E+0	0 0.00E+00	0	
59			total	4.54E-01	0.0003			total	4.54E-01	0.0003	
60											

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	CK	CL	СМ	CN	CO	СР	CQ	CR	CS	СТ	CU
61											
62			Filename	fid280b			+	Filename	fid300b		
63		_					;		101400	20	
64			Itally 8 r	1525983	84	1		Itally 8 r	1ps = 1514/8	29	ibution
65	bution.	uni	tally typ	be 8 pulse h	eight distr	ibution.	uni	tally typ	be a puise n	leight distr	ibution.
66			tally for	photons				tany ion	photons		
6/							-	cell 2			-
60			energy				_	energy			
70	· ·		0.005+00	0.00E+00	0			0.00F+00	0.00E+00	0	
71			5 00F-02	3 22E-01	0.0004			5.00E-02	3.31E-01	0.0004	
72			1 00E-01	2.79E-02	0.0015			1.00E-01	2.64E-02	0.0016	
73			1.50E-01	4.59E-02	0.0012		· – ,	1.50E-01	4.09E-02	0.0012	
74			2.00E-01	1.75E-02	0.0019	_	-+	2.00E-01	2.09E-02	0.0018	
75		-	2.50E-01	9.07E-03	0.0027			2.50E-01	7.47E-03	0.003	
76			3.00E-01	5.14E-02	0.0011			3.00E-01	4.68E-02	0.0012	
77			3.50E-01	0.00E+00	0			3.50E-01	2.03E-05	0.0571	
78	i .		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	
79			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0	
80			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	
81	_		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	
82			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0	
83			6.50E-01	0.00E+00	0		100	6.50E-01	0.00E+00	0	-
84		_	7.00E-01	0.00E+00	0		. 1	7.00E-01	0.00E+00	0	-
85			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	_ 0	
86			8.00E-01	0.00E+00	0	4		8.00E-01	0.00E+00	0	
87			8.50E-01	0.00E+00	0			8.50E-01	0.00E+00		
88			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0	
89			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	
90			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	
91			1 10E+00	0.00E+00	0	-		1.05E+00	0.00E+00		-
92			1.10E+00	0.00E+00	0		•	1.15E+00	0.00E+00	0	
95			1 20E+00	0.00E+00	0		·	1.20E+00	0.00E+00	0	
95	•		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0	
96		-	1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
97			1.35E+00	0.00E+00	0	• •		1.35E+00	0.00E+00	0	
98			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0	
99			1.45E+00	0.00E+00	0		1 .	1.45E+00	0.00E+00	0	
100			1.50E+00	0.00E+00	- 0			1.50E+00	0.00E+00	0	
101			1.55E+00	0.00E+00	0	•		1.55E+00	0.00E+00	0	
102			1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0	
103			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
104			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	-
105			1.75E+00	0.00E+00	0		,	1.75E+00	0.00E+00	0	
106			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0	
107			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
108			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
109			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	
110			2.00E+00	0.00E+00	0		+	2.00E+00	1.00E+00	0 0000	
111			total	4./4E-01	0.0003			total	4.74E-01	0.0003	
112						4					
113			Filena	E 1280-		t		Filonoma	642000		
114			riiename	11028UC	- 10			rnename	Ilusouc		
115			Itally 9	- 157045	10		F -	Itally 9	156246	70	
116	hution		tally 6 1	1ps - 15/045	eight dist.	ibution		tally to	ne 8 nulse	neight diet	ibution
11/	oution.	un	tally for	r photons	eight disti	ioution.	uni	tally for	nhotons	leight uist	ioution.
110			tally 10	photons			•	tally 10	photons +		
120			cell 2				1	cell 2			
120											

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	CK	CL	CM	CN	CO	CP	CO	CR	CS	CT	CU
121			energy					energy			
122			0.00E+00	0.00F+00	0		1	0.00E+00	0.00E+00	$\overline{0}$	
122	- +		5 00E 02	3 27E-01	0.0004			5 00F-02	3 37F-01	0 0004	-
123			1.00E-01	2 80E-02	0.0004			1.00E-02	2.65E-02	0.0015	-
124	-		+ 1.50E-01	4.405.02	0.0013		·	1.50E-01	4 00E-02	0.0012	
125			1.50E-01	4.49E=02	0.0012		ŧ	2.005.01	2.01E.02	0.0012	
126			2.00E-01	1.01E-02	0.002			2.00E-01	2.01E-02	0.0010	
127	+		2.50E-01	8.40E-03	0.0027			2.50E-01	0.83E-03	0.0031	
128		_	3.00E-01	5.81E-02	0.001		4	3.00E-01	3.25E-02	0.0011	
129			3.50E-01	0.00E+00	0			3.50E-01	2.20E-05	0.0539	
130			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	
131			4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0	
132			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	
133			5.50E-01	0.00E+00	0		1	5.50E-01	0.00E+00	0	
134			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0	
135			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0	
136			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0	
137	4		7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	
138	-	-	8.00E-01	0.00E+00	0		•	8.00E-01	0.00E+00	0	
139			8.50E-01	0.00E+00	0		• •	8.50E-01	0.00E+00:	0	
140			9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0	
141			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	
142			1.00E+00	0.00E+00	0		Ŧ	1.00E+00	0.00E+00	01	
143			1.05E+00	0.00E+00	0		+-	1.05E+00	0.00E+00	0	
144		-	1.10E+00	0.00E+00	0		•	1.10E+00	0.00E+00	0	-
145	+		1.15E+00	0.00E+00	0		+	1.15E+00	0.00E+00	0	
146	and		1 20E+00	0.00E+00	0		•	1.20E+00	0.00E+00	0	
147		=	1.25E+00	0.00E+00.	0		· -	1.25E+00	0.00E+00	0	
148			1.30E+00	0.00E+00	0			1 30E+00	0.00E+00	0	
140			1.35E+00	0.00E+00	0		1	1 35E+00	0.00E+00	0	
147			1.405+00	0.000000	0			1.40E+00	0.00E+00	0	
150			1.400+00	0.000-00	0			1.40E+00	0.00E+00	0	
151			1.45E+00	0.000+00	0			1.45E+00	0.00E+00	0	
152			1.50E+00	0.000000	0			1.50E+00	0.0000+001	0	
155			1.552+00	0.000000	- 0			1.55E+00	0.000000	0	
154			1.60E+00	0.00E+00	0			+ 1.00E+00	0.00E+00		
155			1.65E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
156			1.70E+00	0.00E+00	0			-+ 1.70E+00	0.00E+00	0.	
157			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0	
158			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0	
159			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
160			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
161		_	1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	
162		_	2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0	
163			total	4.83E-01	0.0003			total	4.83E-01	0.0003	
164									+		
165								1			
166			Filename	fid280d				Filename	fid300d		
167									1		
168	-1		Itally 8 r	nps = 44968	646			Itally 8	nps = 448181	72	
169	bution.	uni	tally typ	be 8 pulse	height distri	bution.	u	ni tally ty	pe 8 pulse h	neight distr	ibution.
170			tally for	photons				tally fo	r photons		
171					•						
172			cell 2				*	cell 2			
173			energy				,	energy	1		
174			0.00E+00	0.00E+00	0		+	0.00E+00	0.00E+00	0	
175			5.00E-02	3.29E-01	0.0002			5.00E-02	3.39E-01	0.0002	
176			1.00E-01	2.82F-02	0.0009		•	1.00E-01	- 2.68E-02	0.0009	
177			1 50E-01	4 38F-02	0.0007			1 1 50E-01	3 91F-02	0.0007	
170			2.005-01	1.45E-02	0.0007		•	2 005-01	+ 1 91F-02	0.0011	
170			2.00E-01	7 55E 02	0.0012			2.000-01	6 05E 02	0.0010	
1/9	-		2.50E-01	1.35E-03	0.0017			2.50E-01	6 75E 00	0.0019	
180			3.00E-01	0.41E-02	0.0006			3.00E-01	5.75E-02	0.0006	1.2.1

Worksheet "MCN	P Data p=2.35"	of Workbook	"MCNP	Volume Seneca.xls"
----------------	----------------	-------------	-------	--------------------

	CK	CL	CM	CN	CO	СР	CQ	CR	CS	CT	CU
181			3.50E-01	0.00E+00	0		• • • • • • • • • • • • • • • • • • • •	3.50E-01	2.23E-05	0.0316	
182			4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0	
183		•	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0	
184			5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0	1
185			5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	
186			6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0	
187			6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0	
188			7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0	1
189			7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0	
190		•	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0	
191			8.50E-01	0.00E+00	0		• · · ·	8.50E-01	0.00E+00	0	
192		•	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0	
193			9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0	
194			1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0	, .
195			1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0	
196			1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0	-
197			1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0	
198			1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0	
199			1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0	
200			1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0	
201			1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0	-
202			1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0	
203			1.45E+00	0.00E+00	0		-	1.45E+00	0.00E+00	0	
204			1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0	
205			1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0	
206	-		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0	
207			1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0	
208			1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0	
209			1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0	
210			1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0	
211			1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0	
212			1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0	
213			1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0	
214			2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0	
215			total	4.88E-01	0.0002			total	4.88E-01	0.0002	

ГТ	CV	CW	CX	CY	CZ	DA	DB	DC	DD	DE	DF
1									_		
2							4- 1				
3											
4								-+	-+		
5	-			i					_		
6							. 1		-		
7	-			+					+		
8			1	8			i	- +			
9								C 10 10			
10		Filename !	fid320a				Filename	tid340a			
11	+		140245				1	140014	20		
12	-	Itally 8 n	ps = 149245	0U nicht dietei	hution		Itally 8 n	ps = 148814	29 night dietri	hution	
13	uni	tally typ	e o puise i		button.	um	tally for	nhotons	leight distri	bution.	din
14	•	tany for	photons	+			tally loi	photons			
16	· ·	cell 2					cell 2			-	
17		energy					energy				
18		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0		
19		5.00E-02	3.26E-01	0.0004			5.00E-02	3.32E-01	0.0004		
20		1.00E-01	2.50E-02	0.0016			1.00E-01	2.37E-02	0.0017		
21		1.50E-01	3.65E-02	0.0013			1.50E-01	3.22E-02	0.0014		
22		2.00E-01	2.41E-02	0.0016			2.00E-01	2.66E-02	0.0016		
23		2.50E-01	7.24E-03	0.003			2.50E-01	6.98E-03	0.0031		
24		3.00E-01	7.28E-03	0.003			3.00E-01	4.44E-03	0.0039		
25		3.50E-01	2.85E-02	0.0015			3.50E-01	2.83E-02	0.0015		
26		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0		
27	1	4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0		
28		5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0		
29		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0		
30		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0		
31		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		
32		7.00E-01	0.00E+00				7.00E-01	0.00E+00	0.		
33		7.50E-01	0.00E+00	0			7.50E-01	0.00E+00	0		
34		8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0		
26		0.00E-01	0.000000	-0.		•	9.00E-01	0.00E+00	0		
30		9.50E-01	0.00E+00	0		•	9.50E-01	0.00E+00	0		
38	+	1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0		
30		1.05E+00	0.00E+00	- 0		•	1.05E+00	0.00E+00	0		
40		1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0		
41	+	1.15E+00	0.00E+00	0		*	1.15E+00	0.00E+00	0		
42		1.20E+00	0.00E+00	0		•	1.20E+00	0.00E+00	0		
43		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		
44		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0		
45		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0		
46		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0		
47		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		
48	C	1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0		
49		1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0		
50		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0		
51		1.65E+00	0.00E+00	0	-	1	1.65E+00	0.00E+00	0		
52		1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0		
53		1.75E+00	0.00E+00	0		-+	1.75E+00	0.00E+00	0		
54		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0		
33		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0		
57	+	1.902+00	0.00E+00	0			1.902+00	0.00E+00	0		
50		1.95E+00	0.00E+00	0			2 00E+00	0.00E+00	- 0		+
50		2.00ETUU	4 54F-01	0.0003			total	4 55F-01	0.0003		
60	+	iotai .	1.546-01	0.0003			total	4.55101	0.0005		
00											

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	CV	CW	CX	CY	CZ	DA	DB	DC	DD	DE	DF
61			· · · · · · · · · · · · · · · · · · ·								
62		Filename	fid320b				Filename	fid340b			
63		,							-		
64		Itally 8	nns = 15147	951			Itally 8 r	s = 15130	177	•	
65		tolly ty	nps = 15147	height dist	ribution	uni	tally typ	ne 8 mulse	height dist	ibution	uni
03	uni	tally ty	pe o puise	neight dist	ibution.	um	tally for	nhotons	incigin dist		· unit
66		tany to	r photons				tany ion	photons			
67			a .				11 0		• · ·		
68		cell 2					cell 2				
69		energy					energy				
70		0.00E+00	0.00E+00	. 0	•		0.00E+00	0.00E+00			
71		5.00E-02	3.39E-01	0.0004			5.00E-02	3.46E-01	0.0004		
72		1.00E-01	2.51E-02	0.0016			1.00E-01	2.38E-02	0.0016		
73		1.50E-01	3.59E-02	0.0013			1.50E-01	3.15E-02	0.0014		
74		2.00E-01	2.45E-02	0.0016			2.00E-01	2.75E-02	0.0015		
75		2.50E-01	6.97E-03	0.0031			2.50E-01	6.77E-03	0.0031		
76		3.00E-01	7.71E-03	0.0029	*		3.00E-01	4.31E-03	0.0039		
77		3.50E-01	3.46E-02	0.0014			3.50E-01	3.41E-02	0.0014		
78		4.00E-01	0.00E+00	. 0			4.00E-01	0.00E+00	0	•	
79		4.50E-01	0.00E+00	. 0			4.50E-01	0.00E+00	. 0		
80		5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	. 0		
81		5.50E-01	0.00E+00	. 0			5.50E-01	0.00E+00	. 0		
82	-	6.00E-01	0.00E+00	. 0			6.00E-01	0.00E+00	. 0		
83		6.50F-01	0.00E+00	. 0			6.50E-01	0.00E+00	· 0	-	
81		7 00E-01	0.00E+00	O			7.00E-01	0.00E+00	. 0	•	
04		7.50E-01	0.00E+00				7 50F-01	0.00E+00			
0.5		8 00E-01	0.00E+00				8.00F-01	0.00E+00		• • • • • • • •	
07		. 0.00L-01	0.00L+00				8 50E-01	0.00E+00		· · ···· ··· ·	
0/		0.00E-01	0.00E+00				9.00E-01	0.00E+00	0	• •	
88		9.00E-01	0.0000000				9.00E-01	0.000000	· · · · · · · · · · · · · · · · · · ·		
89		9.50E-01					9.50L-01	0.000-00			• •• •
90		1.00E+00	0.0000000	. 0			1.002+00	0.0000+00	O	• - •• •-	
91		1.05E+00	0.00E+00	. 0			1.05E+00	0.00L+00	· · ·	· ·	
92		1.10E+00	0.00E+00	. U			1.10E+00	0.000-00			
93		1.15E+00	0.00E+00		-		1.15E+00	0.00E+00			
94		1.20E+00	0.00E+00		,		1.20E+00	0.00E+00			
95		1.25E+00	0.00E+00	. 0			1.25E+00	0.00E+00	0		
96		1.30E+00	0.00E+00	. 0			1.30E+00	0.00E+00			· -
97		1.35E+00	0.00E+00	. 0			1.35E+00	0.00E+00	. 0		
98		1.40E+00	0.00E+00	. 0			1.40E+00	0.00E+00	. 0		
99		1.45E+00	0.00E+00	. 0	-		1.45E+00	0.00E+00	. 0	-	
100		1.50E+00	0.00E+00	. 0			1.50E+00	0.00E+00			
101		1.55E+00	0.00E+00	. 0			1.55E+00	0.00E+00	0		
102		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	. 0		
103		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	. 0		
104		1.70E+00	0.00E+00) –		1.70E+00	0.00E+00	0	l	
105	-	1.75E+00	0.00E+00	. 0)		1.75E+00	0.00E+00	0		
106	-	1.80E+00	0.00E+00	. C			1.80E+00	0.00E+00	0		-
107		1.85E+00	0.00E+00	(•	1.85E+00	0.00E+00	0		
108		1.90E+00	0.00E+00	. 0)		1.90E+00	0.00E+00	0		
109		1.95E+00	0.00E+00	. (•	1.95E+00	0.00E+00	0		1
110		2.00E+00	0.00E+00				2.00E+00	0.00E+00	0	· · ·	
111		total	4.74E-01	0.0003			total	4.74E-01	0.0003		
112	. – – • • • • • •		::::::::::::::::::::::::::::::::::::::		•						
112			•		•				· –		
113		Filenama	fid320c				Filename	fid340c		• •	····
114		- nename	103200				, nename	103400	•		
113		Itally 0	nne = 15521	533			Itally 8	nns = 1556'	7504		·
110			nps - 15552	hoight dig	ribution		+0112 4-	ne 8 mile	height dist	ribution	··
117	un	tally ty	pe o puise	neight dist	noution.	យា	tally ly	pe o puise nobotono	, neight uist	inoution.	·· · · · · ·
118		. tany to	i photons				tany io	photons			- · · -
119		II - O					adl 2			÷.	·
120		cen 2					cen 2				

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

T	CV	CW	CX	CY	CZ	DA	DB	DC	DD	DE	DF
121		energy					energy	· · · · · · ·			
122		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0		2
123		5.00E-02	3.45E-01	0.0003		5 6	5.00E-02	3.52E-01	0.0003		
124	-	1.00E-01	2.52E-02	0.0016		*	1.00E-01	2.40E-02	0.0016		+
125		1.50E-01	3.50E-02	0.0013			1.50E-01	3.07E-02	0.0014		
126	+-	2.00E-01	2.42E-02	0.0016			2.00E-01	2.75E-02	0.0015		
127	-	2 50F-01	645F-03	0.0031			2.50E-01	6.34E-03	0.0032		
128		3.00F-01	7 77E-03	0.0029		*	3 00F-01	3 97E-03	0.004		-
120	•	3 50E-01	3 94F-02	0.0013		•	3 50F-01	3.87E-02	0.0013	Contract in	-
130	-	4.00F-01	0.00E+00	0			4.00E-01	0.00E+00	0.		
131		4 50E-01	0.00E+00	0			4 50E-01	0.00E+00	0		
132		5.00E-01	0.00E+00	0		4	5 00F-01	0.00E+00	- 0		
132		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	- 0		
124	-	6.00E-01	0.00E+00	- 0 ¹			6.00E-01	0.00E+00	0		
134		6 50E-01	0.00E+00	0			6 50E-01	0.00E+00	0		
135	•	7.00E.01	0.00E+00	0			7.00E-01	0.00E+00			+
127	*	7.50E-01	0.00000	0			7.50E-01	0.000000	0		-
137		9.00E-01	0.00E+00	0			9.00E-01	0.000+00	0		· =
120		8.00E-01	0.001+00	0			8.00L-01	0.001.00	0		+
139		0.00E-01	0.00E+00	0			0.00E-01	0.000000	0		1
140		9.00E-01	0.00E+00	0		*	9.002-01	0.000000	0		
141		1.00E+00	0.00E+00	0		•	1.00E+00	0.0000+00	0		
142		1.000+00	0.00E+00				1.002+00	0.00E+00	0		
143		1.050+00	0.00E+00	0		to = -	1.05E+00	0.000000	0		
144		1.10E+00	0.00E+00	0		1	1.10E+00	0.00E+00	0		
145		1.15E+00	0.00E+00	0		ł	1.15E+00	0.00E+00	0		
140		1.20E+00	0.00E+00	0			1.20E+00	0.00E+00	0		
147		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00			
148		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0		
149		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0		
150		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0		
151		1.45E+00	0.00E+00	- 0			1.45E+00	0.00E+00			+
152		1.50E+00	0.00E+00	0			1.50E+00	0.00E+00	0		
153	+	1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0		
154	+	1.60E+00	0.00E+00	. 0			1.60E+00	0.00E+00			
155		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00			·
156	+	1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0.		
157		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00			
158		1.80E+00	0.00E+00	0		*	1.80E+00	0.00E+00	0		
159		1.85E+00	0.00E+00	0		,	1.85E+00	0.00E+00	0	_	
160		1.90E+00	0.00E+00	0			1.90E+00	0.00E+00	0		
161		1.95E+00	0.00E+00.	0			1.95E+00	0.00E+00	0		
162		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0		
163	to	tal	4.83E-01	0.0003			total	4.83E-01	0.0003		
164		-	۱ • •		_			ļ			
165		_		4		4					+
166	Fi	ilename	fid320d				Filename	fid340d			
167			-		_						1
168	lt	ally 8 r	ps = 445346	16			Itally 8 1	nps = 443340	24		
169	uni	tally typ	be 8 pulse h	eight distri	ibution.	un	tally typ	pe 8 pulse l	neight distr	bution.	uni
170	11	tally for	photons	1			tally for	r photons	_		1
171						10	4				
172	C	ell 2		_			cell 2				-
173		energy				1	energy				
174		0.00E+00	0.00E+00	0			0.00E+00	0.00E+00	0		
175		5.00E-02	3.47E-01	0.0002			5.00E-02	3.54E-01	0.0002		1
176		1.00E-01	2.55E-02	0.0009			1.00E-01	2.43E-02	0.001		
177		1.50E-01	3.42E-02	0.0008			1.50E-01	3.01E-02	0.0009		
178		2.00E-01	2.36E-02	0.001			2.00E-01	2.72E-02	0.0009		
179		2.50E-01	5.85E-03	0.002			2.50E-01	5.85E-03	0.002		
180	4	3.00E-01	7.65E-03	0.0017			3.00E-01	3.53E-03	0.0025		

	CV	CW	CX	CY	CZ	DA	DB	DC	DD	DE	DF
181		3.50E-01	4.37E-02	0.0007			3.50E-01	4.27E-02	0.0007		
182		4.00E-01	0.00E+00	0			4.00E-01	0.00E+00	0		
183		4.50E-01	0.00E+00	0			4.50E-01	0.00E+00	0		
184		5.00E-01	0.00E+00	0			5.00E-01	0.00E+00	0		
185		5.50E-01	0.00E+00	0			5.50E-01	0.00E+00	0	-	
186		6.00E-01	0.00E+00	0			6.00E-01	0.00E+00	0		
187		6.50E-01	0.00E+00	0			6.50E-01	0.00E+00	0		-
188		7.00E-01	0.00E+00	0			7.00E-01	0.00E+00	0		
189		7.50E-01	0.00E+00	0		,	7.50E-01	0.00E+00	0		
190	-	8.00E-01	0.00E+00	0			8.00E-01	0.00E+00	0		
191		8.50E-01	0.00E+00	0			8.50E-01	0.00E+00	0		
192	-	9.00E-01	0.00E+00	0			9.00E-01	0.00E+00	0		
193		9.50E-01	0.00E+00	0			9.50E-01	0.00E+00	0		
194		1.00E+00	0.00E+00	0			1.00E+00	0.00E+00	0		
195		1.05E+00	0.00E+00	0			1.05E+00	0.00E+00	0		
196		1.10E+00	0.00E+00	0			1.10E+00	0.00E+00	0		
197		1.15E+00	0.00E+00	0			1.15E+00	0.00E+00	0		
198		1.20E+00	0.00E+00	0		2	1.20E+00	0.00E+00	0		
199		1.25E+00	0.00E+00	0			1.25E+00	0.00E+00	0		
200		1.30E+00	0.00E+00	0			1.30E+00	0.00E+00	0		
201		1.35E+00	0.00E+00	0			1.35E+00	0.00E+00	0		-
202		1.40E+00	0.00E+00	0			1.40E+00	0.00E+00	0		
203		1.45E+00	0.00E+00	0			1.45E+00	0.00E+00	0		
204		1.50E+00	0.00E+00	0		,	1.50E+00	0.00E+00	0		
205		1.55E+00	0.00E+00	0			1.55E+00	0.00E+00	0		
206		1.60E+00	0.00E+00	0			1.60E+00	0.00E+00	0		
207		1.65E+00	0.00E+00	0			1.65E+00	0.00E+00	0		
208		1.70E+00	0.00E+00	0			1.70E+00	0.00E+00	0		
209		1.75E+00	0.00E+00	0			1.75E+00	0.00E+00	0		-
210		1.80E+00	0.00E+00	0			1.80E+00	0.00E+00	0		
211		1.85E+00	0.00E+00	0			1.85E+00	0.00E+00	0		
212		1.90E+00	0.00E+00	0		•	1.90E+00	0.00E+00	0		
213		1.95E+00	0.00E+00	0			1.95E+00	0.00E+00	0		
214		2.00E+00	0.00E+00	0			2.00E+00	0.00E+00	0		
215		total	4.88E-01	0.0002		•	total	4.88E-01	0.0002		

	DG	DH	DI	DJ	DK	DL	DM
1							
2							
3							
4							
5							
6				,			
7	_			,			
8			1		- ·		. 4
9			2				
10	Filename	fid360a					
11		1.401.50		+			
12	Itally 8 r	1ps = 1491590)/ .t.t.t.attacitu				
13	tally typ	be 8 pulse n	eight distric	oution.	units	number	
14	tally for	photons	, and a second sec				
15	aall 2						
10	cell 2			1			
10	0.005+00	0.005+00	0				1
10	5.00E-02	3 38F-01	0.0004				-
20	1.00E-02	2.25E-02	0.0007	;			
20	1.50E-01	2.84F-02	0.0015	1	•		
22	2.00F-01	2 71E-02	0.0016	•			
23	2.50E-01	8.49E-03	0.0028	- •			
24	3.00E-01	4.11E-03	0.004				1
25	3.50E-01	4.70E-03	0.0038	+			
26	4.00E-01	2.13E-02	0.0018		•		+ -
27	4.50E-01	0.00E+00	0	1			•
28	5.00E-01	0.00E+00	0	+			
29	5.50E-01	0.00E+00	0	+			
30	6.00E-01	0.00E+00	0	*			•
31	6.50E-01	0.00E+00	0`	-+			
32	7.00E-01	0.00E+00	0	•	-		
33	7.50E-01	0.00E+00	0				1
34	8.00E-01	0.00E+00	0				
35	8.50E-01	0.00E+00	0		*		
36	9.00E-01	0.00E+00	0				1
37	9.50E-01	0.00E+00	0				
38	1.00E+00	0.00E+00	0				
39	1.05E+00	0.00E+00	0		6		
40	1.10E+00	0.00E+00	0				
41	1.15E+00	0.00E+00	0				
42	1.20E+00	0.00E+00	0				
43	1.25E+00	0.00E+00	0				
44	1.30E+00	0.00E+00	0				
45	1.35E+00	0.00E+00	- 0		1		1
46	1.40E+00	0.00E+00	0				+
47	1.45E+00	0.00E+00	0'				
48	1.50E+00	0.00E+00	0				-+
49	1.55E+00	0.00E+00	0				h
50	1.60E+00	0.00E+00'	0				+
51	1.65E+00	0.00E+00	0				
52	1.70E+00	0.00E+00	0		-		
53	1.75E+00	0.00E+00	0				4
54	1.80E+00	0.00E+00	0	4			
55	1.85E+00	0.00E+00	0				
56	1.90E+00	0.00E+00	0				
57	1.95E+00	0.00E+00	0				
58	2.00E+00	0.00E+00	0				
59	total	4.55E-01	0.0003				
60							

Worksheet "MCNP Data p=2.35" of Workbook "MCNP Volume Seneca.xls"

	DG	DH	DI	DJ	DK		DL	Τ	DM
61		1	A						
62	Filename	fid360b							
63					- +			,	**
64	Itally 8 m	ps = 151168	07	-	3			•	
65	tally tyr	e 8 pulse h	eight distri	bution		units 1	umber	•	-
66	tally for	photons	T. T. T.			·	i unito bi	7.77	
67	tarry for	photons	•				•		
101	aall 2								
00	cen z	•		-	-	-			
09	energy	0.005.00	0						
70	0.00E+00	0.00E+00	- 0.0000		L				-
71	5.00E-02	3.52E-01	0.0003	-		,			-
72	1.00E-01	2.26E-02	0.0017		à.			÷	1000
73	1.50E-01	2.76E-02	0.0015		1				_
74	2.00E-01	2.80E-02	0.0015						
75	2.50E-01	8.74E-03	0.0027	-	+				
76	3.00E-01	4.03E-03	0.004		i				
77	. 3.50E-01	5.09E-03	0.0036						
78	4.00E-01	2.60E-02	0.0016		4	•		-	_
79	4.50E-01	0.00E+00	0						
80	5.00E-01	0.00E+00	0			-			
81	5.50E-01	0.00E+00	0		->				
82	6.00E-01	0.00E+00	0		*			•	
83	6.50E-01	0.00E+00	0		4				
84	7.00E-01	0.00E+00	0.		÷			÷	
85	7.50E-01	0.00E+00	- 0;		1			-	100
86	8.00E-01	0.00E+00	0	-	Re-			•	
87	8 50F-01	0.00E+00	0 ¹	-	:			•	
20	9.00E-01	0.00E+00	· · · · · ·		- 1 -			4 -	7
00	9.00L-01	0.00E+00	0					•	
07	9.50L-01	0.000000			e 8			-	
90	1.00E+00	0.000000	0	-		-			-
91	1.05E+00	0.00E+00	0		4				
92	1.10E+00	0.00E+00	0		1			•	
93	1.15E+00	0.00E+00	0					*	
94	1.20E+00	0.00E+00				-			
95	1.25E+00	0.00E+00	- 0					4	_
96	1.30E+00	0.00E+00	0						
97	1.35E+00	0.00E+00	0						
98	1.40E+00	0.00E+00	0		1-				
99	1.45E+00	0.00E+00	0						_
100	1.50E+00	0.00E+00	0						
101	1.55E+00	0.00E+00	0						
102	1.60E+00	0.00E+00	0						
103	1.65E+00	0.00E+00	0		•	•			
104	1.70E+00	0.00E+00	0						
105	1.75E+00	0.00E+00	0		·	-		*	
106	1.80E+00	0.00E+00	0					'	-
107	1.85E+00	0.00E+00	0		1			•	
108	1.90E+00	0.00E+00	0			*		6	
100	1.95E+00	0.00E+00	0					•	-
110	2 00E+00	0.00E+00	0 [‡]		•	•		4	
111	Itotal	4 74F-01	0.0003		1	٠		4	- 1
111	total		0.0003			- •			
112								-	
113	1541	64260-		-	-	1		12	
114	rilename	11030UC			-			:	
115	1. 11 - 0	1.00410	170		-			+	
116	Itally 8	nps = 155412	.12						
117	tally ty	pe 8 pulse	height distri	bution.	,	units	number	4	
118	tally for	r photons			1				
119					- 1				
120	cell 2								

	DG	DH	DI	DJ	DK	DL	DM
121	energy						
122	0.00E+00	0.00E+00	0				
123	5.00E-02	3.58E-01	0.0003				
124	1.00E-01	2.29E-02	0.0017				
125	1.50E-01	2.69E-02	0.0015				
126	2.00E-01	2.81E-02	0.0015				
127	2 50E-01	8.73E-03	0.0027				
128	3 00E-01	3.77E-03	0.0041				
129	3 50E-01	5.24E-03	0.0035				
130	4 00E-01	2.98E-02	0.0014				
131	4.50E-01	0.00E+00	0				
132	5.00E-01	0.00E+00	0				
132	5.50E-01	0.00E+00	0				
134	6.00E-01	0.00E+00	0				
135	6 50E-01	0.00E+00	0				
136	7.00E-01	0.00E+00	0				
137	7.50E-01	0.00E+00	0				
137	8 00E-01	0.00E+00	0				
130	8 50E-01	0.00E+00	0				
140	9.00E-01	0.00E+00	0				
140	9.50E-01	0.00E+00	0				
141	1.00E+00	0.00E+00	0				
142	1.002+00	0.00E+00	0				
145	1.05E+00	0.00E+00	0				
144	1.10E+00	0.00E+00	0				
145	1.13E+00	0.00E+00	0				
140	1.20E+00	0.00E+00	0		,		
147	1.23E+00	0.00E+00	0				
148	1.30E+00	0.00E+00	0				
149	1.33E+00	0.00E+00	0				
150	1.40E+00	0.00E+00	0				
151	1.43E+00	0.00E+00	0				
152	1.50E+00	0.00E+00	0				
153	1.55E+00	0.00E+00	0				
154	1.60E+00	0.00E+00	. 0				
155	1.05E+00	0.00E+00	0				
150	1.70E+00	0.002+00	0				
157	1.75E+00	0.00E+00	0				
158	1.80E+00	0.00E+00	0				
139	1.63E+00	0.00E+00	0				
100	1.90E+00	0.00E+00	0				
101	1.93E+00	0.00E+00	0				
102	2.00E+00	0.00E+00	0 0003				
103	iotai	4.03E-UI	0.0003				
104							
105	Filonoma	643604					
160	rnename	103000					
16/	1 talls 9	$n_0 = 443520$	00	•			
160		145 - 442339	oo wight diet	ribution	115	its number	
109	tally typ	r photons	leight dist	ioution.	. un	its number	
170	tany for	photons .			•		
171	cell C						
172		,					
173	0 00E LOO	0.000-00	0				
174	5 00E+00	3 60E 01	0 0000				
175	1.00E-02	2 3 2 E 01	0.0002				
170	1.00E-01	2.32E-02	0.001				
170	1.50E-01	2.03E-02	0.0009				
1/8	2.00E-01	2.70E-UZ	0.0009				
1/9	2.50E-01	8.39E-03	0.0016				
1180	3.00E-01	3.44E-03	0.0026				

Worksheet "MCNP Data	p=2.35" of Workbook '	"MCNP Volume Seneca.xls"
----------------------	-----------------------	--------------------------

	DG	DH	DI	DJ	DK	DL	DM
181	3.50E-01	5.25E-03	0.0021				
182	4.00E-01	3.33E-02	0.0008				
183	4.50E-01	0.00E+00	0				
184	5.00E-01	0.00E+00	0				
185	5.50E-01	0.00E+00	0				
186	6.00E-01	0.00E+00	0				
187	6.50E-01	0.00E+00	0				
188	7.00E-01	0.00E+00	0				
189	7.50E-01	0.00E+00	0				
190	8.00E-01	0.00E+00	0				
191	8.50E-01	0.00E+00	0				
192	9.00E-01	0.00E+00	0				
193	9.50E-01	0.00E+00	0				
194	1.00E+00	0.00E+00	0				
195	1.05E+00	0.00E+00	0				
196	1.10E+00	0.00E+00	0				
197	1.15E+00	0.00E+00	0				
198	1.20E+00	0.00E+00	0				
199	1.25E+00	0.00E+00	0				
200	1.30E+00	0.00E+00	0				
201	1.35E+00	0.00E+00	0	_			
202	1.40E+00	0.00E+00	0				
203	1.45E+00	0.00E+00	0				
204	1.50E+00	0.00E+00	0				
205	1.55E+00	0.00E+00	0				
206	1.60E+00	0.00E+00	0				
207	1.65E+00	0.00E+00	0				
208	1.70E+00	0.00E+00	0				
209	1.75E+00	0.00E+00	0				
210	1.80E+00	0.00E+00	0				
211	1.85E+00	0.00E+00	0				,
212	1.90E+00	0.00E+00	0				,
213	1.95E+00	0.00E+00	0				
214	2.00E+00	0.00E+00	0				
215	total	4.88E-01	0.0002				

	A	В	C	D	E	F	G	Н	I	J	K	L	M	N
1	This is the man	ipulation of	f the data to	complete th	ne initial plo	t of the data	1.	-						
2	All energy value	ues are in ke	V											
3							*		_					
4	This set is for	the 1.5 g/co	density ca	se)		,	_		-	-		
3	I CM I NICK SC	urce		30	40	50	60	70	80	90	100	120	140	160
7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
8	5.00E-02	4.22E-03	5.78E-02	1.71E-01	2.77E-01	3.45E-01	7.65E-02	6.76E-02	4.41E-02	5.22E-02	7.32E-02	1.19E-01	1.64E-01	2.00E-01
9	1.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.29E-04	3.08E-01	3.41E-01	3.78E-01	3.79E-01	3.64E-01	9.05E-02	5.63E-02	4.12E-02
10	1.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.35E-04	2.34E-01	2.27E-01	7.03E-02
11	2.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.38E-01
12	2.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
13	3.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
14	3.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
15	4.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10	4.50E-01	0.00E+00	0.00E+00	0.00E+00	0.000000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
11	5.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
19	1 cm total	4.2E-03	5.8E-02	1.7E-01	2.8E-01	3.5E-01	3.8E-01	4.1E-01	4.2E-01	4.3E-01	4.4E-01	4.4E-01	4.5E-01	4.5E-01
20	-	1.2.2 00												
21	0.5 cm thick S	ource							-					
22	energy	10	20	30	40	50	60	70	80	90	100	120	140	160
23	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
24	5.00E-02	7.73E-03	1.02E-01	2.48E-01	3.46E-01	3.99E-01	8.20E-02	7.33E-02	4.45E-02	5.26E-02	7.48E-02	1.22E-01	1.69E-01.	2.06E-01
25	1.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.97E-04	3.46E-01	3.71E-01	4.09E-01	4.06E-01	3.88E-01	8.48E-02	5.07E-02	3.87E-02
26	1.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.61E-04	2.60E-01	2.49E-01	6.71E-02
27	2.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.58E-01
28	2.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
29	3.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
30	3.50E-01	0.00E+00	0.00E+00	0.00E+00	0.0000000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
31	4.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
33	5.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
34	5.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
35	0.5 cm total	7.7E-03	1.0E-01	2.5E-01	3.5E-01	4.0E-01	4.3E-01	4.4E-01	4.5E-01	4.6E-01	4.6E-01	4.7E-01	4.7E-01	4.7E-01
36														
37	0.25 cm Thick	Source												
38	energy	10	20	30	40	50	60	70	80	90	100	120	140	160
39	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.000000	6 22E 02	7.52E 02	1.24E 01	1.71E 01	2.00E+00
40	5.00E-02	1,50E-02	1.09E-01	3.21E-01	3.99E-01	4.35E-01	3.50E-02	2.97E 01	4.41E-02	A 21E-01	4.00E-01	7.01E-07	4 58E-02	3.68E-02
41	1.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.69E-04	2.75E-01	2.62E-01	6.26E-02
42	2.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.73E-01
44	2.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
45	3.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
46	3.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
47	4.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
48	4.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
49	5.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
50	5.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
51	0.25 cm total	1.5E-02	1.7E-01	3.2E-01	4.0E-01	4.4E-01	4.5E-01	4.6E-01	4.7E-01	4.7E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01
52	0.1 cm Think	Source			+				٤			+		
54	energy	10	20	30	40	50	60	70	80	90	100	120	140	160
55	0.00F+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
56	5.00E-02	4.04E-02	2.74E-01	3.95E-01	4.43E-01	4.63E-01	8.74E-02	8.05E-02	4.34E-02	5.18E-02	7.54E-02	1.25E-01	1.72E-01	2.09E-01
57	1.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.81E-04	3.85E-01	3.97E-01	4.37E-01	4.30E-01	4.08E-01	7.38E-02	4.14E-02	3.52E-02
58	1.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.52E-04	2.86E-01	2.71E-01	5.79E-02
59	2.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.83E-01
60	2.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
61	3.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
62	3.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
63	4.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
64	4.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
60	5.00E-01	0.00E+00	0.00E+00	0.00E+00	0.000+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
67	0.1 cm total	4 0F-02	2 7E-01	4 0F-01	4 4F-01	4 6F-01	4 7E-01	4 8F-01	4.9F-01	4 9F-01				
68	o,i chi totai	4.012-02	2.715-01		4.412-01	4.01-01	4.715-01	4.01-01	1.02-01	1.012-01	1.01-01	1.01-01		
69	Ratio Calculat	ion			1				•	+	1			
70	0.1 to 1	9.6	4.7	2.3	1.6	1.3	1.2	1.2	1.1	+ 1.1	1.1	1.1	1,1	1.1
71	0.1 to 0.5	5.2	2.7	1.6	1.3	1.2	1.1	1.1	1.1	1.1	1.0	1.0	1.0	1.0
72	0.1 to 0.25	2.7	1.6	1.2	1.1	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
73										1				
74														

