
US Army, Engineering & Support Center Huntsville, AL

Seneca Army Depot Activity Romulus, NY

FINAL

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT RADIOACTIVE WASTE BURIAL SITES (SEAD-12)

SENECA ARMY DEPOT ACTIVITY

EPA Site ID# NY0213820830 NY Site ID# 8-50-006 CONTRACT NO. DACA87-02-D-0005 DELIVERY ORDER NO. 0011

PARSONS
October 2006

FINAL

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT RADIOACTIVE WASTE BURIAL SITES (SEAD-12)

SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK 14541

and

US ARMY CORPS OF ENGINEERS HUNTSVILLE, ALABAMA 35816

Prepared by:

PARSONS

150 Federal Street, 4th Floor Boston, Massachusetts 02110

EPA Site ID# NY0213820830 NY Site ID# 8-50-006 Contract Number DACA87-02-D-0005 Delivery Order No. 0011 Project No. 743156

October 2006

TABLE OF CONTENTS

<u>Description</u>					
ES	EXEC	CUTIVE SUMMARY	ES-1		
1	INTRODUCTION				
	1.1	Purpose of Report	1-1		
	1.2	Site Background			
		1.2.1 Depot			
		1.2.2 Buildings 813 and 814			
		1.2.3 EM-5			
	1.3	Site Physical Characteristics			
	1.4 1.5	Comparison Criteria for Investigation Results Previous Remedial Investigation Results			
	1.3	1.5.1 VOC Concentrations Proximate to Buildings 813 and 814			
		1.5.1.1 Soil Gas Survey Results			
		1.5.1.2 Groundwater Chemistry			
		1.5.1.3 Surface Water/Ditch Soil Chemistry	1-6		
		1.5.1.4 Soil Chemistry			
	1.	1.5.2 Investigation of Radionuclides at EM-5			
	1.6	Report Organization	1-7		
2	<u>STUI</u>	2-1			
	2.1	Introduction	2-1		
	2.2				
		2.2.1 Groundwater Investigation	2-1		
		2.2.1.1 Temporary Monitoring Well Installation	2-1		
		2.2.1.2 Groundwater Sampling	2-2		
		2.2.1.3 Sample Analysis	2-3		
		2.2.2 Surface Water/Sediment Investigation	2-3		
		2.2.3 TCE Source Investigation	2-4		
		2.2.3.1 Phase I Test Pit - November 3, 2004	2-4		
		2.2.3.2 Phase II - November 10 and 11, 2004	2-5		
		2.2.3.3 Phase III - December 20 - 22, 2004			
		2.2.3.4 Soil Sampling and Analysis			
	2.3	EM-5 Soil Investigation	2-7		
		2.3.1 Surface and Subsurface Soil Sampling	2-7		
		2.3.2 Sample Analysis			
	2.4	Site Survey			
	2.5	Data Validation			

3	RESULTS				
	3.1	Groun	indwater Results		
	3.2		3-3		
	3.3		lesults		
			TCE Source Investigation		
			3.3.1.1 Phase I Test Pitting - November 3, 2004		
			3.3.1.2 Phase II - November 10 and 11, 2004		
			3.3.1.3 Phase III - December 20-22, 2004		
		3.3.2	Stockpiles		
		3.3.3	EM-5		
4	CONCLUSIONS AND RECOMMENDATIONS			4-1	
	4.1	Conclusions			
		4.1.1	VOC Contamination at Building 813/814	4-1	
			4.1.1.1 Groundwater	4-1	
			4.1.1.2 Surface Water/Ditch Soil		
			4.1.1.3 Soil		
		4.1.2			
	4.2	Recommendations			

LIST OF TABLES

<u>Number</u>	<u>Table Name</u>
Table 1-1	Soil Gas Survey Results – Original RI
Table 2-1	Preliminary Temporary Well Placement Rationales
Table 2-2	Groundwater Elevation Data from the Building 813/814 Area
Table 3-1	Groundwater VOC Detections
Table 3-2	Sediment VOC Detections
Table 3-3	Test Pit Soil VOC Detections
Table 3-4	Stockpile Soil VOC Detections
Table 3-5	Comparison of Pb-210 Results from RI and SRI

October 2006 Page iii

LIST OF FIGURES

<u>Number</u>	Figure Title
Figure 1-1	Future Land Use
Figure 1-2	SEAD-12 Site Plan
Figure 1-3	Buildings 813 and 814
Figure 1-4	SEAD-12 Site Topography
Figure 1-5	RI Sample Locations – Building 813 and 814
Figure 1-6	Previous Soil Sample Locations at EM-5
Figure 2-1	TCE Detected During RI
Figure 2-2	Proposed Temporary Well Locations
Figure 2-3	Temporary Well and Surface Water/Ditch Soil Sample Locations
Figure 2-4	Sample Locations from Test Pit at Building 813/814
Figure 2-5	Building 813/814 Excavation As Built
Figure 2-6	EM-5 Soil Sample Locations
Figure 3-1	Groundwater and Surface Water/Ditch Soil Detections
Figure 3-2	Soil Sample TCE Results in Building 813/814 Test Pit
Figure 3-3	TCE Concentrations in Stockpile Samples at Building 813/814

October 2006 Page iv

LIST OF APPENDICES

Appendix A: Temporary Well Construction Diagrams

Appendix B: Sampling Records

Appendix C: Test Pit Logs

Appendix D: Laboratory SOP – Method HASL 300

Appendix E: Analytical Results

Appendix F: Laboratory Certifications and Groundwater Method Detection Limits

Appendix G: Excavation Photos

Appendix H: Response to Comments

ACRONYMS AND ABBREVIATIONS

ASP Analytical Services Protocol AWQS Ambient Water Quality Standards

BCT BRAC Closure Team

bgs Below Grade Surface or Below Ground Surface

BRAC Base Realignment and Closure

BTEX Benzene, Toluene, Ethylbenzene, and Xzylene

CAS Columbia Analytical Services

CERCLA Comprehensive Environmental Responsibility, Compensation, and Liability Act

Cis-1,2-DCE cis-1,2-dichloroethene

CLP Contract Laboratory Program

DCE 1,2-Dichloroethene

DCGL Derived Concentration Guideline Level

DO Dissolved Oxygen

et al. and others

FFA Federal Facilities Agreement FID Flame Ionization Detector

FS Feasibility Study

ft. Feet

GEL General Engineering Laboratories

HTRW Hazardous, Toxic, and Radioactive Waste

i.e., that is

IAG Interagency Agreement

LRA Local Development Authority

MDL Method Detection Limit

MS Matrix Spike Sample Designation

MSD Matrix Spike Duplicate Sample Designation
MW Permanent Monitoring Well Designation

NPL National Priority List

NYSDEC New York State Department of Environmental Conservation

ORP Oxidation-Reduction Potential

PCB Polychlorinated Biphenyl

pCi/g Pico-curies/gram

PID Photoionization Detector

QA/QC Quality Assurance/Quality Control

QC Quality Control

RI Remedial Investigation

RL Reporting Limit

SD Ditch Soil or Sediment Designation
SEDA Seneca Army Depot Activity
SOP Standard Operating Procedure
SQL Sample Quantitation Limit

SRI Supplemental Remedial Investigation SVOC Semivolatile Organic Compound SW Surface Water Sample Designation

TAGM Technical and Administrative Guidance Memorandum

TBC To Be Considered TCE Trichloroethene

TCL Target Compound List

TIC Tentatively Identified Compound

TOC Total Organic Carbon

TOGS Technical Operating Guidance Series

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

 $\begin{array}{ll} \mu g/Kg & \text{Microgram or Micrograms per Kilogram} \\ \mu g/L & \text{Microgram or Micrograms per Liter} \end{array}$

October 2006 Page vii

REFERENCES

- API Soil and Groundwater Technical Task Force. 2006. Downward Solute Plume Migration: Assessment, Significance, and Implications for Characterization and Monitoring of "Diving Plumes". April.
- Army, United States Environmental Protection Agency (USEPA) Region 2, New York State Department of Environmental Conservation (NYSDEC). 1993. Federal Facilities Agreement (FFA).
- Code of Federal Regulations (CFR), 1993. National Oil and Hazardous Substances Pollution Contingency Plan (NCP). 42 CFR 9620.
- Department of Defense, Department of Energy, Environmental Protection Agency, Nuclear Regulatory Commission. 2000. Multi-Agency Radiation Survey and Site Investigation Manual.
- New York State Department of Environmental Conservation (NYSDEC). 2000. Analytical Services Protocol. June.
- New York State Department of Environmental Conservation (NYSDEC). 1998 with 2000 and 2004 Addendum. Ambient Water Quality Standard and Guidance Values and Groundwater Effluent Limitations.
- New York State Department of Environmental Conservation (NYSDEC). 1994. Technical and Administrative Guidance Memorandum (TAGM): Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites, October.
- New York State Department of Health (NYSDOH). 2005. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Public Comment Draft. February.
- Parsons, 2004. Final Workplan for the Supplemental Remedial Investigations at the Radioactive Waste Burial Sites (SEAD-12). Prepared for U.S. Army Engineer Division, Huntsville and Seneca Army Depot.
- Parsons, 2002a. Revised Final Remedial Investigation (RI) Report at the Radioactive Waste Burial Sites (SEAD-12). Prepared for U.S. Army Engineer Division, Huntsville and Seneca Army Depot. August.

October 2006 Page viii

- Parsons, 2002b. Draft Feasibility Study (FS) Report for the Radioactive Waste Burial Sites (SEAD-12). Prepared for U.S. Army Engineer Division, Huntsville and Seneca Army Depot. May.
- Parsons, 1995. Generic Installation Remedial Investigation/Feasibility Study (RI/FS) Work Plan for Seneca Army Depot Activity.
- United States Environmental Protection Agency (USEPA). 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. October.
- United States Environmental Protection Agency (USEPA) Region II. 1998. Ground Water Sampling Procedure Low Stress (Low Flow) Purging And Sampling. March 16.
- United States Environmental Protection Agency (USEPA) Region II. Region II RCRA and CERCLA Data Validation Standard Operating Procedures (SOPs). On-line resources at http://www.epa.gov/region02/desa/hsw/sops.htm

October 2006 Page ix

EXECUTIVE SUMMARY

This Supplemental Remedial Investigation (SRI) report summarizes SRI site investigation activities, presents data on the nature and extent of contamination, and makes recommendations for the path forward at Buildings 813/814 and the EM-5 area in the Radioactive Waste Burial Sites (SEAD-12) area at the Seneca Army Depot Activity (SEDA) in Romulus, NY. The two areas were recommended for further investigation in a Feasibility Study (FS) prepared following a Remedial Investigation (RI) performed at SEAD-12 in 1995 through 1999. The additional investigation at Buildings 813/814 was recommended due to elevated volatile organic compound (VOC) concentrations detected in a monitoring well adjacent to the buildings, and further investigation of EM-5 was recommended to further evaluate elevated levels of Pb-210 detected in soil samples.

Thirteen temporary wells were installed in the vicinity of the elevated VOC concentrations detected during the RI. Groundwater samples were collected from these temporary wells and two existing permanent wells to determine the extent of VOC contamination. Results of the sample analysis indicated that VOC contamination, primarily in the form of trichloroethene (TCE), was limited to the area immediately adjacent to one of the permanent wells, MW12-37. Based on these results, a test pit investigation was initiated to determine the source of the TCE contamination in the groundwater. The investigation traced elevated TCE levels to the footer of the building, where exploration halted due to concerns for the structural integrity of the building. An abandoned 6-inch clay sewer pipe along with clay pipe fragments and a 4-inch ductile iron (DI) pipe were found during the test pitting. The majority of the sewer pipe and all of the DI pipe past the northern wall of the building were removed during the test pitting operation. Nine of the 13 temporary wells were abandoned in place since no VOCs were detected in these wells and they were not considered necessary for any potential future investigation at the site.

The ten RI soil sample locations at EM-5 exhibiting the highest Pb-210 concentrations were resampled as part of the SRI. The SRI samples were analyzed using a modified DOE EML HASL-300 method which was intended to lower uncertainty levels that had been relatively high in the samples analyzed during the RI. Results of the analysis of the soil from the re-sampled locations indicated that Pb-210 was not a concern at EM-5.

Recommendations were developed for the two areas based on the conclusions drawn from the field investigation. These include an environmental easement to be placed on Buildings 813/814, and backfilling the remaining stockpiled test pit soil (Phase II, Phase IIIA, and Phase IIIB soils). No further action is proposed at EM-5. It is proposed that these recommendations be incorporated into the forthcoming Draft Final Feasibility Study Report for the Radioactive Waste Burial Sites (SEAD-12) that also addresses the Disposal Pit areas within SEAD-12.