	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	
75															
76	6 This set is for the 2.35 g/cc density case														
77	1 cm Thick So	ource								-					
78	energy	10	20	30	40	50	60	70	80	90	100	120	140	160	
79	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
80	5.00E-02	1.93E-03	3.58E-02	1.20E-01	2.21E-01	2.99E-01	7.34E-02	6.48E-02	4.50E-02	5.24E-02	7.19E-02	1.16E-01	1.60E-01	1.95E-01	
81	1.00E-01	0.00F+00	0.00E+00	0.00E+00	0.00E+00	1.91E-04	2.78E-01	3.19E-01	3.60E-01	3.66E-01	3.56E-01	1.04E-01	6.74E-02	4.86E-02	
01	1.50E 01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.005+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1 22E-04	2 20E-01	2 18E-01	7 89E-02	
02	2.005.01	0.000-000	0.000 000	0.0000000	0.0000-000	0.00E+00	0.0000-00	0.001.00	0.00E+00	0.00E+00	0.00000	0.00E+00	0.00E+00	1.26E-01	
83	2.00E-01	0.00E+00	0.0000000	0.000000	0.000000	0.000000	0.0000000	0.000000	0.000000	0.000+00	0.001100	0.000000	0.000-00	0.005+00	
84	2.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.000000	0.00E+00	0.00E+00	0.000000	0.000000	0.000000	0.00E+00	0.001.00	0.0000000	
85	3.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
86	3.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
87	4.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
88	4.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
89	5.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
90	5.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
91	1 cm total	1.93E-03	3.58E-02	1.20E-01	2.21E-01	2.99E-01	3.51E-01	3.84E-01	4.05E-01	4.19E-01	4.28E-01	4.39E-01	4.45E-01	4.49E-01	
92															
03	0.5 cm thick S	ource													
2.5	0.5 cm thick c	10	20	30	40	50	60	70	80	. 00	100	120	140	160	
94	energy	10	0.001.00	0.000.000	0.0000-000	0.0000-00	0.000-00	0.000-00	0.000000	0.00000	0.000-00	0.00000	0.00E+00	0.00E+00	
95	0.00E+00	0.00E+00	6 ACT 00	1.00E+00	2.00E+00	2665 01	8 07E 02	7 14E 02	1 57E 00	5 2 AE 00	7 465 02	1 215 01	1 67E 01	2 04E 01	
96	5.00E-02	3.55E-03	0.45E-02	1.90E-01	2.99E-01	3.00E-01	0.07E-02	7.14E-02	4.57E-02	3.546-02	2.945.01	0.61E-01	5 00T 02	4.225.02	
97	1.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.63E-04	3.25E-01	3.38E-01	3.98E-01	3.99E-01	3.84E-01	9.51E-02	3.88E-02	4.33E-02	
98	1.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.55E-04	2.49E-01	2.43E-01	1.48E-02	
99	2.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.49E-01	
100	2.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
101	3.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
102	3.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
103	4 00F-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
104	4.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
104	5.00E 01	0.0000-00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
105	5.00E-01	0.000000	0.000 +00	0.000000	0.000000	0.000000	0.00E+00	0.000 .00	0.000-00	0.0000-000	0.000000	0.0000-00	0.0000-00	0.00E+00	
106	5.50E-01	0.00E+00	0.00E+00	0.0000000	0.000000	0.00ET00	U.OUETOU	0.00ET00	0.00ET00	4.625.01	A COL OI	1.66E 01	4 40E 01	4.715.01	
107	0.5 cm total	3.55E-03	6.45E-02	1.90E-01	2.99E-01	3.0/E-01	4.00E-01	4.29E-01	4.44E-01	4.53E-01	4.59E-01	4.05E-01	4.09E-01	4./1E-01	
108															
109	0.25 cm Thick	Source	-												
110	energy	10	20	30	40	50	60	70	80	90	100	120	140.	160	
111	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
112	5.00E-02	6.92E-03	1.17E-01	2.70E-01	3.64E-01	4.14E-01	8.43E-02	7.55E-02	4.51E-02	5.31E-02	7.55E-02	1.23E-01	1.70E-01	2.07E-01	
113	1.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.20E-04	3.57E-01	3.80E-01	4.20E-01	4.17E-01	3.98E-01	8.60E-02	5.09E-02	3.93E-02	
114	1.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.73E-04	2.68E-01	2.58E-01	6.84E-02	
115	2.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.66E-01	
116	2 50F-01	0.00E+00	0 00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
117	3.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
110	3.50E-01	0.0000-000	0.0000-00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
110	3.30E-01	0.000-00	0.000100	0.000000	0.000000	0.0000-000	0.00E+00	0.0000-000	0.0000-00	0.0000-00	0.0000-00	0.00E+00	0.00E+00	0.00E+00	
119	4.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.000000	0.0000+00	0.0000000	0.000000	0.0000000	0.000000	0.000000	0.000000	
120	4.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.002+00	0.002+00	0.00E+00	0.002+00	0.000+00	0.00E+00	
121	5.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
122	5.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
123	0.25 cm total	6.92E-03	1.17E-01	2.70E-01	3.64E-01	4.14E-01	4.41E-01	4.56E-01	4.65E-01	4.70E-01	4.74E-01	4.78E-01	4.80E-01	4.81E-01	
124															
125	0.1 cm Thick	Source													
126	energy	10	20	30	40	50	60	70	80	• 90	100	120	140	160	
127	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
128	5.00E-02	1.89E-02	2.18E-01	3.60E-01	4.24E-01	4.52E-01	8.69E-02	7.94E-02	4.41E-02	5.23E-02	7.56E-02	1.25E-01	1.72E-01	2.09E-01	
120	1.00E-01	0.00F+00	0.00E+00	0.00E+00	0.00E+00	3.14E-04	3.80E-01	3.95E-01	4.34E-01	4.29E-01	4.07E-01	7.75E-02	4.41E-02	3.63E-02	
130	1 50E-01	0.00F+00	0.00F+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.68E-04	2.83E-01	2.70E-01	6.13E-02	
121	2.005.01	0.0000-00	0.0000-000	0.00E+00	0.000-00	0.005+00	0.00E+00	0.00E+00	0.0000-00	0.00E+00	0.00E+00	0.00F+00	0.00E+00	1 80F-01	
131	2.00E-01	0.000000	0.000000	0.000000	0.000000	0.000000	0.000-00	0.0000-000	0.0000-00	0.000000	0.000000	0.0000-00	0.0000000	0.0000-01	
132	2.50E-01	0.000000	0.0000000	0.00E+00	0.000000	0.00E+00	0.0000000	0.000000	0.000000	0.000.000	0.000 +00	0.0000000	0.000000	0.000-00	
133	3.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0000000	0.00E+00	0.00E+00	
134	3.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
135	4.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
136	4.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
137	5.00E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
138	5.50E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
139	0.1 cm total	1.89E-02	2.18E-01	3.60E-01	4.24E-01	4,52E-01	4.67E-01	4.74E-01	4.79E-01	4.81E-01	4.83E-01	4.85E-01	4.86E-01	4.86E-01	
140															
140	Patio Calculat	ion					1	-							
141	0 L to 1	0.0		20	1.0		1.2		1.2	11	11	11	1.1	11	
142	0.1 10 1	9.8	0.1	5.0	1.9	1.0	1.5	1.2	1.2	1.1	1.1	1.1	1.1	1.1	
143	0.1 10 0.5	5.3		1.9	1.4	1.2	1.1	1.1	- 1.	1.1		1.0	1.0	1.0	
1144	10.1 to 0.25	2.7	1.9	1.3	1.2	1.1	1.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	0	Р	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	AC
-----	------------------------	-----------	-----------	------------	-----------	-----------	-----------	-----------	-----------	----------	-----------	----------	------------	------------	-----------
1															
2	•				***				1		1				
3		+				~ •		~							
1		•		•	- 4				•	-				-	
5				,	,					-		4			
1 2	190	200	220	240	260	280	300	320	340	360	380	400	420	440	460
0	180	200	220	240	0.000.00	0.000.00	0.005.00	0.005.00	0.000.000	0.0000	0.0000	0.0000	0.005+00	0.0000	0.005+00
7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00ET00	2.4CE 01	2 515 01	2.545.01	2.57E 01	2 605 01
8	2.30E-01	2.55E-01	2.74E-01	2.90E-01	3.03E-01	3.14E-01	3.22E-01	3.30E-01	3.30E-01	3.42E-01	3.40E-01	3.51E-01	3.34E-01	3.37E-01	3.00E-01
9	3.59E-02	3.51E-02	3.41E-02	3.04E-02	2.76E-02	2.58E-02	2.43E-02	2.30E-02	2.18E-02	2.08E-02	1.98E-02	1.89E-02	. 1.81E-02	1.73E-02	1.00E-02
10	5.82E-02	5.07E-02	4.67E-02	4.60E-02	4.46E-02	4.26E-02	3.78E-02	3.31E-02	2.90E-02	2.53E-02	2.35E-02	2.22E-02	2.10E-02	2.00E-02	1.90E-02
11	1.26E-01	1.11E-01	2.33E-02	1.59E-02	1.57E-02	1.61E-02	1.93E-02	2.25E-02	2.52E-02	2.56E-02	2.39E-02	2.23E-02	2.09E-02	1.97E-02	1.86E-02
12	0.00E+00	4.24E-05	7.34E-02	6.96E-02	1.22E-02	8.12E-03	6.69E-03	6.29E-03	6.11E-03	7.89E-03	1.01E-02	1.18E-02	1.14E-02	1.05E-02	9.86E-03
13	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.89E-02	4.61E-02	4.17E-02	6.78E-03	3.80E-03	3.56E-03	3.38E-03	3.32E-03	4.94E-03	6.90E-03	8.38E-03
14	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.65E-05	3.09E-02	3.04E-02	4.45E-03	2.79E-03	2.30E-03	2.21E-03	2.15E-03	2.16E-03
15	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.32E-02	2.26E-02	2.11E-02	3.06E-03	1.57E-03	1.57E-03
16	0.00E+00	0.00E+00	0.00F+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.13E-06	1.65E-02	1.67E-02	2.24E-03
17	0.0000-00	0.000-00	0.000-00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00F+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.33E-02
10	0.000000	0.000 000	0.000000	0.000-00	0.0001.00	0.000000	0.0000.00	0.0000-00	0.005+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
18	0.00E+00	0.00E+00	0.002+00	0.00E+00	0.000000	0.00ET00	A SE OL	0.00E+00	4 50 01	4 SE 01	A SE OI	4 SE 01	4 SE 01	4 SE 01	4 5E 01
19	4.5E-01	4.5E-01	4.5E-01	4.5E-01	4.36-01	4.56-01	4.56-01	4.JE-01	4.3E+01	4.56-01	4.56-01	4.51-01	4.52-01	4.52-03	4.52-01
20			÷ .			1			100					•	
21															
22	180	200	220	240	260	280	.300	320.	340.	360	380	400	420	440	400
23	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
24	2.37E-01	2.62E-01	2.83E-01	2.99E-01	3.13E-01	3.24E-01	3.33E-01	3.41E-01	3.48E-01	3.53E-01	3.58E-01	3.63E-01	3.67E-01	3.70E-01	3.73E-01
25	3.50E-02	3.54E-02	3.51E-02	3.14E-02	2.86E-02	2.68E-02	2.54E-02	2.41E-02	2.29E-02	2.18E-02	2.08E-02	1.99E-02	1.90E-02	1.82E-02;	1.75E-02
26	5.48E-02	4.80E-02	4.48E-02	4.52E-02	4.47E-02	4.33E-02	3.85E-02	3.37E-02	2.95E-02	2.57E-02	2.39E-02	2.26E-02	2.14E-02	2.03E-02	1.93E-02
27	1.44E-01	1.26E-01	2.33E-02	1.51E-02	1.51E-02	1.56E-02	1.94E-02	2.32E-02	2.63E-02	2.68E-02	2.49E-02	2.32E-02	2.17E-02	2.05E-02	1.94E-02
28	0.00E+00	5.08E-05	8.57E-02	8.08E-02	1.27E-02	8.00E-03	6.52E-03	6.18E-03	6.08E-03	8.28E-03	1.10E-02	1.30E-02	1.26E-02	1.15E-02	1.07E-02
20	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5 80E-02	5 43E-02	4 89E-02	7 25E-03	3.75E-03	3.56E-03	3.42E-03	3.40E-03	5.38E-03	7.78E-03	9.60E-03
30	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00F+00	0.00E+00	1 99F-05	3 67F-02	3 59F-02	4 85E-03	2 87E-03	2 32E-03	2.26E-03	2.24E-03	2.28E-03
21	0.000000	0.000000	0.000000	0.0000-00	0.0000-00	0.005+00	0.00E+00	0.005+00	0.00E+00	2 77E-02	2.68E-02	2 50E-02	3 38E-03	1.60E-03	1.62E-03
22	0.000-00	0.00E+00	0.000000	0.000000	0.000000	0.000000	0.000-00	0.000000	0.00L+00	0.000000	0.00E+00	0.905-06	1 075-02	1 99E-02	2 52E-03
32	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0000000	0.000000	0.000000	0.000-000	0.000000	0.000000	0.000000	0.000000	0.0000-002	1.60E 02
33	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.000000	0.00E+00	0.000000	0.000000	0.00E+00	0.000-02
34	0.00E+00	0.00E+00.	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
35	4.7E-01	4.7E-01	4.7E-01	4.7E-01	4.7E-01	4.7E-01	4.7E-01	4.7E-01	4.7E-01	4.7E-01	4.7E-01	4.7E-01	4./E-01	4.7E-01	4./E-01
36															
37															-
38	180	200	220	240	260	280	300	320	340	360	380	400	420	440	460
39	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
40	2.39E-01	2.65E-01	2.86E-01	3.03E-01	3.17E-01	3.28E-01	3.37E-01	3.45E-01	3.52E-01	3.58E-01	3.63E-01	3.67E-01	3.71E-01	3.75E-01	3.78E-01
41	3 43E-02	3 54E-02	3 57E-02	3.20E-02	2.92E-02	2.75E-02	2.61E-02	2.48E-02	2.36E-02	2.25E-02	2.15E-02	2.05E-02	1.96E-02	1.88E-02	1.80E-02
12	5.06E-02	4.47E-02	4 23E-02	4 38E-02	4 41E-02	4 32F-02	3 86E-02	3 37E-02	2 96E-02	2 58E-02	2.40E-02	2.27E-02	2.15E-02	2.04E-02	1.94E-02
12	1 565 01	1 365-01	2 27E-02	1 30E-02	1.41E-02	1.47E-02	1 90F-02	2 32E-02	2 67E-02	2 72F-02	2 52E-02	2 34F-02	2 19E-02	2 07E-02	1 96E-02
44	0.005+00	5 54E 05	0.445.02	9 98E-02	1.26E-02	7.61E-03	6 13E-03	5 80E-03	5 85E-03	8 40E-03	115E-02	1 38E-02	1 34F-02	1 21E-02	1 12E-02
44	0.000000	0.00E.00	9.4415+02	0.000-02	6 ACE 02	6.03E.03	5 ALE 02	7 425 02	3.55E 02	2 42E 02	3 22E 02	3 36E 01	5 62E 03	8 39E 02	1.055 02
45	0.00E+00	0.002+00	0.0000000	0.00E+00	0.400-02	0.03E-02	3.41E-02	1.432-03	1.00E 03	5.450-03	2.050-03	2.300-03	2 22E 02	2 34E 02	2 215 02
46	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.10E-05	4.10E-02	4.00E-02	3.05E-03	2.03E-03	2.200-03	2.23E-03	2.24E-03	2.51E-0.5
47	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.11E-02	3.01E-02	2.79E-02	3.33E-03	1.55E-03	1.00E-03
48	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.06E-05	2.22E-02	2.23E-02	2.0/E-03
49	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.80E-02
50	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
51	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01	4.8E-01
52									-			-			
53															
54	180.	200	220	240	260	280	300	320	340	360	380	400	420	440	460
55	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
56	2.40E-01	2.66E-01	2.87E-01	3.04E-01	3.18E-01	3.29E-01	3.39E-01	3.47E-01	3.54E-01	3.60E-01	3.65E-01	3.69E-01	3.73E-01	3.77E-01	3.80E-01
57	3.38E-02	3.55E-02	3.62E-02	3.25E-02	2,98E-02	2.80E-07	2.66E-02	2.54E-02	2.42E-02	2.31E-02	2.20E-02	2.10E-02	2.01E-02	1.92E-02	1.84E-02
58	4.63F-02	4.13E-02	3.98F-02	4.22E-02	4.32F-02	4.29F-02	3.84F-02	3.36E-02	2.95F-07	2.59E-02	2.40E-02	2.27E-02	2.15E-02	2.05E-02	1.95E-02
50	1.65E 01	1 435-01	2 10E 02	1.25E-02	1 30E 02	1 38E-02	1.84E-02	2 31E-02	2 68E-02	2 73E-02	2 52E-02	2.33F-02	2.19E-02	2.06E-02	196E-02
59	0.0000.00	5.54E 05	1.010.01	0 525 02	1 34E 02	7.075.02	5 64E 02	5 525 02	5 56E 02	8 AIE 02	1 105 02	1 44E 02	1 40E 02	1 26E 02	1 16E 02
00	0.000000	0.000.000	0.000.000	0.0000-002	7.035.02	6 630 03	5.042-03	7 455 03	2 375 03	2 225 02	3 205 02	3 205 02	5 70E 02	8 96E 02	1.102-02
01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.02E-02	0.33E-02	3.851-02	1.432-03	3.2/E-03	5.236-03	3.2012-03	3.200-03	3.79E-03	0.03E-03	1.12E-02
02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.14E-05	4.4/E-02	4.35E-02	3.13E-03	2.73E-03	2.132-03	2.102-03	2.21E-03	2.31E-03
63	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.40E-02	3.28E-02	3.04E-02	3.00E-03	1.40E-03	1.55E-03
64	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.07E-05	2.43E-02	2.44E-02	2.77E-03
65	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.98E-02
66	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
67	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01	4.9E-01
68												1	1		-
69						-				4				1	
70	11	11	11	11	11	11	11	11	11	1 11	11	11	11	11	11
71	1.1	1.1	1.0	1.0	10	1.0	1.0	1.0	1.0	10	10	10	10	10	10
72	1.0	1.0	1.0	1.0	1.0	1.0	1.0	. 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
72	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	. 1.0		. 1.0	1.0	+ 1.0	1.0	1.0
13			-					a		•			t. —		•
1/4	the same of the second														

	0	P	0	R	S	T	U	V	W	X	Y	Z	AA	AB	AC
75															
15		-	- 4												
/0			+		1			4	+	k					
77			- 4						- 10 ¹						-
78	180	200	220	240	260	280	300	320	340	360	_		·		
79	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
80	2.25E-01	2.49E-01	2.69E-01	2.85E-01	2.98E-01	3.09E-01	3.18E-01	3.26E-01	3.32E-01	3.38E-01					
21	4 13E-02	3 03E-02	3 75E-02	3 34E-02	3 03F-02	2 82F-02	2 65E-02	2 50E-02	2 37E-02	2.25E-02					
01	4.130-02	5.705.02	5 30E 02	5 12E 02	4 02E 02	4 64E 02	4 14E 02	3.65E-02	3 22E-02	2 84E-02			l		
82	0.02E-02	5.19E-02	5.30E-02	5.12E-02	4.926-02	4.040-02	4.14L-02	3.056-02	3.221-02	2.041-02	-		+		
83	1.18E-01	1.05E-01	2.57E-02	1.86E-02	1.82E-02	1.84E-02	2.12E-02	2.41E-02	2.00E-02	2.71E-02					
84	0.00E+00	3.83E-05	6.77E-02	6.51E-02	1.32E-02	9.33E-03	7.83E-03	7.24E-03	6.98E-03	8.49E-03					
85	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.47E-02	4.27E-02	3.92E-02	7.28E-03	4.44E-03	4.11E-03					
86	0.00E+00	0 00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.65E-05	2.85E-02	2.83E-02	4.70E-03					
00	0.000.00	0.0000-00	0.0000-00	0.00000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2 13E-02					
8/	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.000000	0.000000	0.000000	0.000-00	0.000000	0.00000					
88	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
89	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
90	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00:	0.00E+00	0.00E+00	0.00E+00	0.00E+00			1		1.1
91	4 51E-01	4.52E-01	4.53E-01	4.54E-01	4.54E-01	4.54E-01	4.54E-01	4.54E-01	4.55E-01	4.55E-01					
02					-								+		
72						- •							•		
93					2/0	- 200	200	120	240	160					
94	180	200	220	240	260	280	.100	320	340	300		6 4			-
95	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				_	-
96	2.34E-01	2.60E-01	2.80E-01	2.97E-01	3.11E-01	3.22E-01	3.31E-01	3.39E-01	3.46E-01	3.52E-01					
07	3 81F-02	3 76E-02	3 67E-02	3.28E-02	2.98E-02	2.79E-02	2.64E-02	2.51E-02	2.38E-02	2.26E-02		-			-
00	6 17E 02	5 28E 02	4 06E 02	4 925 02	4 80F-02	4 50F-02	4 09F-02	3 59F-02	3.15F-02	2.76E-02			· · · · ·		
98	0.17E-02	J.30E-02	4.90E-02	4.921-02	1.715.02	1.755.02	2.00E 02	2 45E 02	2 75E 02	2 80E 02		t ·	1		-
99	1.38E-01	1.22E-01	2.55E-02	1.74E-02	1./TE-02	1.75E-02	2.09E-02	2.456-02	2.75E-02	2.00E-02			1		
100	0.00E+00	4.79E-05	8.10E-02	7.71E-02	1.36E-02	9.07E-03	7.47E-03	6.97E-03	6.77E-03	8.74E-03	-	1			- ·
101	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.44E-02	5.14E-02	4.68E-02	7.71E-03	4.31E-03	4.03E-03					
102	0.00E+00	0.00E+00	0.00E+001	0.00E+00	0.00E+00	0.00E+00	2.03E-05	3.46E-02	3.41E-02	5.09E-03					
102	0.005+00	0.0010+00	0.00E+00	0.00E+00	0.00F+00	0.00F+00	0.00E+00	0.00E+00	0.00E+00	2.60E-02	-				τ
105	0.0000000	0.0001.00	0.0000.00	0.0000-00	0.00E+00	0.005+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
104	0.00E+00	0.00E+00	0.000000	0.000000	0.000000	0.002+00	0.000000	0.000000	0.000.00	0.000.00					
105	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			1		
106	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
107	4.72E-01	4.73E-01	4.73E-01	4.74E-01	4.74E-01	4.74E-01	4.74E-01	4.74E-01	4.74E-01	4.74E-01		1		-	
108					_								1		
100										+			+		
109		200	220'		- 260	200	200	220	240	360			1		
110	180	200	220	240	200	200		520	0.005.00	0.005.00				(÷
111	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
112	2.39E-01	2.64E-01	2.85E-01	3.02E-01	3.16E-01	3.27E-01	3.37E-01	3.45E-01	3.52E-01	3.58E-01					
113	3.59E-02	3.65E-02	3.64E-02	3.26E-02	2.98E-02	2.80E-02	2.65E-02	2.52E-02	2.40E-02	2.29E-02					
114	5 56E-02	4 89F-02	4 57E-02	4 64E-02	4 62E-02	4 49E-02	4.00E-02	3.50E-02	3.07E-02	2.69E-02		· · · · · · · · · · · · · ·			
115	1.575.01	1 225 01	2 43E 02	1 55E 02	1 55E-02	1 61E-02	2 01E-02	2 42E-02	2 75F-02	2 81F-02				<u></u>	
115	1.52E-01	1.33E-01	2.436-02	1.550-02	1.345.02	0.40E 02	2.011-02	(ASE 02	6 24E 02	8 72E 02		+			T
116	0.00E+00	5.51E-05	9.09E-02	8.60E-02	1.34E-02	8.40E-03	0.83E-03	0.45E-03	0.34E-03	0./3E-03			4		
117	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.19E-02	5.81E-02	5.25E-02	7.77E-03	3.97E-03	3.77E-03				ļ	1
118	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.20E-05	3.94E-02	3.87E-02	5.24E-03			1	L	
119	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.98E-02		1			1
120	0.005+00	0.00E+00	0.000+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		t	Arthon Brown		
120	0.000000	0.000000	0.000.00	0.000000	0.000000	0.000000	0.0000-00	0.00E+00	0.00E+00	0.0000		+			
121	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0000-000	0.000-00	0.000000	0.000000		⊧			
122	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		t	+		1
123	4.82E-01	4.82E-01	4.82E-01	4.83E-01	4.83E-01	4.83E-01	4.83E-01	4.83E-01	4.83E-01	4.83E-01		h			J
124										1					
125														4	
126	180	200	220	240	260	280	300	320	340	360					1
127	0.005+00	0.00E+00	0.00E+00	0.00F+00	0.00F+00	0.00F+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					1
12/	0.00E+00	2.445.01	2.000000	2 045 01	2 195 01	3 20E 01	3 30E 01	3 475 01	3 5/E 01	3 60E 01		1 1122	t ·		+
128	2.40E-01	2.00E-01	2.6/E-01	3.04E-01	5.18E-01	3.29E-01	3.372-01	3.472-01	3.342-01	2 225 02	-	d- a	+	!	1
129	3.44E-02	3.59E-02	3.64E-02	3.27E-02	3.00E-02	2.82E-02	2.68E-02	2.55E-02	2.43E-02	2.32E-02				·	+-
130	4.92E-02	4.37E-02	4.16E-02	4.36E-02	4.43E-02	4.38E-02	3.91E-02	3.42E-02	3.01E-02	2.63E-02				-	
131	1.63E-01	1.41E-01	2.28E-02	1.35E-02	1.38E-02	1.45E-02	1.91E-02	2.36E-02	2.72E-02	2.78E-02					3
120	0.005+00	5 83F-05	9.95F-02	9.36F-02	1.28F-02	7.55E-03	6.05E-03	5.85E-03	5.85E-03	8.59E-03					1
132	0.0000000	0.0000.00	0.0000.002	0.000-02	6 945 02	6 A1E 03	5 755 03	7 655 02	3 53E 02	3 44E 02			•		
133	0.00E+00	0.00E+00	0.00E+00	0.0000000	0.000-02	0.412-02	2.736-02	4.27E-05	A 37E 03	5 365 02					
134	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.23E-05	4.3/E-02	4.27E-02	5.25E-03		L			i
135	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.33E-02					
136	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
127	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
120	0.000.00	0.0000-00	0.000000	0.000000	0.005+00	0.005+00	0.005+00	0.00E+00	0.00F+00	0.00F+00		+			
138	0.00E+00	0.00ET00	4 07E 01	4.075.01	4.075.01	4 000 01	4 000 01	4 885 01	4 995 01	A 80E 01					
139	4.87E-01	4.8/E-01	4.8/E-01	4.8/E-01	4.8/E-01	4.88E-01	4.86E-01	4.06E-01	4.00E-01	4.00E-01					
140					1					· · · · · ·					
141												-			1
142	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1			1	1	1
142	10	10	10	10	1.0	1.0	10	1.0	1.0	1.0			1		
144	1.0	1.0	1.0	1.0	- 1.0	1.0	1.0	1.0	1.0	10		+			1
1144	1.0	1.0	1.0	1.0	. 1.0	1.0	1.0	1.0	1.0						1.000

	AD	AE	AF	AG	AH	AI
1						
2	1				1	
3					†	4-
4					•	1
5	-			-	ł	3
5	100	500 [°]		+		1
6	480	500		,	ŧ _	<u> </u>
7	0.00E+00	0.00E+00				1
8	3.63E-01	3.66E-01			•	4-
0	1.605-02	1 54E-02		1		4
9	1.00E-02	1.34E-02	-	1.		1
10	1.81E-02	1.73E-02			-	-
11	1.77E-02	1.68E-02				
12	9.42E-03	9.12E-03				
12	7 86E 03	7.05E.03		+	r	
15	7.80E-03	7.05E-03		4	*	•
14	3.85E-03	5.61E-03		1		
15	1.53E-03	1.54E-03				
16	1.37E-03	1.16E-03		4		
17	1 33E-02	1 27E-02				1
10	0.005.00	5 10E 0C			ŧ	•
18	0.00E+00	5.10E-00		+		
19	4.5E-01	4.5E-01				
20				:		•
21						,
22	490	500		•	,	4
22	400	0.000		•		•
23	0.00E+00	0.00E+00				
24	3.76E-01	3.79E-01	-			
25	1.68E-02	1.62E-02		1.00	100	
26	1.84E-02	1.76E-02	_	-	r	
27	1845.02	1755-02			4	-
21	1.04E-02	0.00002			r	÷
28	1.02E-02	9.82E-03		-	-	+
29	8.99E-03	8.00E-03		1	I	
30	4.33E-03	6.48E-03				1
31	1.62E-03	1.65E-03			÷	-
22	1 465 02	1 205.03		1	+	+
34	1.40E-03	1.20E-03				
33	1.59E-02	1.51E-02			+	
34	0.00E+00	5.83E-06				
35	4.7E-01	4.7E-01		1	-	1 4
36				+		+
27					1	+- • ==
31						7
38	480	500		+		1
39	0.00E+00	0.00E+00				
40	3.81E-01	3.84E-01		1	1	
41	1 73E-02	1.67E-02		+	+	•
42	1.955.02	1.775 02		÷	ţ	1
42	1.63E-02	1.77E-02		4		1
43	1.86E-02	1.77E-02		t=	•	
44	1.06E-02	1.02E-02		*	•	
45	9.80E-03	8.68E-03				*
46	4.63E-03	7 08E-03		1	4	•
47	1 625 02	1 605 02		+	:	1
4/	1.03E-03	1.09E-03		-1	,	4-
48	1.46E-03	1.18E-03		4		
49	1.79E-02	1.70E-02			-	
50	0.00E+00	6.67E-06			1	
51	4.8F-01	4.8E-01	** * *		1	t
52					*	4
52						
33			-		+	
54	480	500				4
55	0.00E+00	0.00E+00				
56	3.83E-01	3.86E-01		1		
57	1 77E 02	1 70E-02		+-	t	
50	1.002	1.775.02	-		t t	t
38	1.80E-02	1.77E-02			+	1
59	1.86E-02	1.77E-02			+	
60	1.09E-02	1.05E-02				-
61	1.05E-02	9,22E-03				
62	1 80E 02	7 605 03		,	+-	
02	4.09E-03	1.000-03			1	4
63	1.61E-03	1.71E-03				-
64	1.43E-03	1.13E-03	1000		-	+
65	1.96E-02	1.85E-02				
66	0.00F+00	6.85F-06				
00	0.00ETOU	4.0E-00				1
07	4.9E-01	4.9E-01				1
68						1
69			-			
70	11	11		+		
71	1.1	1.0		t –	1	
11	1,0	1.0				
72	1.0	1.0		1		
73						
74		+	-			-

	AD	AE	AF	AG	AH	AI
75						
76					1	
77				-		
78						-
79						
80		·				
81		1	+			-
82		-17				
83		*		e		:
84						
85			4 -	+	+	t
86				+		
8/			++			1
00			r	-		7
09		·	-	*		4
91	-	+		ł —		1 1
92		+	+	-	*	
93		····	F			• • •
94		*** *	• -	•	•	
95		-	•	•		
96		5	r -			
97						4.
98		+-				
99					+	(
100	-		+			
101					-	
102		+				
103					-	1_
104					ê	-à-
105		÷		1 	1 -	
100		+	4	+		d
107	8					
108		·			1	·
110		·			5	• •
111		-	ψn.		-	
112				+	•	·
113			•		-	
114						
115			4			
116				_		
117						
118		-+	L		-1	
119	-			+	1	1
120				4	-	+-
121				+	-	4
122					a	
123					-L-	1
124				4		E
125					**	
120					8)	*
128				· · -	-	
129				+		
130				-	-	*
131	-		+	-		-
132		-	+		-1	1-
133		+			1	
134						
135		i	1	1	1	+
136	- Andrews		1		_	
137		1	-	+		
138					1	
139				1	¥	
140						
141				4		
142		+		-		
143			4	+	-	
144		1			1	

1/16/02

Worksheet "Plot" of Workbook "MCNP Volume Seneca.xls"

		AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX
	75					-	4-		. :					_		
	76		1			1					- +					
72 1 </th <th>78</th> <th></th> <th>· ·</th> <th></th> <th></th> <th></th> <th>;</th> <th>i</th> <th></th> <th></th> <th> •</th> <th></th> <th></th> <th></th> <th></th> <th></th>	78		· ·				;	i			•					
	79							-					-			
	80							1-								
	81		· · · · · · ·		-			-								
	83			-	+-		+	-	• •		+					
	84							+ -	i .							
	85						1 -	4								
100 1	87	+	- 1		T		-	7	i .	-			-	+		
	88		+		1										1	
	89														[
	90		· · ·			-	1-	*	. ,						1	
	92					•	1	•	· ·							
94	93				1		1 b	:				hanad .	_			_
	94				1 .								-			
97 1	95						:	•	. ,				•			
	97	1			1	2	1									
99 -	98				1		t			-				······		
	99			- L ;		ł	ł	e e 184							1	
	101		- :	-	4		-	- 10					4			
	102		- +										+			
	103		+-	_	4				. 4				+			
	104							-	۰ ·					h		
	106				1	+	† 		• •	-						
	107						1									
	108		+		1			- · ·			- +			L		
111	110						+	1					1			
112	111				1		1									
113 -	112							+					+			
115 -	114				+				• •		-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	115							1		_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	116				+			+	1 1							
119 1	118				+	-		+			-+					
120 1	119		+-				+	4 -	• •							
121 1	120	+	1	-		1	1	•	. 4		+					_
123 1<	121					i	+	1-	1		+					
124 125 126 127 127 128 129 130 129 131 129 132 129 133 129 134 129 133 129 134 129 133 129 133 129 134 129 135 129 138 129 139 129 141 129 141 129	123				· · ·		<u>+</u> –	•	· ·				+ -			_
125 126 1 <th>124</th> <th></th> <th></th> <th></th> <th>+</th> <th></th> <th>-</th> <th>÷</th> <th>•</th> <th></th> <th></th> <th></th> <th>d</th> <th></th> <th></th> <th></th>	124				+		-	÷	•				d			
127 1<	125				+ .	4		1					+			
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	120		+		4		-	•		-			+			
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	128		4				÷ •									
130 131 132 133 134 135 136 137 138 139 140 141 142 143	129					ŕ .	~		. –		1					
132 133 133 134 135 136 136 137 138 139 139 140 141 141 142 143	130						-)					-			!	
133 134 135 136 137 138 139 140 141 142 143	132							1						·		
134 135 136 137 138 139 140 141 142 143	133				··		+	1 .	1 10	_						
136 137 138 139 140 141 142 143	134				4	-		t	4 4							
137 138 139 140 141 142 143	136			-	-		+	i	1 1				t <u> </u>			
138 139 140 141 142 143	137				1 1		+	1								
140 141 142 143	138				1		· · · · · · · · · · · · · · · · · · ·	+-	+ -+							
141 142 143	140				-			+ -							1	
142 143	141									-						
143	142									4			1			
144	143				+		<u></u>	1	• - 4							

•

·

ATTACHMENT C

Assessment of the Potential Migration of Pu/Am Into Concrete, Parsons, 2002

~

				Job/Cal. Number	Discipline	Page 1 of 14
	RSONS Calcula	ation Pag	ge	730047-01001-01	Health Physics	plus Appendices
Rev	Date	By	Ck	Subject:	· · · · · · · · · · · · ·	
0, draft l	B 1/4/2002	SWW	RJMpm	Assessment of the Po Concrete	tential Migration	n of Pu/Am Into
Author: Checker: Parsons Ca	Steven Ron McConn alculation No.: 73	W. Woolf <i>QUII</i> 60047-0100	olk fite De fe 91-01	Storiged	/	
1. PURI 2. REFI 2.1 Ref 2.2 Ass 3. DISC 3.1 Tra 3.1.1 3.1.2 3.1.3 3.1.4	POSE ERENCES, INPUT ferences sumptions CUSSION Time = 0 days Time = 1 day Time \geq 2 days Assessment of Sa	TS, AND A	SSUMPTIC	DNS		1 2 2 3 4 4 4 5 6 7 8
3.1.5 3.1.6 3.1.7 4. CON	Retardation Facto Description of Tir Radionuclide Gro CLUSION <u>Appenix A</u> Pu/ <u>Appendix B</u> Ex <u>Appendix C</u> EX	Am Conce Am Conce Carts From XCEL Spre	lent Flow ntrations References eadsheet pus	sol.xls		

Appendix C, pusol.xls Results Worksheet (Abbreviated copy of "Buildup Cal." worksheet attached to all copies except the record copy to minimized paper generation.)

1. PURPOSE

This calculation is intended to provide an assessment of the potential for the migration of Plutonium or Americium into concrete at the Seneca Army Depot. This assessment is based on the solubility of Plutonium or Americium and porosity of concrete.

PARSO	NS Calcu	lation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 2 of 14 plus Appendices
Rev	Date	By	Ck	Subject:		of Der (Amer Inde
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po - Concrete	otential wiigration	I OI PU/AM INTO

2. REFERENCES, INPUTS, AND ASSUMPTIONS

2.1 References

Bevington, Phillip R., 1969. <u>Data Reduction and Error Analysis for the Physical Sciences</u>, McGraw-Hill book Co., New York, New York.

Hodge, H. C., J. N. Stannard, & J. B. Hursh, 1973. <u>Uranium Plutonium Transplutonic Elements</u>, Springer-Verlage, New York.

International Commission on Radiological Protection (ICRP), 1983. <u>Annals of the ICRP, Radionuclide</u> <u>Transformations Energy and Intensity of Emissions, ICRP Publication 38, Vol 11-13, Pergamon Press, Oxford,</u> <u>England.</u>

Rai, Dhanpat, R. J. Serne, & D.A. Moore, 1980. "Solubility of Plutonium Compounds and Their Behavior In Soils," Soil Sci. Soc. Am J., Vol. 44, 1980, pg 490-495 (see Appendix B).

Rai, Dhanpat, R. G. Strickert, R. J. Serne, & D.A. Moore, 1981. "Influence of an Americium Solid Phase on Americium Concentrations in Solutions," Geochimica et Cosmochimica Acta, Vol 45, 1981, pg 2257-2265 (see Appendix B).

Shefelbine, Henry C., 1978. "Preliminary Evaluation of the Characteristics of Defense Transuranic Wastes," SAND781850, Sandia National Laboratory, Albuquerque, New Mexico.

Skalny, Jan P., 1989. <u>Material Science of Concrete I</u>, American Ceramic Society, Inc., Ohio (see Appendix B for extract).

Skalny, Jan P., and Sidney Mindess, 1991. <u>Material Science of ConcreteII</u>, American Ceramic Society, Inc., Ohio (see Appendix B for extract).

Skalny, Jan P., 1992. <u>Material Science of Concrete III</u>, American Ceramic Society, Inc., Ohio (see Appendix B for extract).

Tipton, C. R., 1960. <u>Reactor Handbook, Volume I, Materials</u>, 2nd Edition, Interscience Publishers, Inc., New York.

Toxell, Georger Earl, Harmer E. Davis, & Joe W. Kelly, 1968. <u>Composition and Properties of Concrete</u>, 2n Edition, McGraw-Hill, Inc., New York (see Appendix B for extract).

PARSO	NS Calcul	ation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 3 of 14 plus Appendices
Rev	Date	By	Ck	Subject:	4	
0, draft B	1/4/2002	SWW	RJM	Concrete	tential Migration	of Pu/Am Into

U.S. Department of Health, Education, and Welfare, 1970. Radiological Health Handbook, PB-230 846, January 1970.

Yu, C., et al, 1993. "Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD, Version 5.0, Working Draft for Comment," ANL/EAD/LD-2, Argonne National Laboratory, Argonne, Illinois.

2.2 Assumptions

- 1. The Am or Pu present would be contamination from the handling of Pu metal so the Pu would be in oxide form typically (see Chapter 9, Section II of Hodge, 1973). It is also assumed that Am and Pu may be present as hydroxides. The presence of Pu/Am dissolve in acids is not credible situation since this is not a processing area and there is not evidence to acid damage of the concrete in the areas being addressed.
- 2. The concrete is assumed to be typical construction grade concrete with no significant cracking or pitting. The absence of cracking or pitting was observed during the survey activity, but was not specifically documented.
- 3. The only source of liquid in the area would be water (i.e., condensate, groundwater, or runoff water). It is assumed that the surface of the concrete can be wet for an extended period of time (i.e., 90 days). The water present on the surface is assumed to flow through the concrete based on current data on the porosity of concrete.
- 4. Other analysis specific assumptions will be detailed in the description of the analysis.
- 5. The material of concern is weapons grade plutonium as described by Shefelbine, 1978. Further, the Pu isotopes of interest are Pu-239 and to a lesser extent Pu-240. Pu-241 is of less importance since it is a beta emitter and has a half-life of about 13 years. The concern associated with Pu-241 is its progeny Am-241.
- 6. Am is present as a progeny of the Pu-241 in the plutonium.

PARS	Calcul	ation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 4 of 14 plus Appendices
Rev	Date	By	Ck	Subject:		CDer/Arra Lata
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po	otential Migration	of Pu/Am Into
				-		

3. **DISCUSSION**

This calculation models the movement of Pu/Am into concrete by considering the porosity of the concrete for transport of water, solubility of Pu/Am, and the chemical retardation of the transfer of Pu/Am dissolved in water. This calculation is done using an EXCEL spreadsheet (i.e., "pusol.xls" in Appendix C) with the following worksheets:

- "Pu solubility,"
- "Concrete,"
- "Concentrations," and
- "Buildup Cal."

The data is referenced in the spreadsheet in abbreviated form. These references are identified specifically in Section 2.1

3.1 Transport

The process model assumed that the initial penetration of Pu/Am into concrete is as shown in Figure 1 for time t=0. The "Transportation Of A Chemical Through Concrete" chapter in the <u>Material Science of Concrete III</u> (Skalny, 1989) provides a 1 dimensional model for the movement of chemicals through concrete. It indicates that this movement can be modeled as a 1-dimension flow using:

$$x(t) = B * t^{1/2}$$

where the value of B (i.e., B=56.7 mm/day) for water can be found in Table I of this chapter. The Pu/Am is assumed to be transported as a dissolved species by the water. However, as is the case in soils, the chemical actions of the media can reduce the flow velocity of the chemical to less than the flow velocity of water by reacting with the dissolve material or precipitating it due to chemical changes. This can be modeled using a retardation factor for the material similar to the retardation factor used in water transport model for soils in the RESRAD software. The retardation factor (RT) is the ratio of the average water velocity to radionuclide transport velocity as discussed in Appendix E of Yu, 1993. When addressing the transport of Pu/Am through this media, it is important to limit the concentration being transported to less than or equal to the saturation concentration. For this simplified model it is assumed that any Pu/Am, which can't be transported due to the saturation limit or the retardation factor remains at the originating location.

The development of the concrete specific data, based on the Pu solubility data (see Section 3.1.5) is done in the "Concrete" worksheet of pusol.xls. The time dependent calculations and supporting information is addressed in the "Buildup Cal." worksheet of "pusol.xls" (see Appendix C).

3.1.1 Time = 0 days

Where the conditions and parameters at time t=0 are as summarized below and in Figure 1:

- Contamination Source is the pool of liquid on the surface of the concrete, which is assumed to contain a saturated solution of Pu/Am. This pool is assumed to be at pH 7 and have a concentration of C_0 .
- The surface layer of concrete is assumed to be a 0.2 cm layer of concrete. The CO₂ in the air is assumed to have modified the concrete in this surface layer so that the pH in the pore spaces is less than the pH of 12.5 normally found in concrete(see Section 2.16 of Troxell, 1968). Specifically the pH is assumed to 7 for this layer for conservatism. The parameters at t=0 days are:
 - $S_0(0)$ is the radioactivity per unit volume in the surface layer (μ Ci/ml).
 - C_0 is the incoming activity concentration of the liquid (μ Ci/ml).
 - V_0 is the volume (ml) of the section assuming a 1 cm² section.
 - wf is the fraction of V_0 that may contain water (ml).
 - C_1 is the outgoing activity concentration of the liquid (μ Ci/ml).

The activity concentration (μ Ci/ml) in the surface layer, cell i=0 is S₀(0) a(i.e., t=0) is shown in Figure 1. Note, S_i(i) = 0 for i > 0 since the Pu/Am has not reached these cells yet, since penetration is modeled as occuring in 1 day steps and each layer below the surface layer is defined by the penetration boundary for the this additional day. Thus the value of "i" can be treated as both the time in days and the cell boundary with the break between cell "i=0" and "i=1" being a special case.

PARS	Calcu	lation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 6 of 14 plus Appendices
Rev	Date	By	Ck	Subject:		
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po	otential Migration	of Pu/Am Into

3.1.2 Time = 1 day

- The 1st Day Penetration Layer of Concrete is area that is penetrated during the 1 day of in flow into the concrete for 1 cm² section area minus the S₀ layer. The liquid pH is assumed to be about 12.5 consistent with the characteristics of concrete. Specifically for this assessment of activity concentration:
 - $S_1(t)$ is the average radioactivity per unit volume in the surface layer (μ Ci/ml) at time "t".
 - C_1 is the incoming activity concentration of the liquid (μ Ci/ml).
 - V_1 is the volume (ml) of the section assuming a 1 cm² section.
 - wf is the fraction of V_1 that may contain water (ml).
 - FV1 is the volume of fluid that can flow in to layer "i=1" thus $FV1 = wf * V_1$.
 - NC_i is the ingoing activity concentration of the liquid, and is assumed to be NC_i = $S_{i-1}*V_{i-1}/FV_i$ if this concentration exceeds the saturation concentration then it is set to the saturation concentration. Essentially this is the activity in the source cell (i.e., $S_{i-1}*V_{i-1}$) divided by the volume of liquid that flows through that cell in a day (i.e., FV1) to determine the average concentration.
 - RT is the retardation factor for the material (i.e., Pu or Am) for transport by water, assumed to be similar to the retardation factor used in modeling water transport in soils in the RESRAD model. This is the ratio of average water velocity to radionuclide transport velocity (see RESRAD 6 and Yu, 1993). However, to ensure conservatism this value has be set to 0.1.

To assess the concentration at the end of the first day it is necessary to model the penetration of the concrete by the carrier media water and any retardation of the transfer of Pu/AM by the chemistry of the media through which the water is passing. The parameters for modeling this flow were defined above for t=1.

The activity concentration (μ Ci/ml) in each cell i is S_i(1) (i.e., values at t=1) is summarized below for i < 2, and is zero for i ≥ 2, since the Pu/Am will not have reached these cells.

 $S_0(1) = [S_0(0) * V_0 + (C_0 - C_1) * FV1 + RT * C_1 * FV1] / V_0$

 $S_1(1) = (S_1(1) * V_1 + RT * C_1 * FV1) / V_1$

 $S_i(1) = 0, i > 1.$

PARS	Calcu	lation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 7 of 14 plus Appendices
Rev	Date	By	Ck	Subject:		
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po	tential Migration	of Pu/Am Into
				-		

3.1.3 Time \geq 2 days

- For time greater than or equal to two days the Penetration Layer of Concrete is that area that is penetrated beyond that penetrated the previous day for 1 cm² section area. The liquid pH is assumed to be about 12.5 consistent with the characteristics of concrete for all volume except V₀, which is assumed to have a pH of 7. Specifically for this assessment of activity concentration:
 - $S_i(t)$ is the radioactivity per unit volume in the surface layer (μ Ci/ml) for cell "i" at time "t".
 - NC_i is the incoming/outgoing (based on "i") activity concentration of the liquid and is assumed to be $NC_i = S_{i-1}(t)*V_{i-1}/FV_i$ if this concentration exceeds the saturation concentration then it is set to the saturation concentration.
 - V_i is the volume (ml) of the section assuming a 1 cm² section.
 - wf is the fraction of V_0 that may contain water (ml).
 - FVi is the volume of water that can flow in layer "i". RT is the retardation factor for the material (i.e., Pu or Am) for transport by water and this value is assumed to be similar to the retardation factor used in model water transport in soils in the RESRAD model. This is the ratio of average water velocity to radionuclide transport velocity (see RESRAD 6 and Yu, 1993). However, to ensure conservatism this value has be set to 0.1.

3.1.4 Time t days

To assess the concentration at the end of each day (i.e., subsequent days ≥ 2 days) it is necessary to model the penetration of the concrete by the carrier media water and any retardation of the transfer by the chemistry of the media through which the water is passing. The parameters are defined above in the discussion for t=0 and t=1 days.

The activity concentration (μ Ci/ml) in each cell i is S_i(t) (i.e., t=2, 3, 4, ...) is summarized below: The equations are interrelated to that cell, which the flow has not penetrated will have zero values.

 $S_0(t \ge 2) = [S_0(t-1) * V_0 + (C_0 - C_1) * FV1 + RT * C_1 * FV1] / V_0$

 $S_1(t \ge 2) = (S_1(t-1) * V_1 + RT * C_1 * FV1 - RT * NC2 * FV2) / V_1$

 $S_i(t \ge 2) = [S_i(t-1) * V_1 + RT * NCi * FVi - RT * NC(i+1) * FVi] / V_i$

with the following boundary condition: $NCi = if [S_{i-1}(t-1)*V_{i-1}/FVi > C_{i-1}, C_{i-1}, S_{i-1}(t-1)*V_{i-1}/FVi]$

PARSO	NS Calcul	lation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 8 of 14 plus Appendices
Rev	Date	By	Ck	Subject:		
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po	otential Migration	a of Pu/Am Into

3.1.5 Assessment of Saturation Concentration

Plutonium and americium are essentially insoluable materials unless the solution is highly acidic. The solubility is pH dependent and the behavior of a Pu/Am solution passing through concrete should be similar to a Pu/Am solution passing through soils, which was investigated and quantified as described in Rai, 1980 and Rai, 1981. For purposes of conservatism it is assumed that concentration flowing into the concrete is saturated with Pu and Am, even though this is unlikely. When the potential concentration in an area exceeds the saturation concentration, the excess Pu and/or Am is assumed to precipitate and drop out of solution and remain in the cell and would be included as a potential future source for future flows and existing concentration.

In the model discussed in Section 3.1 the concentration in a cell (i.e., C_i) is modeled based on the pH in the cell and the concentration of the entering solution. Above the top cell there is assumed to be a saturated solution of Pu and Am for the 90 days/year period that the concrete is assumed to be covered by this saturated solution of water. The Pu/Am source in this saturated water solution is assumed to be unlimited and have a pH of 7. Cell zero (i.e., the top cell) is the top layer of the concrete where the pH has been affected by the CO₂ in the air (i.e., the top 2 mm), and is assumed to have a pH of about 7 (i.e., below 12.5 pH for typical concrete based on Troxell, 1968, pg 48; Skalny, Jan, 1989, pg 287; & Skalny, Jan and Sidney Miness, 1991, pg 202). Note, water has a pH of 7 with no contaminates. The concentration in a cell is controlled by the pH of the cell (i.e., below the top cell the pH is assumed to 12.5 based on Troxell, 1968, pg 48; Skalny, Jan, 1989, pg 202) that is being entered and any precipitating Pu and/or Am is assumed to be deposited in the cell above. The flow out of a cell is always controlled by the pH of the cell below and the flow into a cell is controlled by the pH of the cell below and the flow into a cell is controlled by the pH of the cell below and the flow into a cell is controlled by the pH of the cell below and the flow into a cell is controlled by the pH of the cell below and the flow into a cell is controlled by the pH of the cell divided by the water volume in the cell unless this concentration exceeds the saturation concentration.