1 INTRODUCTION

1.1 PURPOSE OF REPORT

The purpose of this report is to present the findings of the Supplemental Remedial Investigation (SRI) conducted at the Radioactive Waste Burial Sites (SEAD-12) at the Seneca Army Depot Activity (SEDA) in Romulus, New York. The work for the SRI was undertaken in response to issues noted in the Revised Final Remedial Investigation (RI) Report at the Radiological Waste Burial Sites (SEAD-12; Parsons, 2002a) and the Draft Feasibility Study (FS) Report for the Radioactive Waste Burial Sites (SEAD-12; Parsons, 2002b), which presented the results of several different investigations designed to characterize the nature and extent of risks posed by the conditions at SEAD-12. As indicated in the RI and FS reports, there were two issues within SEAD-12 that required additional investigation: the volatile organic compound (VOC) contamination in the vicinity of Buildings 813 and 814 and the elevated concentrations of Pb-210, a radionuclide, in the soil at the EM-5 area. The SRI work was conducted in accordance with the Final Workplan for the Supplemental Remedial Investigations at the Radioactive Waste Burial Sites (Parsons, 2004).

The Supplemental Remedial Investigation activities carried out at these two areas were performed as part of the United States Army Corps of Engineers (USACE) remedial response activities under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at SEDA. The SRI activities followed the requirements of the New York State Department of Environmental Conservation (NYSDEC), the U.S. Environmental Protection Agency (USEPA) Region II, and the Interagency Agreement (IAG; Army et al., 1993).

1.2 SITE BACKGROUND

1.2.1 Seneca Army Depot

Seneca Army Depot Activity (or the Depot) was constructed in 1941 on approximately 10,600 acres of former farmland in western New York. The Depot was owned by the United States Government and operated by the Department of the Army. From its inception in 1941 until its recommended closure in 1995, SEDA's primary mission was the receipt, storage, maintenance, and supply of military items, including munitions and equipment. A number of hazardous wastes were stored and generated at the Depot as part of its mission, and SEDA was proposed for inclusion on the National Priority List (NPL) as a Federal Facility site in July of 1989. The Depot's listing was approved by Congress and finalized in August of 1990. The Depot's USEPA identification number is NY0213820830. The site is also identified by NYSDEC as Inactive Hazardous Waste Site Number 8-50-006.

In accordance with requirements of Section 120 of CERCLA (Title 42, *U.S. Code*, Sec. 9620), the US Army, the USEPA, and the NYSDEC negotiated and signed a Federal Facilities Agreement (FFA) or an Interagency Agreement (IAG) governing site investigation and remediation of the Depot in January 1993. This agreement determined that future investigations were to be based on CERCLA

guidelines and RCRA was considered an Applicable or Relevant and Appropriate Requirement (ARAR) pursuant to Section 121 of CERCLA. In October 1995, SEDA was designated as a facility recommended for closure under the provisions of the Base Realignment and Closure (BRAC) process. In 2000, the facility was closed.

Pursuant to the requirements of BRAC, the Seneca County Board of Supervisors had established the Seneca Army Depot Local Redevelopment Authority (LRA) in October 1995. The primary responsibility assigned to the LRA was to plan and oversee the redevelopment of the Depot. The Reuse Plan and Implementation Strategy for SEDA was adopted by the LRA and approved by the Seneca County Board of Supervisors on October 22, 1996. The Seneca County Industrial Development Authority (SCIDA) revised the future land use of the Depot in 2005. Under this plan and subsequent amendment, areas within the Depot were classified according to their most likely future use. The proposed future use designations identified by the SCIDA and approved by the Board of Supervisors included:

- Housing;
- Institutional;
- Institutional training;
- Green energy;
- Development reserve;
- Residential resort;
- Utility;
- Training area;
- Industrial;
- Warehousing:
- Conservation/recreational land;
- An area designated for a prison;
- An area for an airfield, special events, institutional, and training; and
- An area to be transferred from one federal entity to another (i.e., the area of the existing navigational LORAN transmitter).

A map showing the SCIDA's recommended future land use for the Depot is provided as **Figure 1-1**. As shown in the figure, SEAD-12 is located within the area planned for Institutional Training. The Fed to Fed transfer, Prison, and Institutional areas have already been transferred to new owners. The majority of the Airfield and Institutional Training, Green Energy, Development Reserve, and Training area have been transferred except for pieces that have been retained by the Army pending forthcoming environmental action.

1.2.2 Buildings 813 and 814

Buildings 813 and 814 were primarily used for painting operations that took place in SEAD-12, the Former Weapons Storage Area (**Figure 1-2**). The buildings were originally constructed in the 1950s, and modifications were made to both over time. Building 813 originally contained a number of small offices and equipment rooms along with one large, open room. This large room contained the paint booth, which was a completely self-contained, pre-fabricated room that was replaced at least once during the period the building was used. An addition to this building was completed in the late 1980s and included a new sand blasting room. This addition covered what was once an open area between Building 813 and Building 814.

Building 814 originally contained one furnace room and a large, open room. The building was lengthened in the late 1960s, at which point an office was constructed in the southeast corner of the building. Two storage rooms were constructed inside the main room of the building and two other rooms were added to the building's exterior between 1970 and 1990; however, the exact timeframe of these modifications is not known. The basic layouts of the buildings are shown in **Figure 1-3**.

1.2.3 EM-5

As part of the original RI, a geophysical investigation was performed at SEAD-12 using an EM-31 ground conductivity meter. The survey detected 44 conductivity anomalies which were designated EM-1 through EM-44. Test pits were excavated at a number of these EM anomalies, including two in the location of anomaly EM-5 (**Figure 1-2**). The test pit operation at EM-5 uncovered items such as horseshoes, square nails, and broken glass, which were apparently associated with an original farmstead that predated SEDA. None of the debris recovered appeared to be related to military activities.

1.3 SITE PHYSICAL CHARACTERISTICS

SEAD-12 is fairly flat with a slight downward trend to the west, towards Seneca Lake. **Figure 1-4** presents a topographic map of the SEAD-12 area. The only notable topographic features in the area are a series of surface water control ditches that run along the sides of most of the roads in the Depot. The bottoms of some of these ditches can be nearly 6 feet below the nearby ground surface elevation. Although there are some wooded spots in SEAD-12, most of the area has been cleared and is either open field or is occupied by buildings or ammunition storage igloos. Buildings 813 and 814 are located on the eastern side of SEAD-12, adjacent to Building 815 to the west and an open field to the east. There is a paved parking lot between Building 815 and Buildings 813/814 and one of the deeper ditches runs along the north, east, and south sides of the connected buildings. EM-5 lies in the middle of a grassy field on the western side of SEAD-12.

Geologically, the areas around Buildings 813/814 and EM-5 are similar to the rest of the Depot, which is located within one distinct unit of glacial till that covers the area between the western shore of Lake Cayuga and the eastern shore of Lake Seneca. Depth to competent bedrock in the area around SEAD-12 varies; areas upgradient of Buildings 813/814 have a depth to bedrock ranging from 10 to 15 feet bgs. whereas the area immediately downgradient ranges from 5 to 10 feet bgs. The till ranges in thickness from less than 2 feet to as much as 15 feet, with the average being only a few feet thick. This till is generally characterized by brown to gray-brown silt, clay, and fine sand with few fine to coarse gravel-sized inclusions of weathered shale. Larger diameter weathered shale clasts (as large as 6 inches in diameter) are more prevalent in basal portions of the till and are probably rip-up clasts removed by the active glacier during the late Pleistocene era. A zone of gray weathered shale of variable thickness is present below the till in almost all locations at SEDA. This zone is characterized by fissile shale with a large amount of brown interstitial silt and clay.

The groundwater flow direction in the areas around Buildings 813/814 is generally toward the northwest. In the areas immediately adjacent to the buildings, the groundwater flow direction may be closely related to the local topography and geological conditions.

1.4 COMPARISON CRITERIA FOR INVESTIGATION RESULTS

The investigation of SEAD-12 falls under the jurisdiction of both the State of New York regulations (administered by NYSDEC) and Federal regulations (administered by USEPA Region II). Applicable or Relevant and Appropriate Requirements (ARARs) are promulgated regulatory standards or requirements and as such are legally enforceable and generally applicable and equivalent to the media or conditions at the site. In addition to ARARs, advisories, criteria, or guidance may be evaluated as "To Be Considered" (TBC) regulatory items. CERCLA indicates that the TBC category could include advisories, criteria, or guidance that were developed by USEPA, other federal agencies, or states that may be useful in developing CERCLA remedies. These advisories, criteria, or guidance are not promulgated and, therefore, are not legally enforceable standards such as ARARs. To date, ARARs have only been propagated for groundwater and surface water at the site.

In reviewing ARARs and TBCs for the site, the following documents were used for comparison of chemical constituents at the site:

- Soils and Ditch Soils New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum (TAGM) HWR-94-4046 (January 1994) - TBC.
- Surface Water NYSDEC Technical and Operation Guidance Series (TOGS, 1.1.1), Class C Standards (1998) – ARAR.
- Surface Water NYSDEC TOGS, 1.1.1, Class C Guidance Values (1998) TBC.
- Groundwater NYSDEC TOGS, 1.1.1, Class GA Standards (1998) ARAR.
- Groundwater NYSDEC TOGS, 1.1.1, Class GA Guidance Values (1998) TBC.

For constituents in surface water and groundwater, the NYSDEC TOGS Standards (considered ARARs) and the NYSDEC TOGS guidance values (considered TBCs) from the above published documents were used for comparison to field data. For soil, criteria from TAGM-4046 are considered TBCs. These criteria are referenced during the evaluation of previous investigations as well as the evaluation of the data collected during the SRI.

1.5 PREVIOUS REMEDIAL INVESTIGATION RESULTS

As indicated in **Section 1.1**, the complete results of the original RI conducted at SEAD-12 are contained in the Revised Final RI Report at the Radiological Waste Burial Sites (SEAD-12; Parsons, 2002a) and the Draft Feasibility Study Report for the Radioactive Waste Burial Sites (SEAD-12; Parsons, 2002b). The specific RI results that led to the implementation of the SRI are briefly discussed below.

1.5.1 VOC Concentrations Proximate to Buildings 813 and 814

1.5.1.1 Soil Gas Survey Results

Thirty-nine soil gas survey samples were collected in and around Buildings 813 and 814 to determine if the area had been impacted by VOCs (**Figure 1-5**) as a result of the former painting operations conducted in the buildings. The soil gas samples collected were analyzed for benzene, toluene, and p-xylenes (three of the four components of BTEX) as well as 1,2-dichloroethene (DCE), trichloroethene (TCE), and total VOCs. Of the individual VOCs analyzed, TCE exhibited the highest concentrations across the site, with values as high as 2,400 ppbv. A number of other soil gas locations around the buildings were identified as having elevated concentrations of total VOCs that did not appear to be particularly related to high TCE values or to any of the other specific constituents analyzed.

The locations of these elevated TCE and total VOC concentrations were noted as sites that required further investigation. Soil gas results are used as a qualitative tool to plan additional investigations such as groundwater monitoring. Elevated TCE and total VOC concentrations do not necessarily predict the concentrations of VOCs in groundwater immediately underlying them. Soil gas originating from groundwater will follow preferential paths within the matrix toward an accumulation or exit point. However, results may be used to plan additional investigations. The complete soil gas survey results are presented in **Table 1-1** and were used to plan the groundwater investigation in both the RI and the Supplemental RI.

1.5.1.2 Groundwater Chemistry

In the area of Buildings 813 and 814, four (4) overburden monitoring wells (**Figure 1-5**) were installed, with the locations of the wells based primarily on the soil gas survey results. Monitoring well MW12-37 was placed approximately 10 feet from the northeast corner of Building 813 to further investigate the potential impact to groundwater based on the elevated soil gas TCE concentrations detected in that location. Monitoring wells MW12-38 and MW12-39 were placed in approximately the same locations as soil gas sample locations SG12-122 and SG12-148, respectively, in order to investigate the total VOCs detected in soil gas samples at those locations. Monitoring well location MW12-38 is in the downgradient direction of the highest TCE detection at soil gas sample location SG12-147. The fourth monitoring well location, MW12-40, was placed approximately 300 feet downgradient of Buildings 813 and 814 to determine the extent of impact to groundwater by VOC contamination in the area.

The results of the groundwater sampling program during the RI (April 1999 and December 1999) at SEAD-12 indicated that VOCs were present in groundwater at two of these four wells. The samples collected at monitoring well MW12-37, located at the northeast corner of Building 813, contained a concentration of 1,600 μ g/L of TCE during both of the two sampling events conducted; the NYSDEC Class GA Standard for groundwater is 5μ g/L. The groundwater samples collected during the second sampling event also showed an estimated DCE concentration of 30 μ g/L, which also exceeds the NYSDEC Class GA Standard of 5 μ g/L. The sample collected during the second event at MW12-40 showed a TCE concentration of 1.7 μ g/L, below the GA Standard.

1.5.1.3 Surface Water/Ditch Soil Chemistry

Surface water and ditch soil samples were collected from three locations within the ditch that runs adjacent to Buildings 813 and 814 as indicated in **Figure 1-5**. In the surface water samples, only metals were detected; and of the metals detected, only concentrations of iron and aluminum exceeded the NYSDEC Ambient Water Quality Standards (AWQS) for Class C water. Although the iron and aluminum concentrations exceeded the Class C Standards, the concentrations of these two metals were in line with background values across the site and therefore iron or aluminum was not considered a contaminant of concern. Sample SW12-30 contained a concentration of 1 μ g/L of TCE, which is below the Class C Standard.

Each of the three ditch soil samples, which were co-located with the surface water sample locations, contained detectable concentrations of VOCs, semivolatile organic compounds (SVOCs), pesticides/Polychlorinated Biphenyls (PCBs), and metals. Risk assessment performed for the RI indicated that nothing in the SEAD-12 ditch soil posed a threat to human health or the environment, and the medium was not considered to be of concern in the FS.

1.5.1.4 Soil Chemistry

Both surface and subsurface soil samples were collected in the vicinity of Buildings 813 and 814 during the RI (**Figure 1-5**). Three surface soil samples, SS12-66, SS12-67, and SS12-68, were collected to the northwest of the Buildings 813 and 814, near monitoring well MW12-40. The subsurface soil samples were collected during the installation of the four monitoring wells, MW12-37, MW12-38, MW12-39, and MW12-40, to the north and west of the Buildings 813 and 814. The analytical results of the surface and subsurface soil samples indicated that there were metals that exceeded TAGM values at these locations. However, the values were below the maximum background concentrations for SEDA. In addition, none of the VOC or SVOC detections in surface or subsurface soils exceeded their respective TAGM values. The RI reported that no risk was found within this area due to the presence of heavy metals in soils. The presence of TCE in groundwater at MW12-37 was the only significant source of risk in this area.

1.5.2 Investigation of Radionuclides at EM-5

In addition to the test pitting performed at EM-5 during the RI, a total of 30 surface soil and subsurface soil samples were collected and analyzed for radionuclides (**Figure 1-6**). Using the Wilcoxon Rank Sum statistical analysis, the EM-5 soils were compared to a background data set to determine if there were any radionuclides that exceeded background concentrations. For the radionuclides distinguishable from background at EM-5, both the residential and worker Derived Concentration Guideline Level (DCGLs) were added to the background dataset as described in MARSSIM (Department of Defense et al., 2000) and in Section 4.1.2.3 of the RI (Parsons, 2002a). When compared to the worker DCGLs, Lead-210 exceeded DCGLs; Lead-210 is part of the Radium-226 decay series. The DCGL exceedances were not extremely high, and it was believed that the elevated Pb-210 levels may have been naturally occurring and associated with the archaeological anomalies found during test pit activities performed in the area; there was no indication of Army activity in this area. Since the analytical uncertainty associated with the RI samples was rather large, NYSDEC comments on the Draft FS recommended a different analytical method for gamma spectroscopy that would minimize analytical error. The RI suggested further investigation of the area to confirm the detections.

1.6 REPORT ORGANIZATION

The remaining sections of this report discuss the activities performed during the SRI and the conclusions resulting from the fieldwork. **Section 2** describes the fieldwork performed during the project and the analyses run on the samples collected. **Section 3** summarizes the results of sample analysis performed for the project. **Section 4** summarizes the conclusions drawn from the work completed during the project and presents recommendations for the two areas (area adjacent to Buildings 813/814 and EM-5) based on the data collected.

2 STUDY AREA INVESTIGATION

2.1 INTRODUCTION

Supplemental investigations were performed within the SEAD-12 area based on the results of the Remedial Investigation at the Radiological Waste Burial Sites (Parsons, 2002a). Based on comments received from the regulatory community, additional investigation of trichloroethene detections in groundwater outside Buildings 813/814, as well as evaluation of Pb-210 concentrations in soil within the EM-5 area of the site were performed. The SRI was conducted in accordance with the Final Workplan for the Supplemental Remedial Investigations at the Radioactive Waste Burial Sites, submitted in March, 2004. The purpose of the Supplemental RI was to determine the extent of TCE contamination in groundwater by installing temporary monitoring wells using a phased approach. In addition, several soil sample locations within the EM-5 area were re-sampled and analyzed using a different method (as requested by NYSDEC) for the analysis of Pb-210. The following sections describe the fieldwork performed during the SRI.

2.2 BUILDINGS 813 AND 814 INVESTIGATION

2.2.1 Groundwater Investigation

2.2.1.1 Temporary Well Installation

The TCE concentrations detected in MW12-37 during the two sampling events in the original RI were above the NYSDEC GA Standard. The DCE concentration detected in MW12-37 in December 1999 was above the NYSDEC GA Standard. TCE was also detected in one surface water sample and VOCs were detected in a number of soil gas samples. As a result, the SRI fieldwork at Buildings 813 and 814 focused on delineating potential VOC plumes in this area, in particular, the TCE plume that appeared to extend downgradient from MW12-37. To further delineate the VOC contamination, the Army proposed the installation of 15 temporary wells in locations where elevated VOCs were detected in the soil gas survey or in areas downgradient from the RI TCE and DCE detections (**Figure 2-1**). The proposed placement of each temporary well is shown in **Figure 2-2**, and the rationale for the proposed locations is presented in **Table 2-1**. As indicated in the figure, the wells were installed in two phases to ensure that the outer boundaries of any VOC plumes were well defined.

The nine Phase I temporary wells, TW12-1 through TW12-9, were installed on May 24 and 25, 2004 with the exception of TW12-2. The boring advanced in this location hit bedrock prior to reaching the water table, so the hole was abandoned. Groundwater samples were collected from the eight temporary wells and the samples were analyzed for VOCs. The VOC results from Phase I, which will be discussed in detail in **Section 3**, indicated that the elevated TCE concentration detected in MW12-37 during the RI was relatively localized. Therefore, five additional wells, rather than the originally projected six, were located between the buildings and the Phase I locations in an effort to determine the boundary of any plume, if one existed. The five Phase II temporary wells were installed on June

9 and 10, 2004. The locations of the 13 temporary wells installed during the SRI are shown in **Figure 2-3**.

The temporary monitoring wells were installed according to the monitoring well installation procedures outlined in the Field Sampling and Analysis Plan of the *Generic RI/FS Workplan* (Parsons, 1995), with the exception that the temporary wells were not finished with bollards, casings, or concrete collars. All soil boring points were advanced to auger refusal, which was taken to represent the depth to bedrock. Monitoring wells were then established in the completed borings using 2" PVC with a maximum screen length of ten feet. The completion report for each of the wells is contained in **Appendix A**. Groundwater elevation data are presented in **Table 2-2** and **Figure 2-3**. The groundwater flow direction in the areas around Buildings 813/814 is generally to the northwest. In the areas immediately adjacent to the buildings, the groundwater flow direction may be closely related to the local topography and geological conditions.

In June 2005, temporary wells TW12-1, TW12-4, TW12-5, TW12-7, TW12-8, TW12-22, TW12-23, TW12-25, and TW12-26 were abandoned in accordance with the Generic RI/FS Workplan (Parsons, 1995), NYSDEC Well Abandonment Protocols, and the Supplemental RI Workplan. TW12-6 along with MW12-37 was removed during test pit operations. TW12-3, TW12-9, and TW12-24 remain at the site along with MW12-38, MW12-39, and MW12-40.

2.2.1.2 Groundwater Sampling

Groundwater samples were collected from each of the temporary monitoring wells installed during the SRI. As stated in **Section 2.2.1.1**, the sampling of these wells took place in two phases to ensure that any VOC plumes were accurately defined. Phase I samples were collected from the first eight temporary wells installed and were analyzed for VOCs. The results of this analysis were used to position the five Phase II temporary wells, which were also sampled following installation. In order to confirm the TCE concentrations observed during the original RI, permanent wells MW12-37 and MW12-40 were re-sampled during Phase II of the SRI. The Phase II samples were analyzed for VOCs.

Unless otherwise specified, all temporary well and permanent well samples were collected in accordance with the procedures specified in the USEPA Region II (1998) Standard Operating Procedure (SOP) titled *Groundwater Sampling Procedure*, *Low Flow Pump Purging and Sampling*. In general, each well was purged and sampled using a bladder pump. Samples were collected only after water quality indicator parameters including turbidity, temperature, specific conductivity, pH, dissolved oxygen content (DO), and oxidation-reduction potential (ORP) stabilized in the well (i.e. were constant for three consecutive readings). As the water volume in TW12-9 was not sufficient for low-flow sampling, a bailer was used for sampling at TW12-9. All samples were collected when the turbidity reading was below 50 Nephelometric Turbidity Units (NTUs) with the exception of the samples collected from TW12-1, -5, -6, -8, and -26. The groundwater sampling records are contained in **Appendix B**.

Based on the fact that groundwater results from three wells (TW12-24, TW12-9, and TW12-3) installed during the SRI within 45 feet of MW12-37 showed no detections of VOCs, it was concluded that the groundwater impacts at MW12-37 were isolated. A final, post-excavation groundwater sampling round was not performed since there were no exceedances of TCE in the groundwater except for MW12-37 and this well, in addition to the soils surrounding it, were removed during the SRI.

2.2.1.3 Sample Analysis

Groundwater samples were submitted to Chemtech located in Mountainside, New Jersey. The laboratory is certified by New York State's Contract Laboratory Program (CLP), Analytical Services Protocol (administered by New York State Department of Health (NYSDOH) and the US Army Corp of Engineers (USACE), Hazardous, Toxic, and Radioactive Waste (HTRW) Center of Expertise (i.e., former Missouri River Division) for CLP VOC analysis. Certifications for CLP VOC analyses were provided in **Appendix F**. Organic compounds characterized during this investigation focused on compounds listed on the CLP Target Compound List (TCL). Additionally, attempts were made to identify and quantify the 10 volatile tentatively identified compounds (TICs) of greatest concentrations, in accordance with the NYSDEC Analytical Services Protocol (ASP). A field duplicate sample, a rinsate blank, and a Matrix Spike/Matrix Spike Duplicate (MS/MSD) sample were collected during each phase of sampling and were submitted to the laboratory with the rest of the groundwater samples and a trip blank supplied by the laboratory for quality control (QC) purposes. A detailed discussion of the groundwater results is contained in **Section 3**.

2.2.2 Surface Water/Ditch Soil Investigation

Seven surface water/ditch soil samples were collected on June 24, 2004 from the drainage ditch adjacent to Buildings 813 and 814. SW/SD 12-69, re-examined RI sample location SW/SD12-30, which showed a 1 µg/L concentration of TCE during the RI. Three sample locations, SW/SD 12-70, -71, and -74, were to the north of SW/SD 12-69 at an approximate 100-foot interval to assess whether or not VOCs were discharging to the surface water. SW/SD 12-72 and 73 were both to the northwest of the elevated TCE detection at MW12-37 to determine if TCE was migrating downgradient from that location via the ditches rather than through groundwater. Finally, SW/SD 12-68 was collected south of SW/SD12-69 to ensure that VOCs were not migrating in the suspected upgradient direction via the surface water in the ditch. **Figure 2-3** shows the locations of the collected surface water/ditch soil samples.

The surface water samples and ditch soil samples were collected according to the sampling methods outlined in the Field Sampling and Analysis Plan of the *Generic RI/FS Workplan* (Parsons, 1995). Both the surface water and ditch soil samples were submitted to Chemtech for VOC analysis by Method 8260B, and the ditch soil samples were also analyzed for total organic carbon (TOC) by USEPA Method 9060. As with the groundwater samples, a full set of QC samples was collected and submitted to the laboratory for both the surface water and ditch soil samples. The surface water/ditch

soil sampling records are contained in **Appendix B**, and detailed discussion of the results is contained in **Section 3**.

2.2.3 TCE Source Investigation

2.2.3.1 Phase I Test Pitting - November 3, 2004

The results obtained from the groundwater and surface water/ditch soil sampling operations performed during the SRI indicated that the TCE plume detected in MW12-37 was localized. However, TCE continued to be detected in groundwater at MW12-37 as it had been in 1999. Based on the continued presence of elevated TCE concentrations in this location, the Army proposed a test pit investigation to determine if there was a subsurface point source for the TCE, such as buried debris associated with the painting operations in the buildings. Representatives from the US Environmental Protection Agency (USEPA) and New York State Department of Environmental Conservation (NYSDEC) concurred with the plan for a test pit investigation during a conference call on July 6, 2004.

Test pit excavation and test pit sample collection were conducted in accordance with the test pitting techniques outlined in the Field Sampling and Analysis Plan of the *Generic RI/FS Workplan* (Parsons, 1995).

On November 3, 2004, approximately 20 cubic yards of soil were removed from the area immediately surrounding MW12-37. Three soil samples, TP813-1T, TP813-2T, and TP813-3T, were collected from the south, north, and east sides of the pit, respectively. The "T" suffix signifies a temporary sample location that was removed in a later phase of excavation; an "F" suffix signifies locations remaining after the final phase of the investigation. One stockpile sample, SP813-1, was collected on November 3 from the stockpile of excavated soil, which had been staged immediately adjacent to the pit. This stockpile was re-sampled (SP813-3) on November 10 and moved prior to the initiation of Phase II of the investigation. The locations of the test pit samples and the final location of the stockpiles are shown in **Figure 2-4**.

Photos of the excavation can be found in **Appendix G**. The test pit and stockpile soil samples were submitted to Chemtech (Mountainside, New Jersey) and Columbia Analytical Services (Rochester, New York) for CLP VOC analysis. A detailed discussion of the test pit sample results and stockpile sample results is contained in **Section 3**.