The saturation concentration for Pu and Am can be characterized by the equations listed below:

 $\log (Pu_{total}) = (-3.90 \pm 0.10) - (0.64 \pm 0.02) * pH$ (Rai, 1980) for PuO₂ in moles per liter of solution.

 $\log (Pu_{total}) = (-1.19 \pm 0.08) - (0.80 \pm 0.01) * pH$ (Rai, 1980) for Pu(OH)₄ in moles per liter of solution.

 $\log (Am_{total}) = (-3.76 \pm 0.24) - (1.07 \pm 0.04) * pH$ (Rai, 1981) for Am in moles per liter of solution.

Moles per liter are converted to g/liter by multiplying by the atomic weight of the compound for Pu (i.e., Pu-239) and by multiplying by the atomic weight of Am-241. The concentration was then multiplied by the specific activity of the radionuclide(s) to calculate the activity concentration, which is C_i.

Based on the chemistry of Pu and the assumed source of the Pu, which is metallic, the Pu in the solution above the top cell and in the top cell are assumed to be PuO₂. (Hodge, 1973). In subsequent cells because of the

PARSO	NS Calcula	ation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 9 of 14 plus Appendices
Rev	Date	By	Ck	Subject:	4	- C D / A T - 4
0, draft B	1/4/2002	SWW	RJM	Concrete	itential Migration	of Pu/Am Into

abundance of the $(OH)^{-1}$ ion the source is assumed to be $Pu(OH)_4$, to ensure conservatism. Based on Rai, 1981 the Am is assumed to be in ionic form, typically associated with hydroxides of this chemical.

The solubility as a function of pH is summarized in Figure 1 for Pu/Am. Note, these values are described based on activity and include the specific activity of the material. For Pu we consider both Pu-239 and mixture of Pu-239/Pu-240 since both are of concern as discussed in Section 3.1.8.

The assessment of Pu/Am concentration at saturation is calculated in the "Pu solubility" worksheet of pusol.xls (see Appendix C).

3.1.6 Retardation Factor

The retardation factor (i.e., RT) for the material (i.e., Pu or Am) transport by water through concrete is assumed to be similar to the retardation factor used to model water transport of these chemicals in soils in the RESRAD software. R_d is the ratio of the average water velocity to radionuclide velocity and can be calculated using (see RESRAD 6 and Yu, 1993):

$$RT=1/R_{d} = 1 + \rho_{b} * K_{d} / Th$$

Where:

р _b	bulk density (g/cm ³)
K _d	distriubtion coefficent for radionuclide (cm ³ /g)
Th	volumetric water content
R _d	ratio of average water velocity to radionuclide velocity

The value of K_d can vary based on the material for soils RESRAD uses:

Element	K _d	pН	Element	K _d	pН	
Pu	1000	at pH 11	Pu	8500	at pH 7	Table E.6 of Yu, 1993
Pu	2000	not specified	Am	20	not specified	RESRAD 6

These values are large and significantly reduce the movement of Pu/Am, which is consistent with what is seen in nature. However, $1/R_d$ (i.e., RT) was assumed to be 10 for both Pu and Am to ensure conservatism. The retardation factor is calculated and used in the "Buildup Cal." worksheet of the "pusol.xls" spreadsheet in Appendix C.

ENG-GE-30 (05-97)

PARS	Calcu	lation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 11 of 14 plus Appendices
Rev	Date	By	Ck	Subject:	· · · · · · · · · · · · · · · · · · ·	
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po	tential Migration	of Pu/Am Into

3.1.7 Description of Time Dependent Flow

The model assumes that the various cells (i.e., i=0 to 90) represent the amount of concrete that water would penetrate concrete in "i" days minus the amount of water that would penetrate concrete in "i-1" days. The time dependent calculation is found in the "Buildup Cal." worksheet of the "pusol.xls" spreadsheet.

The "i=0" cell is the layer on top of the concrete which is treated separately since it has different pH characteristics. The "i=1" cell begins at the bottom of the "i=0" cell and ends at the distance water would penetrate from the top of the concrete in one day. Thus the cells can be considered to be a time/distance dependent variable. The distance dependent variable begins with x=0 at the top of the concrete and the water layer above is not considered as part of the cells. The boundaries of these layers are summarized in Table 1. The liquid layer above cell "i=0" is assumed to be an unchanging saturated Pu/Am solution, which is present for 90 days/yr and absent for the balance of that period. It is only necessary to address a period of 180 days in each year since the water will have flowed beyond the bottom cell at the end of this period.

At time zero water is assumed to have penetrated cell "i=0" and for each day thereafter the penetration is summarized in Table 1. Thus the cell number and the lapse time in days is equivalent with cell "i=0" and "i=1" being special cases. The depth boundaries are also shown in Table 1. Below cell "i=90" there is assumed to be continuing concrete or soils, which would have concentrations less than those for the cells above this volume.

It is assumed that for the first 90 days there is liquid setting on the surface and the water proceeds down through the concrete for 90 days. It is then assumed that the saturated water source has dried out and is no longer providing Pu/Am saturated liquid input to cell "i=0". Thus after 90 days, each day the water input to the next cell ends, (e.g., on day 91 cell "i=1" receives no additional Pu/Am saturated water and then on day 92 cell "i=2" Pu/Am saturated water) until no water is present in the cells. The Pu/Am in the cell on the last day it has water is assumed to remain in the cell it starts in and is also assumed to flow with the water into the next cell. This results in the activity in the solution on the last day a cell has water being double counted to ensure conservatism. This conservatism was used since it is unclear if the flow will actually continue after the water head above the cell is eliminated and thus keeping the activity in the cell above. The spreadsheet in Appendix C, particularly worksheet "Buildup Cal." of the pusol.xls spreadsheet provides a model of 90 days of filling and then 90 days of empting out (i.e., drying), which is assumed to happen each year. This cycle is assumed to have occurred for 40 years, so this 180 day cycle is repeated 40 times. Assuming the 90 days is continuous maximizes the penetration of the Pu/Am solution.

PARS	INS Calcul	ation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 12 of 14 plus Appendices
Rev	Date	By	Ck	Subject:		
0, draft B	1/4/2002	SWW	RJM	Assessment of the Po Concrete	tential Migration	of Pu/Am Into

		Table 1 Cel	l Bounda	ries (Dista	ance and Elaps	ed Time)		
Depth	(cm)	Elapsed	Deptl	n (cm)	Elapsed	Depth	(cm)	Elapsed
Begin	End	Time (days)	Begin	End	Time (days)	Begin	End	Time (days)
0	0.2	0 (<2X10 ⁻⁵)				N/A	A	
0.2	5.7	1	31.1	31.6	31	43.9	44.3	61
5.7	8.0	2	31.6	32.1	32	44.3	44.6	62
8.0	9.8	3	32.1	32.6	33	44.6	45.0	63
9.8	11.3	4	32.6	33.1	34	45.0	45.4	64
11.3	12.7	5	33.1	33.5	35	45.4	45.7	65
12.7	13.9	6	33.5	34.0	36	45.7	46.1	66
13.9	15.0	7	34.0	34.5	37	46.1	46.4	67
15.0	16.0	8	34.5	35.0	38	46.4	46.8	68
16.0	17.0	9	35.0	35.4	39	46.8	47.1	69
17.0	17.9	10	35.4	35.9	40	47.1	47.4	70
17.9	18.8	11	35.9	36.3	41	47.4	47.8	71
18.8	19.6	12	36.3	36.7	42	47.8	48.1	72
19.6	20.4	13	36.7	37.2	43	48.1	48.4	73
20.4	21.2	14	37.2	37.6	44	48.4	48.8	74
21.2	22.0	15	37.6	38.0	45	48.8	49.1	75
22.0	22.7	16	38.0	38.5	46	49.1	49.4	76
22.7	23.4	17	38.5	38.9	47	49.4	49.8	77
23.4	24.1	18	38.9	39.3	48	49.8	50.1	78
24.1	24.7	19	39.3	39.7	49	50.1	50.4	79
24.7	25.4	20	39.7	40.1	50	50.4	50.7	80
25.4	26.0	21	40.1	40.5	51	50.7	51.0	81
26.0	26.6	22	40.5	40.9	52	51.0	51.3	82
26.6	27.2	23	40.9	41.3	53	51.3	51.7	83
27.2	27.8	24	41.3	41.7	54	51.7	52.0	84
27.8	28.4	25	41.7	42.0	55	52.0	52.3	85
28.4	28.9	26	42.0	42.4	56	52.3	52.6	86
28.9	29.5	27	42.4	42.8	57	52.6	52.9	87
29.5	30.0	28	42.8	43.2	58	52.9	53.2	88
30.0	30.5	29	43.2	43.6	59	53.2	53.5	89
30.5	31.1	30	43.6	43.9	60	53.5	53.8	90

PARSO	NS Calcula	ation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 13 of 14 plus Appendices
Rev	Date	By	Ck	Subject:	4	- C D / A X 4-
0, draft B	1/4/2002	SWW	RJM	Concrete	otential wiigration	of Pu/Am Into

3.1.8 Radionuclide Groups

The primary radionuclide of concern associated with contamination from weapons grade Pu is Pu-239, so it was specifically addressed. In addition, the Pu-239/Pu-240 mixture consistent with Shefelbine, 1968 was also addressed due to the increase in specific activity of Pu-240. The Pu-240/Pu-239 ratio based on the Shefelbine data is 0.223 and is reflected in the calculation of the specific activity of the two radionuclides mixture. Am-241 was also considered since it is a decay product of the short-lived Pu isotope Pu-241 (i.e., halflife of 13.2 years). As part of the survey activity the Pu-239 activity was extrapolated based on the Am-241 activity. For these analyses based on the projected age of material it was estimated that there are about 4 Pu-239 μ Ci for every single Am-241 μ Ci. This determination is documented in the survey and workplan documentation.

The specific activity of the various radionuclides were calculated based on the following equation from the Radiological Health Handbook:

 $SpAct_i(Ci/g) = 3.578 \times 10^5 / T_{1/2} (yr) / ATW$

Where:

 $T_{1/2}$ is the half-life in years, and ATW is the atomic weight of the element.

The results for specific activity used in this analysis are summarized in Table 2 Specific Activity.

	Table 2 Specific Activity							
Radionuclide	At Wt	Half-life (yr) (ICRP-38)	SpA (Ci/g)					
Pu-239	239	24065	0.0622095					
Pu-240	240	6537	0.2280608					
Am-241	241	432.2	3.4350933					

This data is calculated in the "Pu Solubility" worksheet of the "pusol.xls" spreadsheet.

PARS	Calcul	ation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Page 14 of 14 plus Appendices
Rev	Date	By	Ck	Subject:		
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po	tential Migration	of Pu/Am into

4. CONCLUSION

The projected activity range from 1.5 X 10⁻⁶ pCi/g to 4.66 X 10⁻²³ pCi/g for the various layers after 40 years of exposure, as summarized in Table 3. The pCi/g values were calculated by multiplying the pCi/ml values by the density of concrete in g/ml (i.e., 2 g/cm³). The data for the various layer is summarized in detail in Appendix A (i.e., Table 4, Table 5, and Table 6) and were calculated by the spreadsheet document in Appendix C, specifically in the "Concentrations" worksheet of "pusol.xls" spreadsheet. The values for the various radionuclide groups specific solubility were put in the "Activity (uCi/ml) Inflow Concentration Used" line in the ""Buildup Cal." worksheet and then the resulting table (i.e., the "Calculation Table") in the "Concentrations" worksheet was copied and then the values were "special pasted" into the appropriate radionuclide group table to document the calculation.

	Table 3 Summary of Pu/Am Concentrations								
Radionuclide(s)		Co	ncentration A	fter 40 Years	In				
	0 to 0.02 cm	Layer	ayer 0.02 to 2.08 cm Layer 18.6 to 19.6 cm Layer						
	pCi/ml	pCi/g	pCi/ml	pCi/g	pCi/ml	pCi/g			
Pu-239/Pu-240	1.38E-06	6.89E-07	2.36E-13	1.18E-13	3.61E-50	1.81E-50			
Pu-239	2.20E-06	1.10E-06	3.76E-13	1.88E-13	5.76E-50	2.88E-50			
Am-241	9.16E-09	4.58E-09	8.90E-12	4.45E-12	1.36E-48	6.82E-49			

The uncertainty in this calculation is only addressed semi-quantitatively since the results are so small that a detailed assessment of uncertainty is not justified. The saturation uncertainty data (see worksheet "Pu solubbility" of the pusol.xls spreadsheet in Appendix C) is clearly within an order magnitude. Further based on concrete porosity data uncertainties, the calculations of the flow through the concrete (see worksheets "Concrete" and "Buildup Cal." of the pusol.xls spreadsheet in Appendix C) are within an order of magnitude. The retardation factor is conservative by at least a factor of 2 for Am and orders of magnitude for Pu. Thus 100 times values in Table 3 and APPENDIX A bound the activity that could be in the cells and the values in reality are probably less than the values in Table 3 and APPENDIX A.

PARS	Calcul	ation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Appendices
Rev	Date	By	Ck	Subject:	4	
0, draft B	1/4/2002	SWW	RJM	Concrete	otential wilgration	of Pu/Am Into
				-		

APPENDIX A

Pu/Am Concentrations

(Contains 5 pages)

PARS	Calcu	lation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Appendices
Rev	Date	By	Ck	Subject:	· · · · · · · · · · · · · · · · · · ·	
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po	otential Migration	of Pu/Am Into

5

	Table 4 Pu-239/Pu-240 Concentration In Concrete (pCi/ml)										
Layer	1	2	3	4	5	6	7	8	9	10	
Thickness of the Layer (cm)	2.00E-01	5.67E+00	8.02E+00	9.82E+00	1.13E+01	1.27E+01	1.39E+01	1.50E+01	1.60E+01	1.70E+01	
Day 1	3.65E-09	2.18E-14	0.00E+00								
Forty Years Later	1.38E-06	2.36E-13	2.33E-13	2.20E-13	2.02E-13	1.81E-13	1.63E-13	1.48E-13	1.35E-13	1.24E-13	
Layer	11	12	13	14	15	16	17	18	19	20	
Thickness of the Layer (cm)	1.79E+01	1.88E+01	1.96E+01	2.04E+01	2.12E+01	2.20E+01	2.27E+01	2.34E+01	2.41E+01	2.47E+01	
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Forty Years Later	1.15E-13	1.07E-13	1.00E-13	9.40E-14	8.86E-14	8.37E-14	7.92E-14	7.50E-14	7.11E-14	6.70E-14	
Layer	21	22	23	24	25	26	27	28	29	30	
Thickness of the Layer (cm)	2.54E+01	2.60E+01	2.66E+01	2.72E+01	2.78E+01	2.84E+01	2.89E+01	2.95E+01	3.00E+01	3.05E+01	
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Forty Years Later	6.14E-14	5.41E-14	4.58E-14	3.71E-14	2.87E-14	2.12E-14	1.49E-14	1.00E-14	6.44E-15	3.95E-15	
Layer	31	32	33	34	35	36	37	38	39	40	
Thickness of the Layer (cm)	3.11E+01	3.16E+01	3.21E+01	3.26E+01	3.31E+01	3.35E+01	3.40E+01	3.45E+01	3.50E+01	3.54E+01	
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Forty Years Later	2.32E-15	1.30E-15	7.00E-16	3.61E-16	1.79E-16	8.57E-17	3.94E-17	1.75E-17	7.48E-18	3.09E-18	
Layer	41	42	43	44	45	46	47	48	49	50	
Thickness of the Layer (cm)	3.59E+01	3.63E+01	3.67E+01	3.72E+01	3.76E+01	3.80E+01	3.85E+01	3.89E+01	3.93E+01	3.97E+01	
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Forty Years Later	1.24E-18	4.80E-19	1.80E-19	6.55E-20	2.32E-20	7.95E-21	2.65E-21	8.62E-22	2.73E-22	8.40E-23	
Layer	51	52	53	54	55	56	57	58	59	60	
Thickness of the Layer (cm)	4.01E+01	4.05E+01	4.09E+01	4.13E+01	4.17E+01	4.20E+01	4.24E+01	4.28E+01	4.32E+01	4.36E+01	
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Forty Years Later	2.52E-23	7.40E-24	2.12E-24	5.92E-25	1.62E-25	4.32E-26	1.13E-26	2.88E-27	7.22E-28	1.77E-28	
Layer	61	62	63	64	65	66	67	68	69	70	
Thickness of the Layer (cm)	4.39E+01	4.43E+01	4.46E+01	4.50E+01	4.54E+01	4.57E+01	4.61E+01	4.64E+01	4.68E+01	4.71E+01	
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Forty Years Later	4.26E-29	1.00E-29	2.32E-30	5.28E-31	1.18E-31	2.57E-32	5.53E-33	1.17E-33	2.43E-34	4.96E-35	
Layer	71	72	73	74	75	76	77	78	79	80	

PARSI	Calcu	lation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Appendices
Rev	Date	By	Ck	Subject:		
0, draft B	1/4/2002	SWW	RJM	Concrete	tential wilgration	of Pu/Am Into
				-		

	Table 4 Pu-239/Pu-240 Concentration In Concrete (pCi/ml)											
Thickness of the Layer (cm)	4.74E+01	4.78E+01	4.81E+01	4.84E+01	4.88E+01	4.91E+01	4.94E+01	4.98E+01	5.01E+01	5.04E+01		
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Forty Years Later	9.98E-36	1.97E-36	3.84E-37	7.36E-38	1.39E-38	2.58E-39	4.74E-40	8.55E-41	1.52E-41	2.67E-42		
Layer	81	82	83	84	85	86	87	88	89	90		
Thickness of the Layer (cm)	5.07E+01	5.10E+01	5.13E+01	5.17E+01	5.20E+01	5.23E+01	5.26E+01	5.29E+01	5.32E+01	5.35E+01		
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Forty Years Later	4.63E-43	7.91E-44	1.33E-44	2.22E-45	3.64E-46	5.91E-47	9.46E-48	1.50E-48	2.34E-49	3.61E-50		

		Table 5	Pu-239 (Concentr	ation in	Concret	e (pCi/m	l)		
Layer	1	2	3	4	5	6	7	8	9	10
Thickness of the Layer (cm)	2.00E-01	5.67E+00	8.02E+00	9.82E+00	1.13E+01	1.27E+01	1.39E+01	1.50E+01	1.60E+01	1.70E+01
Day 1	5.81E-09	3.47E-14	0.00E+00							
Forty Years Later	2.20E-06	3.76E-13	3.71E-13	3.51E-13	3.21E-13	2.89E-13	2.60E-13	2.35E-13	2.15E-13	1.98E-13
Layer	11	12	13	14	15	16	17	18	19	20
Thickness of the Layer (cm)	1. 7 9E+01	1.88E+01	1.96E+01	2.04E+01	2.12E+01	2.20E+01	2.27E+01	2.34E+01	2.41E+01	2.47E+01
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Forty Years Later	1.83E-13	1.70E-13	1.59E-13	1.50E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13
Layer	21	22	23	24	25	26	27	28	29	30
Thickness of the Layer (cm)	2.54E+01	2.60E+01	2.66E+01	2.72E+01	2.78E+01	2.84E+01	2.89E+01	2.95E+01	3.00E+01	3.05E+01
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Forty Years Later	9.78E-14	8.63E-14	7.30E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14	1.60E-14	1.03E-14	6.29E-15
Layer	31	32	33	34	35	36	37	38	39	40
Thickness of the Layer (cm)	3.11E+01	3.16E+01	3.21E+01	3.26E+01	3.31E+01	3.35E+01	3.40E+01	3.45E+01	3.50E+01	3.54E+01
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Forty Years Later	3.69E-15	2.07E-15	1.11E-15	5.76E-16	2.86E-16	1.37E-16	6.28E-17	2.78E-17	1.19E-17	4.93E-18
Layer	41	42	43	44	45	46	47	48	49	50
Thickness of the Layer (cm)	3.59E+01	3.63E+01	3.67E+01	3.72E+01	3.76E+01	3.80E+01	3.85E+01	3.89E+01	3.93E+01	3.97E+01
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Forty Years Later	1.97E-18	7.64E-19	2.87E-19	1.04E-19	3.69E-20	1.27E-20	4.23E-21	1.37E-21	4.34E-22	1.34E-22
Layer	51	52	53	54	55	56	57	58	59	60

PARS	Calcu	lation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Appendices
Rev	Date	By	Ck	Subject:	· · · · · · · · · · · · · · · · · · ·	CD /A X /
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po	tential Migration	of Pu/Am Into

		Table 5	Pu-239 (Concentr	ation in	Concret	e (pCi/m	l)		
Thickness of the Layer (cm)	4.01E+01	4.05E+01	4.09E+01	4.13E+01	4.17E+01	4.20E+01	4.24E+01	4.28E+01	4.32E+01	4.36E+01
Day 1	0.00E+00									
Forty Years Later	4.02E-23	1.18E-23	3.37E-24	9.43E-25	2.57E-25	6.88E-26	1.80E-26	4.59E-27	1.15E-27	2.82E-28
Layer	61	62	63	64	65	66	67	68	69	70
Thickness of the Layer (cm)	4.39E+01	4.43E+01	4.46E+01	4.50E+01	4.54E+01	4.57E+01	4.61E+01	4.64E+01	4.68E+01	4.71E+01
Day 1	0.00E+00									
Forty Years Later	6.79E-29	1.60E-29	3.70E-30	8.41E-31	1.87E-31	4.10E-32	8.82E-33	1.86E-33	3.87E-34	7.91E-35
Layer	71	72	73	74	75	76	77	78	79	80
Thickness of the Layer (cm)	4.74E+01	4.78E+01	4.81E+01	4.84E+01	4.88E+01	4.91E+01	4.94E+01	4.98E+01	5.01E+01	5.04E+01
Day 1	0.00E+00									
Forty Years Later	1.59E-35	3.14E-36	6.12E-37	1.17E-37	2.21E-38	4.12E-39	7.55E-40	1.36E-40	2.43E-41	4.26E-42
Layer	81	82	83	84	85	86	87	88	89	90
Thickness of the Layer (cm)	5.07E+01	5.10E+01	5.13E+01	5.17E+01	5.20E+01	5.23E+01	5.26E+01	5.29E+01	5.32E+01	5.35E+01
Day 1	0.00E+00									
Forty Years Later	7.38E-43	1.26E-43	2.12E-44	3.54E-45	5.81E-46	9.42E-47	1.51E-47	2.39E-48	3.73E-49	5.76E-50

	Τa	able 6 A	m-241 C	oncentr	ation in	Concret	e (pCi/m	l)		
Layer	1	2	3	4	5	6	7	8	9	10
Thickness of the Layer (cm)	2.00E-01	5.67E+00	8.02E+00	9.82E+00	1.13E+01	1.27E+01	1.39E+01	1.50E+01	1.60E+01	1.70E+01
Day 1	3.19E-11	8.23E-13	0.00E+00							
Forty Years Later	9.16E-09	8.90E-12	8.78E-12	8.32E-12	7.61E-12	6.85E-12	6.16E-12	5.58E-12	5.09E-12	4.68E-12
Layer	11	12	13	14	15	16	17	18	19	20
Thickness of the Layer (cm)	1.79E+01	1.88E+01	1.96E+01	2.04E+01	2.12E+01	2.20E+01	2.27E+01	2.34E+01	2.41E+01	2.47E+01
Day 1	0.00E+00									
Forty Years Later	4.33E-12	4.04E-12	3.78E-12	3.55E-12	3.34E-12	3.16E-12	2.99E-12	2.83E-12	2.68E-12	2.53E-12
Layer	21	22	23	24	25	26	27	28	29	30
Thickness of the Layer (cm)	2.54E+01	2.60E+01	2.66E+01	2.72E+01	2.78E+01	2.84E+01	2.89E+01	2.95E+01	3.00E+01	3.05E+01
Day 1	0.00E+00									
Forty Years Later	2.32E-12	2.04E-12	1.73E-12	1.40E-12	1.09E-12	8.01E-13	5.64E-13	3.79E-13	2.43E-13	1.49E-13
Layer	31	32	33	34	35	36	37	38	39	40

PARS	Calcul	ation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Appendices
Rev	Date	By	Ck	Subject:		of Duy/Arro Irato
0, draft B	1/4/2002	SWW	RJM	Concrete	otential wilgration	oi Pu/Am Into
				-		

	Table 6 Am-241 Concentration in Concrete (pCi/ml)											
Thickness of the Layer (cm)	3.11E+01	3.16E+01	3.21E+01	3.26E+01	3.31E+01	3.35E+01	3.40E+01	3.45E+01	3.50E+01	3.54E+01		
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Forty Years Later	8.74E-14	4.91E-14	2.64E-14	1.36E-14	6.77E-15	3.24E-15	1.49E-15	6.60E-16	2.82E-16	1.17E-16		
Layer	41	42	43	44	45	46	47	48	49	50		
Thickness of the Layer (cm)	3.59E+01	3.63E+01	3.67E+01	3.72E+01	3.76E+01	3.80E+01	3.85E+01	3.89E+01	3.93E+01	3.97E+01		
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Forty Years Later	4.67E-17	1.81E-17	6.80E-18	2.47E-18	8.74E-19	3.00E-19	1.00E-19	3.26E-20	1.03E-20	3.17E-21		
Layer	51	52	53	54	55	56	57	58	59	60		
Thickness of the Layer (cm)	4.01E+01	4.05E+01	4.09E+01	4.13E+01	4.17E+01	4.20E+01	4.24E+01	4.28E+01	4.32E+01	4.36E+01		
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Forty Years Later	9.53E-22	2.79E-22	7.99E-23	2.23E-23	6.10E-24	1.63E-24	4.26E-25	1.09E-25	2.73E-26	6.69E-27		
Layer	61	62	63	64	65	66	67	68	69	70		
Thickness of the Layer (cm)	4.39E+01	4.43E+01	4.46E+01	4.50E+01	4.54E+01	4.57E+01	4.61E+01	4.64E+01	4.68E+01	4.71E+01		
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Forty Years Later	1.61E-27	3.79E-28	8.78E-29	1.99E-29	4.44E-30	9.72E-31	2.09E-31	4.42E-32	9.17E-33	1.87E-33		
Layer	71	72	73	74	75	76	77	78	79	80		
Thickness of the Layer (cm)	4.74E+01	4.78E+01	4.81E+01	4.84E+01	4.88E+01	4.91E+01	4.94E+01	4.98E+01	5.01E+01	5.04E+01		
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Forty Years Later	3.77E-34	7.45E-35	1.45E-35	2.78E-36	5.25E-37	9.76E-38	1.79E-38	3.23E-39	5.75E-40	1.01E-40		
Layer	81	82	83	84	85	86	87	88	89	90		
Thickness of the Layer (cm)	5.07E+01	5.10E+01	5.13E+01	5.17E+01	5.20E+01	5.23E+01	5.26E+01	5.29E+01	5.32E+01	5.35E+01		
Day 1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Forty Years Later	1.75E-41	2.99E-42	5.04E-43	8.38E-44	1.38E-44	2.23E-45	3.57E-46	5.65E-47	8.83E-48	1.36E-48		

PARS	Calcul	lation Pa	ge	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Appendices
Rev	Date	By	Ck	Subject:		
0, draft B	1/4/2002	SWW	RJM	Assessment of the Po Concrete	tential Migration	of Pu/Am Into

APPENDIX B

Exerts From References

(Contains 53 pages)

.

Solubility of Plutonium Compounds and Their Behavior in Soils¹

DHANPAT RAI, R. J. SERNE AND D. A. MOORE²

ABSTRACT

The solubilities of "PuO₃ (c) (crystalline) and "Pu(OH), (am) (amorphous) under natural environmental conditions were determined. These data were then used to predict the (i) nature of the solid phases present in contaminated soils, and (ii) total concentration of Pu that can be expected in soil solutions when these Pu solids are present.

Based upon solubility measurements, an estimated value of the log K^c (equilibrium constant at room temperature and an approximate ionic strength of 0.0045) for the dissolution of ${}^{***}PuO_2(c)$ [PuO₂(c) \rightleftharpoons PuO₃⁺ + e^-] was found to be -14.8. The estimated value of the log K° for the dissolution of =Pu(OH),(am) [Pu(OH),(am) \leq PuO₃ + 2 H₂O + e^{-}] was found to be -12.8.

Comparison of Pu concentration in equilibrium solutions of contaminated Hanford soils with the PuO₃(c) and Pu(OH), (am) solubility lines suggested that Pu(OH),(am) was absent from all the samples and that two of the samples contained PuO2(c). The presence of PuO2(c) was also confirmed by Xray diffraction of Pu particles isolated from one of the samples.

Additional Index Words: PuOs(c), Pu(OH), (am), equilibrium constant, plutonyl (V), oxidation-reduction, redox potential.

Rai. D., R. J. Serne, and D. A. Moore. 1980. Solubility of plutonium compounds and their behavior in soils. Soil Sci. Soc. Am. I. 44:490-495.

THE SOLID COMPOUNDS of Pu that may be present in soils have a specific solubility at equilibrium in a given weathering environment and could control the final concentration of Pu in the soil solution. The final concentration could, in turn, largely control the distribution of Pu in the environment. Therefore, knowledge of Pu compounds present in the soil and their solubility are necessary in order to predict the behavior or fate of Pu in soil.

Reliable data on the solubility of crystalline Pu oxide $[PuO_2(c)]$ and amorphous Pu hydroxide [Pu(OH)₄(am)], the compounds most likely to form in soils at environmental pH and redox potentials, are lacking (13). Based upon thermodynamic data reported in the literature, an uncertainty of at least five orders of magnitude in the solubility of these compounds is expected (14). An extensive review (2, 3) of the actinides indicate that numerous workers have studied Pu concentrations and distribution with depth in soils around nuclear installations. However, with the exception of Price and Ames (12), none have made any attempt to identify the solid phases of Pu present in soils. Price and Ames (12) isolated plutonium particles from contaminated soils and analyzed them with electron microprobe and X-ray diffraction. They were able to isolate and identify discrete particles of Pu as $PuO_2(c)$, but were not able to identify the nature of other Pu compounds associated with soil silicates. The results of Price and Ames (12) are consistent with the theoretical calculations of Rai and Serne (13) who predicted that the $PuO_2(c)$ would be comparatively stable in the pH and redox potential ranges found in terrestrial environments.

Clearly more information is needed regarding the solubility of various Pu compounds and the nature of the solid compounds that may be present in the soils. The objectives of this study were to: (i) determine Pu concentrations in equilibrium with $PuO_2(c)$ and Pu(OH)₄(am) under environmental conditions, (ii) identify Pu compounds in contaminated soils, and (iii) provide guidelines for selecting concentrations of Pu for adsorption experiments to assure that Pu precipitation would be negligible or absent.

METHODS AND MATERIALS

The $^{222}Pu(IV)$ hydroxide used in this study was prepared by rapid neutralization of a pure $^{222}Pu(IV)$ nitrate solution (8M HNO₃) with NaOH (6). The precipitate was washed with distilled water. The Pu(IV) hydroxide thus prepared is represented the V(2V) (22) hydroxide the prepared is represented to be V(2V) (22) hydroxide the prepared to be represented to be the prepared to be sented in this study as $Pu(OH)_4(am)$. As expected, the X-ray diffraction pattern of $Pu(OH)_4(am)$ indicated it to be an amorphous compound (Table 2). The crystalline $=PuO_3(c)$ (99.1%) enriched in Pu) microspheres were obtained from Oak Ridge National Laboratory, Oak Ridge, Tennessee. A nearly perfect match of the sample's d spacings with the values reported in match of the sample's d spacings with the values reported in American Society for Testing and Materials (4) indicated that the $PuO_{\pi}(c)$ sample used for this study was indeed crystalline (Table-1). In order to determine solubility, approximately 8 mg of these ²⁰⁰Pu solids were suspended in 20 ml of 0.0015M CaCl_a solution. The samples were adjusted to different pH values with HCl or NaOH. The suspensions were equilibrated with air and shaken for various lengths of time. The pH of the suspensions was periodically readjusted (approximately every fifth day) for the first 3 weeks of the experiment. The pH was measured using a glass electrode. The redox potential (E_m) was measured with a platinum electrode (vs. standard calomel electrode corrected to standard hydrogen electrode).

In order to determine the nature of the plutonium compounds present in contaminated soils, three contaminated soil samples (Z9.4.5A; Z9.4.11A; Z12.1D) from two Hanford waste disposal cribs (Z9 and Z12) were used. The samples were washed once with distilled water to remove soluble salts and then equilibrated with 0.0015M CaCl₂ solution in duplicate. Equilibrations were also carried out with soil only and soil plus 5 mg of PuO₂(c). As in the case of Pu compounds, the suspensions were equilibrated with air and shaken for various lengths of time.

At various times, the suspensions containing Pu compounds and contaminated soils were centrifuged at 6,000g for 40 min and a small aliquot of the supernate was withdrawn for Pu analyses. A preliminary analysis of these solutions indicated a wide variation (as high as 30 fold in some cases) in Pu concentrations of duplicate aliquots withdrawn from a sample. This variation was later found to be due to the inability of centrifugation to completely separate the solid particles from the solu-tion. Filtration through (0.1 and or 0.015 μ m) Nuclepore filters gave consistent analyses of duplicate aliquots and thus presumably removed the fine solid particles. The Pu activity in solutions was determined by alpha counting in a 2π geometry.

The crystallinity of the Pu samples was determined from Xray diffraction patterns obtained by using Cu K α .

¹Contribution from Battelle, Pacific Northwest Laboratory, Richland, WA 99352. This research was conducted for the Office of Nuclear Waste Management (ONWI, WISAP) and the Office of Basic Energy Sciences of the U. S. Dep. of Energy under Contract EY-76-C-06-1830. Received 15 Oct. 1979. Approved 13 Feb. 1980. ^a Senior Research Scientist, Staff Scientist, and Technician.

respectively.

Table 1-X-ray diffraction data for Pu samples.

	d(Å) from different Pu samples†									
Standard	Puus	ed in study								
PuO _r (c)	PuO ₃ (c)	Pu(OH)4(am)	Filtered Pu	Soil Pu						
3.08	3.118	A	3.13	3.13						
2.67	2.696	A	2.71							
1.894	1.909	Α	1.919	1.888						
1.617	1.627	A	1.631	1.623						
1.548	1.559	A		1.552						
1.234	1.239	A		1.235						
1.203	1.208	A ·		1.204						
1.199	1.103	Α		1.098						

† Standard PuO₃(c) data ASTM (1966); A = amorphous; filtered Pu = Pu retained by a 0.1-μm membrane used to filter PuO₃(c) suspension no. 20 equilibrated for 90 days (Table 1); soil Pu = Pu separated from contaminated soil Z9-4-11A (1).

RESULTS AND DISCUSSION

Solubility of Pu Compounds

The concentration of Pu in unfiltered and filtered solutions after contact with ²³⁹PuO₂(c) and ²³⁹Pu(OH)₄ (am) for 90 days is given in Table 2. The samples passed through 0.1- and 0.015-µm filters do not differ significantly from each other, indicating that discrete Pu particles >0.015 μ m and <0.1 μ m are absent from solutions. The Pu concentrations in unfiltered samples were generally close to those in the filtered solutions except in a few relatively high pH samples where the concentration in unfiltered solutions was up to three orders of magnitude higher than in the filtered solutions. Discrete particles of Pu were found when several filters employed in filtration were examined with a scanning electron microscope and an electron microprobe. X-ray diffraction patterns of the Pu retained on a $0.1\mu m$ membrane (Table 1) used to filter a $PuO_2(c)$ sample indicated it to be a crystalline $PuO_2(c)$. Thus, the difference in Pu concentration between the unfiltered and filtered solutions can be attributed to the incomplete separation of Pu particles from the unfiltered solutions. Therefore, all subsequent samples were filtered before analysis. At the end of the 90-day equilibration, the X-ray diffraction patterns showed that the PuO₂(c) samples were crystalline and Pu(OH)₄(am) samples were amorphous, as was the case at the beginning of the experiment. Thermodynamic prediction (13) and literature data (10) indicate that with time Pu(OH)4(am) will crystallize and change to $PuO_2(c)$. However, the equilibration period employed in this study apparently was not long enough for this change to occur to any measurable extent.

Plutonium concentrations in solution in contact with $PuO_2(c)$ and $Pu(OH)_4(am)$ for 90, 130, and approximately 250 days are plotted against pH in Fig. 1 and 2. Values for 90, 130, and 250 days are similar, suggesting that equilibrium had been reached after 90 days. The pH of the solutions was observed to continuously decrease with time (Fig. 1 and 2) presumably due to radiolysis of water caused by alpha decay. With this decrease in pH the concentration of Pu has increased proportionally again suggesting that the Pu concentrations have reached equilibrium values at all of the measured pH values. As expected (13), $Pu(OH)_4(am)$ maintains a higher Pu concentration in solution at environmental pH values than does

Table 2--Concentration of Pu in 0.0015M CaCl, solution after contact with ¹⁰⁹PuO₁(c) and ¹⁰⁹Pu(OH)₄(am) for approximately 90 days.

		Log Pu	(mol/liter) in so	hution†
Sample			Filtered	i through
DO.	pH	Unfiltered	متسر 0.1	anu 0.015 متر
	Solu	tions contacting I	PuO,(c)‡	
13	3.80	-6.14	-6.17	-6.12
14	3.80	-6.09	-6.08	-6.05
15	4.30	-6.42	-6.60	-6.57
16	4.30	-6.43	-6.43	-6.44
18	5.40	- 5.69	-7.28	-7.29
17	5.45	-6.15	-7.46	-7.47
19	7.30	-6.33	-8.70	- 8.55
20	7.30	- 5.62	-8.71	- 8.78
	Solutio	ons contacting Put	OH),(am)‡	
21	3.95	- 4.40	-4.44	- 4.46
22	4.00	- 4.54	-4.54	-4.52
5	4.00	- 3.90	-4.31	ND
6	4.00	- 3.39	- 4.22	ND
24	5.00	- 5.26	-5.25	-5.25
23	5.05	- 5.43	-5.44	-5.47
8	5.25	4.99	-5.17	ND
7	5.30	-5.19	-5.31	ND
26	6.60	-6.51	-6.77	-6.79
25	6.70	-6.56	- 6.83	-6.98
10	6.80	-5.18	-6.63	ND
9	6.83	-5.71	-6.73	ND
27	7.50	- 7.43	-7.54	- 7.58
28	7.70	-7.19	-7.77	-7.79
12	7.85	- 5.21	-7.11	ND

† All solutions were centrifuged at 6,000g for 40 min; ND = not determined; the average values of three subsamples counted from each sample are given and the error (one standard deviation) in all the samples was $< \pm 0.06$, except in unfiltered PuO₂(c) samples 19 and 20 and Pu(OH)₂(am) samples 7 and 9 where the error varied from ± 0.13 to ± 0.18 .

Approximately 8 mg of crystalline PuO, or amorphous Pu(OH), were shaken with 20 ml of 0.0015M CaCL.

 $PuO_2(c)$. The solubilities of both $PuO_2(c)$ and $Pu(OH)_4$ (am) decrease with increasing pH. Linear relationships exist between the pH and total Pu concentration in solution in equilibrium with the different Pu compounds. These relationships for $PuO_2(c)$ (Eq. [1]) and for $Pu(OH)_4(am)$ (Eq. [2]) are:

 $\log (Pu_{total}) = (-3.90 \pm 0.10) - (0.64 \pm 0.02) \text{ pH [1]}$

 $\log (Pu_{total}) = (-1.19 \pm 0.08) - (0.80 \pm 0.01) \text{ pH} [2]$

where Pu_{total} is in mol/liter. The measured redox potentials (E_m in V) and pH of $PuO_2(c)$ and $Pu(OH)_4$ (am) suspensions (Fig. 3) also exhibited a linear correlation as shown in Eq. [3].

$$E_m = (0.727 \pm 0.011) - (0.0545 \pm 0.0008) \text{ pH.}$$
 [3]

Rai et al. (15) have shown that the solutions in equilibrium with $Pu(OH)_4(am)$ contain mainly Pu(V). Their results also strongly suggest the presence of Pu(V) in solutions contacting $PuO_2(c)$. Pu(V) would be expected to be present predominantly as PuO_2^+ in these solutions because (i) the relative tendency of Puions to form complexes is Pu(IV) > Pu(III) > Pu(VI)> Pu(V) (7), (ii) the only anion present in these solutions in significant amounts is $C1^-$, which does not form significant complexes with PuO_2^+ (13), and (iii) the species PuO_2^+ remains without further hydrolysis between pH zero and pH of approximately 8 (5, 13). Therefore, the Pu_{total} in Eq. [1] and [2] can be replaced with PuO_2^+ . Thus Eq. [1] and [2] can now

Fig. 1—Concentration of Pu in filtered (0.1 μ m) solutions after approximately 90 and 130 days of contact of 0.0015M CaCl_a with ²⁰⁰PuO₃(c) and ²⁰⁰Pu(OH)₄(am).

be written as Eq. [4] and [5], respectively.

$$\log (PuO_2^+) = (-3.90 \pm 0.10) - 0.64 \pm 0.02) \text{ pH}$$
 [4]

 $\log (PuO_2^+) = (-1.19 \pm 0.08) - (0.80 \pm 0.01) \text{ pH.}$ [5]

Estimation of Equilibrium Constants

The solubility of $PuO_2(c)$ and $Pu(OH)_4(am)$ is written (Eq. [6] and [7]) in terms of PuO_2^+ , because the PuO_2^+ is shown to be the solution species in equilibrium with these compounds (15).

$$PuO_2(c) \rightleftharpoons PuO_2^+ + e^-$$
 [6]

$$Pu(OH)_4(am) \iff PuO_2^+ + e^- + 2H_2O.$$
[7]

The products and reactants in Eq. [6] and [7] are related to the equilibrium constant (K°) as follows:

$$\log K^0 = \log \left[\operatorname{PuO}_2^+ \right] - pe \qquad [8]$$

where [] around PuO_2^+ denotes activity and the perefers to the negative log of the electron activity. The pe is related to the electrochemical potential (*Eh* in V) (18) by

$$pe = 16.9 Eh.$$
 [9]

For reasons discussed later in this paper, it is inferred that the E_m values are similar to Eh values. Therefore, pe can be calculated from Eq. [9] for its use in estimating the equilibrium constants. Substituting the value of E_m (Eq. [3]) into Eq. [9]

$$pe = (16.9) [(0.727 + 0.011) - (0.0545 \pm 0.0008) pH].$$
[10]

Substituting Eq. [4] or [5] and Eq. [10] into Eq. [8] and simplifying, the log of the equilibrium concentration constant (log K^c) at room temperature and

Fig. 2—Concentration of Pu in filtered (0.1 μm) solutions after approximately 250 days of contact of 0.0015M CaCl_s with ²⁸⁹PuO₅(c) and ²⁸⁹Pu(OH)₄(am).

low ionic strength ($\simeq 0.0045$) for the dissolution of PuO₂(c) according to Eq. [6] can be written as

 $\log K^c = (-16.19 \pm 0.21) + (0.28 \pm 0.02) \text{ pH}$ [11]

and the log K^c for the dissolution of $Pu(OH)_4(am)$ according to Eq. [7] can be written as:

 $\log K^{c} = (-13.48 \pm 0.20) + (0.12 \pm 0.02) \text{ pH}.$ [12]

Equations [11] and [12] hold for a pH range of approximately 4 to 8 (Fig. 1). The errors quoted in Eq. [11] and [12] were calculated using a propagation of errors method described by Mandel (9). Log K^c , at fixed ionic strength and temperature, by definition is a constant. However, log K^c in Eq. [11] and [12] shows a dependence upon pH (approximately 2% deviation per pH unit). This dependence on pH is likely due to experimental errors in measuring PuO₂⁺, pH, and E_m . The estimated value of log K^c for

$$PuO_2(c) \rightleftharpoons PuO_2^+ + e^-$$

at the average pH (4.8) value of solutions contacting $PuO_2(c)$ is -14.8. The estimated value of log K^c for

$$Pu(OH)_4(am) \rightleftharpoons PuO_2^+ + 2H_2O + e^-$$

at the average value of pH (5.8) of solutions contacting $Pu(OH)_4(am)$ is -12.8. It should be mentioned that the solutions are of low ionic strength ($\simeq 0.005$) and thus the concentration equilibrium constant (K^c) is approximately equal to the thermodynamic equilibrium constant (K^0).