2.2.3.2 Phase II Test Pitting - November 10 and 11, 2004

TCE concentrations exceeding the TAGM limit were detected in all three of the sidewall samples collected on November 3, 2004. As a result, the Army decided to expand the scope of the test pit investigation in an attempt to determine the location of the TCE source. The test pit was expanded by approximately 160 cubic yards on November 10 and 11, 2004. During test pitting activities, a flame ionization detector (FID) was used as field screen for VOC concentrations.

The pit was excavated to bedrock depth, and the only notable object discovered were a piece of rusting metal debris and an abandoned 6-inch clay sewer pipe along with clay pipe fragments. Metal debris was found near the northern limit of the Phase II test pit, approximately 22 feet from the Northeastern corner of the buildings. Soils were not discolored near this debris nor were there any elevated FID readings. One sample, TP813-4F, was collected from the soil immediately surrounding the debris. The 6-inch clay sewer pipe appeared to run north from the building and was approximately 1 foot to the west of the former MW12-37, which was removed during the Phase I excavation. The pipe appeared to be empty, and no visible contamination was sighted in the soil removed from the hole. There were no elevated readings detected by the FID in the area where the pipe was found. No as-built records showing existing sewer lines were available for this building; and it is not known when this sewer line was in service. Additionally, stained soils were observed in the weathered shale in the southern portion of the test pit near the east side of the building. Two samples, TP813-7T and TP813-8T, were collected from the area of the stained shale. Three more samples were collected from the eastern (TP813-5F), northern (TP813-6F), and western (TP813-9T) sides of the pit to determine if a source could still be present in those directions. No samples were collected from the base of the test pit, as it extended down to competent bedrock.

The soil removed during the Phase II excavation was stockpiled in the same area as the material removed during Phase I while the piles from the two Phases were kept separate. An effort was made to segregate soil from differing areas of the pit itself, with the stained shale and the soil containing metal debris separated from the soil that was not visually impacted. **Figure 2-4** illustrates how the material was grouped in the stockpile area. Samples were collected from the stockpiled material on December 9 to determine which, if any, of the material could be used to refill the excavation when it was completed. Samples SP813-3 through SP813-7 were collected from the stockpiles on December 9, with each collected from a pile that was deemed to be representative of a set of piles exhibiting relatively similar properties. At least one sample was collected for every 50 cubic yards of soil in the stockpile area.

Photos of the excavation can be found in **Appendix G**. The test pit soil samples and stockpile samples collected during the second phase of investigation were submitted to Columbia Analytical Services (CAS) located in Rochester, New York for VOC analyses using the USEPA SW-846 8260B. Some samples were also analyzed for TOC using the USEPA approved Lloyd Kahn analytical method. A detailed discussion of the test pit sample results and stockpile sample results is contained in **Section 3**.

2.2.3.3 Phase III Test Pitting - December 20 - 22, 2004

The VOC results from the second phase of investigation indicated that the northern and eastern bank wall samples were below the NYSDEC TAGM levels for TCE and other VOC analytes. However, the TCE levels in the samples collected from the southern wall and western wall exceeded the TAGM value. The Army decided to extend the test pit to the south and west in a further attempt to determine the extent of the TCE impacted soil.

Phase III of the investigation was conducted on December 20 and 21, 2004. An additional 50 cubic yards of soil was removed from the southern and western ends of the existing test pit during the Phase III test pitting. The southeastern side of the pit was extended to TW12-24, which contained no detectable VOCs in groundwater during the groundwater investigation. Following the extension of the excavation to TW12-24, no further evidence of any stained soil was observed in the shale at the base or side of the pit. A 4-inch ductile iron (DI) pipe was found during the excavation near the 4inch DI end within the foundation. No definitive bedding was found in the area of the pipes. The invert of the pipe was found approximately 4 to 5 feet bgs. and the excavation was taken down to native bedrock (approximately 7 feet bgs.). To preserve the structural integrity of the building, the southwestern side of the test pit was extended only to the northern edge of the building. Finally, the western side was extended approximately 15 feet to halfway between the eastern and western sides of the building. This extension was based on the location of TW12-6, which was approximately 30 feet west of MW12-37. No VOCs were detected in groundwater from TW12-6, indicating that TCE was not present in the soils at concentrations contributing to groundwater contamination in this area. Three samples, TP813-10F through TP813-12F, were collected from beneath the edge of the building, with TP813-11F collected from the eastern side where the stained soils were originally observed. A pair of sidewall samples (TP813-13F and its field duplicate) was collected from the western wall of the pit near the excavation bottom (i.e., 3-4 ft bgs. vs. 5 ft bgs.), and one stockpile sample, SP813-8, was collected from the area of the stockpiled Phase III soil exhibiting the highest Photoionization Detector (PID) readings.

The test pit soil samples and stockpile soil samples collected during the third phase of investigation were submitted to Columbia Analytical Services in Rochester, New York for VOC analyses using the USEPA SW-846 8260B. A detailed discussion of the test pit sample results and stockpile sample results is contained in **Section 3**.

The test pit was backfilled on December 21 and 22 using soil removed during the first two phases of the investigation. Only those piles that were determined to be below TAGMs based on the results of the stockpile samples were used in backfilling. These included the Phase I soil and the Phase II soils that were not visibly impacted. The visibly impacted Phase II stockpiles and the stockpiles of soil removed during the third phase of test pitting were sampled again in 2005 and 2006 and are currently remain at the site. **Figure 2-5** is an as-built diagram of the final pit. The test pit logs for the final excavation boundaries are included in **Appendix C**. Photos of the excavation can be found in **Appendix G**.

2.2.3.4 Soil Sampling and Analysis

The soil samples were collected from the pit according to the methods outlined in the Field Sampling and Analysis Plan of the *Generic RI/FS Workplan* (Parsons, 1995). Both the samples collected in the excavation and the stockpile samples were grab samples. Grab samples, rather than composite samples, were collected from the stockpiles due to the risk of volatilizing VOCs in the soil during the

mixing of a composite from more than one pile. Each of the stockpile samples was judged to be representative of the material removed from the same area in the excavation. All of the soil samples were analyzed for VOCs by Method 8260B, and one set of QC samples was collected and submitted to the laboratory for each sampling event. Some Phase II soil samples were also analyzed for TOC using the USEPA approved Lloyd Kahn analytical method. A detailed discussion of the test pit and stockpile soil sample results is contained in **Section 3**.

2.3 EM-5 SOIL INVESTIGATION

2.3.1 Surface and Subsurface Soil Sampling

Due to the elevated levels of Pb-210 detected at EM-5, soil re-sampling and re-analyzing was conducted for this area to verify the results of the RI investigation. The SRI sampling locations were selected from existing sample locations based on the highest detections of Pb-210 during the RI. One modification was made to the sampling plan proposed in the SRI Workplan; the subsurface sample to be collected at MW12-23 was replaced by a subsurface sample collected at TP12-15A, as further review of the RI data indicated that the Pb-210 concentration in this location had been higher than the one seen at MW12-23. Eight surface soil and two subsurface soil samples were collected from ten locations on June 24, 2004 (**Figure 2-6**). The soil samples were collected according to the sampling methods outlined in the Field Sampling and Analysis Plan of the *Generic RI/FS Workplan* (Parsons, 1995). All samples were collected using a hand driven split-spoon. If necessary, a hand auger was used to remove material above the sample depth at the subsurface locations. The soil sampling records are contained in **Appendix B**.

2.3.2 Sample Analysis

All samples were analyzed for Ra-226 (the parent of Pb-210) and its daughter products by General Engineering Laboratories (GEL) located in Charleston, South Carolina using a Modified DOE EML HASL-300 Method. NYSDEC had requested the use of this method to verify the RI results and minimize the uncertainty of the RI results. GEL's Standard Operating Procedures for the Determination of Gamma Isotopes (Modified DOE EML HASL-300) is included as **Appendix D**. One set of quality assurance/quality control (QA/QC) samples was collected (MS/MSD and field duplicate samples were collected from surface soil location SS12-107) and submitted to the laboratory with the rest of the samples. The results of Ra-226 and its daughter products in soil are contained in **Section 3**.

2.4 SITE SURVEY

A surveyor, licensed by the State of New York, was contracted to determine the locations of all temporary wells installed during this program as well as the locations of the surface water/ditch soil samples. Site surveys were performed in accordance with good land surveying practices and conformed to all pertinent state, federal, and USACE laws and regulations governing land surveying.

The procedures are outlined in Section 3.13.1 of the Field Sampling and Analysis Plan of the *Generic RI/FS Workplan* (Parsons, 1995).

2.5 DATA VALIDATION

Validation of soil, groundwater, surface water, and ditch soil analytical data was performed in a manner that is generally consistent with procedures defined in the Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999), Region 2 Resource Conservation and Recovery Act and Comprehensive Environmental Responsibility, Compensation, and Liability Act Data Validation Standard Operating Procedures, and NYSDEC (2000) Contract Laboratory Program ASP, with consideration for the methodology requirements and the Final Workplan for the Supplemental Remedial Investigations at the Radioactive Waste Burial Sites (SEAD-12; Parsons, 2004).

The data validation included performance of a completeness audit and a review of the following parameters, where applicable: holding times, sample preservations, percentage of solids, quality control results of equipment/rinsate blanks, trip blanks, method blanks, matrix spike /matrix spike duplicate analyses, laboratory control sample performances, laboratory and field duplicates, surrogate recoveries, instrument performance and calibration, chromatograms and mass spectrums, internal standard recovery, and reporting limits. In performing the data validation, the raw data were spotchecked in accordance with the Region II SOP to evaluate whether there was any transcription error.

3 RESULTS

3.1 GROUNDWATER RESULTS

A total of 15 temporary and permanent monitoring wells were sampled during the Supplemental Remedial Investigation and analyzed for VOCs. The detections observed in the groundwater VOC analysis are summarized in **Table 3-1** and shown in **Figure 3-1**. A complete record of the analytical results is presented in **Appendix E**. As shown in **Table 3-1**, there were no exceedances of NYSDEC Class GA Groundwater Standards in the samples collected from the Phase I temporary wells, TW12-1 and TW12-3 through TW12-9. The only detections in the Phase I wells were for trichloroethene and acetone. TCE was detected in wells TW12-1 and TW12-3 at concentrations of 4.1 μ g/L (J) and 4.2 μ g/L (J), respectively. Both of these concentrations are below the NYSDEC Class GA Standard for TCE (i.e., 5 μ g/L). Acetone was detected at a concentration of 47 μ g/L (J) at TW12-9 and a concentration of 51 μ g/L at TW12-4. There is no NYSDEC GA Standard for acetone, but these two detections were near the NYSDEC GA guidance value of 50 μ g/L. No volatile TICs were identified in any groundwater samples collected in 2004.

Some nondetects were reported with their reporting limits above the NYSDEC GA Standards. To further evaluate whether or not the nondetects in groundwater were consistent with the NYSDEC GA Standards, the Method Detection Limits (MDLs) associated with the samples were evaluated. Whether an analyte was reported as a detect or as a nondect was based on the fact whether or not the concentration was above the laboratory MDL. However, a nondetect (i.e., an analyte with concentration below the MDL) would be reported using the reporting limit (RL) versus the MDL due to the fact that the reporting limit was considered the lowest concentration that could be accurately measured, as opposed to just detected. As a result, the MDLs were lower than the RLs. For example, the reporting limit for TCE is $10~\mu g/L$ for the groundwater samples collected during the SRI while the MDL for TCE was $0.50~\mu g/L$, much lower than the NYSDEC GA Standard of $5~\mu g/L$ for TCE.

All values less than the MDLs were reported as U (Undetected) by the laboratory and all values between the MDL and RL were reported as J (estimated). The nondetects, although reported with the respective RLs, were actually not detected above the laboratory MDLs. As the MDLs (0.50 μ g/L for all target analytes in the groundwater samples) were below the NYSDEC Class GA Standards for all analytes with few exceptions (i.e., cis-1,3-Dichloropropene, trans-1,3-Dichloropropene, 1,2-Dibromoethane, and 1,2-Dibromo-3-chloropropane), the groundwater nondetect results generally demonstrated compliance with the NYSDEC GA Standards. The MDLs for the groundwater samples are presented in **Appendix F**.

Because there was no significant detection of TCE in the first round results, the Phase II temporary wells were generally positioned between Buildings 813/814 and the Phase I well locations. The five Phase II wells installed, TW12-22 through TW12-26, were positioned to better define the area adjacent to MW12-37, the only well containing a TCE exceedance in the RI samples, and the area

adjacent to the TCE detection at TW12-1. Two permanent wells, MW12-37 and MW12-40, were also sampled with the Phase II temporary wells. The only detections observed during the Phase II groundwater investigation were for TCE and cis-1,2-dichloroethene (cis-1,2,-DCE) in MW12-37. Both detections exceeded the Class GA Standards, with TCE detected at a concentration of 2,400 μ g/L and cis-1,2-DCE at a concentration of 41 μ g/L. The Phase II groundwater investigation results indicated that the TCE observed during the RI was still present but was localized to the area in adjacent to MW12-37.