A literature review was done in order to compare the equilibrium constants determined in this study with the reported values. A log K⁰ for

$$Pu(OH)_4(am) \rightleftharpoons Pu^{4+} + 4 OH^-$$
 [13]

based upon solubility measurements in solutions of pH < 3.5 is reported by Perez-Bustamente (11) to vary

Fig. 3—Relationship of measured redox potential (E_m), with respect to standard hydrogen electrode, and pH of solutions contacting different ²²⁰Pu solids.

from -47.3 to -56.3. Baes and Mesmer (5) reported log K^0 for Eq. [13] to vary from -52.0 to -56.0. Smith and Martell (17) selected a value of -47.3 which they believed best represents the log K^0 for this reaction. Clearly, there is wide variation and disagreement in reported values for the solubility product of Pu(OH)₄ (am). Based upon the results obtained in the present study, the log K^0 for the solubility product of Pu(OH)₄(am) (Eq. [13]) can be estimated in the following manner:

	log K°	Reference
$Pu(OH)_{\bullet}(am) \rightleftharpoons PuO_{2}^{+} + 2 H_{2}O + e^{-}$	-12.8	Present study
$PuO_3^* +$ 4 H* + $e^- \rightleftharpoons Pu^{**} + 2 H_2O$	18.6	(8)
$4 H_2O \rightleftharpoons 4 H^+ + 4 OH^-$	-56.0	(16)
$Pu(OH)_4(am) \rightleftharpoons Pu^{4*} + 4 OH^-$	-50.2	[13]

Assuming the thermodynamic data used in the above equations is correct, an estimated log K^0 of -50.2 for the solubility product of Pu(OH)₄(am) is obtained. We prefer to represent the solubility of Pu(OH)₄(am) as described by Eq. [7] rather than Eq. [13], because there is a large possibility of error in the thermodynamic data used to derive Eq. [13]. Nevertheless, the estimated solubility product of Pu(OH)₄(am) obtained in this study is certainly within the range of values reported.

There are no data available in the literature for the measured solubility constant of $PuO_2(c)$ for comparison with this study. Baes and Mesmer (5) calculated the solubility of $PuO_2(c)$ based upon the thermodynamic data and compared it with the reported log K^0 values (-52 to -56) of the solubility product of $Pu(OH)_4(am)$ and found a great difference (approximately 12 log units) between them. They report that such great differences between the precipitated hydrous oxide and the oxide are unusual and suggested that the reported values for $PuO_2(c)$ and/or $Pu(OH)_4(am)$ are probably in error by several log units. The difference (2 log units) between the log K^c of $PuO_2(c)$ and $Pu(OH)_4(am)$ found in the present study is low as predicted by Baes and Mesmer (5) but is considerably smaller than their estimated difference (8 log units) based upon the extrapolation of log K^0 vs. the reciprocal of the lattice parameters of the actinide dioxides.

Making meaningful redox measurements, hence pe, in unpoised solutions with a platinum electrode is difficult. If reliable values of the equilibrium constant and the PuO_2^+ activity in solution were available, accurate values of pe and/or redox potential could then be calculated from Eq. [8]. The values of redox potential thus calculated for $PuO_2(c)$ and $Pu(OH)_4(am)$ suspensions should be similar to each other, as was the case in measured redox potentials (Fig. 3), because the study was conducted using the same isotope of Pu and under similar experimental conditions. Plutonyl (PuO_2^+) concentrations measured in this study were all > $1.0 \times 10^{-9}M$, where accurate measurements of Pu concentration can be made. Baes and Mesmer (5) estimated the log K^0 value of -6.5 for the dissolution of $PuO_2(c)$ (Eq. [14]).

$$PuO_2(c) + 4H^+ \rightleftharpoons Pu^{4+} + 2H_2O.$$
 [14]

Perez-Bustamante (11) reported the log K^0 for the solubility product of Pu(OH)4(am) (Eq. [13]) to vary from -47.3 to -56.3. Assuming these reported log K^0 values are correct, redox potentials were calculated using these log K^0 values and the measured PuO_2^+ concentrations in Eq. [8] and [9]. The redox poten-tial thus calculated, E_c , for PuO₂(c) reaction (Eq. [8]) was approximately 0.61 V higher than the E_m . The calculated E_c for Pu(OH)₄(am) suspension was found to vary approximately from 0.17 V lower to 0.36 V higher than the E_m . We conclude from these data that the reported value (5) for PuO₂(c) solubility is in error and that the measured E_m may truly represent the equilibrium potential of our suspensions which supports usage of our calculated log K^c values as true equilibrium constants. The specific reasons for this conclusion are: (i) the measured E_m for $PuO_2(c)$ and Pu(OH)₄(am) suspensions are similar (Fig. 3) as expected, whereas the E_c for $PuO_2(c)$ and $Pu(OH)_4(am)$ are significantly different, (ii) the E_m for $Pu(OH)_4(am)$ suspension falls within the range of E_c , (iii) the E_c of $PuO_2(c)$ suspensions fall outside the water stability region, and (iv) the E_c of $PuO_2(c)$ falls in the $PuO_2^{2^4}$ stability region, whereas the Pu species in solution were inferred to be PuO_2^+ (13). The measured redox potentials (Fig. 3) appear to be poised. This poising is hypothesized to be due to relatively high concentrations of Pu in the low pH region and/or radiolysis products of water caused by alpha decay. Further studies with the use of redox buffers and solid compounds of different alpha emitting isotopes have been initiated to check these hypotheses.

Identification of Pu Compounds from Contaminated Soils

The presence of Pu compounds in sediments implies that the concentration of Pu in solution will be governed by the solubility of the Pu compounds. Thus, it is important to determine the nature of the solid compounds that may be present in sediment. If no Pu solid compounds are present, sorption reactions alone may govern the concentration of plutonium in solutions.

Large quantities of Pu solids would not be expected

Fig. 4—Concentration of Pu in filtered (0.1 μm) solutions contacting contaminated Hanford soils with different treatments.

to be present in sediments. Therefore, it would be difficult to physically isolate, for identification, the trace amounts of Pu solids that may be present in sediments. It was decided to compare the plutonium concentrations in soil solutions with the experimental solubility of the solid compounds as a means of possibly identifying the plutonium solids that may be present in the sediments.

The soil solution data are plotted in Fig. 4 where experimental solubility lines for $PuO_2(c)$ and $Pu(OH)_4$ (am) are also traced for reference. Soil solution points for soils Z9-4-11A and Z9-4-5A fell very near the PuO₂(c) solubility line; however, the solution points for soil Z12-1D fell considerably below the $PuO_2(c)$ solubility line. When PuO2(c) was added to these suspensions the solution concentration for Z9-4-11A and Z9-4-5A did not change appreciably. The solution concentration for Z12-1D soil increased considerably and approached that of the PuO₂(c) solubility line. Thus, soils Z9-4-11A and Z9-4-5A appear to contain PuO₂(c) since the soil solution points fell close to the $PuO_2(c)$ solubility line and the soil solution concentration did not change appreciably with the addition of $PuO_2(c)$. The presence of crystalline $PuO_2(c)$ in Z9-4-11A sample, inferred from the solubility data, was confirmed by X-ray diffraction analysis of Pu particles isolated from this sample (Table 1). Concentrations of Pu in solutions containing soil Z12-1D indicate that this soil does not contain $PuO_2(c)$.

The Pu concentration in all the soil solutions studied were much lower than the $Pu(OH)_4(am)$ solubility line, indicating that the soils do not contain this compound.

The results presented above help demonstrate the ability of solid compounds to control the solution concentrations. If leaching occurs from Z9-4-11A and Z9-4-5A soils and the leachate percolates into the soils containing no $PuO_2(c)$, the concentration of Pu in

solution would be lower than the $PuO_2(c)$ solubility line and would be governed by sorption reactions. On the other hand, Pu concentrations in solutions percolating through $PuO_2(c)$ contaminated sediments would be expected to be similar to the concentrations predicted from the $PuO_2(c)$ solubility line (Fig. 1). Such an event might occur in the immediate vicinity of stored wastes. It is also evident that for the determination of meaningful equilibrium distribution coefficients (Kd), in an oxidizing environment, the Pu concentrations must be below the $Pu(OH)_4(am)$ solubility line [and preferably below the $PuO_2(c)$ solubility line] (Fig. 1).

Two of the soil samples studied (Z9-4-11A and Z9-4-5A) in this report had received a complex waste with significant amounts of organic ligands with strong potential for forming soluble Pu complexes. However, the observed Pu concentrations are not significantly different than the concentrations present in a dilute $PuO_2(c)$ suspension devoid of organic ligands. It is inferred that the organic ligands originally disposed into these soils have degraded over the period when the wastes were first disposed (approximately 20 years). This inference is supported by the results of Cleveland (J. M. Cleveland, Chief, Transuranium Research Project, USGS, Denver, Colorado, Personal Communication, September 1977) who did not find detectable amounts of organics in Rocky Flats soil that had been contaminated by lathe cooling oil.

LITERATURE CITED

- Ames, L. L. 1974. Characterization of actinide bearing soils: Top sixty centimeters of 216-Z-9 enclosed trench. USDOE Rep., Battelle Pacific Northwest Lab., BNWL-1812.
- Ames, L. L., and Dhanpat Rai. 1978. Radionuclide interactions with soil and rock media. vol. 1: Processes influencing radionuclide mobility and retention, element chemistry and geochemistry, conclusions, and evaluation. USEPA Rep., EPA-520/6-78-007.
- Ames, L. L., Dhanpat Rai, and R. J. Serne. 1976. A review of actinide-sediment reactions with an annotated bibliography. USDOE Rep., Battelle Pacific Northwest Lab., BNWL-1983.
- American Society for Testing and Materials (ASTM). 1966. Power diffraction file, Card no. 6-0360.
 Baes, C. F., Jr., and R. F. Mesmer. 1976. The hydrolysis
- Baes, C. F., Jr., and R. F. Mesmer. 1976. The hydrolysis of cations. John Wiley & Sons, New York.
 Cleveland, J. M. 1970. The chemistry of plutonium. Gor-
- Cleveland, J. M. 1970. The chemistry of plutonium. Gordon & Breach Science Publishers, New York.
 Coleman, G. H. 1965. The radiochemistry of plutonium.
- Coleman, G. H. 1965. The radiochemistry of plutonium. National Academy of Sciences - National Research Council, NAS-NS 3058.
- 8. Fuger, J., and F. L. Oetting. 1976. The chemical thermodynamics of actinide elements and compounds, part 2: The actinide aqueous ions. IAEA, Vienna.
- Mandel, J. 1976. Statistical methods in analytical chemistry. p. 79-124. In I. M. Kolthoff, P. J. Elving, and F. H. Stross (ed.). Treatise on analytical chemistry, part III: Analytical chemistry in industry. John Wiley & Sons, New York.
- Lloyd, M. H., and R. G. Haire. 1973. Studies on the chemical and colloidal nature of Pu(IV) polymer. In Proc. of the IUPAS Congress. CONF 730927-2.
- Perez-Bustamante, J. A. 1965. Solubility product of tetravalent plutonium hydroxide and study of the amphoteric character of hexavalent plutonium hydroxide. Radiochim. Acta 4:67-75.
- Price, S. M., and L. L. Ames. 1975. Characterization of actinide-bearing sediments underlying liquid waste disposal facilities at Hanford. IAEA-SM-199/87. IAEA, Vienna.
- Rai, Dhanpat, and R. J. Serne. 1977. Plutonium activities in soil solutions and the stability and formation of selected plutonium minerals. J. Environ. Qual. 6:89-95.

14. Rai, Dhanpat, and R. J. Serne. 1978. Solid phases and solution species of different elements in geologic environments. USDOE Rep., Battelle Pacific Northwest Lab., PNL-2651.

Ż

:

- 15. Rai, Dhanpat, R. J. Serne, and J. L. Swanson. 1980. Solution species of plutonium in the environment. J. Environ. Qual. Vol. 9, no. 3 (in press).
- 16. Sillen, L. G., and A. E. Martell. 1964. Stability constants of metal ion complexes, 2nd ed. Spec. Publ. no. 17. The Cham. Soc. London.
- York.
- Stumm, W., and J. J. Morgan. 1970. Aquatic chemistry. Wiley-Interscience. John Wiley & Sons. New York.

. - -

- ---

Influence of an americium solid phase on americium concentrations in solutions

DHANPAT RAI, R. G. STRICKERT, D. A. MOORE and R. J. SERNE Battelle, Pacific Northwest Laboratory, Richland, WA 99352, U.S.A.

(Received 10 March 1981; accepted in revised form 17 July 1981)

Abstract—Americium-241 concentrations in solutions contacting contaminated sediments for up to 2 yr were measured as a function of pH. Steady-state concentrations were reached within a few days. The solubility-limited Am concentration was found to decrease approximately 10-fold with one unit increase in pH. The log equilibrium constant for the solubility of Am_{touth} solid $[Am_{touth} + H^+ \Leftrightarrow Am_{tag. complex}]$ was found to be -4.12. The predictions based upon thermodynamic data suggest that $Am_{tag. complex}^+$ is likely to be $Am(OH)_2^+$. Although the chemical formula of Am_{touth} was not determined, it does not appear to be $Am(OH)_3(a)$.

Published data on sorption coefficients of Am by different rocks, soils, and minerals were critically evaluated. Final Am solution concentrations calculated from the sorption coefficients of a variety of earth materials with several solutions agreed well with the concentrations predicted from the solubility of $Am_{(soil)}$ solid, indicating that the sorption coefficient data are controlled by Am precipitation.

INTRODUCTION

AMERICIUM is one of the long-lived actinide waste products of nuclear energy production (SCHNEIDER and PLATT, 1974). To assess possible environmental consequences of storing Am wastes in the lithosphere, the mechanisms governing Am concentration in groundwaters must be known. In recent years many studies have tried to determine the distribution coefficients $(K_d)^*$ of Am with a variety of rocks and minerals common to possible geologic repositories (ALLARD et al., 1980; ERDAL, 1979; RELYEA et al., 1979; ROUT-SON et al., 1977; SHEPPARD et al., 1976). AMES and RAI (1978) have summarized pre-1978 results on Am K_d experiments. Typically, the reported K_d values have been large (ranging from 100 to 44,000 ml/g) suggesting that Am is highly sorbed by all types of rocks and minerals. However, in most of the Am sorption experiments no attempt was made to either select initial Am concentrations at levels below precipitation limits or to show that precipitation was absent.

Distribution coefficients are meaningful only if precipitation is absent. Precipitation of an Am-solid phase would result in an Am concentration in solution that is controlled by the solubility of the solid phase rather than by sorption reactions. This phenomenon was previously observed in the case of Pu where the maximum Pu concentration in solution contacting Pu-contaminated sediments was controlled by the solubility of a Pu compound (RAI *et al.*, 1980). Therefore, this study was undertaken to determine if the Am concentrations in solutions are controlled by

similar solubility constraints and to determine the mechanisms or reactions that can be used to predict Am concentrations in ground waters. Also, due to the high inventory of americium in nuclear wastes, such mechanisms are of vital importance and can be incorporated into geochemical models used to assess the safety of geologic repositories.

MATERIALS AND METHODS

In the past, liquid radioactive wastes have been disposed in shallow excavated cribs at the Hanford Reservation, Washington. These cribs received a complex waste of Pu and Am. For this study, two contaiminated sediment samples (Z9-4-5A; Z9-4-11A) from the Z9 crib were used. Sediment suspensions (one gram of sediment in 10 ml of solution) had pH values of 3.5-4.3. These contaminated sediment samples were very acidic, even though all the uncontaminated sediments in the Hanford area are alkaline (approximate pH 8). The low pH of these contaminated sediments is most likely due to the acidic nature (approximate pH 2.5) of the liquid waste added to these cribs (AMES, 1976) and may also be due to the oxidation of dissolved nitrogen to HNO₃ by the alpha radiolysis occurring in the wastes (RAt *et al.*, 1981).

The uncontaminated sediments are glaciofluviatile deposits that originated from Columbia River basalt and greenschist facies typical of the Precambrian to Cambrian Belt series (AMES, 1974). The disposal of acidic wastes has altered the crib sediments. These alterations have been discussed by AMES (1974). Two-thirds of the minerals in the contaminated sediments belong to the greenschist facies. These metamorphic minerals include quartz, feldspars including albite, chlorite and hematite. The remaining onethird of the sediment contains minerals of basaltic origin. These include feldspars (labradorite to andesine), augite, glassy high-silica groundmass, and titaniferous magnetite along with minor amounts of apatite, pigeonite, and ilmenite. The sediment samples contain alpha-emitting radionuclides. Because of radiation safety requirements, the analyses are limited to instruments specifically dedicated to alpha-contaminated materials.

^{*} The K_d is defined as the ratio of the equilibrium radionuclide concentration on the solid phase (μ Ci/g) to the equilibrium concentration of the radionuclide (μ Ci/ml) in the final solution.

DHANPAT RAI et al.

The total amounts of ²⁴¹Am in the contaminated sediments were determined by counting the 60 keV gamma ray on an intrinsic germanium detector (400 mm² × 5 mm). Counting samples consisted of 50-ml round-bottomed polypropylene centrifuge tubes, each containing the exact amount (close to one gram) of sediment and 5 ml of H₂O. The tubes were shaken and allowed to settle overnight before counting. Overall efficiency factors were determined by preparing noncontaminated sediment samples in a similar manner after spiking them with aliquots of solution containing a known amount of ²⁴¹Am.

For the solubility experiments, portions of contaminated sediments were weighed (2 g each) into 50-ml polypropylene centrifuge tubes. These subsamples were then washed with distilled water to remove soluble salts. The washed subsamples were suspended in 20-ml portions of 0.0015 M CaCl₂. The pH values of these washed sediment suspensions were adjusted to between 3.5 and 8 using HCl or NaOH. The suspensions were then shaken for a period of approximately 700 days, during which time the pH of the suspensions and the concentrations of soluble Am were determined periodically. The pH of the suspensions was determined by using a combination glass electrode.

To measure the concentration of elements in solution, the solids were separated from solution by filtering the suspensions through $0.015 \,\mu\text{m}$ Nucleopore[®] filters (Nucleopore Corp., Pleasanton, California). RAI *et al.* (1980) have shown that Nucleopore[®] filters of 0.1 and 0.015 μm pore sizes are more effective in separating suspended solids from solution than centrifugation alone at forces of approximately 6000 g for 40 min.

The sediment suspensions were made in 0.0015 M CaCl_2 . The composition of the equilibrium solution, however, would be influenced by the sediments. Four sediment suspensions, representing a range in pH values (4.35, 5.3, 6.8, and 7.72) and equilibrated for approximately 100 days, were filtered through 0.015 μ m membrane filters. The concentration of different elements in these filtrates were determined by neutron activation analysis (LAUL, 1979). In general the concentrations of an element in solutions differing in pH values were similar (Table 1). The increase in Na with the increase in pH is due to the use of NaOH in adjusting pH values. The most abundant elements in solution are Na, Ca, Zn, and Cl.

Sediments were contaminated with ²³⁹Pu and ²⁴¹Am, both of which decay by alpha emission. The alpha energies of ²³⁹Pu and ²⁴¹Am decay are sufficiently different (5.15 MeV and 5.48 MeV, respectively) that surface barrier detectors can be used to measure each isotope. Because alpha counters are generally more efficient than gamma counters, ²⁴¹Am was counted by alpha spectroscopy. However, Pu wastes generally contain a small fraction of ²³⁸Pu which cannot be distinguished from ²⁴¹Am by surface barrier detectors. Therefore, in 0.015 μ m filtrates from a few samples, all Pu was reduced to Pu(III) with NH₂OH·HCl, oxidized to Pu(IV) with NaNO₂, and extracted with the-

4

TABLE 1. CONCENTRATIONS OF ELEMENT IN DIFFERENT SOLUTIONS* (0.015 µm FILTRATES) FROM SEDIMENT SUSPENSIONS EQUILIBRATED FOR APPROXIMATELY 100 DAYS

E lement	Solution 1	Solution 2	Solution 3	Solution
	p pm	ppm	ppm	ppm
Al Ba Cl Cr Cr Eg Mn Na Ti V 7	31 2.2 60 134 0.16 <3 10.7 <56 0.22 34 3.3 0.22 74	28 7.4 60 142 0.19 <3 11.1. <56 0.17 93 <2.6 <0.04 73	34 2.2 60 140 0.12 3 11.4 <56 0.18 138 <2.6 0.22 86	34 4.2 60 144 0.21 <3 13.3 <56 0.16 189 4.4 0.22 63
	ppb	ррь	ppb	ppb
Au La Sc Sm Th	1.2 10.0 3.9 4.2 3.0	5.2 16.6 4.0 2.9 2.6	2.0 10.0 3.3 3.0 2.8	4.2 12.2 3.8 3.4 3.3
	4-58** ppm	411A** ppm		
r NO ₃ PO ₄ ³ SO ₄ ²	9.7 ± 2.2 3.9 ± 0.4 53.1 ± 24.7 2.3 ± 0.5	1.0 ± 0.1 Nondetectable 3.2 ± 0.2 1.4 ± 0.2		

* The pH of Solution 1 = 4.4, Solution 2 = 5.3, Solution 3 = 6.8, and Solution 4 = 7.7; the ionic strength of the solutions was approximately 0.02 M.

** Ion chromatographic analysis of solutions equilibrated for 4 days with 4-5A and 4-11A sediments with pH values of 3.4 and 4.1, respectively. noyltrifluoroacetc aqueous phase cc liquid scintillatio: and without the that plutonium rc measured Am cor of ²³⁸Pu were pre sequent analyses using surface bar Sorption of Ar. Am behavior in s brations show th tube was bound :

RES

Americium c subsamples of c Z9-4-11A) for u in Figs 1 and 2 different time p steady-state cor days. The conce with an increas tration of Am ir ment at any giv and for the Z9--

log An

log An

The log Am ar correlated as in cients (r) of > 0. and TORRIE. If scribed by eqn ent from each c

0.0241

ing suspended solids ine at forces of ap-

e in 0.0015 M CaCl₂. solution, however, Four sediment susvalues (4.35, 5.3, 6.8, Dximately 100 days, ane filters. The cone filtrates were deter-LAUL, 1979). In genn solutions differing The increase in Na he use of NaOH in ant elements in sol-

²³⁹Pu and ²⁴¹Am. . The alpha energies sufficiently different that surface barrier ch isotope. Because ficient than gamma spectroscopy. Howall fraction of ²³⁸Pu ¹Am by surface barfiltrates from a few with NH₂OH·HCl, extracted with thenoyltrifluoroacetone (MOORE and HUDGENS, 1957). The aqueous phase containing only Am was then analyzed by liquid scintillation counting. Results of Am analysis with and without the removal of Pu from solutions indicated that plutonium removal from solutions did not affect the measured Am concentrations. Thus, no significant amounts of ²³⁸Pu were present in these suspensions. Therefore, sub-sequent analyses for Am were made on 0.015 μ m filtrates using surface barrier alpha detectors.

Sorption of Am on tube walls is not expected to control Am behavior in solution, because the results of 4-yr equilibrations show that $<1^{\circ}$ of the total Am activity in each tube was bound to the inner tube surface.

RESULTS AND DISCUSSION

Americium concentrations in solutions contacting subsamples of contaminated sediments (Z9-4-5A and Z9-4-11A) for up to two years are plotted versus pH in Figs 1 and 2. As seen in these figures, values for different time periods are similar, indicating that a steady-state condition had been reached within a few days. The concentration of Am in solution decreases with an increase in pH (Figs 1 and 2). The concentration of Am in solution contacting the Z9-4-5A sediment at any given pH can be estimated from eqn (1), and for the Z9-4-11A sediment from eqn (2).

$$\log Am (mol 1) = -4.10 - 1.00 \, pH \tag{1}$$

 $\log Am (mol/l) = -3.54 - 1.11 \text{ pH}$

The log Am and pH in eqn (1) and (2) are highly correlated as indicated by linear correlation coefficients (r) of > 0.96. Using statistical procedures (STEEL and TORRIE, 1960) it was found that the lines described by eqn (1) and (2) are not significantly different from each other. Therefore, data from both sediments were used to derive eqn (3), which describes Am behavior in these sediments. The linear correlation coefficient (r) for eqn (3) was found to be 0.97.

$$\log Am (mol l) =$$

$$-(3.76 \pm 0.24) - (1.07 \pm 0.04) \,\mathrm{pH}$$
 (3)

No meaningful correlation was found between the changes in concentrations of Am and other cations beside H⁻. Of all the cations, only Na⁻ was found to increase significantly (Table 1) with the decrease in Am concentration. However, the Na⁺ concentration increased by approximately 5-fold while the corresponding average Am concentration decreased by approximately 2000-fold. Thus an ion exchange mechanism relying solely on Na⁺ to control the Am concentration is highly unlikely. Following our research reported here. DELEGARD et al. (1981) working with contaminated sediments from another Hanford crib also found Am concentrations that are approximately described by eqn (3). Their observed Am concentration in solution did not differ significantly from that calculated by eqn (3) with variations in the sediment-to-solution ratio (0.3-4 g/ml) and concentrations of competing cations (up to 1 M CaCl₂ and 0.3 M Al(NO₃)₃). Thus, their results also suggest that ion exchange is not the dominant mechanism controlling Am concentration in solution.

If the rate of the dissolution/precipitation reaction that controls the Am concentration is fast and if this is the predominating reaction in most sediments, rocks and soils, then this reaction should determine the maximum concentration of Am possible in the environment. Such a hypothesis also requires that the Am solid phase can be precipitated from constituents

(2)

Fig. 1. Effect of pH on Am concentration in solution contacting Z9-4-5A contaminated sediment. Total sampling and counting errors were estimated from triplicate samples and are within the plotted points.

Fig. 2. Effect of pH on Am concentration in solution contacting Z9-4-11A contaminated sediment. Total sampling and counting errors were estimated from triplicate samples and are within the points except where shown by vertical lines.

common to most sediments, rocks, and soils and is not formed from constituents peculiar to the Hanford waste disposal site. To further verify these hypotheses, we recalculated the final solution concentration of Am in K_d experiments with illite that used 0.03 M NaCl, 0.015 M CaCl₂, 5.1 M NaCl, and 0.03 M NaHCO₃ solutions (RELYEA *et al.*, 1979). The equilibration times in these experiments were under 30 days. The Am concentrations in the NaCl and CaCl₂ suspensions were found to be similar to the estimated concentrations determined from eqn (3) as shown in Fig. 3. Although the concentrations of Am in

Fig. 3. Comparison of Am concentration in solutions contacting illite (estimated from RELYEA et al., 1979) with the predicted concentration (eqn 3). Shaded area represents 95% confidence limit in the regression line.

illite-NaHCO₃ concentrations than predicted results. Some c NaHCO₃ susp. ation of illite, v from the solutis a good dispers ate complexes detection limit was between 18 the Am concer tion limits, the influence. To s range, use of lower detectio used in the pre Because the sions that we days (in compa sediment samp conclude that t concentration which are sim: (1981), also sho

illite-NaHCO₃ suspensions were all $< 10^{-9}$ M, these concentrations are several orders of magnitude higher than predicted from the contaminated sediment results. Some of the factors that could explain these NaHCO₃ suspension data are: (1) incomplete separation of illite, which has large amounts of Am sorbed from the solution (Na at this concentration and pH is a good dispersant for illite); (2) formation of carbonate complexes of Am; and (3) relatively high Am detection limits (minimum detectable concentration was between 10^{-9} and 10^{-10} M). At pH values where the Am concentration falls near or below the detection limits, the third factor will have an overriding influence. To study Am in such a low concentration range, use of different analytical techniques with lower detection limits (such as alpha spectroscopy used in the present study) is necessary.

Because the results on illite (Fig. 3) are for suspensions that were equilibrated for approximately 30 days (in comparison with the Z9-4-5A and Z9-4-11A sediment samples equilibrated for up to 2 yr), we can conclude that the rate of the reaction that limits Am concentration is relatively fast. These results (Fig. 3), which are similar to the results of DELEGARD *et al.* (1981), also show that Na⁺ and Ca²⁺ concentrations do not affect the Am concentration and that the maximum Am concentration in these solutions is predictable from eqn (3).

Recently, ALLARD et al. (1980) studied the effect of pH and mineral type on Am sorption, using relatively low initial Am concentrations ($\sim 10^{-9}$ M) and low ionic strength solutions. Although ALLARD et al. (1980) reported their results as sorption coefficients, we have converted these coefficients into the final Am concentrations in solution. These concentrations are approximate because precise values of different parameters needed for the calculations were not available in their paper. Their results along with the estimated concentration from contaminated sediments (eqn 3) are plotted in Fig. 4. These results are generally similar to Fig. 3 and shows that the maximum concentration of Am in a solution with a pH value of < 6.5 is predicted very well by eqn (3). As was the case in Fig. 3, however, the Am concentrations at pH values >6.5 appear to be independent of pH, which is in contrast to the Am behavior observed in contaminated sediments (Figs 1 and 2). The factors discussed earlier (incomplete separation of solid from solution. formation of Am-carbonate complex, and detection limits) are the likely reasons for the differences in Am

Fig. 4. Comparison of Am concentration in solutions contacting different minerals (estimated from ALLARD *et al.*, 1980) with the predicted concentration (eqn 3). Shaded area represents 95% confidence limit in the regression line.

ment. Total bints except

)

1979). The equiliits were under 30 e NaCl and $CaCl_2$ ar to the estimated qn (3) as shown in itions of Am in

	Initial			Log Am (mo	les/L)	
Material	log Am (moles/£)	рН	K _d (ml/g)	Calculated From K _d	Estimated from Eq. [3]	Reference
Argillite	-6.66	8.57	(5400)*	(-13.19)*	-12.91	ERDAL (1979)
Tuff (JA-18)	-6.40	8.44	430	-10.33	-12.77	ERDAL (1979)
Tuff (JA-37)	-6.40	8.64	37000	-12.27	-12.98	ERDAL (1979)
Shale	-7.30	6.8	962(394)**	-9.80(-8.70)**	-11.02	S1LVA et al. (1979)
Duartz	-7.30	6.6	1323(12700)**	-9.15(-10.13)**	-10.80	SILVA et al. (1979)
Basalt	-7.30	6.4	1033(14300)**	-9.18(-10.31)**	-10.57	SILVA et al. (1979)
Burbank Soil	-6.75	7.0	1200-8700	-11.09 to -10.23	-11.23	ROUSTON et al. (1977)
S. Carolina Soil	-7.32	5.1	1-67	-9.55 to -7.86	-9.20	ROUSTON et al. (1977)
Muscatine Soil	-7.52	5.3	48309	-13.2	-9.42	SHEPPARD et al. (1979
Burbank Soil	-7.52	8.1	7143	-12.37	-12.41	SHEPPARD et al. (1979
Ritzville Soil	-7.52	6.5	9709	-12.51	-10.70	SHEPPARD et al. (1979
Fuguay Sand	-7.52	5.2	2488	-11.92	-9.31	SHEPPARD et al. (1979
Hanford Soil	-7.52	8.1	1250	-11.62	-12.41	SHEPPARD et al. (1979
Idaho Falls Soil	-7.52	8.3	39216	-13.11	-12.62	SHEPPARD et al. (1979

TABLE 2. COMPARISON OF EXPERIMENTAL AND PREDICTED Am CONCENTRATIONS

* The numbers in parentheses are derived from measurements on filtered (0.4 μ m) samples.

** The numbers in parentheses are derived from measurements on filtered (0.05 µm) samples.

concentrations observed by ALLARD *et al.* (1980) (Fig. 4) and those observed in contaminated sediments (Figs 1 and 2) at pH values > 6.5.

A number of other researchers have also reported on Am sorption by different rocks and soils. In most cases, meaningful treatment of their data in a manner similar to that described above was not possible because of factors such as (1) pH values of 8 or higher where very low concentrations of Am were obtained, (2) pH values either approximate or not reported, (3) initial concentration of added Am either approximate or not reported. (4) large variations in K_d . (5) inadequate methods of separating the solid from solution, or (6) detection limits not reported. However, a few calculations were made from the data reported in the literature (Table 2) just to show that the calculated concentrations are within one or two orders of magnitude of the concentrations predicted from eqn (3). Therefore, these results (Figs 3 and 4, and Table 2) indicate that the final Am concentrations in solutions are limited by a reaction that appears to be common to all the rocks, minerals, soils and sediments.

Knowledge of the mechanisms that control Am concentration in solutions is important. In our experiments with contaminated sediments (Figs 1 and 2), the Am concentration in solutions contacting Z9-4-5A and Z9-4-11A sediments would be 9.5×10^{-7} M and 1.8×10^{-6} M, respectively if all the Am present in the sediments were dissolved. These concentrations are several orders of magnitude higher than the actual solution concentrations observed (Figs 1 and 2); thus most of the Am was present in a solid phase in these experiments. The Am solid phase would amount to approximately $5 \mu g$ of Am per gram of contaminated sediment. This presents a major problem in trying to locate physically the specified Am solid phase.

The literature data (Figs 3 and 4. Table 2. DELE-GARD *et al.*, 1981) show that regardless of (1) the beginning Am concentrations. (2) the type of the sol-

utions, and (3) the type of sorbing material, the final concentrations of Am in solutions are similar at any given pH, especially where the pH values are < 6.5. Furthermore, Am concentrations in the sorption measurement experiments are similar to those in the contaminated sediment experiments. For these reasons it is hypothesized that the concentration of Am in solutions contacting sediments is limited by the solubility of some Am solid phase. Even though Am sorption may occur on solid sorbents or on the container walls, the equilibrium Am concentration will be determined by the solubility of the Am solid phase rather than the sorption reaction as long as an excess of Am solid phase is present.

Whether the Am concentrations are limited by solubility of an Am solid phase or by some undetermined desorption reaction, the Am behavior in these sediments fits the following reaction (not balanced):

$$Am_{(soil)} + H^+ \xrightarrow{H_2O} Am_{(aq. complex)}^+$$
 (4)

The value of the log equilibrium constant (K) for eqn (4) was found to be -4.12 and was derived by fitting the data (Figs 1 and 2) to eqn (4) using the least squares method (STEEL and TORRIE, 1960).

In investigating the $Am_{(aq. complex)}^+$ predictions based upon the thermodynamic data (APPS *et al.*, 1977) show that solution species of Am(III) are expected throughout the Eh and pH range of environmental importance. To predict the type of aqueous Am(III) species in eqn (4), thermodynamic data summarized by SCHULZ (1976) and that reported by ALLARD *et al.* (1978) were consulted. The value (8.2) of log K_1^c [(AmOH²⁺)/(Am³⁺)(OH⁻)] chosen by ALLARD *et al.* (1978) is based upon solvent extraction data of DESIRÉ *et al.* (1969), whereas measurements based upon electrophoresis (MARIN and KIKINDAI, 1969) and more recent measurements based upon electromigration 8 * Value: estime of va

Reaction Number

1

2

(SHALINETS and values at II.1 STEPANOV (197 constants of hy Pm. and Cm. formation con Based upon the KOROTKIN (197 of K_1 and K_2 t by SHALINETS a also states that the solvent exelectromigratic 1969: SHALINE suppression of high ionic stres techniques. Th mation constamately 6 orde: reported by SI mental data fo Am(OH)₄ and able.

The foregoin existing Am t important liga MARTELL (196formation cor $H_2PO_4^-$, and experimentally above species good agreement dynamic data TABLE 3. EQUILIBRIUM CONSTANTS (K) AT 25°C AND 1 ATM PRESSURE FOR SELECTED SPECIES

eaction lumber	Reaction	Medium	Ionic Strength (µ) M	log K*	Reference
1	Am ³⁺ + OH [−] ⇒ AmOH ²⁺	NH4C104	0.005	10.7 (10.5)	SHALINETS and STEPANOV (1972) and KOROTKIN (1974a)
2	Am ³⁺ + 2DH [−] ⇔ Am(OH) ₂ ⁺	NH4C104	0.005 0	20.9 (20.9)	SHALINETS and STEPANOV (1972) and KORDTKIN (1974a)
3	$Am^{3+} + Cl^{-} \iff AmCl^{2+}$	нс 10 ₄	1.0 0	0.01 * 0.1 (0.9)	SCHULZ (1976)
4	$Am^{3^+} + F^- \iff AmF^{2^+}$	NaC 104	0.5 0	3.29 (4.27)	AZIZ and LYLE (1969)
5	$Am^{3+} + 2F^{-} \iff AmF_2^{+}$	NaC 104	0.5 0	6.11 (7.52)	AZIZ and LYLE (1969)
6	$Am^{3+} + NO_3^{-} \iff AmNO_3^{2+}$	нс 10 ₄	1.0 0	0.2 ± 0.06 (1.12)	SCHULZ (1976)
7	$Am^{3+} + H_2PO_4^- \iff AmH_2PO_4^2$	+	0	2.51	SILLEN and MARTELL (1971)
8	$Am^{3+} + SO_4^{2-} \iff AmSO_4^+$		0	3.68	SILLEN and MARTELL (1964)

* Values corrected to zero ionic strength are given in parentheses; value of reaction 2 was estimated by SHALINETS and STEPANOV (1972); the values given for reactions 3 and 6 are averages of values stated by three different researchers who are quoted by SCHULZ (1976).

(SHALINETS and STEPANOV, 1972) put the log K_1° values at 11.1 and 10.5, respectively. SHALINETS and STEPANOV (1972) experimentally determined stability constants of hydroxocomplexes $[M(OH)_2^+]$ of Y. Ce. Pm, and Cm. From these values, they estimated the formation constant of $Am(OH)_2^+$ (log $K_2^\circ = 20.9$). Based upon the distribution chromatography method, KOROTKIN (1974a) mentioned that he obtained values of K_1 and K_2 that were similar to the values reported by Shalinets and Stepanov (1972). Korotkin (1974a) also states that the difference in K_1 values based upon the solvent extraction (DESIRÉ et al., 1969) and the electromigration methods (MARIN and KIKINDAI, 1969: SHALINETS and STEPANOV, 1972) is due to the suppression of hydrolysis, because of the presence of high ionic strength solutions, in the solvent extraction techniques. The estimated value of the $Am(OH)_2^+$ formation constant by ALLARD et al. (1978) is approximately 6 orders of magnitude lower than the value reported by SHALINETS and STEPANOV (1972). Experimental data for the formation constants of Am(OH)₃, Am(OH)₄ and Am-carbonate species are not available.

Re

The foregoing shows the paucity and variability in existing Am thermodynamic data for some of the important ligands. SCHULZ (1976) and SILLEN and MARTELL (1964, 1971) have summarized the data on formation constants of Am with Cl⁻, F⁻, NO₃⁻, H₂PO₄⁻, and SO₄^{2⁻}. These compilations show that experimentally determined formation constants of the above species by several researchers are generally in good agreement with each other. The selected thermodynamic data are given in Table 3.

The activities of the ligands present in significant amounts in solutions contacting Am-contaminated sediments were calculated from data in Table 1 by using the Davies equation (LINDSAY, 1979). These activities in conjunction with the thermodynamic data (Table 3) were used to estimate the relative abundance of different Am solution species (Fig. 5). The lines in Fig. 5 were calculated as though the solid phase was Am(OH)₃. It should be recognized that different

Fig. 5. The activity (Ai) of different Am species, at specified activities of various ligands, in equilibrium with Am(III) hydroxide (log $K = A = \log Am^{3+} + 3 pH$).

1979) 1979) 1979) et al. (1979) et al. (1979) et al. (1979) et al. (1979)	9) 9) 9)
et al. (197 Det al. (19 Det al. (19 Det al. (19	7) 79) 79)
) et al. (19) et al. (19) et al. (19) et al. (19	79) 79) 79) 79)

ig material, the final is are similar at any pH values are < 6.5. is in the sorption nilar to those in the ments. For these he concentration of ents is limited by the e. Even though Am pents or on the cononcentration will be he Am solid phase as long as an excess

ons are limited by or by some undee Am behavior in ring reaction (not

n⁺_(aq. complex). (4)

onstant (K) for eqn s derived by fitting (4) using the least ϵ , 1960).

, predictions based APPS et al., 1977) n(III) are expected z of environmental of aqueous Am(III) z data summarized d by ALLARD et al. e (8.2) of log K_1° n by ALLARD et al. ion data of DESIRÉ s based upon elec i, 1969) and more 1 electromigration

solids may give different slopes than those in Fig. 5. Because (1) each solid will have a unique Am³⁺ equilibrium concentration, and (2) all other species (Fig. 5) are in equilibrium with Am³⁺, the lines for Am(III) species would bear exactly the same proportionality to the Am³⁺ line as shown in Fig. 5. Although Am(OH)₃[°] or polynuclear Am hydroxy species are not plotted in Fig. 5 because of the lack of thermodynamic data, experimental results of KOROTKIN (1973, 1974a,b) indicate the presence of significant amounts of these species only at pH values >8.5. Other species such as AmHPO₄⁺, carbonate complexes, and mixed complexes are also not treated because of lack of thermodynamic data. Barring an effect of this limitation, it appears that $Am(OH)_2^+$ is the primary solution species and that the dissolution reaction reported in eqn (4) can now be written as:

$$Am_{(soil)} + H^{+} \xrightarrow{H_{2}O} Am(OH)_{2}^{+}$$

$$(\log K = -4.12).$$
(5)

To determine the $Am_{(soil)}$ solid phase, the solubility of Am(III) hydroxide $(Am(OH)_3)$ was determined. Preliminary results (RAI, RYAN, STRICKERT, MOORE, Battelle Pacific Northwest Laboratory) show the $Am(OH)_3(a)$ is approximately 5 orders of magnitude more soluble than $Am_{(soil)}$ indicating that $Am_{(soil)}$ is not $Am(OH)_3(a)$. Research is continuing to identify the $Am_{(soil)}$ solid.

ln summary eqn $(3) \quad [\log \operatorname{Am}(\operatorname{mol}/l) =$ $-(3.76 \pm 0.24) - (1.07 \pm 0.04)$ pH] can be used to predict the Am concentrations in solutions contacting contaminated sediments from old waste disposal sites and from laboratory contaminated rocks, solids, and minerals. Lithospheric materials (granite, basalt, tuff, salt) that are being considered for high-level waste disposal generally contain alkaline (pH > 7) groundwater. Americium will not be very mobile in this environment because the solubility-limited Am concentration is low and this solution concentration decreases approximately 10-fold for each pH unit increase [eqn (3)]. Because of the possible formation of Am carbonate complexes, eqn (3) may not be directly applicable to high carbonate groundwaters. Care should be taken in applying eqn (3) to surface waters that may contain significant amounts of organic ligands. However, results of CLAYTON et al. (1981) indicate that organic ligands, such as humic acid and glycolic acid, do not significantly increase Am concentrations in solutions and that, in some cases, organics may decrease Am concentrations due to complexation with sediment solids.

The log equilibrium constant for the solubility of $Am_{(soil)}$ solid

$$[Am_{(soil)} + H^+ \xrightarrow{H_2O} Am_{(aq. complex)}^+]$$

was found to be -4.12. The predictions based upon thermodynamic data suggest that $Am_{(aq. complex)}^{+}$ is likely $Am(OH)_2^+$. Although $Am_{(soil)}$ was not identified, it does not appear to be $Am(OH)_3(a)$. Acknowledgements-- This work was supported by the U.S. Department of Energy. Division of Engineering Mathematical and Geosciences. Office of Basic Energy Sciences under contract DE-AC06-76RLO 1830 with Battelle Memorial Institute. We wish to thank JACK L. RYAN and EVERETT A. JENNE for their helpful suggestions and critical review of this manuscript.

REFERENCES

- ALLARD B., BEALL G. W. and KRAJEWSKI T. (1980) The sorption of actinides in igneous rocks. Nucl. Technol. 49, 474–480.
- ALLARD B., KIPATSI H. and TORSTENFELT B. (1978) Sorption at Langlivade Radionuklider; Lera Och Berg Del 2. KBS-98, Karnbranslesakerhet, Stockholm.
- AMES L. L. (1974) Characterization of Actinide Bearing Soils: Top Sixty Centimeters of 216-Z-9 Enclosed Trench. BNWL-1812, Battelle, Pacific Northwest Laboratory, Richland, Washington.
- AMES L. L. (1976) Actinide occurrences in sediments following ground disposal of acid wastes at 216-Z-9. In Proc. Actinide-Sediment Reations Working Meeting, Seattle, Washington, February 10-11, 1976. (ed. L. L. Ames), pp. 39-71, BNWL-2117. Battelle, Pacific Northwest Laboratory.
- AMES L. L. and RAI D. (1978) Radionuclide Interactions with Soil and Rock Media, Vol. 1. EPA 520/6-78-007-A, U.S. Environmental Protection Agency.
- APPS J., BENSON L. V., LUCAS J., MATHUR A. K. and TSAO J. (1977) Theoretical and experimental evaluation of waste transport in selected rocks. In Proc. Waste Isolation Safety Assessment Program Task 4 Contractors Information Meeting (ed. R. J. Serne), pp. 189–308. PNL-SA-6957, Battelle, Pacific Northwest Laboratory.
- AZIZ A. and LYLE S. J. (1969) Equilibrium constants for aqueous fluoro complexes of scandium, yttrium, americium(III), and curium(III) by extraction into di-2-ethylhexyl phosphoric acid. J. Inorg. Nucl. Chem. 31, 3471-3480.
- CLAYTON J. R., SIBLEY T. H. and SCHELL W. R. (1981) Distribution Coefficients for Radionuclides in Aquatic Environments, Vol. 1. NUREG/CR-1853, U.S. Nuclear Regulatory Commission.
- DELEGARD C. H., GALLAGER S. A. and KASPER R. B. (1981) Saturated Column Leach Studies: Hanford 216-Z-1A Sediment. RHO-SA-210, Rockwell Hanford Operations. Richland, Washington.
- DESIRÉ B., HUSSONNOIS M. and GUILLAUMONT R. (1969) Determination de la premiere constante d'hydrolyze l'americium, du curium, du berkelium, et du californium. C. R. Acad. Sci., Ser. C 269, 448-451.
- ERDAL B. R. (1979) Laboratory studies of radionuclide distribution between selected groundwaters and geologic media. In Proc. of Waste Isolation Safety Assessment Program Task 4 Third Contractor Information Meeting (ed. J. F. Relyea), pp. 435-522. PNL-SA-8571, Battelle, Pacific Northwest Laboratory.
- KOROTKIN YU. S. (1973) Hydrolysis of transuranium elements—II. Hydrolysis of americium(III) in the presence of ions with positive and negative hydration energies. *Radiokhimiya* 15, 766-772.
- KOROTKIN YU. S. (1974a) Hydrolysis of transuranium elements—IV. Sorption homogeneity of microamounts of americium(III). Radiokhimiya 16, 217-221.
- KOROTKIN YU. S. (1974b) Hydrolysis of transuranium elements—V. Hydrolysis of americium and curium in perchloric acid solutions. *Radiokhimiya* 16, 221-225.
- LAUL J. C. (1979) Neutron activation of geological materials. At. Energy Rev. 3, 603-693.
- LINDSAY W. L. (1979) Chemical Equilibria in Soils. Wiley.