Temporary monitoring wells were installed during the SRI in areas where high VOC concentrations were observed in the soil gas during the RI, as well as between MW12-37 and MW12-40 (the two wells where TCE was detected during the RI). Soil gas investigations were generally conducted to assist in the planning of additional investigations. Therefore, an elevated VOC concentration in soil gas does not necessarily indicate an elevated VOC concentration in the groundwater at that point. Soil gas originating from groundwater will follow preferential paths within the matrix toward an accumulation or exit point. Some correlation between soil gas and groundwater impacts were found during the RI. Soil gas results near the northeastern portion of the building led to the installation of MW12-37 during the RI where groundwater impacts were found. Soil gas readings in other locations further investigated during the SRI were not indicative of groundwater impacts at those points. In summary, the RI and SRI groundwater results indicate that the impacts to groundwater have been limited and localized to area adjacent to MW12-37.

Although bedrock wells were not installed during the SRI, based on the following facts observed at the site, it is concluded that groundwater contamination does not extend into the competent bedrock at the site:

- Although TCE in the pure phase has a greater density than water, groundwater with dissolved TCE at the ppm levels should be neutrally buoyant and will not sink. This fact is supported by a paper titled "Downward Solute Plume Migration: Assessment, Significance, and Implications for Characterization and Implications for Characterization and Monitoring of "Diving Plumes" (API Soil and Groundwater Technical Task Force, 2006).
- A bedrock well (MW12-815) exists approximately 300 ft southwest of MW12-37. Two rounds of samples were collected in April and December 1999, respectively from deep water (i.e., 20 ft bgs.) at MW12-815. No VOCs, SVOCs, pesticides, or PCBs were detected in either round except that toluene was detected in one round at 3.1 μg/L (below the GA Standard of 5 μg/L) and benzo(g,h,i)perylene was detected in one round at 0.052 μg/L (below the reporting limit of 1 μg/L). Several metals were detected in the samples collected from MW12-815 but all metal concentrations were below the GA Standards except that iron concentration detected in one round was slightly above the GA Standard (355 μg/L vs. 300 μg/L) but was considered consistent with Seneca background (a maximum concentration of 69,400 μg/L was observed in the Seneca background data set).

- Excavation of soil was extended to competent bedrock. That is, contamination in weathered bedrock, if any, would have been excavated during the SRI.
- The competent bedrock at SEDA generally has very low yield. There has been no connection found at SEDA between contaminant concentrations in the overburden and competent bedrock.

3.2 SURFACE WATER AND DITCH SOIL SAMPLE RESULTS

Seven surface water and ditch soil locations were investigated in the drainage ditch near Buildings 813/814. The surface water and ditch soil samples were co-located and shared location IDs with the exception of the SW or SD prefix. As with the groundwater samples collected, the surface water and ditch soil samples were analyzed for VOCs. The surface water results are shown in **Figure 3-1**, and the ditch soil detections are summarized in **Table 3-2** and shown in **Figure 3-1**. A complete record of surface water and ditch soil analytical results is presented in **Appendix E**. There were no detections of VOCs in the surface water samples; and two analytes, toluene and acetone, were detected in the ditch soil samples. Toluene was detected in samples SD12-68, -69, -71, and -72; and acetone was detected in samples SD12-68 and -70. The toluene detections were all well below the NYSDEC TAGM 4046 value of 1,500 μ g/Kg. The highest toluene concentration observed in the samples was 7.4 μ g/Kg. The two acetone detections were 110 μ g/Kg at SD12-70 and 72 μ g/Kg at SD12-68; both are below the TAGM limit of 200 μ g/Kg.

3.3 SOIL RESULTS

3.3.1 TCE Source Investigation

3.3.1.1 Phase I Test Pitting- November 3, 2004

Three samples and a duplicate were collected from the north, east, and south sidewalls of the initial test pit excavated north of Building 813. All four samples were analyzed for VOCs, and all four contained concentrations of TCE that exceeded the NYSDEC TAGM value; the TCE results are shown in **Figure 3-2**. The highest TCE concentration was 65,000 μ g/Kg in the field duplicate sample for location TP813-3T, which was on the east side of the test pit. The concentration in sample TP813-3T was comparable to this at 60,000 μ g/Kg. The TCE concentrations in TP813-1T (south sidewall) and TP813-2T (north sidewall) were not as high as those on the east side, with concentrations of 11,000 μ g/Kg and 7,000 μ g/Kg, respectively. However, both of these concentrations were at least 10 times the TAGM value of 700 μ g/Kg. A number of other VOCs were also detected in the four test pit samples, but none of these detected VOC concentrations exceeded the TAGM values and the concentrations detected were approximately 1,000 times lower than those for TCE.

3.3.1.2 Phase II Test Pitting - November 10 and 11, 2004

Following the detection of elevated levels of TCE in the sidewalls of the test pit, the pit was expanded to determine if the TCE source material was located outside of the area investigated on November 3, 2004. Six more sidewall samples were collected following the enlargement of the test pit to determine the potential location of a source. TP813-4F was collected from the area immediately beneath rusted metal debris that had been discovered and removed during the exploration activities, and TP813-5F, TP813-6F, TP813-7T, -8T, and -9T were collected from the sidewalls of the pit.

No TCE was detected in TP813-4F, the sample collected under the rusted debris, suggesting that the debris was not associated with a source of TCE in the subsurface. All of the samples collected from the sidewalls contained detectable concentrations of TCE, with concentrations above the TAGM values in three of the five samples, TP813-7T, -8T, and -9T. The three TCE exceedances were between 1,000 and 1,400 µg/Kg. TP813-7T and TP813-8T had been collected near visually stained soils. The two detections not exceeding the TAGM were 160 µg/Kg (J) at TP813-5F and 590 µg/Kg at TP813-6F. The two locations with TCE concentrations below the TAGM were immediately adjacent to the drainage ditch on the northern and eastern sides of the pit. These data, in conjunction with the surface water and ditch soil data that indicated no TCE was present, suggested that source material would not be present further out in these directions (i.e. towards the ditch). No further investigation was planned to the east or north of the November 11 pit boundaries. The exceedances on the west and south sides of the test pit indicated that a source could be present in either of those directions, and a Phase II exploration was conducted. The only analytes other than TCE detected in the soil samples were toluene at a concentration of 100 µg/Kg in sample TP813-6F and cis-1,2,-DCE at a concentration of 2,800 µg/Kg in sample TP813-7T.

3.3.1.3 Phase III Test Pitting - December 20 - 22, 2004

The final phase of source investigation, Phase III, extended the walls of the pit further to the south, southeast, and west based on sample results from TP813-7T, TP813-8T, and TP813-9T. Four more sidewall samples and a field duplicate were collected following the completion of this phase of investigation. VOC analysis of these samples indicated that two of the four contained TCE concentrations exceeding the TAGM values. The higher of the two exceedances, 4,800 μ g/Kg (J), was detected in sample TP813-10F. This sample was collected immediately beneath the northern footer of Building 813, underneath the outlet of an abandoned 4-inch DI pipe exiting the building. This pipe had extended farther to the north, but all of the pipe past the northern wall of the building was removed during test pitting activities. The other TCE exceedance was detected in TP813-12F at a concentration of 1,000 μ g/Kg (J). This sample was collected approximately 10 feet west of TP813-10F. TP813-11F, collected underneath the eastern footer of the building near the location of stained soils that had been removed, contained 11 μ g/Kg of TCE, a concentration well below the TAGM. The analytical results for TP813-13F and its field duplicate collected from the western side of the test

pit showed a concentration of 1.3 μ g/Kg (J) and a non-detect with a sample quantitation limit (SQL) of 4.5 μ g/Kg, respectively. The detected concentration was well below the TAGM.

Of the non-TCE compounds, acetone was detected at the highest concentration of 32 μ g/Kg. None of the non-TCE VOCs exceeded any of the established TAGMs. A list of the VOCs detected in the excavation is summarized in **Table 3-3**, and a complete record of the test pit results is contained in **Appendix E**.

The limit of the TCE source (i.e. where the TCE in soil was less than the NYSDEC TAGM) had been identified in all directions except at the northern boundary of Building 813. Due to the impracticality of excavating further beneath the footer of the building, no additional investigation was pursued. Test pit activities ceased after discussions among the Army, NYSDEC, and USEPA at the BRAC Closure Team (BCT) meeting on January 18, 2005.

3.3.2 Stockpiles

A total of eight soil samples (SP813-1 through SP813-8) and a field duplicate (field duplicate of SP813-3) were collected from stockpiled soils during the SRI. A list of the VOCs detected in the stockpiles is summarized in **Table 3-4**, and a complete record of the stockpile sample results is contained in **Appendix E**. **Figure 3-3** shows the locations of the stockpile groups (i.e., Phase I, Phase II, Phase IIIA, and Phase IIIB) and the TCE concentrations of the stockpile samples. Stockpiled soil with TCE concentrations below the TAGM value was backfilled following the completion of the test pit investigation. Two stockpile samples, SP813-1 and SP813-2, are not shown in the figure. , SP813-1 was collected on November 3, 2004 from the Phase I soil when it was located immediately adjacent to the test pit; SP813-2 was collected on November 10, 2004 from the Phase II soil when it was located immediately adjacent to the test pit. The Phase I and Phase II soil was later moved to the location shown on the figure and sampled on December 9, 2004. The average TCE concentration detected on December 9 of the Phase I and visually unimpacted Phase II stockpile samples was below the NYSDEC TAGM value (588 μ g/Kg vs. 700 μ g/Kg); therefore, the soil within the Phase I and visually unimpacted Phase II stockpiles were backfilled on December 21 and 22, 2004.

Two grab samples were collected from the visually impacted Phase II stockpiles on December 9, 2004. The TCE concentrations in both samples were above the NYSDEC TAGM value of 700 μ g/Kg. The stockpiles were re-sampled on July 22, 2005 and three grab samples were collected at random grid locations within the stockpile. The TCE concentrations were all below the TAGM value of 700 μ g/Kg.

One grab sample was collected from the Phase IIIA stockpile on December 21, 2004 and the TCE concentration was $18,000 \,\mu\text{g/Kg}$. Phase IIIA stockpiles were re-sampled on July 22, 2005 and three grab samples were collected at random grid locations within the stockpile. An additional sample was

collected from this stockpile on November 28, 2005. The TCE concentrations detected in the 2005 samples were all below the TAGM value of $700 \mu g/Kg$.

Two samples were collected from the Phase IIIB stockpiles on July 22, 2005. One sample had a concentration that was below the TAGM for TCE. However, the other sample SP813-16 had TCE levels at 22,000 μ g/Kg. This location was staked in the stockpile and was re-sampled on February 14, 2006. In addition, three samples were collected at random grid locations at the same time. The average TCE concentration detected in the February 2006 sampling event was 229 μ g/Kg, below the NYSDEC TAGM value.

In brief, the stockpile results indicated that TCE was detected below action levels for the remaining stockpiles and that the soil could be backfilled.

3.3.3 EM-5

A total of 10 locations were sampled during the SRI and analyzed for Ra-226 and its daughter products using Modified DOE EML HASL 300 Method. Ra-226 is the parent of Pb-210, which was the only radiological contaminant of concern at EM-5 based on analysis performed during the original RI. The RI analysis used a Wilcoxon Rank Sum (WRS) Test to compare Depot-wide background radiological concentrations with the concentrations detected at EM-5. Prior to the background to site comparison, Derived Concentration Guideline Levels were developed for each isotope and added to each background data point. The DCGLs were developed according to procedures outlined in the Multi-Agency Radiation Survey and Site Investigation Manual (Department of Defense et al., 2000) using RESRAD version 5.82 and the NYSDEC TAGM-4003 total effective dose equivalent of 10 millirems per year. Using the WRS, Pb-210 was the only isotope detected that exceeded the background value adjusted using the DCGL calculated for a worker at EM-5. The Pb-210 DCGL for a worker at EM-5 was calculated to be 33.05 pico-curies/gram (pCi/g).

Pb-210 was not detected in any of the samples analyzed during the SRI, and the uncertainties and detection limits associated with the SRI analyses were much lower than those reported for the RI analyses. Therefore, there is no longer any reason to believe that Pb-210 concentrations exceed background values at EM-5. **Table 3-5** shows a comparison between the SRI Pb-210 results and the RI Pb-210 results for the same locations. A complete record of the radiological results is presented in **Appendix E**.

4 CONCLUSIONS AND RECOMMENDATIONS

The objective of the Supplemental Remedial Investigation (SRI) was twofold: 1) to investigate the VOC contamination detected in the groundwater in the vicinity of Buildings 813 and 814 during the Remedial Investigation; and 2) re-sample and re-analyze the elevated detections of Pb-210 in the soil at the EM-5 area. This section provides the conclusions and recommendations made with respect to each area.

4.1 CONCLUSIONS

4.1.1 VOC Contamination at Buildings 813/814

4.1.1.1 Groundwater

The first step in the SRI field program was the installation of 13 temporary monitoring wells. Groundwater from these wells and two existing permanent wells was collected and analyzed for VOCs to better define the location of a TCE plume identified during the RI. Only one exceedance of the NYSDEC Class GA Standard for TCE was observed in the groundwater samples, and this exceedance was in the same location as the exceedance observed during the RI (i.e., MW12-37). The cis-1,2-DCE concentration observed in MW12-37 was above the NYSDEC Class GA Standard (41 μ g/L vs. 5 μ g/L). No other VOCs were detected at concentrations above their respective Class GA Standards.