MARIN B. and J l'hydrolyse de tropnorese sur 1-4. MOORE F. L. an determination Anal. Chem. 29 RAI D., SERNE R. plutonium, con Sci. Soc. Am. J RAI D., STRICKE radiation indu tion of Pu cc 551-555. RELYEA J. F., AM WASHBURNE C common mine Proc. of Waste 4 Second Con Serne), pp. 259 tory. ROUTSON R. C., ²⁴¹Am, ²³⁷Np subsoils from (Phys. 33, 311-SCHNEIDER K. J.

is supported by the U.S. f Engineering Mathemat-Basic Energy Sciences O 1830 with Battelle nank JACK L. RYAN and I suggestions and critical

ES

RAJEWSKI T. (1980) The ocks. Nucl. Technol. 49,

TENFELT B. (1978) Sorp-: Lera Och Berg Del 2. tockholm.

on of Actinide Bearing 16-Z-9 Enclosed Trench. Northwest Laboratory,

ces in sediments followes at 216-Z-9. In Proc. king Meeting, Seattle, 6. (ed. L. L. Ames), pp. ific Northwest Labora-

dionuclide Interactions . EPA 520/6-78-007-A, gency.

ATHUR A. K. and TSAO imental evaluation of 5. In Proc. Waste Ison Task 4 Contractors Serne). pp. 189-308. withwest Laboratory. ilibrium constants for idium, yttrium, ameriaction into di-2-ethylg. Nucl. Chem. 31,

SCHELL W. R. (1981) uclides in Aquatic En--1853, U.S. Nuclear

d KASPER R. B. (1981) Hanford 216-Z-1A Hanford Operations,

ILLAUMONT R. (1969) onstante d'hydrolyze im, et du californium.

s of radionuclide diswaters and geologic n Safety Assessment Information Meeting IL-SA-8571, Battelle,

of transuranium elei(III) in the presence hydration energies.

of transuranium eleof microamounts of 7-221. of transuranium eleand curium in per-16, 221-225. tion of geological 3. ria in Soils. Wiley. MARIN B. and KIKINDAI T. (1969) Etude Comparee de l'hydrolyse de l'europium en milieu chlorure par electropnorese sur papier. C. R. Acad. Sci., Ser. C 268, 1-4.

- MOORE F. L. and HUDGENS J. E. (1957) Separation and determination of plutonium by liquid-liquid extraction. Anal. Chem. 29, 1767-1770.
- RAI D., SERNE R. J. and MOORE D. A. (1980) Solubility of plutonium compounds and their behavior in soils. Soil Sci. Soc. Am. J. 44, 490-495.
- RAI D., STRICKERT R. G. and RYAN J. L. (1981) Alpha radiation induced production of HNO₃ during dissolution of Pu compounds. *Inorg. Nucl. Chem. Lett.* 16, 551-555.
- RELYEA J. F., AMES L. L., SERNE R. J., FULTON R. W. and WASHBURNE C. D. (1979) Batch K_d determinations with common minerals and representative groundwaters. In Proc. of Waste Isolation Safety Assessment Program Task 4 Second Contractor Information Meeting (ed. R. J. Serne), pp. 259–323. Battelle, Pacific Northwest Laboratory.
- ROUTSON R. C., JANSEN G. and ROBINSON A. V. (1977) ²⁴¹Am, ²³⁷Np, and ⁹⁹Tc sorption on two United States subsoils from differing weathering intensity areas. *Health Phys.* 33, 311–317.

SCHNEIDER K. J. and PLATT A. M. (eds) (1974) High-Level

Waste Management Alternatives. BNWL-1900, Battelle, Pacific Northwest Laboratory.

- SCHULZ W. W. (1976) The Chemistry of Americium. TID-26971. Technical Information Center, Energy Research and Development Administration.
- SHALINETS, A. B. and STEPANOV A. V. (1972) Investigation of complex formation of the trivalent actinide and lanthanide elements by the method of electromigration— XVII. Hydrolysis. Radiokhimiya 14, 280-283.
- SHEPPARD J. C., KITTRICK J. A. and T. L. HART (1976) Determination of Distribution Ratios and Diffusion Coefficients of Neptunium, Americium, and Cesium in Soil-Aquatic Environments. RLO-2221-T-12-2.
- SILLEN L. G. and MARTELL A. E. (1964) Stability Constants of Metal Ion Complexes, 2nd edn, Special Publication No. 17. The Chemical Society, London.
- SILLEN L. G. and MARTELL A. E. (1971) Stability Constants Supplement No. 1. Special Publication No. 25. The Chemical Society, London.
- SILVA R. J., BENSON L. V. and APPS J. A. (1979) Studies of actinide sorption on selected geologic materials. In *Radioactive Waste in Geologic Storage* (ed. S. Fried), pp. 215–240. ACS Symposium Series 100, American Chemical Society.
- STEEL R. G. D. and TORRIE J. H. (1960) Principles and Procedures of Statistics. McGraw-Hill.

-

3 3679 00033 9038

Materials Science of Concrete I Edited by Jan P. Skalny

The American Ceramic Society, Inc. Westerville, OH

1 ,

PROPERTY OF U.S. GOVERNMENT

Library of Congress Cataloging-in-Publication Data

Materials science of concrete / edited by Jan P. Skalny. p. cm. ISBN 0-944904-01-7 (v. 1) 1. Concrete. I. Scalny, Jan. TA439.M2973 1989 620.1 '36-dc20

89-18479 CIP

ISBN: 0-944904-01-7

i

Copyright ©1989 by The American Ceramic Society, Inc. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the publisher.

Printed in the United States of America.

2 3 4 5—95 94 93 92 91 Copy No.___

Mechanisms of Corrosion of Steel in Concrete

ARNOLD ROSENBERG, W. R. Grace and Co.; CAROLYN M. HANSSON, The Danish Corrosion Center, and CARMEN ANDRADE, Instituto Eduardo Torroja de la Construction y del Cemento

> No amount of experimentation can ever prove me right; a single experiment can prove me wrong.

> > Albert Einstein

Corrosion of reinforcing steel in concrete has become the major cause of failure of modern concrete structures. Successful repair of these structures and the prevention of similar problems in future construction require an understanding of the causes and mechanisms of corrosion. In this chapter, those characteristics of concrete of relevance to reinforcement corrosion are presented first. The basic principles of corrosion science and the main causes of breakdown of the protective qualities are then described. Finally, some comments are given on several parameters of concrete technology which must be taken into account to ensure a reasonably long service life.

Introduction

Good-quality concrete provides excellent protection for steel reinforcement. Chemical protection is provided by concrete's high alkalinity and physical protection is afforded by the concrete acting as a barrier to the access of aggressive species. Presumably because of this excellent protective nature, concrete is generally specified only on the basis of its (28-day) strength with little, if any, regard for its durability. However, despite these inherent protective qualities, corrosion of steel reinforcement has become the most common cause of failure in concrete structures. In such structures as bridges and parking garages, this fact may be attributed in large part to the use of de-icing salts. In other structures, carbonation of the corrosion. The unexpected rapidity of these effects may, in turn, be due to a number of factors such as incorrect specifications or the lack of control in mixing or placing of the concrete. They may also be due to incorrect use or inadequate knowledge concerning the use of the many cement and concrete additives and replacement materials which have become available in recent years.

Materials Science of Concrete

285

The purpose of this chapter is to first present a description of concrete as an electrolyte physically supported by a solid phase, then to briefly summarize those principles of corrosion science of relevance to reinforcement corrosion. Thereafter the two main causes of breakdown of the protective qualities of the concrete an described and, finally, some comments are given on several parameters of concret technology which must be taken into account to ensure a reasonably long service life

Concrete As An Electrolyte

In general, the stone and sand constituents of concrete do not play a significant role in the protection or corrosion (no leachable ions) of reinforcing steel. The presence and transport of the corrosion reactants (water, oxygen, and various ions) the corrosion products, and the passage of the ionic current necessary to support corrosion are normally confined to the cement paste phase. It is, therefore, this phase which will be considered here.

The Cement Phase

The composition and hydration of portland cement are described elsewhere in this volume and will not be discussed in detail here. To understand the influence of the cement paste on corrosion, it is sufficient to consider the paste as a two-phase system consisting of the hydrated minerals and a liquid phase-the pore solution. From the point of view of reinforcement corrosion, the controlling parameters are (1) the composition and quantity of the pore solution; (2) the structure and distribution of the pores, and (3) the presence of the Ca(OH)₂ in the hardened paste

Cement Paste Pore Solution

The composition of the pore solution is the decisive factor in determining whether embedded steel will be passivated or whether it will actively corrode. In recent years, many laboratories have obtained equipment such as that described in Ref. 1 for pressing the solution out of hardened paste, mortar, or concrete and consequently, a large amount of data is being accumulated on the influence of a number of factors on the composition of the pore solution.²⁻⁴

These investigations have shown that the highly soluble sodium and potassium salts can give the pore solution of ordinary portland cement a pH of greater than 15 while the pH of blended cements is somewhat lower, as described below. A major application of the technique has been to determine how much of the total chloride content of the cement is present as free chloride ions in the solution and is, therefore, available to attack the iron. Again, the interest has been in how the composition of the cement influences the degree of binding of the chloride ions.

The Structure and Distribution of Pores

The structure, size distribution, and interconnection of pores in the cement phase determine the availability of oxygen and moisture at the steel surface, both of which are necessary for the maintenance of a passive film. They also determine the rate

Materials Science of Concrete

of penetration of chlorides and of carbon dioxide which, as mentioned above, are the two most common culprits in the corrosion of embedded steel.

There are several techniques available for determining the pore-size distribution, those most commonly employed for cement being mercury intrusion porosimetry, vapor adsorption, and vapor desorption. A comparative review of these three techniques is given in Ref. 5. The major disadvantage of the mercury porosimetry and vapor adsorption is that the cement paste must first be thoroughly dried and the drying process alters the pore structure, causing the finer pores to collapse under the capillary forces. Two new techniques which do not suffer from this disadvantage and are also able to determine pore sizes over a considerably wider range than earlier techniques are small-angle neutron scattering⁶ and low-temperature calorimetry.¹ The results of these two techniques have, independently, been interpreted as showing a clear bimodal distribution of pore sizes corresponding to the gel and capillary pores. It is the capillary pore system which is responsible for the diffusion and permeation processes and, therefore, of importance for corrosion.

The Presence of Calcium Hydroxide

 $Ca(OH)_2$ has a very limited solubility in aqueous solutions and the bulk of this hydration reaction product remains as a solid substance embedded in the cement paste. It adds little to the strength of the paste but provides a pH buffer for the pore solution, keeping the solution at a constantly high pH. As described below, the higher the concentration of Ca(OH)₂, the longer it takes for a carbonation front to penetrate the concrete cover to the steel surface and the greater the pozzolanic content can be without risk of a significant decrease in pH.

It has been reported' that $Ca(OH)_2$ has a second advantageous effect, namely that of precipitating as a coating over the surface of the steel, the pore walls, the mold walls, and so on. This coating of $Ca(OH)_2$ hexagonal platelets constitutes a physical protection of the bars. This is one of the reasons why reinforcement corrosion tests in solutions cannot be simply extrapolated to the real behavior of steel in concrete.

Principles of Corrosion

Electrochemical Process

にはない

Corrosion of steel in concrete occurs by an electrochemical reaction.¹⁰ The corrosion process is similar to the action which takes place in a flashlight battery and, as in the case of a battery, the corroding system consists of an anode where electrochemical oxidation takes place, a cathode where electrochemical reduction takes place, an electrical conductor, and an electrolyte (in the case of concrete, this is the cement paste pore solution).

For steel in concrete, the iron is oxidized at the anode (the negative pole) by one of a number of half-cell reactions such as:

$$Fe \neq Fe^{2+} + 2e^{-} \tag{1}$$

The electrons released at the anode flow through the steel to the cathodic areas, as illustrated in Fig. 1, where they are consumed by the cathodic half-cell reaction. In

Materials Science of Concrete

3 3679 00033 9046

Materials Science of Concrete II Edited by Jan Skalny and Sidney Mindess

1991

The American Ceramic Society, Inc. Westerville, OH

Ja.

PROPERTY OF U.S. GOVERNMENT

4.

Library of Congress Cataloging-in-Publication Data (Revised for volume 2)

Materials science of concrete.

Includes bibliographical references. 1. Concrete. I. Skalny, Jan. TA439.M2973 1989 620.1'.36 89-18479 ISBN 0-944904-01-7 (v. 1) ISBN 0-944904-37-8 (v. 2)

ISBN: 0-944904-37-8

Copyright ©1991 by The American Ceramic Society, Inc. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the publisher.

Printed in the United States of America.

1 2 3 4 5-96 95 94 93 92 91 Copy No. 1

Methods of Steel Corrosion Control and Measurement in Concrete

S. G. EHRLICH AND A. M. ROSENBERG, W. R. Grace & Co.

"Rust Never Sleeps"

Neil Young

The corrosion of steel in concrete is a very costly problem commonly leading to the deterioration of concrete highways, marine structures, bridgedecks, parking garages, and buildings. Several practical methods of reducing the level of corrosion are outlined in this chapter. In order to determine whether or not a specific approach of corrosion prevention is adequate, an effective method of evaluating the level of corrosion is needed. This chapter reviews several techniques used to assess the level of corrosion activity.

Introduction

Reinforced concrete is a widely used construction material which possesses many desired performance properties including high strength, durability, low cost, and availability. Concrete can be made to be strong in compression, with compressive strengths of over 150 MPa (typical values of about 40 MPa are usually achieved); however, concrete alone cannot withstand very high tensile stresses (usually only about 10–15% of the compressive strength). Reinforcing concrete with steel produces a composite material which performs well in both compression and tension. Concrete normally provides a protective environment against corrosion of the embedded steel. Good-quality concrete hinders the diffusion of corrosion-inducing species to the metal surface and offers a highly resistive electrolyte which impedes the rate of electrochemical corrosion current flow. In addition, the concrete maintains an alkaline pH, due to the presence of hydroxide ions in the pore solution, which provides the necessary environment to allow the iron to passivate, thus protecting the reinforcing steel from corrosion.

Materials Science of Concrete II

As long as the steel maintains its passive film, the natural tendency of the iron to corrode can be suppressed. However, once this passive film is damaged, corrosion may occur, leading to the production of an iron oxide which may expand to occupy from two to nearly seven times the volume of the original steel. This produces internal tensile forces which can lead to disbondment of the steel from the concrete, and cracking and spalling of the concrete which may result in even greater corrosion since the steel may be left open to the environment.

Many factors can lead to the breakdown of passivation of reinforced steel in concrete, including the ingress of aggressive chloride ions into the concrete, carbonation of the concrete (which lowers the pH of the concrete and alters the passivating conditions), and poor construction practices. Chloride ions can be introduced into the concrete in a number of ways including using sea-dredged aggregates, using chloride-containing admixtures (i.e., calcium chloride as an accelerator), contact of the concrete with salt water, and using chloride-containing deicing salts. If the chloride content in the concrete reaches a high enough concentration, the protective, passive layer on the steel will break down,¹² resulting in serious corrosion problems. Corrosion of steel in concrete can also be induced by lowering the originally protective, passivating pH of the pore solution surrounding the steel (which is normally about 12.5), thus bringing the steel into the active region of the Pourbaix diagram,³ as shown in Fig. 1. The pH is lowered by reaction of the Ca(OH)₂ in the pore solution with CO₂ in the air. This is referred to as carbonation:

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$
(1)

The corrosion of steel reinforcement in concrete bridges, highways, parking garages, and buildings is a very costly concrete durability problem not only in terms of its financial implications but also its structural safety. About half the 500,000 U.S. bridges are in need of structural repair⁴ as a result of corrosion. Much can be done to mitigate the deleterious effects of corrosion in concrete, especially during initial construction. This chapter outlines possible methods of corrosion inhibition, and methods of assessing the extent of corrosion activity in concrete. To understand the methods of protecting the reinforcing steel in concrete presented in this chapter, one should first review the mechanisms of the corrosion process which are presented in "Mechanisms of Corrosion of Steel in Concrete," by A. M. Rosenberg et al., in Volume 1 of Materials Science of Concrete.⁵

Materials Science of Concrete II

3 3679 00033 9079

Materials Science of Concrete III Edited by Jan Skalny

1992

ł

. . .

The American Ceramic Society Westerville, OH

PROPERTY OF U.S. GOVERNMENT

N. C. F. 50

Library of Congress Cataloging-in-Publication Data (Revised for Vol. 3)

Materials science of concrete.

Vol. 2. edited by Jan Skainy and Sidney Mindess. Includes bibliographical references and indexes. 1. Concrete. I. Skainy, Jan. II. Mindess, Sidney. TA439.M2973 1989 620.1'36 89-18479 ISBN 0-944904-55-6

ISBN: 0-944904-55-6

Copyright ©1992 by the American Ceramic Society. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the publisher.

Printed in the United States of America.

1 2 3 4 5-97 96 95 94 93 92

	Contents
	Foreword
	Introduction
ş	Formation of Contacts Between Particles and Development of Internal Stresses During Hydration Processes E.D. Shchukin, E.A. Amelina, and S.I. Kontorovich
	Relationships Between Microstructure and Creep and Shrinkage of Cement Paste
i	Assessment of Causes of Cracking in Concrete G.M. Idorn, Vagn Johansen, and Niels Thaulow
	Sulfate Attack on Concrete—A Critical Review
	Alkali-Silica Reactivity Mechanisms Richard Helmuth and David Stark
	Transport of Chemicals Through Concrete
	Measurement and Modeling of Fracture Processes in Concrete Surendra P. Shah and Chengsheng Ouyang
	Physicochemical Characteristics of Low-Porosity Cement Systems J.J. Beaudoin and V.S. Ramachandran
	Potential for the Use of Fossil Fuel Combustion Wastes by the Construction Industry Ivan Odler and Jan Skalny
•	Cement and Concrete Materials Databases and the Need for Quality Testing
	Subject/Author Index

⁸¹S. Chatterji, N. Thaulow, and A.D. Jensen, "Studies of the Alkali-Silica" ction, Part 4, Effect of Different Alkali Sait Solutions on Expansion," *Cemt cr. Res.*, 17, 777–83 (1987).

⁸²C.F. Prutton and S.H. Maron, Fundamental Principles of Physical mistry. Macmillan, New York, 1944; pp. 499-501.

⁸³S. Diamond, "Chloride Concentration in Concrete Pore Solutions ulting from Calcium and Sodium Chloride Admixtures," *Cem. Concr. Aggr.*, 7–102 (1986).

⁸⁴S. Chatterji, "Mechanism of the CaCl₂ Attack on Portland Cement Icrete," Cem. Concr. Res., 8, 461-8 (1978).

⁸⁵S. Chatterji, "The Role of $Ca(OH)_2$ in the Breakdown of Portland nent Concrete Due to Aikali-Silica Reaction," *Cem. Concr. Res.*, 9, 185–8 79).

⁷⁹).
 ⁸⁶S. Chatterji, N. Thaulow, and A.D. Jensen, "Studies of Alkali-Silica iction, Part 5. Verification of a Newly Proposed Reaction Mechanism," Cem. ucr. Res., 19, 177-83 (1989).

⁸⁷P.G. Malone, C.A. Randall, Jr., and T. Kirkpatrick, "Potential Applicaus of Alkali-Activated Alumino-Silicate Binders in Military Operations." cellaneous Paper GL-85-15, WES. Department of the Army, Washington, 1985.

⁸⁸J. Davidovits, "Geopolymer Chemistry and Properties"; pp. 25-48 in polymer 88, Vol. 1. University of Technology of Complegne, France, 1988.

Transport of Chemicals Through Concrete

H.W. REINHARDT, Stuttgart University and FMPA BW

"What we know is a drop, what we do not know an ocean." Isaac Newton

This paper deals mainly with the transport of organic fluids through concrete when they come intentionally or by chance into contact with it. After some remarks on the microstructure of hydrated cement paste, the main transport mechanisms, capillary absorption and infiltration, are discussed. Testing arrangements developed in various laboratories are introduced and test results within this rather young field of investigation are presented. The results are discussed, focusing on concrete composition, moisture content, type of fluid, and type of experiment. Finally, research needs appear for a clear understanding of the chemical and physical aspects of the transport phenomena concerned.

Motive and Scope

Chemical products are part of our industrial era. They are beneficial as medicine, fertilizer, plastics, solvents, fuel, and so on. They are dangerous to the health of human beings and animals if not used in the correct doses. Groundwater and soil can be spoiled by poisonous liquids and gases from leaking production, handling, and storage facilities. This is the area where the civil engineer is challenged to design, analyze, execute, and maintain structures in such a way that no material reaches groundwater and soil in concentrations harmful to health.

There are various methods in use to make a structure impervious to fluids. Surface layers of metal, plastic, ceramic tiles, glass plates, and coatings are used, depending on the type of fluid that has to be retained. In the case of water, concrete, clay, and loam are sufficient, as has been demonstrated in dams, pipes,

Transport Mechanisms

Either gas or fluid as a flowing medium is considered as a continuum. Knudsen⁸ defined a dimensionless number $Kn = \lambda/L$ (Knudsen number) with λ the mean free path length and L a typical length. This length can be attributed to the pore diameter 2r. If Kn < 0.01, the flowing fluid may be considered as a continuum. When $Kn \approx 1$, it is a slip-flow regime,⁹ and when Kn > 1, there is Knudsen flow or free molecular flow. The most important contribution to the flow in concrete is in the range Kn < 0.01; the other two ranges can be neglected in the present study.

To consider the transport as a continuum process means to study it by macroscopic considerations. The local phenomena, that is, what happens in a real single pore, are not modeled but the average behavior of all pores together is modeled. This macroscopic approach relies upon microscopic observations and theoretical background from physics and chemistry (e.g., the interaction between a liquid and a solid).

The main transport mechanism of a fluid flow in concrete is due to capillary forces and hydrostatic pressure. Gas flow is caused by concentration gradients (or partial pressure gradients) and external pressure. Other sources, such as electrical voltage, are of minor importance. Temperature is implicitly considered since all material coefficients are temperature-dependent.

The flow through a porous medium is proportional to the gradient of the total hydraulic potential. The hydraulic potential is the sum of external forces, such as hydraulic pressure and gravity, and capillary forces.

Assuming a steady state laminar flow, Darcy's law relates the rate of flow dq/dt to the hydraulic pressure gradient dh/dl

$$\frac{dq}{dt} = K \cdot F \frac{dh}{dl} \tag{1}$$

with K the coefficient of permeability and F the cross section exposed to the fluid.

For one-dimensional flow, the advance of a sharp wetting front is given by

$$x(t) = Bt^{1/2}$$
 (2)

with B the fluid (in the past usually water) penetration coefficient. B is a function of the potential and the interaction of the liquid and the solid. If capillary forces are the only forces, then

Materials Science of Concrete III

1

1

$$B = \left(\frac{\sigma \cos\theta r}{2\eta}\right)^{1/2} = \frac{r}{2} \left(\frac{p_c}{\eta}\right)^{1/2}$$
(3)

with σ = surface tension, θ = contact angle, r = radius of the cylindrical capillary, η = dynamic viscosity of the fluid, and p_c capillary tension. If a hydraulic pressure p_e acts simultaneously, then

$$B = \frac{r}{2} \left(\frac{p_e + p_c}{\eta} \right)^{1/2} \tag{4}$$

Since most building materials have very narrow pores, the capillary tension is large compared to external forces.

The influence of the external pressure is illustrated by Fig. 5, which shows the ratio between penetration of water with external pressure and without external pressure as a function of capillary radius. It is clear that larger pressure increases the penetration; the more pressure, the larger the capillarity. As far as concrete is concerned, the pores range from nanometers to several micrometers,⁵ which means that a pressure of 1 m fluid head should be negligible.

Relative penetration depth

Fig. 5. Influence of external pressure on penetration.

Materials Science of Concrete III

However, there is currently little knowledge about the interaction of arbitrary liquids with concrete, especially with moist concrete. If p_e can be neglected, the penetration coefficient is directly dependent on $(\sigma/\eta)^{1/2}$.

Another quantity is the fluid absorption coefficient A. It links the absorbed mass per unit surface to the absorption time

$$m(t) = At^{1/2} \tag{5}$$

With the porosity ϵ and density of the fluid ρ , it follows

$$A = \epsilon \rho B \tag{6}$$

with the dimensions kg·m⁻² s^{-1/2} for A and m·s^{-1/2} for B. The sorptivity S is A divided by ρ and has the dimension m·s^{-1/2}.¹⁰

The above could be made more general and rigorous if the laws of unsaturated flow were considered.^{11,12} Furthermore, the laws governing the simultaneous flow of two liquids—either miscible or not—should be taken into account. These are fields that need more attention in future research.

The diffusion of gases (vapor) through a porous medium can be described by Fick's first law for the steady state and Fick's second law for the unsteady state, which read for the one-dimensional case

$$m = -D \cdot \frac{\partial c}{\partial x} \tag{7}$$

and

$$\frac{\partial c}{\partial t} = D \cdot \frac{\partial^2 c}{\partial x^2} \tag{8}$$

with c = concentration and D = diffusion coefficient. The diffusion coefficient is usually a function of the concentration. Solutions for various initial and boundary conditions are given in Ref. 13. While water vapor and some gases such as methane were investigated in the past, there is almost no data available about the diffusion of vapors of harmful liquids diffusing through concrete. This should also be a field of future research.

Materials Science of Concrete III

Table I. Data of Absorption and Infiltration Tests on Concrete

Fluid	Type of Test	w/c	Compressive Strength (MPa)	Moist Curing (days)	Age at Testing (days)	Test Duration (days)	Absorbed Fluid (L/m ²)	Sorptivity (mm/d ^{1/2})	Penetration Depth (mm)	Penetration Coefficient (mm/d ^{1/2})	Ref.	Remarks
n-octane	Inf.	0.6	25	1	28	3			82	47.3	15	
xylene	Inf.	0.6	25	1	28	3			55	31.8	15	
ethyl acetate	Inf.	0.6	25	1	28	3			72	41.6	15	
methyl ethyl ketone	Inf.	0.6	25	1	28	3			77	44.4	15	
chlorobenzene	Inf.	0.6	25	1	28	3			79	45.6	15	
nitrobenzene	Inf.	0.6	25	1	28	3			66	38.1	15	
3-methoxy butanol	Inf.	0.6	25	1	28	3			63	36.4	15	
butyl acctate acetic n-butyl ester	Inf.	0.6	25	1	28	3			71	41.0	15	
n-butanol	Inf.	0.6	25	1	28	3			60	34.6	15	
vinyl acetate acetic vinyl ester	Inf.	0.6	25	1	28	3			72	41.6	15	
ethylene glycol	Inf.	0.6	25	1	28	3			25	14.4	15	
methanol	Inf.	0.6	25	1	28	3			37	21.4	15	
sodium chloride, 10% soi.	Inf.	0.6	25	1	28	3			35	20.2	15	
aniline	Inf.	0.6	25	1	28	3			40	23.1	15	
n-butylamine	Inf.	0.6	25	1	28	3			39	22.5	15	
accione	Inf.	0.6	25	1	28	3			41	23.7	15	
diethylene glycol	Inf.	0.6	25	1	28	3			22	12.7	15	
fuel oil, light	Inf.	0.6	25	1	28	3			54	31.2	15	
water	Inf.	0.6	25	1	28	3			36	20.8	15	
Iubricating oil	Inf.	0.5	44	31	140	30	1.02	0.19	34	6.2	18	
tricthviene glycol	Inf.	0.5	44	31	140	30	1.27	0.23	37	6.8	18	
dicthviene glycol	Inf.	0.5	44	31	140	30	4.46	0.76	29	5.3	18	
lubricating oil	Inf.	0.5	60	31	133	30	0.51	0.09	17	3.1	18	
tricthylene glycol	Inf.	0.5	60	31	133	30	1.15	0.21	32	5.8	18	
diethylene glycol	Inf.	0.5	60	31	133	30	2.29	0.42	28	5.1	18	
dichloromethane	Inf.	0.5	50	7	68	3	2.00	1.15	40	23.1	- 16	

224

١

-

The second

Table	I.	(Cont'd
	-	

Fluid	Type of Test	w/c	Compressive Strength (MPa)	Moist Curing (days)	Age at Testing (days)	Test Duration (days)	Absorbed Fluid (L/m ²)	Sorptivity (mm/d ^{1/2})	Penetration Depth (mm)	Penetration Coefficient (mm/d ^{1/2})	Ref.	Remarks
dichloromethane	Inf.	0.5	53	7	68	3	1.00	0.58	15	8.7	16	special
				-		-						admixture
butanol	Inf.	0.75	26	7	36	7	4.07	1.54	77	29.1	20	
water	Inf.	0.75	26	7	56	7	8.00	3.27	150	56.7	20	
butanol	Inf.	0.57	45	7	44	7	1.40	0.53	18	6.8	20	
water	Inf.	0.57	43	7	44	1	1.00	0.63	50	18.9	20	
butanol	Int.	0.00	42	3	700	3	7.27	4.20	95	54.8	23	
butanol	Cap.	0.66	42	3	700	3	3.72	2.15	40	23.1	23	
ethyl acetate	Inf.	0.66	42	3	700	3	8.05	4.65	95	54.8	23	
ethyl acctate	Cap.	0.66	42	3	700	3	6.55	3.78	75	43.3	23	
butanol	Inf.	0.66	42	3	700	3	14.48	8.36	125	72.2	23	dried at 105°C
ethyl acetate	Inf.	0.66	42	3	700	3	14.63	8.45	130	75.0	23	dried at 105°C
butanol	Cap.	0.66	42	3	700	3	6.17	3.56	65	37.5	23	dried at 105%
ethyl acctate	Cap.	0.66	42	3	700	3	13.08	7.55	110	63.5	23	dried at 105°C
n-heptane	Inf.	0.54	48	7	90	3	3.90	2.25			19	
n-heptane	Cap.	0.54	48	7	90	3	3.20	1.84			19	
walcr	Inf.	0.54	44	7	90	3	3.00	1.73			19	
water	Cap.	0.54	44	7	90	3	2.50	1.44			19	
n-butanol	Cap.	0.68	36	7	121	7	13.00	4.91	105	39.7	21	dried at 105%
water	Cap.	0.68	36	7	121	7	21.64	8.18	198	74.8	21	dried at 105%
n-butanol	Cap.	0.61	39	7	107	7	10.18	3.85	85	32.1	21	dried at 105%
water	Cap.	0.61	39	7	107	7	13.36	5.05	98	37.0	21	dried at 105%
octanone	Cap.	0.60	46	8	90	3	2.14	1.24	29	16.7	24	
octanone	Cap.	0.30	94	60	90	3	0.49	0.28	8	4.4	24	
pentanone	Cap.	0.60	46	8	90	3	2.22	1.28			24	
pentanone	Cap.	0.30	94	60	90	3	0.41	0.24			24	
n-heptane	Cap.	0.54	48	7	90	3	3.60	2.08	80	46.2	25	
water	Cap.	0.54	48	7	90	3	2.50	1.44	25	14.4	25	
n-heptane	Inf.	0.54	48	7	90	3	4.15	2.40	90	52.0	25	
water	Inf.	0.54	48	7	90	3	2.25	1.30	30	17.3	25	

.

,

Table I. (Cont'd.)

Fluid	Type of Test	w/c	Compressive Strength (MPa)	Moist Curing (days)	Age at Testing (days)	Test Duration (days)	Absorbed Fluid (L/m ²)	Sorptivity (mm/i ^{1/2})	Penetration Depth (mm)	Penetration Coefficient (mm/d ^{1/2})	Ref.	Remarks
buffiylacrylate	Inf.	0.38	53	7	68	3	0.27	0.16	12	6.9		special admixture
methacryl acid	Inf.	0.38	53	7	68	3	0.08	0.05	10	5.8		special admixture
2-hydroxyethyl acrylate	Inf.	0.38	53	7	68	3	0.25	0.14	13	7.5		special admixture
2-ethylhexyl acrylate	inf.	0.38	53	7	68	3	0.19	0.11	12	6.9		special admixture
ethylacrylate	inf.	0.38	53	7	68	3	0.48	0.28	13	7.5		special admixture
methylmethacrylate	Inf.	0.38	53	7	68	3	0.39	0.22	15	8.7		special admixture
vinyl acctate	Inf.	0.38	53	7	68	3	0.42	0.24	13	7.5		special admixture
methylacryl acid	Inf.	0.37	74	7	68	3	0.12	0.07	22	12.7		
ethyl acrylate	Inf.	0.37	74	7	68	3	0.73	0.42	23	13.3		
vinyl acetate	Inf.	0.37	74	7	68	3	0.39	0.22	15	8.7		
crude oil	Cap.	0.4		7	25	100			33	3.3	26	dried at 105°C
crude oil	Cap.	0.5		7	25	100			30	3.0	26	dried at 105°C
crude oil	Cap.	0.6		7	25	100			28	2.8	26	dried at 105°C

^{*}Inf. - Infiltration Cap. - Capillary absorption

		Concrete						
	1	2	3	4	5			
w/c ratio	0.60	0.65	0.65	0.60	0.30			
f_{cc} (MPa)	46	53	58	69	94			
Volume (mL on 50 cm ² surf	ace)							
acetone	9	10	8	7	2			
water	6	7	5	6	1			

Table IV. Absorption of Acetone and Water in Concrete After Three Days'

Data from Ref. 24.

Porosity

There are only a few references that supply data on porosity of the concrete. It is an interesting question whether Eq. (6) is valid if the total porosity is implemented in this relation. In Ref. 21, penetration depth and absorbed volume are compared and it appeared that only 3-8 vol% could be filled by butanol if the concrete was stored in an ambient environment and that 12-14 vol% could be filled for an oven-dried concrete. Unfortunately, the total porosity has not been measured but can be estimated to be 15-18 vol%. This means that Eq. (6) has to be used with caution. More research is necessary to investigate the interaction between organic fluid, water, and hydrated cement paste in concrete.

Dynamic Viscosity and Surface Tension

The absorption of a fluid in a porous medium depends on surface tension, dynamic viscosity, and contact angle, as stated by Eq. (3). If all quantities and the pore system of concrete were known, the absorption could be predicted. Since this is not the case, experiments have to be conducted and it can be checked whether a general relation can be confirmed. Test results from Ref. 15 are plotted in Fig. 16 for water-miscible and immiscible fluids and one type of concrete.

Although the scatter is considerable, there is a clear tendency of larger penetration with larger $(\sigma/\eta)^{1/2}$. The correlation is better for fluids that are not miscible with water (numbers 1-10), whereas the miscible fluids deviate the most from the correlation line. This behavior should receive more attention in future research with respect to the interaction of fluid and pore water. It should also be emphasized that the contact angle is assumed to be the same for all fluids, which is certainly not true. But there was no information available about the contact angle of organic fluids and concrete. Looking to Fig. 16, there is the re-

Materials Science of Concrete III

COMPOSITION AND PROPERTIES OF CONCRETE SECOND EDITION

GEORGE EARL TROXELL Professor of Civil Engineering, Emeritus University of California, Berkeley

> HARMER E. DAVIS Professor of Civil Engineering University of California, Berkeley

JOE W. KELLY Professor of Civil Engineering, Emeritus University of California, Berkeley

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico Milan Montreal New Delhi Paris San Juan Singapore Sydney Tokyo Toronto

COMPOSITION AND PROPERTIES OF CONCRETE

Copyright © 1956, 1968 by McGraw-Hill, Inc. All Rights Reserved. Typeset in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Library of Congress Catalog Card Number 68-13104 07-065286-4

22 23 24 25 DOR DOR 9 9 8 7 6 5 4 3

Printed and bound by Impresora Donneco Internacional S. A. de C. V. a division of R. R. Donnelley & Sons, Inc.

Manufactured in Mexico.

THE NATURE OF THE PROBLEM

1.1 Composition of concrete. Concrete is a composite material which consists essentially of a binding medium within which are embedded particles or fragments of a relatively inert mineral filler. In portland cement concrete the binder or matrix, either in the plastic or in the hardened state, is a combination of portland cement and water; it is commonly called the "cement paste." The filler material, called "aggregate," is generally graded in size from a fine sand to pebbles or fragments of stone which, in some concretes, may be several inches in diameter.

In practical concrete mixtures, the overall proportions of these principal components, the binder and the aggregate, are controlled by the requirements that, (1) when freshly mixed, the mass be workable or placeable, (2) when the mass has hardened, it possess strength and durability adequate to the purpose for which it is intended, and (3) cost of the final product be a minimum consistent with acceptable quality. A diagrammatic representation of the composition of concrete of the proportions used in construction is shown in Fig. 1.1.

The aggregate occupies roughly three-quarters of the space within a given mass. For convenience, particles smaller than about $\frac{4}{16}$ in. in diameter are designated as fine aggregate or sand. Natural coarse aggregates may consist of gravel or crushed stone. Other materials employed as aggregates include slag, cinders, and artificial lightweight aggregates made of burned clay or shale.

The space not occupied by aggregate, roughly onequarter of the entire volume of an average concrete, is filled with cement paste and air voids. After concrete has been placed, even though it has been compacted with considerable thoroughness, some entrapped air remains within the mass. In a freshly made and compacted concrete of suitable proportions, the volume of unavoidable entrapped air is comparatively small, usually not over 1 or 2 percent. For particular purposes, however, there has developed in recent years the practice of incorporating in the mixture special

-1

1

water content is kept constant, approximately the same consistency is maintained.

From the fact that the water content is practically constant while the cement content varies considerably, it is apparent that the dilution of the paste, expressed, say, as the ratio of water to cement, must be greater for the lean mixes than for the rich ones. Stated in practical terms, it means that as the amount of cement in a mix is reduced, more water must be used per sack of cement, if constant consistency is to be maintained. It is apparent that an intimate relation exists between richness of mix and water-cement ratio in mixes of the same consistency.

In the hardening process, a unit quantity of a particular cement can potentially combine with a specific quantity of water. Thus for a given quantity of cement paste, a paste having a higher water-cement ratio (small percentage of cement) will have a larger volume of potentially uncombined water than will a paste of lower water-cement ratio. Since capillary-pore space derives from uncombined water, the paste in the leaner mixes has a more porous structure than that in the richer mixes.

1.4 Influence of quality of paste upon properties of concrete. The cement paste has been characterized as the active element in concrete. The performance of concrete is largely influenced by the properties of the paste, provided the mineral aggregates are of satisfactory quality. Ordinarily, sound strong aggregates are not difficult to secure.

For a cement of given chemical composition, the strength and porosity of the paste-structure are dependent almost entirely upon the water-cement ratio (see Art. 10.12). So long as plastic workable mixes are used, the lower the water-cement ratio, the greater the strength and water-tightness.

THE NATURE OF THE PROBLEM 7

This is true regardless of the richness of mix. Whatever measures of strength are used (compressive, tensile, or flexural strength) the relationships between them and the water-cement ratio are similar [100, 101].¹

Durability, or resistance to weathering, is a function of both strength and watertightness. The quality of the paste thus has a direct influence upon this important property. This has been shown not only by tests but also by studies of the condition of structures in the field [101].

It is apparent that other properties which are affected by the character of the paste structure will be influenced by the water-cement ratio. For example, the higher the water-cement ratio, the greater the shrinkage of paste due to drying. The volume change of concrete, however, is dependent upon the quantity of paste as well as upon quality of the paste; in some cases the shrinkage due to the effect of increase in water-cement ratio may be offset by the effect of increased quantity of aggregate.

A basis that has been used in the past for selecting a water-cement ratio for a particular job is the compressive strength of concrete. However, even with fairly high water-cement ratios, ample strengths are obtained with most present-day normal portland cements. Hence any limitations that are placed upon the water-cement ratio should also be governed by considerations of resistance to weathering. Recommendations on this basis, for various types of structures and degrees of exposures, have been made available (see Table 6.5 and Ref. 100). In any case, fixing the water-cement ratio gives a measure of control over the potential quality of the concrete.

1.5 Concrete making. The making of concrete is a manufacturing process, even though the plant may often be temporary and the product is made in the field. In many areas, however, concrete is now produced in a central mixing plant and is hauled to the construction site. In any case, the problems of material procurement, of personnel organization, of quality control and economics parallel those of any other manufacturing process. When the plant is temporary, the problems of proper plant layout and widely varying sources of material must be recognized as a part of each job. Furthermore, from a general point of view, because the process of securing a concrete of desired quality is not completed until the concrete structure is finished, each job presents its own peculiar problems of forming, placement, and curing. These considerations call for special experience and judgment on the part of the manufacturer.

An engineer or engineering staff is usually responsible for the technical phases of the process, whether the operating organization is provided by a contractor or by the owner. The engineer must be familiar with the principles of concrete making as well as the art of producing it. He must

¹ Numbers in brackets indicate references listed in Appendix J.

TWO CONCRETE-MAKING MATERIALS—PORTLAND CEMENT

2.1 Cementing materials. For constructional purposes a cement is a material capable of developing, after appropriate reactions have taken place, those adhesive and cohesive properties that make it possible to bond together mineral fragments to produce a hard continuous compact mass of masonry. There are a variety of cementing materials in use for this purpose; two important classes of such materials are calcareous cements and bituminous binders. The cementing or bonding action of the calcareous cements is attained through a chemical reaction involving lime or lime compounds.

For structures which must sustain and transmit appreciable load and which must offer appreciable resistance to disintegration under a range of adverse conditions of exposure, by far the most important of the cementing materials (except for use in pavements) are the calcareous hydraulic cements. Hydraulic cements have the special property of setting and hardening under water. Key and essential components of these cements are lime and silica. In the presence of water, the lime and silica or lime-silica compounds, react to form ultimately a hardened product containing hydrated calcium silicates.

2.2 Portland cement. For the purposes of this book, the discussion is directed primarily to portland cement, which, of all the hydraulic cements, is in the most widespread use for constructional purposes at the present time. The origin of the name "portland" cement is usually attributed to Joseph Aspdin, a brick mason in England, who in 1824 took out a patent for making artificial stone; he called his product portland cement because the mortar made with it resembled in color the stone which was quarried on the Isle of Portland. The production of material which would approximate the composition and properties of present-day portland cements, however, did not begin in appreciable quantity until the latter part of the nineteenth century.

As manufactured for use in construction work, portland

CONCRETE-MAKING MATERIALS-PORTLAND CEMENT 21

the details of cement manufacture, see Refs. 201, 203, 206. For some historical aspects of cement production, see Refs. 210 to 216.

2.8 Chemical analysis of portland cement. The results of a routine chemical analysis of portland cement are reported in terms of the oxides of the constituent elements [C114]. Table 2.4 indicates the general proportions of the major constituents in the clinker, expressed as oxides, for a range of ordinary commercially made portland cements. It may be noted that these four major constituents account for over 90 percent of the total. Also, it may be noted that the oxide composition varies among the cements represented over a fairly narrow range. However, a relatively small change in composition as indicated by the oxide analysis may result in an appreciable change in the proportions of the actual compounds that make up a cement.

A typical oxide analysis of a type I portland cement is shown in Table 2.5, which includes constituents other than the major ones given in Table 2.4.

The role of the major constituents will be discussed in greater detail in subsequent articles. At this point however, it is pertinent to note the significance of certain other items reported in the usual chemical analysis.

Table 2.4 Major constituents of normal portland cement clinker, in terms of the oxides

	Percent, by wt									
Major constituents in terms of the oxides	Representative average	Approximate range 60-65 20-24								
Úme, CaO	63	60-65								
Silica, SiO1	21	20-24								
Alumina, Al ₂ O ₁	6	4-8								
Iron, FerOz	3	2-5								

Table 2.5 Typical chemical analysis

t of	a type	i portiano	d cement	

Principal exides	Percent, by wt	Other determinations	Percent, by wt
SiO,	20.67	MgO	2.58
Al ₂ O ₂	5.96	Na:O	0.12
FerO:	2.35	K ₂ O	0.94
CaO	63.62	Loss on ignition	1.37
≩.so,	2.13	Insoluble residue	0.26
		Free CaO	1.43

Fig. 2.7. Space relationships for paste components at various stages of hydration. (a) Fresh paste; (b) reaction one-third complete; (c) reaction two-thirds complete; (d) reaction completed. Based on concepts in Refs. 230, 236, 245. Assumptions: specific gravity of cament = 3.15. When completely hydrated 1 cu cm of cament produces 2.1 cu cm of cament gel.

Under the assumptions made here, with a paste having a water-cement ratio of 0.35 by weight, the original water-filled space would be completely filled with cement gel at 100 percent hydration, and with pastes having water-cement ratios lower than this, all of the original cement could not be hydrated. There does not appear to be firm evidence as to the exact magnitude of this critical water-cement ratio to permit complete hydration.

It has been estimated that the percent of gel-pore space in cement gel is about 26 to 28 percent [236, 245]. In the range of intermediate water-cement ratios used in ordinary concretes, in which some capillary space would also exist in the cement paste, the porosity of the hardened, fully hydrated cement paste may be 40 to 55 percent.

2.16 Role of paste structure and composition in behavior of concrete. A number of aspects of the behavior of concrete may be predicated from the structure of the hardened cement paste and from the chemical nature of its constituents. Because the basic structure of the hardened paste

CONCRETE-MAKING MATERIALS-PORTLAND CEMENT 47

is a rigid gel with a considerable porosity and a large specific surface, it is capable of holding a substantial quantity of water under the influence of attractive forces of varying degrees of magnitude. It may be expected that the amount of water held within the overall gel structure will vary with humidity (vapor pressure) of the surrounding atmosphere. Some water' occupies the capillary-pore space, but a significant amount occupies the gel-pore space. The gain or loss of gel water, by altering the forces within the gel structure, results in expansion or contraction of the paste (and of the concrete in which it may be used). While a part of this volumetric change is reversible, complete drying of the paste results in some volumetric shrinkage that is not recovered by subsequent wetting.

5

1

.

Because of the fine network of interconnected gel pores (and usually also some capillary-pore space, not always interconnected), hardened cement paste is permeable to water. It is to be expected that as hydration proceeds and more of the space between the originally discrete cement grains is filled with cement gel, the permeability will decrease. The permeability of a fully hydrated paste may be of the order of 10^s times lower than that of a paste only a day or so old. The permeability of a mature paste is comparable to that of fairly dense rocks, such as marble or diorite [236, 245]. Because of the forces induced in water contained in pores of the very small size that exist in cement gel, the flow characteristics of water in such pores are not the same as those of free water [254]. Voids and channels in a concrete mass outside the gel mass per se may, of course, also affect the permeability of concrete.

Because water in the gel pores does not freeze at the same temperature as free water, it may be expected that a paste having a fully developed, dense gel structure will exhibit greater resistance to freezing and thawing than one having a higher volume of water-filled capillary pores. On the other hand, small, non-water-filled air bubbles distributed throughout the mass enhance resistance to freezing and thawing by providing a source of relief to pressures built up by freezing of water in the capillary spaces [252].

The strength of a paste derives in large degree from the bonds formed between the very small particles that compose the cement gel. Generally, the greater the number of such particles and the denser the gel structure, the stronger the gel mass [245]. This is why the ratio of water to cement in the original mix serves as a useful index of potential strength. The amount of pore space (and hence density of paste) that can finally be developed is a function of the initial water content; and the amount of gel that can potentially develop is a function of the relative amount of cement present. Increase in amount of gel, as hydration proceeds, results in increase in strength.

If water is removed from the paste structure, not only is the gel volume

decreased, but some of the interparticle attractive forces are increased; thus pastes or concretes tested after drying exhibit greater strength than if they were tested in a fully saturated condition.

Because of the preponderance of lime and lime compounds in cement paste, the paste may be regarded as essentially chemically basic in nature. Hence, exposure to acidic solutions can be expected to cause dissolution and damage to concrete. Even long exposure to chemically pure water can cause lime to be leached, but in a dense concrete, other than superficial reaction is negligible over long periods in pure water.

When certain alumina-bearing compounds are present in the cement of a hardened concrete, its exposure to water containing sulfate ions results in the formation of ettringite, accompanied by a volumetric expansion within the fabric of the hardened paste which can result in disruption of the gel structure. Hence, for concretes that will be exposed to sulfate-containing soils or waters, low C_3A cements (type II or V) are often specified.

The disruption of hardened cement paste that can be caused by delayed hydration of hard burned CaO and MgO has been mentioned in Art. 2.8.

Because CO₂ is present in the atmosphere, under some conditions it may react with the Ca(OH)₂ or other lime-bearing compounds in the hardened cement paste. It has been observed that when hardened pastes are exposed to air containing CO₂ at relative humidities ranging from perhaps 35 percent to something less than 100 percent, a decrease in volume occurs that is called "carbonation shrinkage" [203, p. 473]. This shrinkage takes place even though the reaction of CO₂ with Ca(OH)₂ gives a product having a volume greater than that of the Ca(OH)₂ consumed. The mechanism of this phenomenon is not fully understood; one view that has been postulated is that as the reaction takes place, Ca(OH), is dissolved, some of the resulting CaCO, in solution is deposited elsewhere in the paste structure, and the existing tensile stresses in the gel water cause a decrease in the space previously occupied by the Ca(OH), [255]. While surface crazing has been observed to result from carbonation shrinkage, such action is confined to only a very thin layer near the surface and apparently is not harmful to the remaining mass of concrete.

When CO₂ is dissolved in water it produces a weak acid; thus under some circumstances of exposure of paste to CO₂-bearing water, some mild dissolution may be caused.

Compounds of sodium and potassium are usually present in portland cement as minor constituents. These alkalis can react rather strongly with certain silicates in some aggregates, with resultant volumetric expansion and disintegration of a hardened concrete mass. For this reason special steps should be taken to offset this potential reaction if the aggregates to be used contain such silicates. One procedure is to limit the alkali content of the cement to some small amount which experiment and experience has shown has seldom resulted in deterioration. Another procedure is to use a siliceous (pozzolanic) admixture in the concrete mixture that will readily react with both the alkalies and calcium hydroxide during the early stages of the hardening process.

2.17 Specifications requirements for portland cements. Specifications for cement generally include a statement of chemical and physical requirements, methods of testing, limitations on additions, and provisions concerning packaging, marking, storage, and inspection and rejection. Of interest here are the nature of, and reasons for, the chemical and physical requirements.

The principal chemical requirements for the several types of portland cement manufactured under ASTM Specifications are outlined in Table 2.9. The background and implications of these requirements have been discussed in Arts. 2.5, 2.8, and 2.9.

The principal physical requirements of the several types of portland cement manufactured under ASTM Specifications are given in Table 2.10. The usual physical requirements prescribed for acceptance of a cement are concerned with (1) fineness, (2) time of set, (3) soundness, and (4) strength. In addition, for some types of cement, there may be requirements having to do with heat of hydration, false set, and air content of mortar made with the cement. A discussion of the determination of fineness is given in Art. 2.11. Background on the meaning of time-of-set requirements and on false set is given in Art. 2.14. Comments on heat of hydration are given in Art. 2.13. While a basis has been laid for the significance of the soundness test in the discussions of free lime and magnesia in several preceding articles, some summary comments on soundness are pertinent here. Also, some brief comments relative to the strength tests made for acceptance of cement will be made.

Soundness. Unsoundness in (set) cement is caused by undue expansion of some of the constituents, which expansion is manifested by cracking, disruption, and disintegration of the mass. One source of unsoundness in cement is the delayed hydration of free lime incased within the cement particles (see Art. 2.12). A protective film prevents the immediate hydration of the free lime. However, moisture may finally reach the lime after the cement has set, and since lime expands with considerable force when hydrated under restraint, its delayed hydration may disrupt the mass. One advantage of a slow setting cement is that more time is given to hydrate the lime before the mass becomes rigid.

Another possible cause of unsoundness is the presence of too high a magnesia content (see Art. 2.12). Standard specifications limit the magnesia content to 5 percent.

Fine grinding of the raw materials brings them into more intimate contact when burned, so that there is less chance of free lime existing

ELEVEN PERMEABILITY AND DURABILITY

PERMEABILITY

¥

11.1 Pore structure of concrete. Concrete is inherently porous, as not all the space between the aggregate particles becomes filled with a solid cementing material. To obtain workable mixes it is necessary to use much more water in concrete than is required for hydration of the cement. Furthermore, the absolute volume of the cement and water gradually decreases as chemical combination proceeds, and this makes it impossible for a cement paste of any water-cement ratio to continue to occupy completely the space originally required by the fresh paste; consequenty, the hardened paste develops some voids. In addition, during the mixing of concrete some air is always entrapped in the mass.

As the water and air voids in concrete are generally interconnected, concrete is inherently pervious to water. This is evidenced by its absorption of water by capillary action and by the passage through it of water under pressure. While absorption and permeability may permit disintegrating agencies to damage the concrete or shorten its life, fortunately it is not difficult to obtain concrete that is sufficiently watertight for all practical purposes if materials of good quality are used in proper proportions, if the concrete is well mixed and compacted in place, and if adequate curing is provided.

The porosity of concrete is largely developed during the setting period. Settlement of the solid particles causes the water to rise and form many water channels. Some of the water is trapped below the aggregate particles, and some fills the fine interstices among the cement particles. Hydration of the cement produces a gel which decreases the size of these water voids and increases the watertightness of the concrete (see Art. 2.16) but the voids are never eliminated completely. It is evident that thorough curing is necessary to secure watertight concrete.

though some other materials may be effective, particularly in lean mixes, many produce no beneficial effect. In general, except for pozzolans, the use of extra cement will usually be more effective than the use of other waterproofing admixtures, and the extra cost for an equal effect will usually be less [1100, 1105, 1106].

Water-pressure tests on concrete containing entrained air show that the permeability of concrete is not appreciably affected by entrained air in the percentages ordinarily used on concrete construction if the watercement ratio remains unchanged [106].

Many surface treatments are effective in reducing leakage through porous concrete when applied to the face subjected to water pressure. The principal ones can be divided into the following classifications:

- 1. Fabric membranes cemented to the concrete with hot asphalt
- 2. Asphaltic emulsions
- 3. Cement plasters, adequately cured
- 4. Paraffin, silicone compounds, etc. dissolved in volatile solvents

●客様でという いっきい いんぎりいい

5. Inert fillers in an alkyd resin vehicle

Of these surface treatments the first two are most commonly used when their black color is not objectionable. The other treatments have been most used when a good appearance must be maintained.

11.9 Uniformity of concrete. The permeability test is very sensitive. Minor defects or nonhomogeneous conditions in concrete that would have no appreciable effect on compressive strength influence the leakage through the specimen to a marked degree.

PERMEABILITY AND DURABILITY 267

Probably the majority of leaks in concrete structures are due either (1) to defects such as cracks in the structure or (2) to void spaces in the concrete caused by honeycombing or segregation of the constituent materials rather than to inherent porosity of the cement paste or aggregate. To prevent leaks, the mix should be workable so that segregation and honeycomb can be avoided in placing the concrete. The effect of vibratory compaction in reducing the permeability of concrete is shown in Fig .11.4. Care should be taken so that excessive water and laitance do not accumulate at the surfaces of fresh masses and that good bond is obtained between successive lifts. Contraction joints should be designed, if necessary with flexible water stops.

11.10 Absorption. Absorption is a physical process by which concrete draws water into its pores and capillaries. In one method of test the concrete is submerged in water for 24 hr, surface-dried, weighed, oven-dried, and weighed again. The difference in the soaked and dry weight is taken as the absorption. It is usually expressed as a percentage of the dry weight. In a second method the concrete is first oven-dried, weighed, boiled in water for 5 hr, cooled in water, and weighed after surface-drying. The percentage absorption is computed as in the first method. The results of these two procedures do not agree, as the loss in weight of a saturated specimen in drying is roughly 5 to 10 percent greater than the absorption after drying [1108].

In both procedures the drying operation withdraws not only the mechanically suspended water but also some of the colloidal water more tenaciously

このではないないでは、「「「「「」」、 ア・ク・フリー

ł

J,

÷

ż

1.24

ŝ

かどと

Fig. 11.4. Permeability of hand-placed and vibrated concrete. Stump 2 to 4 in.

held in the cement gel. Hence the absorptions, or porosities indicated by the absorptions, are larger than for the usual temperature-humidity environment of the concrete.

The absorption is considered to be related to the resistance of concrete to weathering, since if no water entered its pores, there would be little or no disintegration caused by freezing or thawing or by aggressive waters. However, actual tests show no reliable correlation of *total* absorption with durability of concrete, but some correlation appears to exist between the *rate* of absorption and durability [110].

DURABILITY

11.11 Deterioration of concrete. The useful life of concrete may be markedly reduced by the disintegrating effects of (1) weathering, including the disruptive action of freezing and thawing and the differential length changes due to temperature variations and alternate wetting and drying, (2) reactive aggregates, (3) aggressive waters in alkali regions, (4) leaching in hydraulic structures, (5) chemical corrosion, and (6) mechanical wear or abrasion. These subjects are covered in some detail in Ref. 1120 by ACI Committee 201.

11.12 Weathering. In severe climates, resistance to weathering is an important consideration. There is, however, no quantitative index or direct laboratory test for weathering resistance. Various accelerated tests to simulate weathering action have been devised; most of these involve alternate cycles of freezing and thawing [1141].

It is considered that the destruction of concrete by freezing is caused by hydraulic pressure developed by the expansion of water when converted to ice, this expansion being about 9 percent. When under pressure, water does not freeze until the temperature is somewhat below the normal freezing temperature of 32°F, but it will freeze even at pressures as great as 30,000 psi provided the temperature drops to about -8°F [1196]. The disruption of concrete by freezing is contingent upon the presence of sufficient water in the void spaces so that high internal pressures will develop, because when the concrete is not sufficiently saturated the expansion of the ice will merely force some of the water into inner voids. Tests have shown that the higher the moisture content of the concrete, the fewer the cycles of freezing and thawing required to rupture the mass, so that when nearly fully saturated an ordinary concrete will disintegrate completely in less than 5 cycles [1141]. But ordinary concrete has many air-filled cavities that cannot readily be filled with water even upon immersion in water. These cavities are entrained air bubbles, pores in the aggregates, and thin fissures under the larger aggregates. The fissures, formed during the period of

PARS	Calcu	lation Pa	ige	Job/Cal. Number 730047-01001-01	Discipline Health Physics	Appendices
Rev	Date	By	Ck	Subject:	· · · · · · · · · · · · · · · · · · ·	
0, draft B	1/4/2002	SWW	RJM	- Assessment of the Po	tential Migration	t of Pu/Am Into
				-		

APPENDIX C

EXCEL Spreadsheet pusol.xls

Contains copies of worksheets form spreadsheet "pusol.xls":

"Pu solubility"

"Concreted" -- 2 pages

"Concentrations" -- 5 pages

"Buildup Cal" (file copy)	1014 pages
"Buildup Cal" (abbreviated copy)	5 pages (i.e., pages 1, 7, 8, 169, 338)

-- 4 pages

P	AASO	NS		1	A	opendix	C of Calc	ulation		1	1	Cal. N	0. 730047-	-01001-01
	I mole			moles/liter	Value	Uncertainty (2*SD)	Value	Uncertair	nty		Basis			
PuO ₂ Pu(OH)4	271 307	g	PuO ₂ Pu(OH) ₄	[PuO ₂]= [Pu(OH) ₄]=	-3.90000	0.10000	"+" -0.64 "+" -0.80	000 -0.020 000 -0.010	00 "*"	pH pH	Rai, Dhanpat, Plutonium Co Soil Sci. Soc.	R. J. Serne, & I ompounds and T Am J., Vol. 44,	D.A. Moore, " heir Behavior 1980, pg 490	Solubility o In Soils," -495.
Am	241	g	Am	[Am]=	-3.76000	0.24000	"+" -1.07	000 -0.040	000 "*"	рН	Rai, Dhanpat, R. G. Strickert, R. J. Serne, & D.A Moore, "Influence of an Americium Solid Phase Americium Concetrations in Solutions," Geochir Cosmochimica Acta, Vol 45, 1981, pg 2257-226			
Ċamaaina				Equilbrium (Concentration	Fauilheine	Concentratio		_	A	ctivity (uCi/ml)		
d	pН	10	og K ^c	(mole	s/liter)	Equitorium (g	z/liter)		Pu-2	.39		Pu-239 &	Pu-240	
		Value	Uncertainty	Value	Uncertainty	Value	Uncerta	nty Value		"+" Uncertainty	"_" Uncertainty	Value	"+" Uncertainty	"_" Uncertainty
PuO ₂	1	-4.5400E	E+00 -5.099E-02	2.88E-05	5.19E-06	7.82E-03	1.411	-03 4.86E-	-07	1.75E-07	1.75E-07	7.75E-07	1.36E-08	1.36E-08
	1.5	-4.8600E	+00 -5.220E-02	1.38E-05	2.54E-06	3.74E-03	6.90E	-04 2.33E-	-07	8.58E-08	8.58E-08	3.71E-07	6.22E-09	6.22E-09
	2	-5.1800E	+00 -5.385E-02	6.61E-06	1.26E-06	1.79E-03	3.41E	-04 1.11E-	-07	4.24E-08	4.24E-08	1.77E-07	2.88E-09	2.88E-09
	2.5	-5.5000E	+00 -5.590E-02	2 3.16E-06	6.25E-07	8.57E-04	1.69E	-04 5.33E-	-08	2.11E-08	2.11E-08	8.49E-08	1.35E-09	1.35E-09
	3	-5.8200E	+00 -5.831E-02	1.51E-06	3.13E-07	4.10E-04	8.47E	-05 2.55E-	-08	1.05E-08	1.05E-08	4.07E-08	6.36E-10	6.36E-10
	3.5	-6.1400E	+00 -6.103E-02	2 7.24E-07	1.57E-07	1.96E-04	4.25	-05 1.22E-	-08	5.29E-09	5.29E-09	1.95E-08	3.02E-10	3.02E-10
	- 4	-6.4600E	+00 -6.403E-0	3.4/E-0/	7.88E-08	9.40E-05	2.14	-05 5.85E	-09	2.66E-09	2.66E-09	9.31E-09	1.44E-10	1.44E-10
	4.5	-0./8005	+00 -6.727E-02	1.00E-07	3.9/E-08	4.50E-05	5 421	-05 2.80E	09	1.34E-09	6.75E-10	2.13E-00	0.91E-11	0.91E-11
	55	-7.10001	+00 -7.071E-02	3 80F-08	1.01E-08	1.03E-05	2 73	-06 641E	10	3.40E-10	3.40E-10	1.02E-09	1.60E-11	1.60E-11
-	6	-7 7400F	+00 -7 810E-02	1.82E-08	5.08E-09	4 93E-06	1 38	-06 3.07E	-10	1.71E-10	1.71E-10	4.89E-10	7.70E-12	7.70E-12
	6.5	-8.0600E	+00 -8.201E-02	8.71E-09	2.56E-09	2.36E-06	6.94H	-07 1.47E-	-10	8.63E-11	8.63E-11	2.34E-10	3.72E-12	3.72E-12
	7	-8.3800E	+00 -8.602E-02	4.17E-09	1.29E-09	1.13E-06	3.491	-07 7.03E-	-11	4.34E-11	4.34E-11	1.12E-10	1.80E-12	1.80E-12
	7.5	-8.7000E	+00 -9.014E-02	2 2.00E-09	6.47E-10	5.41E-07	1.75H	-07 3.36E-	-11	2.18E-11	2.18E-11	5.36E-11	8.67E-13	8.67E-13
	8	-9.0200E	+00 -9.434E-02	9.55E-10	3.25E-10	2.59E-07	8.81H	-08 1.61E-	-11	1.10E-11	1.10E-11	2.57E-11	4.19E-13	4.19E-13
	8.5	-9.3400E	-9.862E-02	2 4.57E-10	1.63E-10	1.24E-07	4.421	-08 7.71E	-12	5.49E-12	5.49E-12	1.23E-11	2.02E-13	2.02E-13
	9	-9.6600E	+00 -1.030E-0	2.19E-10	8.16E-11	5.93E-08	2.211	-08 3.69E-	-12	2.75E-12	2.75E-12	5.88E-12	9.78E-14	9.78E-14
-	9.5	-9.9800E	+00 -1.074E-0	1.05E-10	4.08E-11	2.84E-08	1.111	-08 1.77E	-12	1.38E-12	1.38E-12	2.81E-12	4.73E-14	4.73E-14
	10	-1.0300E	+01 -1.118E-0	5.01E-11	2.04E-11	1.36E-08	5.531	-09 8.45E	-13	6.88E-13	6.88E-13	1.35E-12	2.28E-14	2.28E-14
	10.5	-1.06201	-1.163E-0	2.40E-11	1.02E-11	0.50E-09	2./61	-09 4.04E	12	3.43E-13	3.43E-13	0.44E-13	5.20E-14	5.20E-16
1.1	115	-1.09401	+01 -1.208E-0	5.50E-12	2.52E-12	1.40E-09	6.951	-10 0.26E	-14	8 53E-14	8 53E-14	1 49E-12	2 57E-15	2.57E-15
1.1	12	-1 1580F	+01 -1 300F-0	2.63E-12	1.35E-12	7.13E-10	3 411	-10 4.43E	-14	4 24F-14	4.24E-14	7.07F-14	1.24E-15	1.24E-15
-	12.5	-1.1900F	+01 -1.346E-0	1.26E-12	6.25E-13	3.41E-10	1.69	-10 2.12E	-14	2.11E-14	2.11E-14	3.38E-14	5.97E-16	5.97E-16
	13	-1.2220E	+01 -1.393E-0	6.03E-13	3.10E-13	1.63E-10	8.411	-11 1.02E-	-14	1.05E-14	1.02E-14	1.62E-14	2.88E-16	2.88E-16
	13.5	-1.2540E	E+01 -1.440E-0	2.88E-13	1.54E-13	7.82E-11	4.17	-11 4.86E-	-15	5.19E-15	4.86E-15	7.75E-15	1.39E-16	1.39E-16
	14	-1.2860E	+01 -1.487E-01	1.38E-13	7.64E-14	3.74E-11	2.071	-11 2.33E	-15	2.57E-15	2.33E-15	3.71E-15	6.69E-17	6.69E-17

PARSON	15			Ap	opendix C	of Calcula	tion			Cal. No. 730047-01001-01			
						_		Ac	tivity (uCi/ml)				
рН	log K	C	Equilbrium ((moles	Concentration s/liter)	Equilbrium (g/l	Concentration iter)	Pu-	239	• • • • • • •	Pu-239 &	Pu-240	ar arada ita	
	Value	Uncertainty	Value	Uncertainty	Value	Uncertainty	Value	"+" Uncertainty	"_" Uncertainty	Value	"+" Uncertainty	"_" Uncertainty	
1	-1.9900E+00	-8.040E-01	1.02E-02	4.13E-03	3.14E+00	1.27E+00	1.95E-04	1.58E-04	1.58E-04	3.11E-04	1.96E-04	1.96E-04	
1.5	-2.3900E+00	-1.203E+00	4.07E-03	2.05E-03	1.25E+00	6.29E-01	7.78E-05	7.83E-05	7.78E-05	1.24E-04	9.74E-05	9.74E-0	
2	-2.7900E+00	-1.602E+00	1.62E-03	9.31E-04	4.98E-01	2.86E-01	3.10E-05	3.56E-05	3.10E-05	4.93E-05	4.43E-05	4.43E-0	
2.5	-3.1900E+00	-2.002E+00	6.46E-04	4.05E-04	1.98E-01	1.24E-01	1.23E-05	- 1.55E-05	1.23E-05	1.96E-05	1.93E-05	1.93E-0	
3	-3.5900E+00	-2.401E+00	2.57E-04	1.72E-04	7.89E-02	5.28E-02	4.91E-06	6.57E-06	4.91E-06	7.82E-06	8.17E-06	7.82E-0	
3.5	-3.9900E+00	-2.801E+00	1.02E-04	7.18E-05	3.14E-02	2.21E-02	1.95E-06	2.74E-06	1.95E-06	3.11E-06	3.41E-06	3.11E-0	
4	-4.3900E+00	-3.201E+00	4.07E-05	2.97E-05	1.25E-02	9.12E-03	7.78E-07	1.13E-06	7.78E-07	1.24E-06	1.41E-06	1.24E-0	
4.5	-4.7900E+00	-3.601E+00	1.62E-05	1.22E-05	4.98E-03	3.74E-03	3.10E-07	4.66E-07	3.10E-07	4.93E-07	5.79E-07	4.93E-0	
5	-5.1900E+00	-4.001E+00	6.46E-06	4.98E-06	1.98E-03	1.53E-03	1.23E-07	1.90E-07	1.23E-07	1.96E-07	2.37E-07	1.96E-0	
5.5	-5.5900E+00	-4.401E+00	2.57E-06	2.02E-06	7.89E-04	6.21E-04	4.91E-08	7.73E-08	4.91E-08	7.82E-08	9.62E-08	7.82E-0	
6	-5.9900E+00	-4.801E+00	1.02E-06	8.20E-07	3.14E-04	2.52E-04	1.95E-08	3.13E-08	1.95E-08	3.11E-08	3.90E-08	3.11E-0	
6.5	-6.3900E+00	-5.201E+00	4.07E-07	3.32E-07	1.25E-04	1.02E-04	7.78E-09	1.27E-08	7.78E-09	1.24E-08	1.58E-08	1.24E-0	
7	-6.7900E+00	-5.601E+00	1.62E-07	1.34E-07	4.98E-05	4.11E-05	3.10E-09	5.11E-09	3.10E-09	4.93E-09	6.36E-09	4.93E-0	
7.5	-7.1900E+00	-6.001E+00	6.46E-08	5.39E-08	1.98E-05	1.65E-05	1.23E-09	2.06E-09	1.23E-09	1.96E-09	2.56E-09	1.96E-0	
8	-7.5900E+00	-6.400E+00	2.57E-08	2.17E-08	7.89E-06	6.65E-06	4.91E-10	8.28E-10	4.91E-10	7.82E-10	1.03E-09	7.82E-1	
8.5	-7.9900E+00	-6.800E+00	1:02E-08	8.71E-09	3.14E-06	2.67E-06	1.95E-10	3.33E-10	1.95E-10	3.11E-10	4.14E-10	3.11E-1	
	-8.3900E+00	-7.200E+00	4.07E-09	3.50E-09	1.25E-06	1.07E-06	7.78E-11	1.34E-10	7.78E-11	1.24E-10	1.66E-10	1.24E-1	
9.5	-8.7900E+00	-7.600E+00	1.62E-09	1.40E-09	4.98E-07	4.31E-07	3.10E-11	5.36E-11	3.10E-11	4.93E-11	6.66E-11	4.93E-1	
10	-9.1900E+00	-8.000E+00	6.46E-10	5.62E-10	1.98E-07	1.73E-07	1.23E-11	2.15E-11	1.23E-11	1.96E-11	2.67E-11	1.96E-1	
10.5	-9.5900E+00	-8.400E+00	2.57E-10	2.25E-10	7.89E-08	6.91E-08	4.91E-12	8.60E-12	4.91E-12	7.82E-12	1.07E-11	7.82E-1	
11	-9.9900E+00	-8.800E+00	1.02E-10	9.01E-11	3.14E-08	2.77E-08	1.95E-12	3.44E-12	1.95E-12	3.11E-12	4.28E-12	3.11E-1	
11.5	-1.0390E+01	-9.200E+00	4.07E-11	3.61E-11	1.25E-08	1.11E-08	7.78E-13	1.38E-12	7.78E-13	1.24E-12	1.71E-12	1.24E-1	
12	-1.0790E+01	-9.600E+00	1.62E-11	1.44E-11	4.98E-09	4.43E-09	3.10E-13	5.51E-13	3.10E-13	4.93E-13	6.86E-13	4.93E-1	
12.5	-1.1190E+01	-1.000E+01	6.46E-12	5.77E-12	1.98E-09	1.77E-09	1.23E-13	2.20E-13	1.23E-13	1.96E-13	2.74E-13	1.96E-1	
13	-1.1590E+01	-1.040E+01	2.57E-12	2.31E-12	7.89E-10	7.08E-10	4.91E-14	8.81E-14	4.91E-14	7.82E-14	1.10E-13	7.82E-1	
13.5	-1.1990E+01	-1.080E+01	1.02E-12	9.22E-13	3.14E-10	2.83E-10	1.95E-14	3.52E-14	1.95E-14	3.11E-14	4.38E-14	3.11E-1	
14	-1.2390E+01	-1.120E+01	4.07E-13	3.68E-13	1.25E-10	1.13E-10	7.78E-15	1.41E-14	7.78E-15	1.24E-14	1.75E-14	1.24E-1	
				a and and any data shart									

P	ASO	NS				Appe	ndix C o	f Calcula	tion	
1						-			Notes al	
-						-				
-	-					-				
.1				~					a	
	+									
										1
										1
Compoun	pH	log	Kc	Equilbrium C	oncentration	Equi	lbrium	Am-241 Activ	vity (uCi/ml)	
d				(moles	/liter)	Concentra	tion (g/liter)			
		Value	Uncertainty	Value	Uncertainty	Value	Uncertainty	Value	"+ "	**_**
		value	Uncertainty	Value	Uncertainty	value	Uncertainty	value	Uncertainty	Uncertainty
Am	1	-4.8300E+00	-0.1216553	1.48E-05	6.59E-06	3.56E-03	1.59E-03	1.22E-05	1.09E-05	1.09E-05
*	1.5	-5.3650E+00	-0.1236932	4.32E-06	1.96E-06	1.04E-03	4.72E-04	3.57E-06	3.24E-06	3.24E-06
	21	-5.9000E+00	-0.1264911	1.26E-06	5.85E-07	3.03E-04	1.41E-04	1.04E-06	9.68E-07	9.68E-07
	2.5	-6.4350E+00	-0.13	3.67E-07	1.76E-07	8.85E-05	4.23E-05	3.04E-07	2.91E-07	2.91E-07
1	3	-6.9700E+00	-0.1341641	1.07E-07	5.30E-08	2.58E-05	1.28E-05	8.87E-08	8.78E-08	8.78E-()8
-	3.5	-7.5050E+00	-0.1389244	3.13E-08	1.61E-08	7.53E-06	3.87E-06	2.59E-08	2.66E-08	2.59E-08
	4	-8.0400E+00	-0.1442221	9.12E-09	4.88E-09	2.20E-06	1.18E-06	7.55E-09	8.08E-09	7.55E-09
+	4.5	-8.5750E+00	-0.15	2.66E-09	1.49E-09	6.41E-07	3.58E-07	2.20E-09	2.46E-09	2.20E-09
	5	-9.1100E+00	-0.156205	7.76E-10	4.53E-10	1.87E-07	1.09E-07	6.43E-10	7.50E-10	6.43E-10
4	5.5	-9.6450E+00	-0.1627882	2.26E-10	1.38E-10	5.46E-08	3.33E-08	1.87E-10	2.29E-10	1.87E-10
+	6	-1.0180E+01	-0.1697056	6.61E-11	4.23E-11	1.59E-08	1.02E-08	5.47E-11	7.00E-11	5.47E-11
	0.3	-1.0/15E+01	-0.1/09181	1.93E-11	1.29E-11	4.05E-09	3.11E-09	1.60E-11	2.14E-11	1.00E-11
- ÷	75	-1.1230E+01	-0.1843909	1.64E-12	121E-12	3.05E-10	9.31E-10	1.36E-12	2.00E-12	4.05E-12
	- 8	-1 2320E+01	-0.2	4 79F-13	3.68E-13	1.15E-10	8 88E-11	3.96E-13	6 10E-13	3 96E-13
- 1	85	-1.2855E+01	-0 2080865	1.40E-13	1.12E-13	3.37E-11	2.71E-11	1.16E-13	1.86E-13	1.16E-13
1	9	-1.3390E+01	-0.2163331	4.07E-14	3.43E-14	9.82E-12	8.26E-12	3.37E-14	5.68E-14	3.37E-14
	9.5	-1.3925E+01	-0.2247221	1.19E-14	1.05E-14	2.86E-12	2.52E-12	9.84E-15	1.73E-14	9.84E-15
	10	-1.4460E+01	-0.2332381	3.47E-15	3.19E-15	8.36E-13	7.68E-13	2.87E-15	5.27E-15	2.87E-15
	10.5	-1.4995E+01	-0.2418677	1.01E-15	9.70E-16	2.44E-13	2.34E-13	8.37E-16	1.61E-15	8.37E-16
	11	-1.5530E+01	-0.2505993	2.95E-16	2.95E-16	7.11E-14	7.11E-14	2.44E-16	4.89E-16	2.44E-16
	11.5	-1.6065E+01	-0.2594224	8.61E-17	8.97E-17	2.07E-14	2.16E-14	7.13E-17	1.49E-16	7.13E-17
	12	-1.6600E+01	-0.2683282	2.51E-17	2.73E-17	6.05E-15	6.57E-15	2.08E-17	4.51E-17	2.08E-17
	12.5	-1.7135E+01	-0.2773085	7.33E-18	8.28E-18	1.77E-15	2.00E-15	6.07E-18	1.37E-17	6.07E-18
	13	-1.7670E+01	-0.2863564	2.14E-18	2.51E-18	5.15E-16	6.05E-16	1.77E-18	4.16E-18	1.77E-18
	13.5	-1.8205E+01	-0.2954657	6.24E-19	7.62E-19	1.50E-16	1.84E-16	5.16E-19	1.26E-18	5.16E-19
	14	-1.8740E+01	-0.3046309	1.82E-19	2.31E-19	4.39E-17	5.56E-17	1.51E-19	3.82E-19	1.51E-19

P,	ARSO	NS			Appene	dix C of C	alculatio	on		Cal. No.	730047-01001-01
	Concrete Der	oth versus P	h	1 •	-						
Depth	all	Dania	to be seen of the second s			1					
(cm)	рн	Basis							_	Lune rand	
0.2	2 >7	Troxell, et	al, "Compos	sition and P	roperties of	Concrete," pg	48; Skalny, J	an, "Material	Science of		
0.7	12 5	Concrete I,	" pg 287; &	Skalny, Ja	n and Sidne	y Miness, "Mat	erial Science	of Concrete	I," pg 202.		
0.2	12.5		- have		1		1				
Material	s Fraction in	Concrete									
Material	Wt% I	Bound	Vol%	Bound	Basis						
	Upper	Lower	Upper	Lower				ana ana manga	N.N.S. 12		
H ₂ 0	10.1	7.5	20.3	16					0.072		
Portland	10.0	16	76 5	21.4	Table 51.7	1 Tinton C R	Ir "Reacto	r Handbook V	Jume I M	Asterials " no	1075
Cement	19.8	15	20.5	21.4	14010 51.7	1, 11ptoli, C. K	. JI., Redeto	I HAILOOOK	olume I, Iv	lateriais, pg	1075.
Sand	77.5	70.1	62.6	53.2							
Density	2.25	2		1	Table 51.6	9, Tipton, C. R	. Jr., "Reacto	r Handbook V	olume I, N	laterials," pg	1075.
	1				ntention					1	
(1)				Pe	ntration	Antonial Calorina	of Comments	111 1 - 216			
x(t) =	'B (mm/d''')	*t ^{***} days		Table I Sk	alny Ian "	Material Science	e of Concret	ni, pg 215			
D	30.7	Activity	. (uCila cor	Table 1, 5k	any, Jan,	Waterial Science	C OI CONCICE	с пі, рв 224		1	
Denth		Activity	Pu-239	icrete)			I				
(cm)	Time (days)	Pu-239	/Pu-240	Am-241	Pu form	"@ Assumes v	water is satur	ated with radi	onuclide.		
0.2	1.244E-05	7.10E-10	1.13E-09	4.70E-11	oxide	velocity					
5.67	1	1.25E-12	1.98E-12	4.70E-11	hydroxide	5.470068059	112	0.299669981			
8.018591	2	1.25E-12	1.98E-12	4.70E-11	hydroxide	2.348590899	111	0.301358302			
9.820728	3 3	1.25E-12	1.98E-12	4.70E-11	hydroxide	1.80213718	110	0.303075485			
11.34	4	1.25E-12	1.98E-12	4.70E-11	hydroxide	1.519271921	109	0.304822362			
12.67851	5	1.25E-12	1.98E-12	4.70E-11	hudroxide	1.338505432	108	0.306599797			
15.00141	7.	1.25E-12	1.98E-12	4.70E-11	hydroxide	1.210101409	107	0.308408092			
16.03718	8	1.25E-12	1.98E-12	4.70E-11	hydroxide	1.035771864	105	0.312124661			
17.01	9	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.972818203.	104	0.314033733			
17.93011	10	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.920114333	103	0.31597827	7.10		
18.80526	5 11	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.875148228	102	0.317959384			
19.64146	5. 12	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.836193597	101	0.319978234			
20.44348	13	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.802019574	100	0.322036036			
21.2152	14	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.771721651	99	0.324134057			
21.95982	15	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.74461819	98	0.3202/3023			
23 37801	17	1.23E-12	1.98E-12	4.70E-11	hydroxide	0.698008897	96	0.32643013			
24.05577	18	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.677763799	95'	0.332955844			
24.71496	19	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.659184314	94	0.335276178			
25.35701	20	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.642053855	93	0.337645709			
25.9832	21	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.626193326	92	0.340066202			
26.59466	22	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.611453168	91	0.342539508			
27.19236	23	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.597707379	90	0.345067578			
27.77721	24	1.25E-12	1.98E-12	4.70E-11	nydroxide	0.572796217	89	0.347652462			
28.35	25	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.572780317	87	0.3530290321			
29 46218	20	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.550743595	86	0.355770199			
30.00282	28	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.540635631	85	0.358605156			
30.53388	29	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.531064589	84	0.361508983			
31.05587	30	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.521984554	83	0.364484516			
31.56922	31	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.513354927	82	0.367534756			
32.07436	32	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.505139657	81	0.37066288			1
32.57167	33	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.497306611	80	0.373872262			
33.0615	34	1.25E-12	1.98E-12	4.70E-11	hydroxide	0.489827038	79	0.377166482	_		
33 54417	35	1755-12	1985-12	4 /0E-11	nydroxide	0482675126	78	U 1X0549344			

PAF	SONS	Appendix C of Calculation	Cal. No. 730047-01001-01
34.02	36 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.47582763 77 0.384024897	1
34.48926	37 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.469263547 76 0.387597453	
34.95223	38 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.46296385 75 0.391271608	
35.40914	39 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.456911254 74 0.395052274	
35.86023	40 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.451090015 73 0.398944697	
36.30571	41 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.44548576 72 0.402954493	
36.7458	42: 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.440085334 71 0.407087684	
37.18068	43 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.434876673 70 0.411350731	
37.61053	44 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.42984869 69 0.41575058	
38.03552	45 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.424991175 68 0.420294707	
38.45581	46 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.420294707 67 0.424991175	
38.87156	47 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.41575058 66 0.42984869	
39.28291	48 1.25E-12	1.98E-12 4.70E-11.hydroxide 0.411350731 65 0.434876673	
39.69	49 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.407087684 64 0.440085334	
40.09295	50 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.402954493 63 0.44548576	
40.4919	51 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.398944697 62 0.451090015	
40.88695	52 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.395052274 61 0.456911254	
41.27822	53 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.391271608 60 0.46296385	
41.66582	54 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.387597453 59 0.469263547	
42.04985	55 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.384024897 58 0.47582763	
42.43039	56 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.380549344 57 0.482675126	
42.80756	57 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.377166482 56 0.489827038	
43.18143	58 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.373872262 55 0.497306611	
43.5521	59 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.37066288 54 0.505139657	
43.91963	60 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.367534756 53 0.513354927	
44.28412	61 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.364484516 52 0.521984554	
44.64562	62 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.361508983 51 0.531064589	
45.00423	63 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.358605156 50 0.540635631	
45,36	64 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.355770199 49 0.550743595	
45.713	65 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.353001433 48 0.561440642	
46.0633	66 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.350296321 47 0.572786317	
46.41095	67 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.347652462 46 0.584848946	
46.75602	68 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.345067578 45 0.597707379	
47.09856	69 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.342539508 44 0.611453168	
47.43862	70 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.340066202 43 0.626193326	
47.77627	71 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.337645709 42 0.642053855	
48.11155	72 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.335276178 41 0.659184314	
48.4445	73 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.332955844 40 0.677763799	
48.77518	74 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.330683028 39 0.698008897	
49.10364	75 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.32845613 38 0.720184427	
49.42991	76 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.326273625 37 0.74461819	
49.75405	77 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.324134057 36 0.771721651	
50.07608	78 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.322036036 35 0.802019574	
50.39606	79 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.319978234 34 0.836193597	
50.71402	80 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.317959384 33 0.875148228	
51.03	81 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.31597827 32: 0.920114333	
51.34403	82 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.314033733 31 0.972818203	
51.65616	83 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.312124661 30 1.035771864	
51.96641	84 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.310249987, 29 1.112803092	
52.27482	85 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.308408692 28 1.210101409	
52.58142	86 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.306599797 27 1.338505432	
52.88624	87 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.304822362 26 1.519271921	
53.18931	88 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.303075485 25 1.80213718	
53,49067	89 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.301358302 24 2.348590899	
53.79034	90 1.25E-12	1.98E-12 4.70E-11 hydroxide 0.299669981 23 5.470068059	
	91	0	

PA	PARSONS					Apper	ndix C o	of Calcu	lation			Cal. No. 730047-01001-01
				oloulati	on Tabl	0						
aver	1	2	3	AICUIALI	on rabi	6	7	0	0	10		
Thickness of the		2	J				/.	0	9	10		
Layer (cm)	2.00E-01	5.67E+00	8.02E+00	9.82E+00	1.13E+01	1.27E+01	1.39E+01	1.50E+01	1.60E+01	1.70E+01		
Day 1	5.81E-09	3.47E-14	0.00E+00									
Forty Years Later	2.20E-06	3.76E-13	3.71E-13	3.51E-13	3.21E-13	2.89E-13	2.60E-13	2.35E-13	2.15E-13	1.98E-13		
Layer	11	12	13	14	15	16	17	18	19	20		
Thickness of the Layer (cm)	1.79E+01	1.88E+01	1.96E+01	2.04E+01	2.12E+01	2.20E+01	2.27E+01	2.34E+01	2.41E+01	2.47E+01		
Day 1	0.00E+00											
Forty Years Later	1.83E-13	1.70E-13	1.59E-13	1.50E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	AAA A 49 69 69	
Layer	21	22	23	24	25	26	27	28	29	30		
Thickness of the Layer (cm)	2.54E+01	2.60E+01	2.66E+01	2.72E+01	2.78E+01	2.84E+01	2.89E+01	2.95E+01	3.00E+01	3.05E+01		
Day 1	0.00E+00	+										
Forty Years Later	9.78E-14	8.63E-14	7.30E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14	1.60E-14	1.03E-14	6.29E-15		
Layer	31	32	33	34	35	36	37	38	39	40	and a second sec	
Thickness of the Layer (cm)	3.11E+01	3.16E+01	3.21E+01	3.26E+01	3.31E+01	3.35E+01	3.40E+01	3.45E+01	3.50E+01	3.54E+01		
Day 1	0.00E+00											
Forty Years Later	3.69E-15	2.07E-15	1.11E-15	5.76E-16	2.86E-16	1.37E-16	6.28E-17	2.78E-17	1.19E-17	4.93E-18		
Layer	41	42	43	44	45	46	47	48	49	50		
Thickness of the Layer (cm)	3.59E+01	3.63E+01	3.67E+01	3.72E+01	3.76E+01	3.80E+01	3.85E+01	3.89E+01	3.93E+01	3.97E+01		
Day 1	0.00E+00											
Forty Years Later	1.97E-18	7.64E-19	2.87E-19	1.04E-19	3.69E-20	1.27E-20	4.23E-21	1.37E-21	4.34E-22	1.34E-22		
Layer	51	52	53	54	55	56	57	58	59	60		
Thickness of the Layer (cm)	4.01E+01	4.05E+01	4.09E+01	4.13E+01	4.17E+01	4.20E+01	4.24E+01	4.28E+01	4.32E+01	4.36E+01		
Day 1	0.00E+00											
Forty Years Later	4.02E-23	1.18E-23	3.37E-24	9.43E-25	2.57E-25	6.88E-26	1.80E-26	4.59E-27	1.15E-27	2.82E-28		
Layer	61	62	63	64	65	66	67	68	69	70		
Thickness of the Layer (cm)	4.39E+01	4.43E+01	4.46E+01	4.50E+01	4.54E+01	4.57E+01	4.61E+01	4.64E+01	4.68E+01	4.71E+01		
Day 1	0.00E+00											
Forty Years Later	6.79E-29	1.60E-29	3.70E-30	8.41E-31	1.87E-31	4.10E-32	8.82E-33	1.86E-33	3.87E-34	7.91E-35		
Layer	71	72	73	74	75	76	77	78	79	80		
Thickness of the Layer (cm)	4.74E+01	4.78E+01	4.81E+01	4.84E+01	4.88E+01	4.91E+01	4.94E+01	4.98E+01	5.01E+01	5.04E+01		
Day 1	0.00E+00											
Forty Years Later	1.59E-35	3.14E-36	6.12E-37	1.17E-37	2.21E-38	4.12E-39	7.55E-40	1.36E-40	2.43E-41	4.26E-42		
Layer	81	82	83	84	85	86	87	88	89	90		