Based on the results of the groundwater investigation, a test pit investigation was performed in the area immediately surrounding MW12-37, the well containing the TCE and cis-1,2-DCE contaminated groundwater. The specific conclusions drawn from the test pit investigation will be discussed in **Section 4.3**, but the results suggested that the source soils in the area were located and partially removed during the investigation. As the TCE detected during the original RI did not migrate to any of the temporary wells installed during the SRI, it does not appear that any TCE remaining beneath the building will migrate significantly in the future.

4.1.1.2 Surface Water/Ditch Soil

No exceedances of the NYSDEC Class C surface water standards or TAGM 4046 soil levels were detected in either the surface water or the ditch soil samples collected in the drainage ditch adjacent to Buildings 813/814. Toluene and acetone were detected in the ditch soil samples, but the detections were all well below the TAGM values. It is not believed that there have been any significant releases of VOCs to the ditch, and the identification and removal of the TCE impacted soil at MW12-37 appreciably limits the likelihood that any VOCs will migrate to the ditch in the future.

4.1.1.3 Soil

A test pit was excavated in an attempt to determine the source of the TCE detected in the groundwater adjacent to Buildings 813/814. Approximately 230 cubic yards of soil were removed from the area surrounding MW12-37, the only well sampled that showed a TCE concentration exceeding groundwater standard. The test pit operation took place in three stages, with sidewall samples collected following the completion of each expansion of the pit. The samples were analyzed for VOCs to determine if the limits of the source had been reached or if it existed outside of the limits of the investigation. Exploration ceased on each side of the pit when the sample collected on that side exhibited TCE concentrations below the NYSDEC TAGM value of 700 μ g/Kg. The only exception was on the south side of the test pit, where further digging was prevented by the building. Two locations in this area still showed TCE concentrations that exceeded the TAGM, TP813-10F at 4,800 μ g/Kg and TP813-12F at 1,000 μ g/Kg (see **Figure 3-2**).

During the test pitting, soils associated with TCE concentrations of up to 65,000 µg/Kg (TP813-3T field duplicate) were removed immediately adjacent to the former location of MW12-37. An abandoned 6-inch clay sewer pipe and a 4-inch ductile iron pipe were found during the test pitting. The majority of the sewer pipe and all of the ductile iron pipe past the northern wall of the building were removed during the test pitting operation. TP813-12F, the sample showing the highest remaining TCE concentration was collected immediately beneath the clay pipe where it extended northward from beneath the footer of the building. While it is probable that the TCE impacted soils extend beneath Building 813, it is believed that the soil containing the highest TCE concentrations had been located and subsequently removed during the investigation. As the Army did not want to risk the structural integrity of the building, excavation ceased at the footer on both the northern and eastern sides of the building. Digging was halted on the southeastern side of the test pit due to the proximity to TW12-24, which did not contain any VOCs during the groundwater investigation. The open excavation was backfilled using approximately 100 cubic yards of stockpiled material that had been sampled, analyzed, and found to be below TAGMs for all VOC constituents.

4.1.2 EM-5 Soils

The Pb-210 results from the EM-5 area soil sample analyses performed during the original RI were elevated compared to background values for Pb-210. However, there was a large uncertainty associated with the laboratory results; and there were no known Army activities at this area that suggest the area was impacted. In order to address concerns that Pb-210 levels may be elevated in this area, the ten locations from the original RI with the highest Pb-210 concentrations or highest uncertainties were re-sampled during the SRI. The SRI samples were analyzed for Ra-226 and its daughter products, including Pb-210, using Modified DOE EML HASL-300 Method. The results of this analysis indicated that there were no detections of Pb-210 in the SRI samples. The uncertainties associated with each of the samples were much lower than those from the original RI.

4.2 **RECOMMENDATIONS**

The following is recommended at Buildings 813/814 and EM-5 based on the conclusions above. The recommendations for Buildings 813/814 were discussed with NYSDEC and USEPA at a BCT meeting held on January 18, 2005 and a BCT meeting held on June 20 and 21, 2006.

- No further action is recommended at Buildings 813/814. The SEAD-12 area is designated for Institutional Training use. The Institutional Training designation implies that personnel will be allowed in the area for limited time periods throughout the year; and use of Buildings 813/814 is not currently planned. Buildings 813/814 currently do not have electrical, water, or sewer service and are not inhabitable. An Environmental Easement will be utilized to place a restriction on Buildings 813/814 stating that an investigation of vapor intrusion potential and indoor air quality must be performed before this building, or any newly constructed building, is occupied. Appropriate mitigation actions will be taken based on this investigation prior to occupancy. It will be the responsibility of the future owner to perform such testing and implement any required mitigation prior to use.
- The Phase II and Phase IIIA stockpiles remaining on-site were re-sampled in July and November 2005. The Phase IIIB stockpiles were sampled in July 2005 and re-sampled in February 2006. Results indicated that the average TCE concentration was detected below the action level for each stockpile group and that the associated soil may be backfilled.
- No further action will be performed at EM-5.
- A Draft Feasibility Study was submitted for SEAD-12 in May, 2002 (Parsons, 2002b). The Army will proceed with the submittal of the Draft Final FS. Based on the results of the SRI, this FS will recommend no further action at Buildings 813/814 and EM-5; a deed restriction will be recommended as part of the institutional controls at Buildings 813/814; and the remainder of the Draft Final FS will focus on the remedial action at the Disposal Pit areas within SEAD-12.

Tables

Table 1-1 RI Soil Gas Survey Results SEAD-12 Supplemental RI Report Seneca Army Depot Activity Romulus, New York

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) (ppmv) 6 3 5 6 7 9 4 5 3 6 4 4 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 5 6 7 9 4 5 3 6 4
SG12-119 0 132 461 11 0 SG12-120 0 0 0 197 0 SG12-121 452 3 1708 21 0 SG12-122 0 0 0 250 14 SG12-123 0 116 0 170 0 SG12-124 0 0 0 0 0 SG12-125 0 0 0 0 0 SG12-126 0 146 0 250 141 SG12-127 0 0 0 396 82 SG12-128 0 0 0 0 0 SG12-129 0 0 1 0 0 SG12-130 0 0 6 12 0 SG12-131 0 0 55 123 0 SG12-132 0 0 55 123 0 SG12-133 0	5 6 7 9 4 5 3 6 4
SG12-120 0 0 0 197 0 SG12-121 452 3 1708 21 0 SG12-122 0 0 0 250 14 SG12-123 0 116 0 170 0 SG12-124 0 0 0 0 0 SG12-125 0 0 0 0 0 SG12-126 0 146 0 250 141 SG12-127 0 0 0 396 82 SG12-128 0 0 0 0 0 0 SG12-129 0 0 1 0 0 0 0 SG12-130 0 </td <td>6 7 9 4 5 3 6 4</td>	6 7 9 4 5 3 6 4
SG12-121 452 3 1708 21 0 SG12-122 0 0 0 250 14 SG12-123 0 116 0 170 0 SG12-124 0 0 0 0 0 SG12-125 0 0 0 0 0 SG12-126 0 146 0 250 141 SG12-127 0 0 0 396 82 SG12-128 0 0 0 0 0 SG12-129 0 0 1 0 0 SG12-130 0 0 6 12 0 SG12-131 0 0 0 174 0 SG12-132 0 0 55 123 0 SG12-133 0 4 0 0 0 SG12-134 0 0 89 190 0 SG12-135 0	7 9 4 5 3 6 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 4 5 3 6 4 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 5 3 6 4 4
SG12-124 0 0 0 0 0 SG12-125 0 0 0 0 0 SG12-126 0 146 0 250 141 SG12-127 0 0 0 396 82 SG12-128 0 0 0 0 0 0 SG12-129 0 0 1 0 0 0 0 SG12-130 0 0 6 12 0	5 3 6 4 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 6 4 4
SG12-126 0 146 0 250 141 SG12-127 0 0 0 396 82 SG12-128 0 0 0 0 0 SG12-129 0 0 1 0 0 SG12-130 0 0 6 12 0 SG12-131 0 0 0 174 0 SG12-132 0 0 55 123 0 SG12-133 0 4 0 0 0 SG12-134 0 0 89 190 0 SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-140 0 0 206 275 0 SG12-142 0<	6 4 4
SG12-127 0 0 0 396 82 SG12-128 0 0 0 0 0 SG12-129 0 0 1 0 0 SG12-130 0 0 6 12 0 SG12-131 0 0 0 174 0 SG12-132 0 0 55 123 0 SG12-133 0 4 0 0 0 SG12-134 0 0 89 190 0 SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0	4 4
SG12-128 0 0 0 0 SG12-129 0 0 1 0 0 SG12-130 0 0 6 12 0 SG12-131 0 0 0 174 0 SG12-132 0 0 55 123 0 SG12-133 0 4 0 0 0 SG12-134 0 0 89 190 0 SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-142 0 43 0 147 10	4
SG12-129 0 0 1 0 0 SG12-130 0 0 6 12 0 SG12-131 0 0 0 174 0 SG12-132 0 0 55 123 0 SG12-133 0 4 0 0 0 SG12-134 0 0 89 190 0 SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-142 0 43 0 147 10	
SG12-130 0 6 12 0 SG12-131 0 0 0 174 0 SG12-132 0 0 55 123 0 SG12-133 0 4 0 0 0 SG12-134 0 0 89 190 0 SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-142 0 43 0 147 10	2
SG12-131 0 0 0 174 0 SG12-132 0 0 55 123 0 SG12-133 0 4 0 0 0 SG12-134 0 0 89 190 0 SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	2
SG12-132 0 0 55 123 0 SG12-133 0 4 0 0 0 SG12-134 0 0 89 190 0 SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	10
SG12-133 0 4 0 0 0 SG12-134 0 0 89 190 0 SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	5
SG12-134 0 0 89 190 0 SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	5
SG12-135 0 0 97 0 0 SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	2
SG12-136 0 0 54 281 0 SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	10
SG12-137 0 0 146 217 351 SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	3
SG12-138 0 0 138 36 0 SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	4
SG12-139 0 0 414 125 0 SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	9
SG12-140 0 0 206 275 0 SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	2
SG12-141 0 0 191 1 0 SG12-142 0 43 0 147 10	5
SG12-142 0 43 0 147 10	4
	4
SG12-143 0 140 0 217 0	4
	6
SG12-144 4 0 39 94 0	4
SG12-145 0 118 0 48 0	5
SG12-146 0 0 0 0 0	4
SG12-147 119 82 2407 22 0	7
SG12-148 0 74 110 171 0	6
SG12-149 0 0 0 0 0	3
SG12-150 0 123 0 212 136	6
SG12-151 0 0 958 32 0	4
SG12-152 0 0 98 0 0	3
SG12-153 0 0 31 0 0	2
SG12-154 0 0 633 1 0	3
SG12-155 0 0 224 144 0	3
SG12-156 0 0 0 0 0	2
SG12-157 0 0 0 10 0	4
SG12-158 0 69 148 2 0	2
SG12-159 0 0 0 0 0	3
SG12-160 0 0 149 0	9
SG12-161 0 0 193 2 0	6
SG12-162 0 0 10 206 0	9
SG12-163 0 94 0 12 0	4
SG12-164 0 0 0 0 0	7
SG12-165 0 0 245 180 0	4
SG12-166 0 0 0 0 0	13
SG12-167 0 4 0 13 0	4
SG12-168 0 0 0 93 0	7
SG12-169 0 0 0 320 0	
SG12-170 0 0 0 0	28

Table 2-1 Well Placement Rationale - Existing and Proposed Monitoring Wells SEAD-12 Supplemental RI Report Seneca Army Depot Activity, Romulus, NY

Monitoring Well	Status	Rationale	
Loc ID			
		Existing Permanent or 1st Phase Temporary Wells	
MW12-37	existing	1,708 ppbv TCE concentration in soil gas sample SG12-121;	TCE
		concentration of 1,600 ug/L during two sampling events in the Remedial Investigation	
MW12-38	existing	8.5 ppmv total VOC concentration in soil gas sample SG12-122	
MW12-39	existing	6.0 ppmv total VOC concentration in soil gas sample SG12-148	
MW12-40	existing	Placed 300' downgradient of Bldg 813 and elevated TCE concentration at SG12-121	
TW12-1	proposed	633 ppbv TCE concentration in soil gas sample SG12-154	
TW12-2	proposed	5.5 ppmv total VOC and 471 ppbv BTEX concentrations in soil gas sample SG12-150	
TW12-3	proposed	2,407 ppbv concentration of TCE in soil gas sample SG12-147. Well will be installed if location is accessible.	
TW12-4	proposed	10.0 ppmv total VOC concentration in soil gas samples SG12-130 and SG12-134	
TW12-5	proposed	191 ppbv TCE concentration in soil gas sample SG12-141	
TW12-6	proposed	Suspected downgradient direction from Bldg 813 and elevated TCE concentration in MW12-40	
TW12-7	proposed	Suspected downgradient direction from Bldg 813 and elevated TCE concentration in MW12-40	
TW12-8	proposed	Suspected downgradient direction from Bldg 813 and elevated TCE concentration in MW12-40	
TW12-9	proposed	Suspected downgradient direction from Bldg 813 and elevated TCE concentration in MW12-40	
	•	2nd Phase Temporary Wells - 6 of 12 to be Installed	
TW12-10	proposed	Installation based on detections at TW12-3	
TW12-11	proposed	Installation based on detections at TW12-3	
TW12-12	proposed	Upgradient background location, which will be permanent.	
TW12-13	proposed	Installation based on detections at TW12-6 or TW12-9	
TW12-14	proposed	Installation based on detections at TW12-7	
TW12-15	proposed	Installation based on detections at TW12-7 or TW12-8	
TW12-16	proposed	Installation based on detections at TW12-8	
TW12-17	proposed	Installation based on detections at TW12-8 or TW12-9	
TW12-18	proposed	Installation based on detections at TW12-9	
TW12-19	proposed	Installation based on detections at TW12-5	
TW12-20	proposed	Installation based on detections at TW12-3	
TW12-21	proposed	Installation based on detections at TW12-1	