PPA	ASON	IS				Appen	dix C o	f Calcu	lation		Cal. No. 730047-01001-01					
Thickness of the Layer (cm)	5.07E+01	5.10E+01	5.13E+01	5.17E+01	5.20E+01	5.23E+01	5.26E+01	5.29E+01	5.32E+01	5.35E+01						
Day 1	0.00E+00					dente .	_									
Forty Years Later	7.38E-43	1.26E-43	2.12E-44	3.54E-45	5.81E-46	9.42E-47	1.51E-47	2.39E-48	3.73E-49	5.76E-50						
										*						
			<u></u>	Pu-239/	Pu-240									• • •••••		
Layer	1.00E+00	2.00E+00	3.00E+00	4.00E+00	5.00E+00	6.00E+00	7.00E+00	8.00E+00	9.00E+00	1.00E+01						
Thickness of the Layer (cm)	2.00E-01	5.67E+00	8.02E+00	9.82E+00	1.13E+01	1.27E+01	1.39E+01	1.50E+01	1.60E+01	1.70E+01						
Day 1	3.65E-09	2.18E-14	0.00E+00													
Forty Years Later	1.38E-06	2.36E-13	2.33E-13	2.20E-13	2.02E-13	1.81E-13	1.63E-13	1.48E-13	1.35E-13	1.24E-13						
Layer	11	12	13	14	15	16	17	18	19	20						
Thickness of the Layer (cm)	1.79E+01	1.88E+01	1.96E+01	2.04E+01	2.12E+01	2.20E+01	2.27E+01	2.34E+01	2.41E+01	2.47E+01						
Day 1	0.00E+00		-													
Forty Years Later	1.15E-13	1.07E-13	1.00E-13	9.40E-14	8.86E-14	8.37E-14	7.92E-14	7.50E-14	7.11E-14	6.70E-14			-			
Layer	21	22	23	24	25	26	27	28	29	30						
Thickness of the Layer (cm)	2.54E+01	2.60E+01	2.66E+01	2.72E+01	2.78E+01	2.84E+01	2.89E+01	2.95E+01	3.00E+01	3.05E+01						
Day 1	0.00E+00															
Forty Years Later	6.14E-14	5.41E-14	4.58E-14	3.71E-14	2.87E-14	2.12E-14	1.49E-14	1.00E-14	6.44E-15	3.95E-15						
Layer	31	32	33	34	35	36	37	38	39	40						
Thickness of the Layer (cm)	3.11E+01	3.16E+01	3.21E+01	3.26E+01	3.31E+01	3.35E+01	3.40E+01	3.45E+01	3.50E+01	3.54E+01						
Day 1	0.00E+00															
Forty Years Later	2.32E-15	1.30E-15	7.00E-16	3.61E-16	1.79E-16	8.57E-17	3.94E-17	1.75E-17	7.48E-18	3.09E-18						
Layer	41	42	43	44	45	46	47	48	49	50						
Thickness of the Layer (cm)	3.59E+01	3.63E+01	3.67E+01	3.72E+01	3.76E+01	3.80E+01	3.85E+01	3.89E+01	3.93E+01	3.97E+01			6			
Day 1	0.00E+00															
Forty Years Later	1.24E-18	4.80E-19	1.80E-19	6.55E-20	2.32E-20	7.95E-21	2.65E-21	8.62E-22	2.73E-22	8.40E-23						
Layer	51	52	53	54	55	56	57	58	59	60						
Thickness of the Layer (cm)	4.01E+01	4.05E+01	4.09E+01	4.13E+01	4.17E+01	4.20E+01	4.24E+01	4.28E+01	4.32E+01	4.36E+01						
Day 1	0.00E+00															
Forty Years Later	2.52E-23	7.40E-24	2.12E-24	5.92E-25	1.62E-25	4.32E-26	1.13E-26	2.88E-27	7.22E-28	1.77E-28						
Layer	61	62	63	64	65	66	67	68	69	70						
Thickness of the Layer (cm)	4.39E+01	4.43E+01	4.46E+01	4.50E+01	4.54E+01	4.57E+01	4.61E+01	4.64E+01	4.68E+01	4.71E+01						
Day 1	0.00E+00															
Forty Years Later	4.26E-29	1.00E-29	2.32E-30	5.28E-31	1.18E-31	2.57E-32	5.53E-33	1.17E-33	2.43E-34	4.96E-35						
Layer	71	72	73	74	75	76	77	78	79	80						

PAP	PARSONS					Apper	ndix C o	of Calcu	lation		Cal. No. 730047-01001-01						
Thickness of the Layer (cm)	4.74E+01	4.78E+01	4.81E+01	4.84E+01	4.88E+01	4.91E+01	4.94E+01	4.98E+01	5.01E+01	5.04E+01						_	
Day 1	0.00E+00					-											
Forty Years Later	9.98E-36	1.97E-36	3.84E-37	7.36E-38	1.39E-38	2.58E-39	4.74E-40	8.55E-41	1.52E-41	2.67E-42		-			-		
Layer	81	82	83	84	85	86	87	88	89	- 90				-	-		
Thickness of the	5 07E+01	5 10E+01	5 12E+01	5 17E±01	5 20E+01	5 22E±01	5 26E+01	5 20E±01	5 22E±01	5 35E+01			_		-		
Layer (cm)	5.07E+01	5.10E+01	3.13E+01	5.1/E+01	3.20E+01	3.236-01	3.20E+01	J.29E+01	3.32E+01	3.33ET01				_			
Day 1	0.00E+00																
Forty Years Later	4.63E-43	7.91E-44	1.33E-44	2.22E-45	3.64E-46	5.91E-47	9.46E-48	1.50E-48	2.34E-49	3.61E-50							
										_							
				Pu-2	239											_	
Layer	1.00E+00	2.00E+00	3.00E+00	4.00E+00	5.00E+00	6.00E+00	7.00E+00	8.00E+00	9.00E+00	1.00E+01							_
Thickness of the Layer (cm)	2.00E-01	5.67E+00	8.02E+00	9.82E+00	1.13E+01	1.27E+01	1.39E+01	1.50E+01	1.60E+01	1.70E+01							
Day 1	5.81E-09	3.47E-14	0.00E+00					-									
Forty Years Later	2.20E-06	3.76E-13	3.71E-13	3.51E-13	3.21E-13	2.89E-13	2.60E-13	2.35E-13	2.15E-13	1.98E-13						-	
Layer	- 11	12	13	14	15	16	17	18	19	20				-			
Thickness of the	1.79E+01	1.88E+01	1.96E+01	2.04E+01	2.12E+01	2.20E+01	2.27E+01	2.34E+01	2.41E+01	2.47E+01							
Day 1	0.005+00	0.00F+00	0.00E+00	0.00F+00	0.00F+00	0.00E+00	0.00F+00	0.00E+00	0.00E+00	0.00E+00			-			+	
Forty Years Later	1.83E-13	1.70E-13	1 59E-13	1.50E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13		-					
Laver	21	22	23	24	25	26	27	- 28	29	30			-				
Thickness of the	2.54E+01	2.60E+01	2.66E+01	2.72E+01	2.78E+01	2.84E+01	2.89E+01	2.95E+01	3.00E+01	3.05E+01		arran da					
Day 1	0.00E+00			-		-	-										
Forty Years Later	9.78E-14	8.63E-14	7.30E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14	1.60E-14	1.03E-14	6.29E-15		**					-
Laver	31	32	33	34	35	36	37	38	39	40	-		-				
Thickness of the	3.11E+01	3.16E+01	3.21E+01	3.26E+01	3.31E+01	3.35E+01	3.40E+01	3.45E+01	3.50E+01	3.54E+01				-			
Day 1	0.00E+00							-									
Forty Years Later	3.69E-15	2.07E-15	1.11E-15	5.76E-16	2.86E-16	1.37E-16	6.28E-17	2.78E-17	1.19E-17	4.93E-18							
Laver	41	42	43	44	45	46	47	48	49	50	* *						
Thickness of the Layer (cm)	3.59E+01	3.63E+01	3.67E+01	3.72E+01	3.76E+01	3.80E+01	3.85E+01	3.89E+01	3.93E+01	3.97E+01							-
Day 1	0.00E+00																
Forty Years Later	1.97E-18	7.64E-19	2.87E-19	1.04E-19	3.69E-20	1.27E-20	4.23E-21	1.37E-21	4.34E-22	1.34E-22				-	-		
Layer	51	52	53	54	55	56	57	58	59	60					-	-	
Thickness of the Layer (cm)	4.01E+01	4.05E+01	4.09E+01	4.13E+01	4.17E+01	4.20E+01	4.24E+01	4.28E+01	4.32E+01	4.36E+01							
Day 1	0.00E+00																
Forty Years Later	4.02E-23	1.18E-23	3.37E-24	9.43E-25	2.57E-25	6.88E-26	1.80E-26	4.59E-27	1.15E-27	2.82E-28							
Laver	61	62	63	64	65	66	67	68	69	70				-			

PAP	SON	IS				Apper	dix C o	f Calcu	lation				
Thickness of the Laver (cm)	4.39E+01	4.43E+01	4.46E+01	4.50E+01	4.54E+01	4.57E+01	4.61E+01	4.64E+01	4.68E+01	4.71E+01			
Day 1	0.00E+00												
Forty Years Later	6.79E-29	1.60E-29	3.70E-30	8.41E-31	1.87E-31	4.10E-32	8.82E-33	1.86E-33	3.87E-34	7.91E-35			
Layer	71	72	73	74	75	76	77	78	79	80			
Thickness of the	4.74E+01	4.78E+01	4.81E+01	4.84E+01	4.88E+01	4.91E+01	4.94E+01	4.98E+01	5.01E+01	5.04E+01			
Day 1	0.00E+00												
Forty Years Later	1.59E-35	3.14E-36	6.12E-37	1.17E-37	2.21E-38	4.12E-39	7.55E-40	1.36E-40	2.43E-41	4.26E-42			
Laver	81	82	83	84	85	86	87	88	89	90			
Thickness of the	5.07E+01	5.10E+01	5.13E+01	5.17E+01	5.20E+01	5.23E+01	5.26E+01	5.29E+01	5.32E+01	5.35E+01			
Day 1	0.00E+00												
Forty Years Later	7.38E-43	1.26E-43	2.12E-44	3.54E-45	5.81E-46	9.42E-47	1.51E-47	2.39E-48	3.73E-49	5.76E-50			
	Am-241												
Layer	1	2	3	4	5	6	_ 7	8	9	10			
Thickness of the Layer (cm)	2.00E-01	5.67E+00	8.02E+00	9.82E+00	1.13E+01	1.27E+01	1.39E+01	1.50E+01	1.60E+01	1.70E+01			
Day 1	3.19E-11	8.23E-13	0.00E+00										
Forty Years Later	9.16E-09	8.90E-12	8.78E-12	8.32E-12	7.61E-12	6.85E-12	6.16E-12	5.58E-12	5.09E-12	4.68E-12			
Layer	11	12	13	14	15	16	17	18	19	20			
Thickness of the Layer (cm)	1.79E+01	1.88E+01	1.96E+01	2.04E+01	2.12E+01	2.20E+01	2.27E+01	2.34E+01	2.41E+01	2.47E+01			
Day 1	0.00E+00												
Forty Years Later	4.33E-12	4.04E-12	3.78E-12	3.55E-12	3.34E-12	3.16E-12	2.99E-12	2.83E-12	2.68E-12	2.53E-12			
Layer	21	22	23	24	25	26	27	28	29	30			
Thickness of the Layer (cm)	2.54E+01	2.60E+01	2.66E+01	2.72E+01	2.78E+01	2.84E+01	2.89E+01	2.95E+01	3.00E+01	3.05E+01			
Day 1	0.00E+00												
Forty Years Later	2.32E-12	2.04E-12	1.73E-12	1.40E-12	1.09E-12	8.01E-13	5.64E-13	3.79E-13	2.43E-13	1.49E-13			
Layer	31	32	33	34	35	36	37	38	39	40			
Thickness of the Layer (cm)	3.11E+01	3.16E+01	3.21E+01	3.26E+01	3.31E+01	3.35E+01	3.40E+01	3.45E+01	3.50E+01	3.54E+01			
Day 1	0.00E+00												
Forty Years Later	8.74E-14	4.91E-14	2.64E-14	1.36E-14	6.77E-15	3.24E-15	1.49E-15	6.60E-16	2.82E-16	1.17E-16			
Layer	41	42	43	44	45	46	47	48	49	50			
Thickness of the Layer (cm)	3.59E+01	3.63E+01	3.67E+01	3.72E+01	3.76E+01	3.80E+01	3.85E+01	3.89E+01	3.93E+01	3.97E+01			
Day 1	0.00E+00												
Forty Years Later	4.67E-17	1.81E-17	6.80E-18	2.47E-18	8.74E-19	3.00E-19	1.00E-19	3.26E-20	1.03E-20	3.17E-21			
Layer	51	52	53	54	55	56	57	58	59	60			

PPA	PARSONS					Apper		Cal. No. 730047-01001-01									
Thickness of the Layer (cm)	4.01E+01	4.05E+01	4.09E+01	4.13E+01	4.17E+01	4.20E+01	4.24E+01	4.28E+01	4.32E+01	4.36E+01							
Day 1	0.00E+00	0.00E+00	0.00E+00					-									
Forty Years Later	9.53E-22	2.79E-22	7.99E-23	2.23E-23	6.10E-24	1.63E-24	4.26E-25	1.09E-25	2.73E-26	6.69E-27	-					_	-
Layer	61	62	63	64	65	66	67	68	69	70							
Thickness of the Layer (cm)	4.39E+01	4.43E+01	4.46E+01	4.50E+01	4.54E+01	4.57E+01	4.61E+01	4.64E+01	4.68E+01	4.71E+01							
Day 1	0.00E+00	0.00E+00	0.00E+00			-				-							
Forty Years Later	1.61E-27	3.79E-28	8.78E-29	1.99E-29	4.44E-30	9.72E-31	2.09E-31	4.42E-32	9.17E-33	1.87E-33		-					_
Layer	71	72	73	74	75	76	77	78	79	80		-	-			-	-
Thickness of the Layer (cm)	4.74E+01	4.78E+01	4.81E+01	4.84E+01	4.88E+01	4.91E+01	4.94E+01	4.98E+01	5.01E+01	5.04E+01							
Day 1	0.00E+00	0.00E+00	0.00E+00					-		-							
Forty Years Later	3.77E-34	7.45E-35	1.45E-35	2.78E-36	5.25E-37	9.76E-38	1.79E-38	3.23E-39	5.75E-40	1.01E-40					-		
Layer	81	82	83	84	85	86	87	88	89	90	-						
Thickness of the Layer (cm)	5.07E+01	5.10E+01	5.13E+01	5.17E+01	5.20E+01	5.23E+01	5.26E+01	5.29E+01	5.32E+01	5.35E+01	_						-
Day 1	0.00E+00	0.00E+00	0.00E+00				-			_							
Forty Years Later	1.75E-41	2.99E-42	5.04E-43	8.38E-44	1.38E-44	2.23E-45	3.57E-46	5.65E-47	8.83E-48	1.36E-48		1	_		-		
Summary Table												-					
Layer 0 Layer 1 Layer 90												-			-		-
	pCi/ml	pCi/g	pCi/ml	pCi/g	pCi/ml	pCi/g					-	-	-	-			
Pu-239/Pu-240	1.38E-06	6.89E-07	2.36E-13	1.18E-13	3.61E-50	1.81E-50	-					-			5		
Pu-239	2.20E-06	1.10E-06	3.76E-13	1.88E-13	5.76E-50	2.88E-50											
Am-241	9.16E-09	4.58E-09	8.90E-12	4.45E-12	1.36E-48	6.82E-49		-	_								

	A	В	C	D	E	F	G	Н	1	J	K	L	М
1		PARSON	IS		Арре	Cal. No. 730047-01001-01							
2		R _d =	1+P _b *K _d /Th							Eqn. E.8			-
3			- T										
4		Ph	bulk density (z/cm^3		are one to another service of the		-	Adirekar Offer				1
5		Ka	distriubtion co	efficent for rad	onuclide (cm	/g)		ANL/EAD/LD-2					
6		Th	volumetric wa	ter content									
7		R _d	ratio of averag	age water velocity to radionuclide velocity									1.1
8		K	for Pu is	1000	at pH 11	and	8500	at pH 7	(Table E.6)				- 3
9		K	for Pu is	2000	and	Am-241	20				RESRAD	ersion 6.0	
10	-	· - · · · · · · · · · · · · · · · · · ·											
11		Data	i	-									
12		Variable	Va	lue	Units			1/R _d (ass	umed)	1/R _d (referenced data)			
13			Value	Stdev		in a distant teneral		pH 7	pH 11		pH 7	pH11	
		days per year water present on			-	-							
14		surface	60	30	days		Pu	0.1	0.1	_	4.27E-05	8.54E-05	
15		time since contamination	40	5	yr		Am				0.004252	0.004252	
16		pH near surface layer (2 mm)	7		>			value (g/ml)	Stdev	_			
17		pH below near surface layer	11.5				p _b =	2 125	0.126				- 15
17		(2 mm)	11.5	- 0.0215				2.125	0.125				
18		Water fraction (vol)	0.1815	0.0215									
20		Pu Kd hear surface	2000										
20		Am Kd	2000		-								
21		Flow rate	20										
22		riow faic					1982			-15249			
23		row in Concrete worksheet	5	22	23	24	25	26	27	28	29	30	31
24	100	Upper layer boundary (cm)		0.2	5.67	8.018590899	9.820728	11.34	12.678505	13.88861	15.00141	16.03718	17.01
25	2010-200	Day		0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
26		Activity (uCi/ml) Inflow Concentration Used		1.13E-09	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12
27		Activity (uCi/ml) Inflow Concentration Pu-239		7.10E-10	1.25E-12	1.25E-12	1.25E-12	1.25E-12	1.25E-12	1.25E-12	1.25E-12	1.25E-12	1.25E-12
28		Activity (uCi/ml) Inflow Concentration Pu-239/Pu-240		1.13E-09	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12	1.98E-12
20		Activity (uCi/ml) Inflow		4.70E-11	4.70E-11	4.70E-11	4.70E-11	4.70E-11	4.70E-11	4.70E-11	4.70E-11	4.70E-11	4.70E-11
30	time since contamination		flow volume (ml of water)	Activi	ty (uCi/g con	crete) [@] "@ Assumes water is saturat radionuclide.			is saturated Iclide.	with			
31	Years	days cover in water (90 wet and 90 drying)											
32	0	C	NA	2.05E-10	0	0	0	0	0	0	0	0	0
33	1	1	0.99281735	5.81041E-09	3.4745E-14	0	0	0	0	0	0	0	0

	A	В	С	D	E	F	G	Н	I	J	K	L	М
1		PARSON	s		Арре	endix C of	Cal. No. 730047-01001-01						
249	2	37	0.08517133	9.02551E-08	1.3232E-13	8.36542E-14	3.77E-14	1.24804E-14	3.055E-15	5.66E-16	8.23E-17	9.67E-18	9.42E-19
250	2	38	0.08402794	9.07295E-08	1.3232E-13	8.42611E-14	3.81E-14	1.27024E-14	3.129E-15	5.84E-16	8.55E-17	1.01E-17	9.93E-19
251	2	39	0.08292939	9.11977E-08	1.3232E-13	8.48605E-14	3.86E-14	1.29265E-14	3.204E-15	6.03E-16	8.89E-17	1.06E-17	1.05E-18
252	2	40	0.08187284	9.16599E-08	1.3232E-13	8.54524E-14	3.91E-14	1.31529E-14	3.281E-15	6.21E-16	9.23E-17	1.11E-17	1.1E-18
253	2	41	0.08085567	9.21164E-08	1.3232E-13	8.60369E-14	3.95E-14	1.33814E-14	3.359E-15	6.41E-16	9.58E-17	1.16E-17	1.16E-18
254	2	42	0.07987549	9.25674E-08	1.3232E-13	8.66141E-14	4E-14	1.3612E-14	3.438E-15	6.6E-16	9.95E-17	1.21E-17	1.22E-18
255	2	43	0.07893012	9.3013E-08	1.3232E-13	8.71841E-14	4.05E-14	1.38448E-14	3.518E-15	6.8E-16	1.03E-16	1.27E-17	1.29E-18
256	2	44	0.07801754	9.34534E-08	1.3232E-13	8.7747E-14	4.1E-14	1.40797E-14	3.6E-15	7.01E-16	1.07E-16	1.32E-17	1.35E-18
257	2	45	0.0771359	9.38889E-08	1.3232E-13	8.83029E-14	4.14E-14	1.43167E-14	3.682E-15	7.21E-16	1.11E-16	1.38E-17	1.42E-18
258	2	46	0.07628349	9.43196E-08	1.3232E-13	8.88518E-14	4.19E-14	1.45559E-14	3.766E-15	7.43E-16	1.15E-16	1.44E-17	1.5E-18
239	2	47	0.07545873	9.47456E-08	1.3232E-13	8.93939E-14	4.24E-14	1.47971E-14	3.851E-15	7.65E-16	1.19E-16	1.5E-17	1.57E-18
200	2	48	0.07466016	9.516/1E-08	1.3232E-13	8.99293E-14	4.29E-14	1.50405E-14	3.938E-15	7.87E-16	1.24E-16	1.57E-17	1.65E-18
267	2	49	0.073136041	9.55843E-08	1.3232E-13	9.0458E-14	4.33E-14	1.52859E-14	4.025E-15	8.09E-16	1.28E-16	1.64E-17	1.73E-18
262	2	51	0.07313024	9.39972E-08	1.3232E-13	9.098E-14	4.38E-14	1.55333E-14	4.114E-15	8.33E-16	1.33E-16	1.71E-17	1.82E-18
264	2	52	0.07240840	9.6400E-08	1.3232E-13	9.14930E-14	4.43E-14	1.57828E-14	4.204E-15	8.30E-10	1.3/E-10	1./8E-1/	1.91E-18
265	2	53	0.0710158	9 72117E-08	1 3232E-13	9.20047E-14	4.40E-14	1.6288E-14	4.293E-13	0.0E-10	1.42E-10	1.85E-17	2E-18
266	2	54	0 07034894	9 76089E-08	1.3232E-13	9 3004E-14	4.53E-14	1.65435E-14	4.300E-13	9.03E-16	1.4/E-10	1.93E-17	2.1E-18
267	2	- 55	0.06970052	9.80024E-08	1.3232E-13	9.34944E-14	4.50E-14	1.68011E-14	4.402E-15	9.5E-16	1.52E-10	2.01E-17	2.20-10
268	2	56	0.06906971	9.83923E-08	1.3232E-13	9.39786E-14	4.67E-14	1.70606E-14	4.673E-15	9.82E-16	1.62E-16	2.09E-17	2.51E-18
269	2	57	0.06845572	9.87788E-08	1.3232E-13	9.44567E-14	4.72E-14	1.73221E-14	4.771E-15	1.01E-15	1.68E-16	2.26E-17	2.53E-18
270	2	58	0.06785782	9.91619E-08	1.3232E-13	9.49289E-14	4.77E-14	1.75855E-14	4.87E-15	1.04E-15	1.74E-16	2.35E-17	2.65E-18
271	2	59	0.06727531	9.95417E-08	1.3232E-13	9.53953E-14	4.82E-14	1.78509E-14	4.97E-15	1.06E-15	1.79E-16	2.45E-17	2.77E-18
272	2	60	0.06670756	9.99183E-08	1.3232E-13	9.58558E-14	4.86E-14	1.81181E-14	5.072E-15	1.09E-15	1.85E-16	2.54E-17	2.9E-18
273	2	61	0.06615394	1.00292E-07	1.3232E-13	9.62974E-14	4.91E-14	1.83873E-14	5.175E-15	1.12E-15	1.91E-16	2.64E-17	3.03E-18
274	2	62	0.06561388	1.00662E-07	1.3232E-13	9.67201E-14	4.96E-14	1.86583E-14	5.279E-15	1.15E-15	1.97E-16	2.75E-17	3.17E-18
275	2	63	0.06508684	1.0103E-07	1.3232E-13	9.71246E-14	5.01E-14	1.89311E-14	5.385E-15	1.18E-15	2.04E-16	2.85E-17	3.31E-18
276	2	64	0.06457229	1.01394E-07	1.3232E-13	9.75113E-14	5.06E-14	1.92058E-14	5.492E-15	1.21E-15	2.1E-16	2.96E-17	3.46E-18
277	2	65	0.06406976	1.01756E-07	1.3232E-13	9.78807E-14	5.1E-14	1.94823E-14	5.6E-15	1.24E-15	2.17E-16	3.07E-17	3.61E-18
278	2	66	0.06357878	1.02115E-07	1.3232E-13	9.82333E-14	5.15E-14	1.97605E-14	5.709E-15	1.27E-15	2.24E-16	3.19E-17	3.77E-18
279	2	67	0.06309892	1.02471E-07	1.3232E-13	9.85697E-14	5.2E-14	2.00405E-14	5.82E-15	1.3E-15	2.31E-16	3.31E-17	3.94E-18
280	2	68	0.06262977	1.02825E-07	1.3232E-13	9.88903E-14	5.25E-14	2.03223E-14	5.932E-15	1.34E-15	2.38E-16	3.43E-17	4.11E-18
281	2	69	0.06217092	1.03176E-07	1.3232E-13	9.91955E-14	5.29E-14	2.06057E-14	6.046E-15	1.37E-15	2.45E-16	3.56E-17	4.29E-18
282	2	70	0.06172202	1.03524E-07	1.3232E-13	9.94858E-14	5.34E-14	2.08908E-14	6.161E-15	1.4E-15	2.53E-16	3.69E-17	4.47E-18
203	- 2	71	0.0012827	1.038/E-07	1.3232E-13	9.97616E-14	5.39E-14	2.11//SE-14	6.27/E-15	1.44E-15	2.6E-16	3.83E-17	4.66E-18
285	2	72	0.06043140	1.04214E-07	1.3232E-13	1.00023E-13	5 496 14	2.14039E-14	0.394E-13	1.4/E-15	2.086-16	3.90E-17	4.86E-18
286	2	73	0.06001207	1.0493512-07	1.3232E-13	1.002/1E-13	5.40E-14	2.1/338E-14	6.632E 15	1.51E-15	2.70E-16	4.11E-17	5.00E-18
287		74	0.05961470	1.0523E-07	1.3232E-13	1.00708E-13	5.57E-14	2 23403E-14	6.755E-15	1.54E-15	2.04E-10 2.03E 14	4.23E-17	5.40E 19
288	2	75	0.05921866	1.05565E-07	1 3232E-13	1.00937E-13	5.62E-14	2 263475-14	6.879E-15	1.50E-15	2.73E-10 3.01E 14	4.4E-17	5 72E 10
289	- 2	77	0.05883033	1.05897E-07	1 3232E-13	1.01134F-13	5.66E-14	2 29306E-14	7.002E-15	1.65E-15	3 IE-16	4.30E-17	5.72E-18
290	2	78	0.05844954	1.06227E-07	1.3232E-13	1.01319E-13	5.71E-14	2.32279E-14	7.128E-15	1.69E-15	3 19E-16	4 88F-17	6 2E-18
291	2	79	0.05807605	1.06555E-07	1.3232E-13	1.01493E-13	5.75E-14	2.35266E-14	7.255E-15	1.73E-15	3.28E-16	5.05E-17	6.45E-18

	Α	В	С	D	E	F	G	Н	1	J	K	L	М
1		PARSON	5		Appe	endix C of	Cal. No. 730047-01001-01						
7215	40	163	0.12301413	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7216	40	164	0.12668861	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7217	40	165	0.13071347	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7218	40	166	0.1351482	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7219	40	167	0.14006748	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7220	40	168	0.14556655	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7221	40	169	0.15176914	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7222	40	170	0.1588394	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7223	40	171	0.16700075	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7224	40	172	0.1765665	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7225	40	173	0.18799259	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7226	40	174	0.20197376	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7227	40	175	0.21963341	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7228	40	176	0.24293874	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7229	40	177	0.27574785	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7230	40	178	0.3270879	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7231	40	179	0.42626925	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13
7232	40	180	0.99281735	2.19676E-06	3.7553E-13	3.70516E-13	3.51E-13	3.21066E-13	2.89E-13	2.6E-13	2.35E-13	2.15E-13	1.98E-13

	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB	AC	AD		
1	PPPP	ASO	NS	Appendix C of Calculation											Cal. No. 730047-01001-01				
7215	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7216	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7217	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7218	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7219	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7220	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7221	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7222	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7223	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7224	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7225	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7226	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7227	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7228	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7229	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7230	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7231	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		
7232	1.83E-13	1.7E-13	1.59E-13	1.5E-13	1.41E-13	1.33E-13	1.26E-13	1.19E-13	1.13E-13	1.07E-13	9.78E-14	8.63E-14	7.3E-14	5.92E-14	4.58E-14	3.38E-14	2.38E-14		

, . Ň

ATTACHMENT D

Guidance for Spectrum Analysis (Parsons, 2001)

GD-R-MCA-01 Controlled

Guidance for Spectrum Analysis Process

August 31, 2001

Parsons 1955 Jadwin Richland, Washington

09/17/015:27 PM
Parsons	TECHNICAL GUIDANCE DO	OCUMENTPage: ii of vin this Section	
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS		
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001	

APPROVALS AND CONCURRENCES				
Title	Name (Print)	Signature	Project (no.)	Type (A/C)
Office Manager	J. Kasper		NA	Α
(Richland, WA)				
Nuclear Operations	B. Knutson		NA	С
Author	S. Woolfolk		NA	С
Technical Reviewer	R. McConn		NA	С
Quality Assurance	J. Tanke		NA	С
	Project Spe	cific Authorization	n for Use	
,				
			· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	·····			
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
T A 1				
NA indicates not appl. $A = authorization appl.$	tion for use/approv icable	C = Technical C	oncurrence	

CHANGE HISTORY				
Revision	Date	Change	Basis	
0		Entire Document	Initial issuance.	

ក

----1

	TECHNICAL GUIDANCE DOCUMENT	Page: iii of v	
Parsons		in this Section	
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS		
No. GD-R-MCA-01	Revision: 0 draft A Da	te: August 31, 2001	

TABLE OF CONTENTS

Approvals and Concurrences
Change History
Table of Contents
List of Tables
List of Figures
A gronying and A heavistions
1.0 Introduction
1.0 Introduction
1.1 Definitions
2.0 Gamma Pays/X rays Spectroscopy 2.1
2.0 Gamma Rays/ A-tays Spectroscopy
2.1 Nai Dascu Speciroscopy
$2.1.1 \text{Detector Selection} \qquad 2.1 \\ 2.1.2 \text{MCA Setun} \qquad 2.2 \\ 2.1.2 \text{MCA Setun} \qquad 2.2 \\ 3.1.2 \text{MCA Setun} \qquad 3.2 \text{MCA Setup} \qquad 3.2$
2.1.2 MCA Setup
2 1 3 Analysis of Nal Spectra 2-5
2.1.3.1 Peak Identification and Quantification Interferences
2.1.4 Peak Identification/Quantification Library
2.1.4.1 Libraries Of Specific Radionuclides (LSR)
2.2 Analysis of NaI Spectra
2.2.1 Radionuclide Identification
2.2.2 Radionuclide Ouantification
2.3 Intrinsic Germanium Spectroscopy
3.0 Alpha Spectroscopy
4.0 Beta Spectroscopy
5.0 Neutron Spectroscopy
6.0 Modeling
7.0 Survey Techniques
8.0 Data Validation and Verification
8.1 General Data Validation and Verification Process for Verified Field Data 8-1
8.2 Resolution of Field Data Verification Problems
9.0 Uncertainty
9.1 Minimum Detectable Amount (MDA)
10.0 References
APPENDIX A, Datasheets A-1

Section

Title

Page

Section

Section

Title

Title

LIST OF TABLES

Table 1	Calibration Expiration Period	2-4
Table 2	Naturally Occurring Radionuclides (ICRP-38, NCRP-93 & NCRP-94)	2-10
Table 3	Common Comsumer or Industrial Product Radionuclides	2-11

LIST OF FIGURES

Figure 1	Typical NaI Spectrometer Package	2-2
Figure 2	URSA MCA General Operations Screen	2-4
Figure 3	X-ray Escape Peak (Shafroth, 1967)	2-6
Figure 4	Compton Contiuum (Shafroth, 1967)	2-7
Figure 5	Bremsstrahlung Escape (Knoll, 1989)	2-7
Figure 6	Annihilation Related Peaks (Adams & Dams, 1970)	2-9

Page

Page

Parsons	TECHNICAL GUIDANCE DO	CUMENT	Page: v of v in this Section
Title:	GUIDANCE FOR SPECTRUM AN	ALYSIS PRO	DCESS
No. GD-R-MCA-01	Revision: 0 draft A	Dat	e: August 31, 2001

ACRONYMS AND ABREVIATIONS

Correction Factor for process "i"
centimeters
counts per minute
derived concentration guideline level
disintegrations per minute
Data Quality Objective
full width half maximum
health physicist
International Commission on Radiation Projection
1000 electron volts
Libraries Of Specific Radionuclides
multichannel analyzer
nonconformance report
National Commission on Radiation Protection and Measurement
National Institute of Standards and Technology
project health physicist
photomulitplier tube
quality assurance
Radionuclide Identification worksheet
region of interest (URSA specific)
standard operating procedure
uncertainty
Universal Radiation Spectrum Analyzer manufactured by Radiation Safety
Associates, Inc.
1 X 10 ⁻⁶ Curies

Parsons	TECHNICAL GUIDANCE DOCU	JMENTPage: 1-1 of 3in this Section
Title:	GUIDANCE FOR SPECTRUM ANAI	LYSIS PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

1.0 INTRODUCTION

The purpose of this document is to provide guidance to Health Physicists (HPs) or Nuclear Scientists in the process of selecting, using, and analyzing energy specific radiation emissions data using spectroscopy. This guidance is used in conjunction with standard operating procedures such as:

- SOP-R-MCA-02, *Gamma Spectroscopy Instrument Operation*, Parsons Infrastructure and Technology Group, Inc., Richland. Washington current version.
- SOP-R-MCA-02, *Gamma Spectroscopy Instrument Operation*. Parsons Infrastructure and Technology Group, Inc., Richland, Washington current version.

This document addresses the use of radiation spectroscopy for collection of radiological data use in Parsons' field activities to support various clients. Radiation spectroscopy allows the collection of radiation flux data as a function of energy for energetic photons (i.e., gamma rays and X-rays), alpha particles, beta particles, and neutrons. The sections of this document addressing the various types and methods of spectroscopy will be included in this document, as the equipment is obtained and the need is identified. The change history will only indicate sections actually containing information.

This document is written for the use of professional Health Physicists and Nuclear Scientists and is not intended for use by others. It assumes a significant level of background information. This document is intended to provide guidance for completion and ensure the consistency of these activities. Specifically it will assist in the generation of reproducible and accurate data of the highest quality. The information in this document is addresses professional scientific decision, for which proceduralization is not practicable.

The major sections of this document address:

- Gamma Rays/ X-rays Spectroscopy,
- Alpha Spectroscopy,
- Beta Spectroscopy,
- Neutron Spectroscopy,
- Modeling,
- Survey Techniques, and
- Uncertainty.

Each section is intended to provide the support information and the process for implementation of spectroscopy in these areas to provide the data required by Parsons' various projects.

Parsons	TECHNICAL GUIDANCE DO	CUMENT Page: 1-2 of 3 in this Section
Title:	GUIDANCE FOR SPECTRUM AN	ALYSIS PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

1.1 Definitions

Geometry as used in this procedure refers to the relative configuration between:

- The radiation source and the detector (e.g., point source beneath detector centerline a 1 cm from the detector face) and the material,
- The distribution of the radioactive material in the radiation source.
- The type and amount of any materials between the source and the detector.

The materials associated with the radiation source and any associated container including backscatter surfaces.

Health Physicist is professional with at least 2 years of experience in implementing health physicist (radiological safety activities and/or radiological laboratory analysis) activities as described by the National Health Physics Society.

Mutichannel Analyzer (MCA) is an instrument with the capability of collection of radiation flux data as a function of radiation energy when attached to a suitable detector. These instruments typically have associated hardware/software for the identification of radionuclides in addition to the assessment of detected flux.

Nuclear Scientist is an individual with a background in nuclear engineering or radiochemisty and at least 2 years of experience in the implementation of radiological analyses.

- **Photomultipler (PM) tube** receives light pulses from a detector and produces a current pulse proportional to the energy of the photons received by the tube and this pulse can then be sorted and counted by equipment such as an MCA. The solid state equivalent is the photodiode.
- **Region of interest (ROI)** is a set of spectral data peak typically associated with a radionuclide. This set of peaks is used when quantifying activity.
- **Resolution** is a measure of the ability of the detector, photomultipler tube, and MCA system to include a discrete energy count in the appropriate MCA channel. In other words how uncertain (i.e., wide) the energy peak is. The resolution is the full width at half maximum of the full energy peak (FWHM) divided by the height of the energy peak (see Knoll, 1989).

1.2 Selection of Spectroscopy Types

To assess if spectroscopy is applicable and if applicable the appropriate types and methods to be used to collect the data it is essential to:

- review the projected radiological conditions at the site,
- identify the type of data necessary to meet the project objectives, and
- establish the appropriate data quality objectives (e.g., a method for establishing data quality objectives can be found in EPA, 2000 and EPA, 1987).

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: 1-3 of 3 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PR	ROCESS
No. GD-R-MCA-01	Revision: 0 draft A Da	ate: August 31, 2001

Then the determination of the viability of the process based on the projected DQOs can be evaluate using the following steps:

- 1. Identify the radionuclides that maybe present due to past activities at the site in the samples.
- 2. Project the credible range of activities and activity ratio for these radionuclides.
- 3. Identify the projected background radiation levels (i.e., radionuclides, ambient flux, and activity concentration) associated with the general environment and specific materials (e.g., uranium decay series, thorium decay series, K-20) including decay progeny.
- 4. Review the radiation emissions of the materials present and assess the feasibility of detection using the various methods based on this data.
- 5. Evaluate interferences related to background and potential material present.
- 6. Project system geometries for in situ measurements and collected samples, to assess required correction for flux attenuation and impact of source dispersion on detection capability, measurement accuracy, modeling costs, and regulatory acceptance.
- 7. Identify viable mechanism for radionuclide identification and quantification.
- 8. Identify interferences and limitations associated with the method that would limit the viability of an approach.
- 9. The feasibility of obtaining confirmatory data (e.g., 2 spectral peak, radiation flux of a specific type) to reduce the uncertainty in the results.
- 10. Identify potentially cost effective alternative methods (i.e., sampling and analysis, controlling various radiation fluxes based on a conservative upper bound).
- 11. Identify relationship that would allow extrapolation of radiation data for a radionuclide from other radionuclide data, including reliability, defensibility, and regulatory acceptance.
- 12. Assess equipment, procedures, standards, and trained personnel availability for the various approaches.
- 13. Assess the approaches cost, schedule, safety, and regulatory compliance impacts to implement and defend.
- 14. Based on this data identify approach for various radionuclides that provide the best solution for project success, with emphasis on schedule, cost, technical feasibility, and regulatory acceptance.

In assessing the approach it is helpful to sort types and energies of radiations based on range in materials, well as interference (i.e., spectral overlaps) associated with the suite of expected radiation emissions.

The survey/analysis approach is typically documented in the work plan for the activity. In all cases the basis for the decision should be formally documented. Note, as project conditions change the approaches may need to be modified to provide a cost effective and safe mechanism for meeting the project goals.

Parsons TECHNICAL GUIDANCE DOCUMENT		Page: 2-1 of 15 in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001		

2.0 GAMMA RAYS/ X-RAYS SPECTROSCOPY

Gamma Ray/X-ray spectroscopy can be done with various types of detectors associated with a multichannel analyzer (MCA). Typically the MCA will use software to identify radionuclides and assess activity rather than permanently encode analysis routines. In some cases two software packages maybe involved one for use when the MCA is attached and the other for use with just the computer. This software package(s) is subject to the same requirements for verification and validation that is applicable to other types of software, under the applicable Parsons quality assurance (QA) program, such as QA-19.2.

2.1 NaI Based Spectroscopy

A typical NaI based Spectrometer consists of 6 pieces as shown in Figure 1 with associated cables and NaI crystal/PM-Tube packaging. Parsons currently has a Universal Radiation Spectrum Analyzer (URSA) which integrates the High Voltage supply, Pre-amplifier, and MCA into a single unit. The Fidler detector currently owned by Parsons has a beryllium window on the NaI crystal's integrated PM-Tube package.

2.1.1 Detector Selection

In choosing a NaI based spectroscopy system it is important to consider the detector characteristics, particularly crystal size and window material. Thin crystal, such as the Fidler, tend to be more effective at characterizing low energy photon emissions while large crystals such as the 3 X 3 (i.e., a 3 inch diameter cylinder 3 inch high) crystal is more effective at characterizing the higher energy portions of photon spectra (i.e., gamma rays and X-rays). In addition, the lower the thickness and atomic number of the surface coatings (i.e., typically measured as density thickness) the more effective the detector is at measurement of lower energy emissions. Crystal size typically needs to increase as:

- the flux to be detected decreases,
- the speed of travel (i.e., for surveys) increases,
- or the counting times (i.e., for static counting and surveys) decreases

The exception to this is when the photons of interest are low energy and then large diameter thin crystal allow the large detection area but decrease the background associated with the higher energy photons that would be detected in the additional volume of a larger crystal. Crystals with a well within the crystal allow the detection efficiency based on crystal geometry to exceed $2\otimes$ thus significantly increasing the detection efficiency. Very large and specialized crystal shapes and sizes are often cost prohibitive. Detector selection is often the balances of what is practicable with the technically ideal solution, with detector selection being controled by the data quality objectives and considerations of practicality. If the choice of crystal size and shape is not obvious or addressed by

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: 2-2 of 15 in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A D	ate: August 31, 2001		

Figure 1 Typical NaI Spectrometer Package

specific guidance then it is typically appropriate to select a detector based on simple Monte Carlo modeling (see Section 6.0) of the detector response to determine what detector will allow you to meet your DQOs and schedule, within the acceptable range of costs.

Parsons currently has a Fidler crystal (see technical information in the Technical Manual section of the Parsons SOP manual). 1 X 1 (i.e., a 1 inch diameter cylinder 1 inch high), 2 X 2, and 3 X 3 crystal are readily available for sale or rent.

2.1.2 MCA Setup

The setup of an MCA system is dependent on the equipment to be used. Each system currently used by Parsons will be addressed briefly. In all cases setup should be based on a through review of the manufacturer provided documents.

2.1.2.1 Universal Radiation Spectrum Analyzer (URSA) with NaI Detector

Most of the setup parameters for the URSA system are addressed in procedure SOP-R-MCA-01, Gamma Spectroscopy Instrument Operation (URSA) and SOP-R-MCA-02, Gamma Spectroscopy Instrument Calibration (URSA). As part of the setup process for the URSA (see

Parsons	Parsons TECHNICAL GUIDANCE DOCUMENT			
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001		

Figure 2) the Project Health Physicist (PHP) will need to provide some specific direction on the setup of the equipment. Sections 1.2, 2.0, 2.1, and 2.1.1 address the initial identification of the required equipment.

Smoothing factors are used to remove some of the spurious statistical fluctuations in the spectral data. A smoothing factor is basically some type of moving average. Smoothing is most important during the peak identification process of the spectral analysis and the analyst will typically look at various values to so that the most effective credible peak identification can be obtained. The smoothing factor for data collection is typically set so that the low energy peaks in the Cs-137 spectra can are just below the resolution of the instrumentation. The URSA peak smoothing scales are 1, 8, 16, 24, 36, and 48. Based on past experience and a review of resolution of the Cs-137 spectra the PHP will establish the appropriate smoothing factor.

During setup the PHP will need to provide the projected initial operating **High Voltage and Maximum High Voltage** for the detector. This information should be present in the detector's manual/literature or from the manufacturer, although the initial operating high voltage may be more effectively determined based on past experience with the detector once sufficient data is available. The PHP may elect to reduce the Maximum High Voltage recommended by the manufacturer to reduce the noise at low energies. This will typically result in the need to increase the pre-amplifier gain during the setup activities (see SOP-R-MCA-02).

The **recalibration period** for the equipment setup is typically based on manufacturer recommendations, although this should be modified in experience with the equipment or similar equipment for the intended usage indicates other values are more appropriate. For the activities associated with setup and calibration of the URSA (see SOP-R-MCA-02) the recalibration periods in Table 1 have been established pending better data.

Parsons	TECHNICAL GUIDANCE DOCUM	IENT Page: 2-4 of 15 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALY	SIS PROCESS
No. GD-R-MCA-01	D-R-MCA-01 Revision: 0 draft A Date: Aug	

Table 1 Calibration Expiration Period			
Activity	Typical Re- Setup/Calibration Period (choose less those listed) (months)		
Setup	12		
Energy Calibration	12 or Setup expiration		
ROI	12 or Energy Calibration expiration		
Efficiency Calibration	6 or ROI expiration		

Choice of the **calibration source** must be based on the projected radionuclides of interest and those potentially present in the background materials and the ambient environment. The selection of the calibration source(s) should be to span the energy range of interest as determined based on Sections 1.2 and 2.1.3. Where feasible a peak every 200 to 300 keV is preferred with a total activity of less

Parsons	TECHNICAL GUIDANCE DOC	UMENT Page: 2-5 of 15 in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001		

than 500,000 cpm in the detector corrected for the area and projected position of the source. In addition a 1 \boxtimes Ci Cs-137 source is helpful for setup and calibration of the system. These sources must be traceable to the National Bureau of Standards and Technology (NIST) or an equivalent organization. If quantification is not required then, the source traceability need only address identification/purity of the radionuclides and a general indication of the radionuclides relative activity. When specifying **spectra lines** for radionuclide identification the specification of a primary and secondary line with a known relative activity ratio is preferred.

To establish the **count times** (or required number of counts) for spectral collection the PHP must consider:

- the established data quality objectives and how to effectively achieve them including the balancing of background data count times and location/sample count times.
- practicable limitations of cost, schedule, and personnel exposure.
- whether it is feasible to review results and then re-initiate data acquisition at a later time if further data is needed for a location/sample to meet the data quality objectives.
- the projected radioactivities of the various radionuclides that may be present.
- the level at which the activity can be treated as not requiring detailed quantification (i.e., the point at which only a less than number is required) for the limiting case radionuclides, and
- a typical count time is about 30 minutes for in situ measurements at environmental levels and about 5 to 10 minutes for sample counting but is dependent on source activity.

It is important to recognize that count time (or required number of counts) is always a balance between practicality and data accuracy, which must reflect the data quality objectives.

2.1.3 Analysis of NaI Spectra

The software associated with MCA provides an integrated system of peak analysis for the identification of radionuclides and peak height analysis to assess activity of the radionuclide. When interpreting NaI spectrometer results various effects, which may be dependent on crystal size and geometry, must be considered. These peaks are best characterized based on experimental data but can be projected using Monte Carlo analyses. The discussions in this section are based on Shafroth, 1967; Knoll, 1989; and Crouthamel, 1970.