Table 2-2 Groundwater Elevation Data from the Building 813/814 Area SEAD-12

Supplemental RI Report Seneca Army Depot Activity, Romulus, NY

		Depth to Water						
		from TOC	Depth of Well			Ground		Elevation of
Loc_ID	Date	(ft)	from TOC (ft)	Easting	Northing		Elevation TOC	Groundwater
TW12-1	6/21/2004	6.80	13.55	744771.06	1013887.38	662.79	665.84	659.04
TW12-3	6/21/2004	6.67	12.75	744795.82	1013958.56	662.77	666.23	659.56
TW12-4	6/21/2004	6.05	11.75	744714.95	1014004.75	663.26	666.26	660.21
TW12-5	6/21/2004	8.37	13.65	744840.68	1014081.20	664.15	666.63	658.26
TW12-6	6/21/2004	7.30	13.05	744763.76	1014136.48	662.09	665.23	657.93
TW12-7	6/21/2004	7.45	12.10	744685.56	1014167.40	659.97	663.26	655.81
TW12-8	6/21/2004	7.65	12.40	744689.60	1014213.82	660.59	663.20	655.55
TW12-9	6/21/2004	7.67	12.80	744763.18	1014218.06	661.36	664.03	656.36
TW12-22	6/21/2004	5.25	25.20	744764.52	1013856.66	664.19	665.71	660.46
TW12-23	6/21/2004	5.37	25.20	744725.82	1013837.12	665.04	666.37	661.00
TW12-24	6/21/2004	8.60	13.01	744789.50	1014102.80	663.22	667.41	658.81
TW12-25	6/21/2004	6.92	14.80	744816.26	1014159.70	661.60	664.44	657.52
TW12-26	6/21/2004	8.30	13.90	744765.00	1014173.55	661.20	664.55	656.25
MW12-37	6/21/2004	7.15	13.90	744790.00	1014123.00	662.60	665.13	657.98
MW12-38	6/21/2004	4.25	10.55	744717.00	1014092.00	663.40	662.95	658.70
MW12-39	Fall 1999		10.28	744717.00				660.30
MW12-40	6/21/2004	8.55	13.30	744470.00	1014236.00	660.70	663.38	654.83

Notes:

- 1. Easting and northing data were from June 2004 survey results for all wells but MW12-40 and MW12-47, results of which were from SEAD-12 RI.
- 2. Top of Casing (TOC) elevation data were from June 2004 survey results for all wells but MW12-37, -38, -39, and -40, results of which were from SEAD-12RI.
- 3. Water depth data were from June 21, 2004 for all wells but MW12-39, result of which was from 1999.

Table 3-1 Building 813/814 Groundwater VOC Detections SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

														_
LOCATION ID									TW12-1		TW12-1 (D)		TW12-3	
MATRIX									GW		GW		GW	
SAMPLE ID									122275		122284		122277	
TOP OF SAMPLE									5.20		5.20		5.00	
BOTTOM OF SAMPLE									10.20		10.20		10.00	
SAMPLE DATE									5/26/2004		5/26/2004		6/11/2004	
QC CODE									SA		DU		SA	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	UJ	50	U	50	UJ
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	UJ	10	U	10	U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	4.0	J	4.1	J	4.2	J

LOCATION ID									TW12-22		TW12-23		TW12-23 (D)	
MATRIX									GW		GW		GW	
SAMPLE ID									122285		122286		122297	
TOP OF SAMPLE									13.50		13.30		13.30	
BOTTOM OF SAMPLE									23.50		23.30		23.30	
SAMPLE DATE									6/11/2004		6/10/2004		6/10/2004	
QC CODE									SA		SA		DU	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	U	50	U	50	U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	U	10	U	10	
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10	U	10	U	10	U

Table 3-1 Building 813/814 Groundwater VOC Detections SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TW12-4		TW12-5		TW12-6	
MATRIX									GW		GW		GW	
SAMPLE ID									122278		122279		122280	
TOP OF SAMPLE									3.75		8.70		5.00	
BOTTOM OF SAMPLE									8.75		13.70		10.00	
SAMPLE DATE									5/27/2004		5/27/2004		5/27/2004	
QC CODE									SA		SA		SA	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	51		50	U	50	U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	U	10	U	10	U
Trichloroethene	µg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10	U	10	U	10	U

		_												
LOCATION ID									TW12-24		TW12-25		TW12-26	
MATRIX									GW		GW		GW	
SAMPLE ID									122287		122288		122289	
TOP OF SAMPLE									8.10		7.30		5.90	
BOTTOM OF SAMPLE									13.10		12.30		8.90	
SAMPLE DATE									6/11/2004		6/11/2004		6/11/2004	
QC CODE									SA		SA		SA	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	U	50	U	50	U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	U	10	U	10	U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10	U	10	U	10	U

Table 3-1 Building 813/814 Groundwater VOC Detections SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TW12-7		TW12-8		TW12-9	
MATRIX									GW		GW		GW	
SAMPLE ID									122281		122282		122283	
TOP OF SAMPLE									7.10		5.00		4.90	
BOTTOM OF SAMPLE									12.10		10.00		9.90	
SAMPLE DATE									5/27/2004		5/27/2004		5/27/2004	
QC CODE									SA		SA		SA	
STUDY ID									SRI		SRI		SRI	
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	U	50	U	47	J
cis-1,2-Dichloroethene	µg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10	U	10	U	10	UJ
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10	U	10	U	10	UJ

LOCATION ID									MW12-37		MW12-40	
MATRIX									GW		GW	
SAMPLE ID									122291		122290	
TOP OF SAMPLE									7.53		8.30	
BOTTOM OF SAMPLE									12.43		13.30	
SAMPLE DATE									6/11/2004		6/11/2004	
QC CODE									SA		SA	
STUDY ID									SRI		SRI	
			Frequency			Number	Number	Number				
			of	Criteria	Action	of	of	of				
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)
Acetone	μg/L	51	12%			0	2	17	50	U	50	U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	41		10	U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	2400		10	U

Table 3-2 Building 813/814 Ditch Soil VOC Detections SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SD12-68	SD12-69		SD12-70		SD12-71	Т
MATRIX									DITCH SOIL	DITCH SOIL		DITCH SOIL	D	ITCH SOIL	_
SAMPLE ID									124250	124251		124252		124253	
TOP OF SAMPLE									0.00	0.00		0.00		0.00	
BOTTOM OF SAMPLE									0.20	0.20		0.20		0.20	
SAMPLE DATE									6/22/2004	6/22/2004		6/22/2004		6/22/2004	
QC CODE									SA	SA		SA		SA	
STUDY ID									SRI	SRI		SRI		SRI	
			Frequency			Number	Number	Number							
			of	Criteria	Action	of	of	of							
Parameter	Units	Maximum	Frequency	Type	Action Level	Exceed	Detect	Analyses	Value (Q) Value	(Q)	Value (Q)	Value	(Q)
Acetone	μg/Kg	110	25%	TAGM 4046	200	0	2	8	72 J	40	U	110 J		69	UJ
Toluene	μg/Kg	7.4	63%	TAGM 4046	1500	0	5	8	2.0 J	2.3	3 J	12 L	JJ	7.4	IJ
Total Organic Carbon	mg/Kg	31000	100%			0	8	8	31000 J	30000	J	11000 J		27000) J

LOCATION ID									SD12-72	SD12-72	D)	SD12-73		SD12-74	
MATRIX									DITCH SOIL	DITCH SO	OIL	DITCH SOIL		DITCH SOIL	
SAMPLE ID									124254	124257		124255		124256	
TOP OF SAMPLE									0.00	0.00		0.00		0.00	
BOTTOM OF SAMPLE									0.20	0.20		0.20		0.20	
SAMPLE DATE									6/22/2004	6/22/200	4	6/22/2004		6/22/2004	
QC CODE									SA	DU		SA		SA	
STUDY ID									SRI	SRI		SRI		SRI	
			Frequency			Number	Number	Number							
			of	Criteria	Action	of	of	of							
Parameter	Units	Maximum	Frequency	Type	Action Level	Exceed	Detect	Analyses	Value (Q) Va	ue (Q)	Value ((Q)	Value	(Q)
Acetone	μg/Kg	110	25%	TAGM 4046	200	0	2	8	48 l	J	61 UJ	60 l	UJ	62	UJ
Toluene	μg/Kg	7.4	63%	TAGM 4046	1500	0	5	8	7.2		5.7 J	12 l	UJ	12	UJ
Total Organic Carbon	mg/Kg	31000	100%			0	8	8	18000 .	220	00 J	29000	J	22000	J

Table 3-3 Building 813/814 Test Pit VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TP813-1T	TP813-2T	TP813-3T	TP813-3T (D)	TP813-4F	TP813-5F
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123682	123683	123684	123686	123688	123689
TOP OF SAMPLE									7	7	6	6	4	3
BOTTOM OF SAMPLE									7.5	7.5	6.5	6.5	5	4
SAMPLE DATE									11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/10/2004	11/10/2004
QC CODE									SA	SA	SA	DU	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (C
1,1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15	0.14 UJ	0.18 UJ	3.2 J	1.3 J	510 U	490 U
Acetone	μg/Kg	32	13%	TAGM 4046	200	0	2	15	4.9 U	6.1 UJ	450 U	5.1 U	2000 U	2000 U
Carbon Disulfide	μg/Kg	6.6	7%	TAGM 4046	2700	0	1	15	0.07 UJ	6.6 J	54 U	0.07 UJ	1000 U	980 U
Chloroform	μg/Kg	1.6	13%	TAGM 4046	300	0	2	15	0.16 UJ	0.19 UJ	1.6 J	0.16 U	510 U	490 U
cis-1,2-Dichloroethene	μg/Kg	2800	47%			0	7	15	13 J	19 J	21	9.1	510 U	490 U
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	1.5 UJ	1.9 UJ	390 U	1.5 U	1000 U	980 U
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	0.42 UJ	0.52 UJ	45 UJ	0.43 U	510 U	490 U
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15	0.17 UJ	0.21 UJ	53 U	0.18 U	510 U	490 U
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15	11000	7000	60000	65000	540 U	160 J
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15	0.15 UJ	0.19 UJ	37 U	0.16 U	510 U	490 U
Percent Solids	%	89.1	73%			0	11	15					85.5	84.3
Total Organic Carbon	mg/Kg	5420	13%			0	2	15						4120

LOCATION ID									TP813-9T	TP813-10F	TP813-11F	TP813-12F	TP813-13F	TP813-13F (D)
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123694	123701	123702	123703	123704	123705
TOP OF SAMPLE									5	4	3	2	3	3
BOTTOM OF SAMPLE									6	5	4	3	4	4
SAMPLE DATE									11/11/2004	12/21/2004	12/21/2004	12/21/2004	12/21/2004	12/21/2004
QC CODE									SA	SA	SA	SA	SA	DU
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value (Q)	Value (Q	Value (Q)	Value (Q)	Value (Q) Value
1,1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5
Acetone	μg/Kg	32	13%	TAGM 4046	200	0	2	15	1700 U	16 U	4.3 J	32	17 U	18
Carbon Disulfide	μg/Kg	6.6	7%	TAGM 4046	2700	0	1	15	860 U	8.1 U	3.2 U	9.9 U	8.6 U	9.1
Chloroform	μg/Kg	1.6	13%	TAGM 4046	300	0	2	15	430 U	4 U	1.6 U	1.4 J	4.3 U	4.5
cis-1,2-Dichloroethene	μg/Kg	2800	47%	TAGM 4046		0	7	15	430 U	4 U	1.5 J	4.9 J	4.3 U	4.5
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	860 U	8.1 UJ	3.2 UJ	4.5 J	8.6 UJ	9.1
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	430 U	3.2 J	1.6 U	4.9 U	4.3 U	4.5
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15	1400	4800 J	11	1000 J	1.3 J	4.5
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15	430 U	4 U	1.5 J	4.9 U	4.3 U	4.5
Percent Solids	%	89.1	73%			0	11	15	84	81	80.7	77.3	89.1	87.9
Total Organic Carbon	mg/Kg	5420	13%			n	2	15						