2.1.3.1 Peak Identification and Quantification Interferences

When attempting to identify and quantify radionuclides in the environment or a sample, the potential interferences associated with NaI spectroscopy will need to be considered. This includes the continuums and peaks produced that are not useful for the identification and quantification of the radionuclides present and the presence of ambient background radiation and radioactive material. These interferences result in peaks that do not support radionuclide identification and quantification and effect that significantly reduce the resolution of the peaks of interest. In some cases for low count rate peaks the peak may be totally obscured by these interferences. In addition, background or source material of interest may also produce peaks that totally obscure a peak of interest. Also a peak may result in the identification of several radionuclides most or all of which

Parsons	TECHNICAL GUIDANCE DOCUM	AENTPage: 2-6 of 15in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001		

are not present or not of interest. Thus the review of spectral data to identify radionuclides and quantify the activity present must involve a detailed analysis of the results with support information to provide an assessment of radionuclides present, their quantity, and the uncertainty associated with this determination. The sections that follow provide a brief introduction to some of the potential interferences.

The **characteristic X-ray escape** peaks are one effect (see Figure 3). In the photoelectric absorption process, the absorber (i.e., about 29 keV) emits a characteristic X-ray for NaI. If this X-ray escapes before absorption (i.e., many of the X-rays emitted near the detector surface may escape) this energy is not detected. Thus energy deposited in the detector is decreased by the energy of these X-rays, that escape; resulting in a second peak with energy equal to the photopeak minus the energy of the characteristic X-ray. This peak is generally called the X-ray escape peak and is most significant in low incident gamma ray energies and for detectors, like the Fidler, with high surface to volume ratios.

The **compton continuum** is another characteristic of the interaction of radiation with the affects the spectra. Compton scattering produces a continuum of energies from the scattering of radiation (see Figure 4). At several hundred keV compton scatter becomes important. Since only a fraction of the incident energy is absorbed in compton scattering the variability of this fraction results in a continuous distribution of energies rather than a discreet peak. This continuum can interfere with peak identification.

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: 2-7 of 15 in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A Da	te: August 31, 2001		

(SLIN) AVELUEUR 2-1 Compton continuum 0 100 200 300 400 500 660 700 800 700 800 PULSE HEIGHT (KEV)

Figure 4 Compton Continuum (Shafroth, 1967)

	TECHNICAL GUIDANCE DOCUMENT	Page: 2-8 of 15		
Parsons		in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A Da	te: August 31, 2001		

The **bremsstrahlung escape** continuum (see Figure 5) is a source of interference with peak identification. This is caused by the escape of some of bremsstrahlung photons which decreases the energy absorbed in the detector based on the amount of energy lost. The fraction lost increases significantly as the energy of the incident photon increases.

A similar process involving the loss of the **secondary electrons** also occurs near the surface of the crystal and may cause an effect similar to characteristic X-ray escape or bremsstrahlung escape if the crystal is small (e.g., a Fidler crystal). This effect is more significant for higher energy photons since the secondary elections will have a higher energy and thus a longer range.

The **backscatter peak** (see Figure 6) may also be present in spectra. A peak in the vicinity of 0.2 to 0.25 MeV caused by gamma rays from the source that have interacted with the surrounding materials, including the detector wall, by compton scattering.

The **annihilation peak** if the source included positron emitters or the photon spectra has energies in excess of 1.2 MeV so pair creation can occur, then the photons associated with positron annihilation (i.e., 0.51 MeV) (see Figure 6) may occur in the spectra. If the 0.51 MeV is pronounced you may also multiples of this energy due to simultaneous detection of annihilation photons.

In addition **background material** and the **ambient environment** provides various sources of radiation with their own characteristic peaks that interfere with radionuclide identification based on peak identification. Typically this impact can be minimized by electronic subtracting out the applicable background spectra if it is available. Typically these are the naturally occurring radionuclides (e.g., see **Table 2**) and in some cases other isotopes maybe present due to commercial usage of radionuclides and possibly fallout. In addition to the natural environment ambient background, there are also various materials that may contain or have associated radioactive material (e.g., see Table 3) which will also produce interference in the data collected. Thus it is important to consider the impacts of background radiation and the approach for correcting for this impact (e.g., typically background subtraction).

These interferences result in false peak and peak broadening which must be considered during peak identification. In addition, any peak maybe be an indicator of several different radionuclides thus other consideration must be used to support peak identification. Whenever feasible radionuclide identification should be based on multiple peaks that occur in the correct relative ratios. Finally the credibility of the presence of the radionuclide must be considered.

2.1.4 Peak Identification/Quantification Library

Peak identification libraries are needed for the peak identification process and the activity quantification process. These libraries need to include both peak energy and yield data. The default libraries supplied by the URSA manufacturer are based on David Kocher's *Radioactive Decay Data Tables* (DOE/TIC-11026). All peak identification/quantification libraries must be based on a recognized source of spectral data. Currently the preference for the source of this data, in order of preference, is:

Parsons TECHNICAL GUIDANCE DOCUMENT		JMENT Page: 2-9 of 15 in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001		

- 1. U.S. Department of *Energy 's National Nuclear Data Center (NNDC)* at Brookhaven National Laboratory (access is available through the internet),
- 2. David Kocher's Radioactive Decay Data Tables (DOE/TIC-11026), or
- 3. ICRP,s (International Commission on Radiation Protection) *Radionuclide Transformations Energy and Intensity of Emission*, Annals of the ICRP, ICRP Publication 38.

Use of library data sources is questionable and a specific justification of such a decision needs to be documented. Peak libraries should include all credible radionuclides including those associated with background. Any library used must be approved by the PHP and, if it is not an existing library, it must be documented and reviewed, as if it were a Parsons' calculation.

Figure 6 Annihilation Radiation Related Peaks (Crouthamel, 1970)

Parsons	TECHNICAL GUIDANCE DO	CUMENT Page: 2-10 of 15 in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001		

Table 2 Naturally Occurring Radionuclides (ICRP-38, NCRP-93 & NCRP-94)					
Radionuclide	Parent	Source	Alpha	Beta	Gamma/ X-ray
li .			Emission Energies (MeV)		(MeV)
H-3	cosmogenic	natural (very low abundance)		0.00568	
Be-7	cosmogenic	natural (very low abundance)			0.478
C-14	cosmogenic	natural		0.04945	
Na-22	cosmogenic	natural (very low abundance)		0.215	0.511, 1.28
K-40	primordial	natural (about 0.0118% of		0.585	1.46
		natural K, usually a small			
		fraction compared to U in most			
		soil/rock based materials)			
Rb-87	primordial	natural (Rb abundance is less		0.111	
		than 1% of K)			
Th-232	cosmogenic	natural (activity is typically 1 to	9.9 - 4.1		
D. 000	TTL 000	4 times the U-238 activity)		0.055	
Ra-228	Th-232	Th-232		0.055	
Ac-228	Ra-228	Th-232	<u> </u>	1.2 - 2.1	0.34 - 0.96
Th-228	Ac-228	Th-232	5.3 - 5.4		0.08
Ra-224	In-228	Th-232	5.4 - 5.7		0.24
Rn-220 (gas)	Ra-224	Th-232	6.3		
P0-218	Rn-220	Th-232	0.8	0.25 0.50	0.24 0.2
Pb-212	Po-218	Th-232		0.35 - 0.59	0.24 - 0.3
B1-212	Pb-212	Th-232	6.0 - 6.1	1.6 - 2.3	0.04 - 1.7
P0-212	Bi-212	Th-232	8.8	1.2.1.0	
11-208	B1-212	1h-232	4.2 4.6	1.3 - 1.8	.5 - 2.6
0-235	cosmogenic	natural (in natural uranium	4.3 - 4.6		0.14 - 0.2
		about 4.5% to 5% of U-238			
Th 221	11.025			0.14 0.21	0.02 0.09
Do 221	U-233	0-235	40.50	0.14 - 0.51	0.03 - 0.08
Fa-231	Do 221	0-235	4.9 - 5.0	0.4	0.02 -0.08
Th 227	Pa-231	0-235	4.0 - 5.0	0.4	0.02 - 0.09
Er 222	Ac-227	U-235	5.7-0.1	12	0.05 - 0.31
Pa 222	Th 227/	11 225	56 58	1.2	0.03 - 0.24
Ra-225	Fr-223	0-233	5.0 - 5.8		1.5 - 0.55
Rn-219 (gas)	Ra-223	U-235	6.4 - 6.8		0.27 - 0.4
Po-215	Rn-219	U-235	7.4		
Pb-211	Po-215	U-235		0.29 - 1.39	0.410-0.83
At-215	Po-215	U-235	8.0		
Bi-211	Pb-211/	U-235	6.2 - 6.6		0.35
	At-215				
Po-211	Bi-211	U-235	7.5	· · · · · · · · · · · · · · · · · · ·	0.57 - 0.9
Tl-207	Bi-211	U-235		1.4	
U-238	cosmogenic	natural	4.15, 4.2		
Th-234	U-238	U-238		0/103, 0.193	0.063, 0.093
Pa-234m	Th-234	U-238		2.29	0.765(0.3%), 1 00 (0.6%)
U-234	Pa-234m	U-238	4.72, 4.77		0.053 (0.2%)
Th-230	U-234	U-238	4.62, 4.68		0.068(0.6%)
]	1	1	

Ð	TECHNICAL GUIDANCE DOCUMENT	Page: 2-11 of 15
Parsons		in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PR	OCESS
No. GD-R-MCA-01	Revision: 0 draft A Da	te: August 31, 2001

Table	Table 2 Naturally Occurring Radionuclides (ICRP-38, NCRP-93 & NCRP-94)				
Radionuclide	Parent	Source	Alpha	Beta	Gamma/ X-ray
			En	nission Energies	(MeV)
Ra-226	Th-230	U-238	4.6, 4.78		0.186
Rn-222 (gas)	Ra-226	U-238	5.49		
Po-210	Rn-222	U-238	6.0		
Pb-214	Po-210	U-238		0.65, 0.71, 0.98	0.295, 0.352
Bi-214	Pb-214	U-238		1.0, 1.51, 3.26	0.609, 1.12, 1.76
Po-214	Bi-214	U-238	7.69		
Pb-210	Bi-214	U-238		0.016, 0.061	0.047
Bi-210	PB-210	U-238		1.16	
Po-210	Bi-210	U-238	5.31		

Table 3 Common Comsumer or Industrial Product Radionuclides				
Radionuclide	Source	Alpha	Beta	a Gamma/X-ray
		Emission Energies (MeV)		
Ra-226 &	Instrumentation Dials (i.e., luminous materials),		Various see	e Table 2.
progeny	lighting rods			
Th-232/U-	Building materials, ceramics, counter weight, or		Various see	e Table 2.
238/U-235 &	high density weights, ceramic glazes, fly ash			
progeny				
Th-232	Welding Rods, Lantern Mantels, special glass (e.g.,		Various see	e Table 2.
	lenses)			
Am-241	Smoke Detectors, Pace Makers, density gauges	5.49, 5.44		0.060, numerous lines
				below this region
H-3	Lights/lighting, luminous materials		0.00568	
K-40	Fertilizers, dental products		0.585	1.46
Co-60	Various Irradiation and gauging sources, Spark gap		0.0958,	1.17, 1.33
	irradiators, spark tubes & glow lamps (i.e.,		0.626	
	fluorescent tube starters)			
Ni-63	Voltage regulators, surge protectors, spark tubes &		.0171	
	glow lamps (i.e., fluorescent tube starters)			
Kr-85	Lighting, electronic tubes, spark tubes & glow		0.251	0.514
	lamps (i.e., fluorescent tube starters)			
Cs-137	Various Irradiation and gauging sources, Voltage		0.173,	0.662
	regulators, surge protectors		0.425	
Pm-147	Luminous materials, spark tubes & glow lamps (i.e.,		.062	
	fluorescent tube starters)			
Po-210	Static eliminators	5.31		
Pb-210	Voltage regulators, surge protectors	Various see Table 2 .		
Pu-239	Density gauges	5.1, 5.2		numerous lines in the
				less than 0.03 region
Pu-238	Pacemakers	5.46, 5.5,		numerous lines in the
				less than 0.03 region

Parsons	TECHNICAL GUIDANCE DOCUM	IENTPage: 2-12 of 15in this Section
Title:	GUIDANCE FOR SPECTRUM ANALY	SIS PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

2.1.4.1 Libraries Of Specific Radionuclides (LSR)

Typically MCA radionuclide/isotope identification/quantification software allow development of libraries of specific radionuclides (LSR). These LSRs reduce the number of false identification of peaks that may have multiple attributions. However, they may also result in the failure to appropriately identify and/or quantify radionuclides, if the LSR is not complete. When establishing an LSR it is important to include all radionuclides that may be present associated with the location, sample, material background, and/or ambient environment. In addition, all peaks that are significant contributors to the flux (i.e., 1%) need to be identified, even if they will not be used for identification and quantification of the radionuclide, they may represent an interference to another radionuclide. This becomes particularly important when a more common radionuclide has a peak that may interfere (i.e., cause false identification or quantification) of another radionuclide because it has a minor peak in the same region. These interferences complicate the interpretation of spectra significantly particularly for radionuclides with very low action levels/DQOs.

The LSRs developed must meet the criteria for a library, as specified in Section 2.1.4. As long as the library from which the LSR is generated is appropriately documented, the documentation of the LSR can be limited to the working datasheets and project specific documentation. However, it should to added to the LSR Listing datasheet in the SOP Manual and verified by a Health Physicist.

2.2 Analysis of NaI Spectra

Spectrum analysis is initiated by setting up the URSA or running the URSA software on a computer. Select the appropriate ROI for the spectra being analyzed. Identify the spectra to be analyzed and associated background(s) spectra, then initiate a Radionuclide Identification worksheet (see Appendix A) (RIW). The analysis number on the RIW is sample/location spectrum file name proceeded by "RIW-". If quantification is required page 2 of the RIW will be completed.

2.2.1 Radionuclide Identification

The background spectrum for the sample/location spectrum of interest should be loaded as the background spectra and the sample/location spectra as the active spectrum. Document the background spectra's file name(s) on the RIW and assign it an identification (which is unique for this datasheet). Where multiple background files maybe applicable the sample/location spectrum maybe analyzed with each and the results used to select the background most appropriate to the sample/location. Background subtraction should improve the resolution on the peaks of interest.

Once the spectra are active, use the URSA software to find the various peaks and repeat this process with the various smoothing factors, as needed, to eliminate noise based peak identification but not eliminating real peaks. If several smoothing factors appear appropriate treat each one as a separate case and assign it the existing analysis number followed by a lower case Greek letter with first letter assigned to the smallest smoothing factor to be evaluated and then increasing both as needed. If multiple smoothing factors are used in the analysis, the smoothing factor analysis must include all available smoothing factors between the smallest and largest smoothing factors used. Review the

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: 2-13 of 15 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PI	ROCESS
No. GD-R-MCA-01	Revision: 0 draft A D	ate: August 31, 2001

peak identification visually and eliminate inappropriate peak identification and add any peaks that may have been missed. Have the software conduct a peak identification analysis and print out a copy of the peak identification report. Record the RIW number, a dash (i.e., "-"), "P", a dash (i.e., "-"), the background filename identifier from the datasheet, and if necessary a dash (i.e., "-") followed by the smoothing factor lower case Greek identifier. Review the outputs of this peak identification process against the projected interferences discussed in this document and identify any peak may be inappropriately identified. Then review of the radionuclides identified for confirming peaks and credible radionuclides that maybe present. Identify the peaks that appear to be clearly appropriately identified and those that are clearly misidentified and annotate this on the record.

If a peak is identified several times be sure to resolve, which multiple identifications may be valid. The determination maybe based on determining if the relative fraction of the peak that should be assigned to each identification is appropriately apportioned for the confirmatory peak and other information (i.e., known relative ratios of radionuclides based on known relationships, such as progeny or natural relative isotopic ratios). If there are peaks that have multiple identifications note this on the report for later followup. Also clear identify any unidentified peaks for followup. Sign and date this report near the identification number on this report. This gives real time results of the radionuclides identification should be completed initially through peak centroid +/- 10 keV (or a value specified by the PHP and noted in the comment section of datasheet GD-R-MCA-1-2, Appendix A) comparison and confirmed through comparison of the full width at half maximum (FWHM) of the software library and the results. Through the use of these two techniques the potential for misidentification can be limited.

Repeat the process described above based on peak identification for an analysis based on FWHM. The "P" in the identification number will be an "F" for the FWHM analysis. Repeat this process to address all applicable smoothing factors and background data sets.

Use these reports and any available support data to complete the analysis and the Radionuclide Identification worksheet (see Appendix A) (RIW). Identify these reports on the RIW and attach them to the RIW. Radionuclide identification should use both sets of data and where applicable any data reports based on alternative backgrounds and smoothing factor data to attempt to eliminate multiple identification of peaks and unidentified peaks documenting this on the radionuclide identification worksheet. The analyst will document the basis for radionuclide identification on the RIW. Where there is multiple identification of peaks that cannot be resolved based on other data the HP may show alternatives for the radionuclides identification, then the limit case (i.e., limiting case for the specific analysis or evaluation being made) radionuclide will be used in subsequent analysis. Note, when several alternative radionuclides are identified use of these radionuclides in the analysis should not exceed an applicable fraction greater than one. Laboratory based analysis may also be used to resolve peaks with multiple identification or unidentified peaks if determined to be justified by the PHP and Project Manager.

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: 2-14 of 15 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PR	OCESS
No. GD-R-MCA-01	Revision: 0 draft A Da	ite: August 31, 2001

2.2.2 Radionuclide Quantification

Quantification of the activity is based on the ROI and associated peak identification. For the radionuclide identification the URSA should be calibrated for the specific or span the range of the radionuclide of interest in the ROI being addressed. This should include consideration of confirmatory peaks. Note, quantification can only be done based on traceable sources. The activity projected by the URSA using the quantification results will be based on the specific geometry of the calibration sources used in quantification. The sources are typically point or small area sources. However, the material being characterized is often in a different relative geometry with attenuation of the flux occurring from the source and intervening materials. To defend quantification of the activity present it will be necessary to model the impact of the geometry including potential variability in the geometry and correct the difference from the calibration source geometry.

Often in situ quantification provide a more accurate assessment of true conditions where the material is not uniformly distributed at the location or located on the surface at the location. Laboratory sample for non-uniform contamination generate inconsistent (i.e., randomly providing ultra-conservative or non-conservative results in some cases) results depending on:

- Whether the random sampling process collected the locations of high contamination and
- Whether the material collected contained large amounts of contaminated material.

If the sample is high localized (e.g., surface contamination) the amount of matrix required to meet the minimum analytical requirements typically results in significant dilution of the sample and significant under estimation of the surface activity concentration. In addition, in situ quantification can provide a more practicable solution.

To correct for geometry effects it is necessary to accurately model (i.e., assess) relative flux associated with:

- The detector-source geometry to provide the calibration baseline,
- The credible detector-source geometries to provide an assessment of the potential correction for the difference between the calibration geometry and the potential conditions, and
- Model the credible detector-source geometries to include consideration in the variability of material thickness, composition, and density in assessing these differences.

Once the data has been modeled, the geometry correction factor(s) (GCF) can be calculated for each credible geometry (including consideration of material thickness, composition, and density) using:

GCF = (credible detector-source geometry flux based on modeling) /(detector-source geometry to provide the calibration baseline flux modeling).

Once the range of GCF (with their associated uncertainties are established) the range of and a typical GCF for a measure can be established. The typical GCF is a probability weighted average for the various credible GCFs. The projected activities measured by the URSA are multiplied by

P	TECHNICAL GUIDANCE DOCUMEN	Page: 2-15 of 15
Parsons		in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS	PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

the GCF or the range of GCFs to assess the range of activity that maybe present for a specific measurement. In making these assessments it is essential to consider the propagation of error in the results and provide the associated uncertainties. (see Section 9.0)

These results should be documented consistent with the applicable Parsons and project calculation documentation procedure/requirements.

2.3 Intrinsic Germanium Spectroscopy

Parsons	TECHNICAL GUIDANCE DO	CUMENT Page: 3-1 of 1 in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001		

3.0 ALPHA SPECTROSCOPY

Parsons	TECHNICAL GUIDANCE DO	CUMENT Page: 4-1 of 1 in this Section		
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS			
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001		

4.0 BETA SPECTROSCOPY

Parsons	TECHNICAL GUIDANCE DOCUM	MENT Page: 5-1 of 1 in this Section
Title:	GUIDANCE FOR SPECTRUM ANAL	YSIS PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

5.0 NEUTRON SPECTROSCOPY

Parsons	TECHNICAL GUIDANCE DOC	UMENT Page: 6-1 of 2 in this Section	
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS		
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001	

6.0 MODELING

The purpose of modeling is to determine the relationship between the calibration geometry and the field geometry to allow quantification of the measured activity. Typically the intent is to assess the difference in the detected flux in the detector for the two conditions so a correction factor based on the relative ratio for assessment of activity can be developed. Such modeling would involve the assessment of the relative changes in the detected flux between the calibrated conditions and the field conditions. Often the field conditions must be projected based on a range of conditions that might exist. When assessing the calibration and field conditions it is import to address:

- Relative distance and position of the source relative to the detector,
- The materials and geometry of the detector,
- The materials present between the source and the detector,
- The source geometry, materials, and the activity distribution within the materials,
- Potential back-scatter surfaces (location and material),
- When assessing material properties the type of material and its density will need to be addressed, and
- The probability of the various variable field conditions existing.

The acceptable uncertainty and level of detail associated with this data and the selection of the software used to model the relative relationships is based on the requirements of the DQOs. In all cases the uncertainties in the modeling and the propagation of these uncertainties in results must be considered.

Currently Parsons typically uses MCNP software for this modeling. All modeling activities must be clearly documented consistent with Parsons and the project requirements for the documentation of calculations. Further, the software used must be validated and verified for this use consistent with the Parsons and project procedures and requirements.

The results of the modeling are normally an assessment of the Correction Factor (CF_i) between the field geometry detected flux (FGFi) and the calibration geometry's detected flux (CGF_i) for field geometry "i". Specifically:

$$CF_i = FGF_i / CGF_i$$
.

Where defensible, probabilities can be assigned to the various field configurations (P_i) then a typical Correction Factor (CF_t) can be provided where:

$$CF_t = \prod_i P_i * CF_i$$
.

When calculating CF_is and CF_t ensure that the propagation of error is considered to provide an
assessment of uncertainty. The CF data will normally include the range of applicable CF_is, and CF_tP:/InstSOP/GD-R-MCA-01-a09/17/015:27 PM

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: 6-2 of 2 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PR	OCESS
No. GD-R-MCA-01	Revision: 0 draft A Da	ate: August 31, 2001

with 95% confidence level uncertainties. The workplan, sampling and analysis plan, and/or the DQOs will establish:

- What modeling is required,
- The acceptable uncertainties (i.e., typically 95% confidence level two tailed),
- Which CFs are calculated and how they are used.

All CF determination shall be clearly documented in a calculation consistent with Parsons' and the project's requirements and procedures.

	TECHNICAL GUIDANCE DOC	CUMENT Page: 7-1 of 2	
Parsons		in this Section	
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS		
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001	

7.0 SURVEY TECHNIQUES

The survey techniques used by Parsons should be consistent with:

- MARSSIM,
- NMSS Decommissioning Standard Review Plan (NUREG-1727)
- Manual for Conducting Radiological Surveys in Support of License Termination (NUREG/CR-5849),
- Analysis of the Ability of Current Health Physics Instruments to Predict Dose in Exposed Individuals (NUREG/CR-4239),
- Human Performance in Radiological Survey Scanning (NUREG/CR-6364),
- A Nonparametric Statistical Methodology for the Design and Analysis of Final Status Decommissioning Surveys (NUREG-1505),
- Measurement Methods for Radiological Surveys in Support of New Decommissioning Criteria (NUREG-1506),
- Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions (NUREG-1507),
- applicable Parsons SOPs,
- applicable project requirements and procedures,
- the project DQOs, and
- good health physics practices

In selecting survey techniques it is important to consider:

- DCGLs and associated DQOs for the project,
- the type, energy, and projected flux of the radiation to be detected,
- possible inference/confounding-factors in interpretation of the data based on the projected radionuclides of interest in the background environment,
- the detection limitations for the instrumentation based on survey height and scanning rate,
- scanning heights should be consistent with projected averaging areas/volumes for contamination based on the DQOs and field conditions,
- the human factor limitations for personnel (e.g., detection of change, such as meter movement versus sound, easy of repetitive handling of the equipment),
- when scanning versus static counts will be used,
- when energy based radionuclide identification maybe appropriate,
- where direct survey versus smears/material-sampling should be used,
- the environmental conditions at the site,
- practicability limitations in the selection of equipment,
- regulatory acceptance of the equipment,
- availability of established procedures and protocols, and
- availability of the instrumentation and personnel required.

Parsons	TECHNICAL GUIDANCE DO	CUMENT Page: 7-2 of 2 in this Section	
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS		
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001	

The basis of the selection of survey instrumentation types and techniques will be fully documented in the DQO and SAP documentation.

Parsons	TECHNICAL GUIDANCE DO	CUMENT Page: 8-1 of 4 in this Section	
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PROCESS		
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001	

8.0 DATA VALIDATION AND VERIFICATION

The data validation and verification process consists of several components, such as:

- Project's DQO or equivalent based data validation and verification process as addressed in Section 8.1 of this document.
- Project's or Parsons' process for the investigation of apparent data errors during collection as addressed in Section 8.2 of this document,
- Validation and verification of the software used in support of radiological survey and analysis activities that are addressed by applicable project or Parsons procedures, such as QA-19.2, *Quality Assurance Procedure, Computer Software Verification and Validation, l, Quality Assurance Manual, Parsons, Richland, Washington,*
- Validation and verification of modeling and other calculations that are addressed by applicable project or Parsons procedures such as, *Preparation of Calculations, Project Procedures Manual*, Parsons, Richland, Washington,
- Resolution of nonconformance reports (NCRs) associated with data that are addressed by applicable project or Parsons procedures such as, QA-15.0, *Quality Assurance Procedure, Nonconformance Control, Quality Assurance Manual,* Parsons, Richland, Washington.

8.1 General Data Validation and Verification Process for Verified Field Data

The general data validation and verification activities discussed in this document are intended to support the data validation and verification process associated with the specific project. When ever discrepancies are identified the appropriate project and QA procedures (e.g., NCR process) should be implemented, as needed. The first step in the data validation and verification process is to review the data documentation and ensure that it meets the requirements of the applicable procedures and requirements. Verify that the appropriate paperwork is in place and signed by the data collector and verifier.

Once it has been established that the appropriate documentation is available the analysts and data collectors should review the data for the following technical considerations, prior to its release to the customer:

- Are the data technical consistent,
 - Is the behavior of the data consistent with known scientific principles,
 - Are the changes in the data discontinuous or the rate of change incongruous, such that the data suggests that a recording or collection error may have occurred.
 - Do the results fall below background at a frequency or in an amount that would suggest a recording or collection error beyond the normal fluctuations of background.
 - Does the data imply the unexplained creation or loss of flux or material beyond the variability expected in the statistical fluctuation of the data.

Parsons	TECHNICAL GUIDANCE DOCU	MENT Page: 8-2 of 4 in this Section
Title:	GUIDANCE FOR SPECTRUM ANAL	YSIS PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

- Is the activity and the associated units consistent with the credible range of data values.
- Review the specific activity of the source materials to verify that the mass, density, and activity have credible values.
- Are there any non-credible radionuclides identified based on the data.
- Are the radionuclides that should be present represented in the data at credible levels.
- Are the relative ratio of activity and hazards consistent with known scientific information.
- Were appropriate and current calibration sources used.
 - Are all the sources used in the calibration of the instrument traceable with current calibrations.
 - Do the sources used in the calibration span the energy range of interest.
 - Are the activity levels of the sources consistent with the capability of the instrumentation and at a level and accuracy to meet the quantification required in the DQOs.
 - Is there evidence that the source have been damaged so that the calibration may not be valid.
 - Is the source geometry consistent with that needed to meet the DQOs or has justified modeling been performed to address the impact of the source geometry.
 - Is the energy response behavior consistent with expected energy response and/or scientific principles.
 - Are there coatings on the source that may degrade the energy of the emitted photons.
- Is there appropriate documentation for all calibrations sources in the records,
- Were appropriate peaks selected for radionuclide/isotope identification and quantification of activity,
 - Are the peaks selected for radionuclide identification part of the designated radionuclide/progeny spectra.
 - Are there interferences from background, detector/instrument response, or other radionuclides that may have resulted in an incorrect interpretation of this data.
 - Were confirmatory peaks selected and evaluated to verify the interpretation of the primary peaks.
 - Are the relative activity ratio between the primary and other peak associated with radionuclide consistent with the yields for each peak.
 - Does the peak analysis and FWHM produce consistent results.
 - Are there peaks with duplicate identifications that can be separated.
 - Are the unidentified peaks and how will their identification be resolved.
 - Is it feasible to quantify the activity based on the activity level of the peak and the interference from other sources of spectral data.
- Are the background values credible and are the background data consistent with the statistical variability expected,
- Are the expected progeny present and in the appropriate ratios (Note, when making this assessment the variation in solubility of the progeny and presence of gaseous progeny may affect these ratios significantly),
- Are the expected background radionuclides present.

Parsons	TECHNICAL GUIDANCE DOCUMEN	VT Page: 8-3 of 4 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS	S PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

- Are there any radionuclides identified or present in concentrations that are not credible or at least require followup,
- Have appropriate background data sets been obtained,
- Is there consistency between these values and the other survey data,
- Are the radionuclides present in credible relative ratios,
- Is additional count time required to resolve spectra appropriately,
- Are there unidentified peaks that require resolution,
- Are there potential mis-identified peaks (e.g, impact of interferences),
- Does the equipment appear to be functioning properly,
- Were any technical concerns/inconsistencies appropriately followed up on and resolved,
- Has the appropriate quality control/verification samples been taken,
- Are there any other outstanding technical, operational, or quality issues associated with the data. (Carefully review any comments on the datasheets as an indication of such impacts.)

Review the survey results using other techniques to verify that they are consistent with the results from these calculations. Consider progeny and other radiation emissions. If there are inconsistencies issue an NCR to document resolution of this potential inconsistency. The explanation or justification of any inconsistencies should be documented in a manner consistent with Parsons or the project's procedures and requirements addressing calculations.

If samples are sent for analysis then review these sample results and compare them with the in situ measurements for this activity. If the values are not consistent (i.e., with the projected uncertainties of the two results) review the data for potential problems and issue and NCR to document resolution of this potential inconsistency. The explanation or justification of any inconsistencies should be documented in a manner consistent with Parsons or the project's procedures and requirements addressing calculations.

It is recommended that appropriate statistical tests be applied to the various data sets to verify that statistical anomalies are not present in the data. Statistical anomalies in the data shall be treated like any other data discrepancy and handled accordingly.

8.2 Resolution of Field Data Verification Problems

Until the data quality and associated uncertainty are resolved the data should be labeled as suspect and not used for safety or environmental protection determination, unless the data is assumed to be the most conservative value. If there is an apparent problem associated with data collection the HP or Project Manager should initiate an NCR documenting the apparent problem. The HP shall review the apparent problem to determine its impact on data quality. If the data is determined to be suspect and thus not usable this should be documented on the NCR form and the process resolved under the NCR process. If the HP determines that the data is usable then in addition to the implementation of the NCR process the HP shall provide a technical justification of the data validity in the form of a Parsons calculation which must be prepared, reviewed and issued in a manner consistent with applicable project and Parsons procedures and requirements.

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: 8-4 of 4 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PH	ROCESS
No. GD-R-MCA-01	Revision: 0 draft A D	ate: August 31, 2001

In establishing the potential validity of impacted or suspect data the HP should review the source and probability of occurrence of the event or condition that cause the impact. Determine the additional uncertainty this condition may have on the resulting data. Then the HP should determine if the data has any functional value based on this uncertainty.

 ν

Parsons	TECHNICAL GUIDANCE DOCUME	INT Page: 9-1 of 3 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYS	IS PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

9.0 UNCERTAINTY

Uncertainty in the results for these measurements must always be determined and justified based on sound scientific/engineering data and practice. This uncertainty may come from many sources including:

- Statistical variability in the nuclear decay and counting process.
- Measurement error inherent in the equipment.
- Visual uncertainties resulting from interpolating a scale.
- Variability of the natural environment and the materials being measured.
- Uncertainty in the calibration of the equipment.
- Inherent bias in the measurement or measure data set.
- Statistical variability or inhomogeneity in the item or area being measured.
- Human observation and recording errors or intentional misrecordings.

With the exception of **human observation and recording errors or intentional misrecordings** the process will attempt to minimize and quantify these errors. The procedural and guidance process used in this activity is intended to minimize the potential human observation and recording errors or intentional misrecordings errors.

The **statistical variability** associated with the various process (e.g., the **nuclear decay and counting process**) is addressed using counting statistics and increasing the count times and number of counts/sample taken. Typically most thing in nature have lognormal distributions with the exception of basic natural process like radioactive decay, which is normal (i.e., pure guasian distribution). As the activity levels (i.e., count rates) decrease poisson statistics should be applied to the evaluation of this data. Whenever a statistical distribution other than those described above is used to characterize data associated with this activity a clear justification for the choice must be provided as a basis for this alternative distribution based on the physical characteristics of the process and not just on the apparent statistical behavior of a very limited data set. The confidence level to which uncertainties are to be established should be based on the DQO process with a default assumption that all uncertainties in data should be established at the 95% confidence level.

The **measurement error inherent in the equipment** are quantified by the calibration and accuracy check process for the instrumentation. Further, potential failure can be projected by the control charting process. The upper and lower bounds of the acceptable uncertainties are established based on the DQO process. The accuracy check boundary and the calibration uncertainty maybe used to assess the uncertainty associated with the equipment, although use of the actual calibration and accuracy check uncertainty maybe used. Data like the fine tuning results from the MCA can be used to assess instrument variability in addition to the calibration error. The preference in establishing the uncertainty of the data is to do a detailed analysis of all the data and propagate the error as appropriate or model it with monte carlo analysis. In addition visual uncertainties resulting from interpolating a scale must be considered in this uncertainty as discussed below. However, a default solution for equipment uncertainty (UNC) is:

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: 9-2 of 3 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PR	OCESS
No. GD-R-MCA-01	Revision: 0 draft A Da	ate: August 31, 2001

$UNC = SQRT (UNC_{cals}^{2} + UNC_{calF}^{2} + UNC_{act}^{2} + UNCvis^{2} + UMDA^{2}) + MDA$

where:

 UNC_{calS} is the specified uncertainty of the calibration source and/or the outside calibration. If there is more than one value involved this value is the square root of the sum of the squares of the values (Bevenington, 1969).

UNC_{calF} this is the uncertainty based on the field calibration ignoring the uncertainty in the calibration sources based on statistical variability and background. This should determined based on good health physics practices and the information in NUREG/CR-5849, NUREG-1575, and NUREG-1507). If a modeling correction factor is use then the uncertainty of UNC_{calF} and correction factor should be consolidated using the square root of the sum of the squares of the values (Bevenington, 1969).

 UNC_{act} is the uncertainty in the accuracy or tuning checks, which can be estimated as the 95% confidence level for the entire set of values generated.

UNCvis this is 50% of the smallest marked subdivision for an analog readout. For a digital readout it is the smallest value record by the read out (e.g., if the readout is 95.6 then the uncertainty is 0.1). (Typically can be ignore for most MCAs.)

MDA is the minimum detectable amount (a.k.a., minimum detectable activity) value for the measurement system. This can be computed as described in NUREG-CR-5849, NUREG-1506, or in a specifically reference technical document included in with the calculation. If the MDA is assigned a distribution of values based on a technical defensible scientific approach this value should be set to zero in the calculation of UNC.

UMDA is the 95% confidence level uncertainty in the MDA value if calculated.

Variability of the natural environment and the materials being measured is based on characterization by multiple measurement of the environment, either background or sample/location variability for the area of interest. (Note, in counting statistic count for extended times is the same as making multiple counts in this extended time.) The 95% confidence level uncertainty for the entire set of values generated

If there is a known **inherent bias in the measurement or measure data set** this value should be subtracted out of the result. If the bias is not known then it is presumed to be adequately addressed in the **measurement error inherent in the equipment.** If there is a known bias it should be removed prior to determining the **measurement error inherent in the equipment.**

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: 9-3 of 3 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PR	ROCESS
No. GD-R-MCA-01	Revision: 0 draft A Da	ate: August 31, 2001

The statistical variability or inhomogeneity in the item or area being measured is extremely difficult to assess accept as partially quantified in the variability of the natural environment and the materials. Typically the balance of this uncertainty can only be addressed qualitatively.

9.1 Minimum Detectable Amount (MDA)

It is important to quantify the Minimum Detectable Amount (MDA) that the in-situ spectroscopy is capable of detecting to determine if the DCGLs can be met using this technology. To do this one must consider that the in-situ equipment is used to count a specific location for longer times than the 1 minute scalar static count that is used with survey instrumentation. The MDA is estimated using the following equation from NUREG/CR-5849, "Manual for Conducting Radiological Surveys in Support of License Termination".

MDA =
$$\frac{2.71 + 4.65 * \sqrt{B_R * t}}{t * E * \frac{A}{100}}$$

- Where:MDA is the minimum detectable amount in $dpm/100 cm^2$
- B_R is the background count rate in cpm
- t is the count time in minutes
- E is the efficiency of the detector in cpm/dpm
- A is the active area of the detector in cm²

Using this equation with the detector information the MDA values for various count times and detectors can be estimated. The use of the ROI has the net effect of lowering the background count rate for that specific region. Radionuclide specific efficiencies and associated MDAs can be developed for other radionuclides as needed. Other formulas such as those in NUREG-1506 can be used to estimate the MDA. The basis used for assessing the MDA should be clearly documented. In addition, it is equally important to document how the MDA is used in subsequent analyses.
Parsons	TECHNICAL GUIDANCE DO	CUMENT Page: 10-1 of 2 in this Section
Title:	GUIDANCE FOR SPECTRUM AN	ALYSIS PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

10.0REFERENCES

Bevington, Phillip R., 1969. <u>Data Reduction and Error Analysis for the Physical Sciences</u>, McGrall-Hill, Inc., New York (Library of Congress # 69-16942).

Brown, W.S., & E.W. Abelquist. 1998. *Human Performance in Radiological Survey Scanning*, NUREG/CR-6364.

Crouthamel, C.E., F. Adams, & R. Dams, 1970. <u>Applied Gamma-Ray Spectrometry</u>, Pergamon Press, New York.

Department of Commerce, Department of Health Education and Welfare, 1970. *Radiological Health Handbook*, PB-230 846.

Department of *Energy 's National Nuclear Data Center (NNDC)* at Brookhaven National Laboratory (access is available through the internet), <u>http://www.nndc.bnl.gov/</u>, current version.

EPA, 1987. Data Quality Objectives for Remedial Response Activities Development Process, EPA-540/G-87-003.

EPA, 2000. Guidance for the Data Quality Objective Process, EPA QA/G-4, EPA/600/R-96/055.

Gogolak, C. V., et al, 1995. A Nonparametric Statistrical Methodology for the Design and Analysis of Final Status Decommissioning Surveys, NUREG-1505.

ICRP,s (International Commission on Radiation Protection) *Radionuclide Transformations Energy and Intensity of Emission*, Annals of the ICRP, ICRP Publication 38, Volume 11-13, 1983.

Kocher, David, 19 . Radioactive Decay Data Tables (DOE/TIC-11026).

Knoll, Glenn F., 1989. <u>Radiation Detection and Measurement</u>, John Wiley & Sons, New York, New York, 1989 (ISBN 0-471-81504-7).

NRCP (National Council on Radiation Protection and Measurement), 1987. *Ionizing Radiation Exposure of the Population of the United States*, NCRP Report No. 93.

NRCP (National Council on Radiation Protection and Measurement), 1987. *Exposure of the Population in the United States and Canada form Natural Background Radiation*, NCRP Report No. 94.

NRC, 2000. NMSS Decommissioning Standard Review Plan. NUREG-1727.

Parsons	TECHNICAL GUIDANCE DOCUM	ENT Page: 10-2 of 2 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYS	SIS PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

NRC, NUREG-1575, 1997. Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), December 1997.

NRC, 1997. Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions, NUREG-1507.

NRC, 1995. Measurement Methods for Radiological Surveys in Support of New Decommissioning Criteria, NUREG-1506.

Oak Ridge Associated Universities, 1992. Manual for Conducting Radiological Surveys in Support of License Termination, NUREG/CR-5849.

Radiation Safety Associates, Inc., 2001. URSA Universal Radiation Spectrum Analyzer Operations Manual, Radiation Safety Associates, Inc. 19 Pendleton Drive, PO Box 107 • Hebron, CT, 2001.

Shafroth, Stephen M., 1967. <u>Scintillation Spectroscopy of Gamma Radiation</u>, Gordon and Reach Science Publishers, New York.

Parsons Procedures

SOP-R-MCA-02, *Gamma Spectroscopy Instrument Operation*, Parsons Infrastructure and Technology Group, Inc., Richland, Washington current version.

SOP-R-MCA-02, *Gamma Spectroscopy Instrument Operation*, Parsons Infrastructure and Technology Group, Inc., Richland, Washington current version.

QA-15.0, *Quality Assurance Procedure, Nonconformance Control*, Parsons Infrastructure and Technology Group, Inc., Richland, Washington, current version or equivalent Project specific nonconformance procedure..

QA-19.2, *Quality Assurance Procedure. Computer Software Verification and Validation*, Parsons Infrastructure and Technology Group, Inc., Richland, Washington, current version or equivalent Project specific nonconformance procedure..

Parsons	TECHNICAL GUIDANCE DOC	CUMENT Page: A-lof 4 in this Section					
Title:	itle: GUIDANCE FOR SPECTRUM ANALYSIS PROCESS						
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001					

APPENDIX A

Datasheets

Parsons

TECHNICAL GUIDANCE DOCUMENT

Page:	A-lof 4
in this	s Section

Title: No. GD-R-MCA-01

GUIDANCE FOR SPECTRUM ANALYSIS PROCESS Revision: 0 draft A Date: August 31, 2001

P	arsons		LSR Listin	ıg		GD-R-MCA-1-1				
Initiat	ed By (print)	Signature	E	Date		Sheet	of			
			Dullation			Establis	shed by			
Name	Radionuclide fo	ollowed by energies	Type	Source of		Developed By:			Verified	4
	in MeV in pare	nthesis		Information	Print	Signature	Date	Print Initials	Initial	Date
10	Description			Source R	eference				•	
-2	U.S. Department through the intern David Kocher's A ICRP,s (Internati of the ICRP, ICR	of Energy 's Nation net) Radioactive Decay onal Commission P Publication 38	onal Nuclea Data Table on Radiation	r Data Center (1 es (DOE/TIC-11 n Protection) Ra	VNDC) at Br 026) dionuclide T	ookhaven National Lab Transformations Energy	ooratory (and Inte	access is	available Emission,	Annals

Parsons	TECHNICAL GUIDANCE DOCU	JMENTPage: A-2of 4in this Section
Title:	GUIDANCE FOR SPECTRUM ANAI	LYSIS PROCESS
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001

Par	Parsons Radionuclide Identification Worksheet GD-R-MC		-MCA-1	-2							
Quantifi	cation Re	equired	Yes	No	If "Yes" include	e a page 2 for each sheet	Sheet of			I	Page 1
Pez	ak	Ĉ.		LSR:				F	adionucli	de	
Channel	Energy (keV)	Sam Filena	ame	Backgrou Filenan	and le	Basis	Pr	imary	Alterna	tive (in ord	er)
	(ince v)						ld.	Fraction	Id.		
							-				
Commen	its:			1							
Complete (print	ed by				Completed by (signature)				Date		
	·				Authorize	ed For Use					
PHP (Pr	rint)				PHP Signature				Date:		
Data Ve	rified								D		
HP (Pri	int)				HP Signature				Date:		

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: A-3of 4 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PI	ROCESS
No. GD-R-MCA-01	Revision: 0 draft A D	ate: August 31, 2001

2,	Parsons		Radionu	iclide Identification V	Vorkshe	et	GI	D-R-MCA-1-2		
Quan	tificatio	n Requi	red Yes No	Mass of sample (g) (if applicable):		New LSR (opti	onal):	Sheet	of	Page 2
Peak E	Energy (ke	V) used				Correction F	actor (if app	licable)	A	ctivity
1 st	2 nd	3 rd	ROI (Optional)	Radionuclide	CF _g (units?)	Source (cal. #)	CF _v (units?)	Source (doc. # or cal. #)	URSA (units?)	Net (units?).
Comn	nents:		I			l		I		
Com (p	pleted by print)			Completed by (signature)				Ľ	late	
				Autho	rized Fo	or Use				
PHP	P (Print)			PIIP Signature					Vate:	
Data '	Verified									
HP	(Print)			HP Signature				ľ	ate:	

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: A-4of 4 in this Section						
Title:	Title: GUIDANCE FOR SPECTRUM ANALYSIS PROCESS							
No. GD-R-MCA-01	Revision: 0 draft A	Date: August 31, 2001						

.

**

Parsons	TECHNICAL GUIDANCE DOCUMENT	Page: A-5of 4 in this Section
Title:	GUIDANCE FOR SPECTRUM ANALYSIS PR	OCESS
No. GD-R-MCA-01	Revision: 0 draft A Da	te: August 31, 2001

,

:

s.

· .