Table 3-3 Building 813/814 Test Pit VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TP813-6F		TP813-7T		TP813-8T	T
MATRIX									SOIL		SOIL		SOIL	
SAMPLE ID									123691		123692		123693	,
TOP OF SAMPLE									3		5		5	j
BOTTOM OF SAMPLE									4		6		6	j
SAMPLE DATE									11/10/2004		11/10/2004		11/11/2004	
QC CODE									SA		SA		SA	ı
STUDY ID									SRI		SRI		SRI	i
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(Q)	Value	(Q)	Value	; (Q)
1,1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15	390	U	440	U	590	U
Acetone	μg/Kg	32	13%	TAGM 4046	200	0	2	15	1600	U	1800	U	2300	U
Carbon Disulfide	μg/Kg	6.6	7%	TAGM 4046	2700	0	1	15	780	U	880	U	1200) U
Chloroform	μg/Kg	1.6	13%	TAGM 4046	300	0	2	15	390	U	440	U	590	U
cis-1,2-Dichloroethene	μg/Kg	2800	47%			0	7	15	390	U	2800		590) U
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	780	U	880	U	1200) U
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	390	U	440	U	590) U
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15	100	J	440	U	590	U
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15	590		1200		1100)
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15	390	U	440	U	590	U
Percent Solids	%	89.1	73%			0	11	15	84.4		86.7		85.2	2
Total Organic Carbon	mg/Kg	5420	13%			0	2	15	5420					

LOCATION ID								
MATRIX								
SAMPLE ID								
TOP OF SAMPLE								
BOTTOM OF SAMPLE								
SAMPLE DATE								
QC CODE								
STUDY ID								
			Frequency			Number	Number	Number
			of	Criteria	Action	of	of	of
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses
1,1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15
Acetone	μg/Kg	32	13%	TAGM 4046	200	0	2	15
Carbon Disulfide	μg/Kg	6.6	7%	TAGM 4046	2700	0	1	15
Chloroform	μg/Kg	1.6	13%	TAGM 4046	300	0	2	15
cis-1,2-Dichloroethene	μg/Kg	2800	47%	TAGM 4046		0	7	15
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15
•								
Percent Solids	%	89.1	73%			0	11	15
Total Organic Carbon	mg/Kg	5420	13%			0	2	15
-								

Table 3-4 Building 813/814 Stockpile VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SP813-1		SP813-2	SP813-3	SP813-3
MATRIX									SOIL		SOIL	SOIL	SOIL
SAMPLE ID									123685		123687	123695	123696
TOP OF SAMPLE									N/A		N/A	N/A	N/A
BOTTOM OF SAMPLE									N/A		N/A	N/A	N/A
SAMPLE DATE									11/3/2004		11/10/2004	12/9/2004	12/9/2004
QC CODE									SA		SA	SA	SA
STUDY ID									SRI		SRI	SRI	SRI
			Frequency			Number	Number	Number					
			of	Criteria	Action	of	of	of					
Parameter	Units	Maximum	Frequency	Type	ction Lev	Exceed	Detect	Analyses	Value	(Q)	Value (Q)	Value (Q)	Value (Q)
1,1-Dichloroethene	μg/Kg	0.65	6%	TAGM 4046	400	0	1	18	0.19	UJ	680 U	4.4 U	4.8 U
Acetone	μg/Kg	3.8	6%	TAGM 4046	200	0	1	18	6.4	UJ	2700 U	18 U	19 U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	2	18	0.09	UJ	1400 U	8.8 U	9.5 U
cis-1,2-Dichloroethene	μg/Kg	20	28%	TAGM 4046		0	5	18	3.3	J	680 U	2.4 J	2.6 J
Ethyl Benzene	μg/Kg	80	17%	TAGM 4046	5500	0	3	18	0.21	UJ	680 U	4.4 U	4.8 U
Meta/Para Xylene	μg/Kg	150	6%	TAGM 4046		0	1	18	0.44	UJ	680 U	4.4 U	4.8 U
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	2	18	0.59	UJ	950	4.4 U	4.8 U
Ortho Xylene	μg/Kg	42	11%	TAGM 4046		0	2	18	0.37	UJ	680 U	4.4 U	4.8 U
Tetrachloroethene	μg/Kg	1.7	6%	TAGM 4046	1400	0	1	18	0.55	UJ	680 U	4.4 U	4.8 U
Toluene	μg/Kg	210	6%	TAGM 4046	1500	0	1	18	0.22	UJ	680 U	4.4 U	4.8 U
trans-1,2-Dichloroethene	μg/Kg	1.3	6%	TAGM 4046	300	0	1	18	0.32	UJ	680 U	4.4 U	4.8 U
Trichloroethene	μg/Kg	28000	94%	TAGM 4046	700	7	17	18	28000		1500	3100	190
Vinyl Chloride	μg/Kg	7.4	6%	TAGM 4046	200	0	1	18	0.2	UJ	680 U	4.4 U	4.8 U

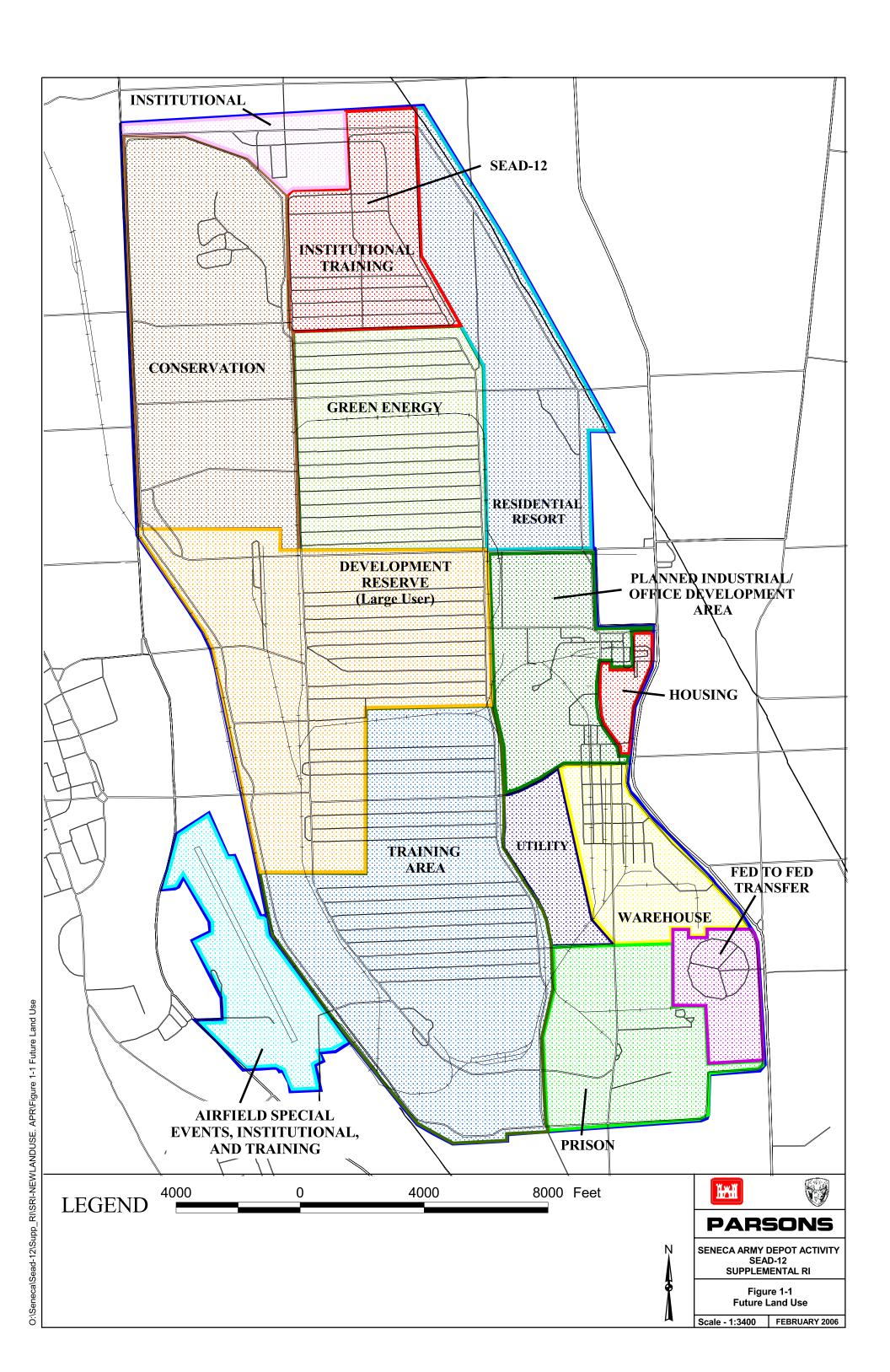
LOCATION ID									SP813-9	SP813-10	SP813-11	SP813-12
MATRIX									SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123659	123660	123661	123662
TOP OF SAMPLE									N/A	N/A	N/A	N/A
BOTTOM OF SAMPLE									N/A	N/A	N/A	N/A
SAMPLE DATE									7/22/2005	7/22/2005	7/22/2005	7/22/2005
QC CODE									SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number				
			of	Criteria	Action	of	of	of				
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances	Detections	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1-Dichloroethene	μg/Kg	0.65	6%	TAGM 4046	400	0	1	18	520 U	420 U	480 U	580 U
Acetone	μg/Kg	3.8	6%	TAGM 4046	200	0	1	18	340 U	1700 U	1900 U	2300 U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	2	18	1000 U	830 U	960 U	1200 U
cis-1,2-Dichloroethene	μg/Kg	20	28%	TAGM 4046		0	5	18	520 U	420 U	480 U	580 U
Ethyl Benzene	μg/Kg	80	17%	TAGM 4046	5500	0	3	18	33 J	80 J	480 U	580 U
Meta/Para Xylene	μg/Kg	150	6%	TAGM 4046		0	1	18	520 U	420 U	480 U	580 U
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	2	18	520 U	420 U	480 U	580 U
Ortho Xylene	μg/Kg	42	11%	TAGM 4046		0	2	18	520 U	31 J	480 U	580 U
Tetrachloroethene	μg/Kg	1.7	6%	TAGM 4046	1400	0	1	18	520 U	420 U	480 U	580 U
Toluene	μg/Kg	210	6%	TAGM 4046	1500	0	1	18	520 U	420 U	480 U	580 U
trans-1,2-Dichloroethene	μg/Kg	1.3	6%	TAGM 4046	300	0	1	18	520 U	420 U	480 U	580 U
Trichloroethene	μg/Kg	28000	94%	TAGM 4046	700	7	17	18	160 J	110 J	410 J	510 J
Vinyl Chloride	μg/Kg	7.4	6%	TAGM 4046	200	0	1	18	520 U	420 U	480 U	580 U

Table 3-4 Building 813/814 Stockpile VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SP813-4	SP813-5	SP813-6	SP813-7
MATRIX									SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123697	123698	123699	123700
TOP OF SAMPLE									N/A	N/A	N/A	N/A
BOTTOM OF SAMPLE									N/A	N/A	N/A	N/A
SAMPLE DATE									12/9/2004	12/9/2004	12/9/2004	12/9/2004
QC CODE									SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number				
			of	Criteria	Action	of	of	of				
Parameter	Units	Maximum	Frequency	Туре	ction Lev	Exceed	Detect	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1-Dichloroethene	μg/Kg	0.65	6%	TAGM 4046	400	0	1	18	4.8 U	4.2 U	5.2 U	390 U
Acetone	μg/Kg	3.8	6%	TAGM 4046	200	0	1	18	19 U	17 U	21 U	1500 U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	2	18	9.6 U	8.4 U	10 U	770 U
cis-1,2-Dichloroethene	μg/Kg	20	28%	TAGM 4046		0	5	18	1.7 J	4.2 U	5.4 U	390 U
Ethyl Benzene	μg/Kg	80	17%	TAGM 4046	5500	0	3	18	4.8 U	4.2 U	5.2 U	390 U
Meta/Para Xylene	μg/Kg	150	6%	TAGM 4046		0	1	18	4.8 U	4.2 U	5.2 U	390 U
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	2	18	4.8 U	4.2 U	5.2 U	390 U
Ortho Xylene	μg/Kg	42	11%	TAGM 4046		0	2	18	4.8 U	4.2 U	5.2 U	390 U
Tetrachloroethene	μg/Kg	1.7	6%	TAGM 4046	1400	0	1	18	4.8 U	4.2 U	5.2 U	390 U
Toluene	μg/Kg	210	6%	TAGM 4046	1500	0	1	18	4.8 U	4.2 U	5.2 U	390 U
trans-1,2-Dichloroethene	μg/Kg	1.3	6%	TAGM 4046	300	0	1	18	4.8 U	4.2 U	5.2 U	390 U
Trichloroethene	μg/Kg	28000	94%	TAGM 4046	700	7	17	18	110	9.3	7400 J	1700
Vinyl Chloride	μg/Kg	7.4	6%	TAGM 4046	200	0	1	18	4.8 U	4.2 U	5.2 U	390 U

LOCATION ID									SP813-13	SP813-14	SP813-15	SP813-16
MATRIX									SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123663	123664	123665	123666
TOP OF SAMPLE									N/A	N/A	N/A	N/A
BOTTOM OF SAMPLE									N/A	N/A	N/A	N/A
SAMPLE DATE									7/22/2005	7/22/2005	7/22/2005	7/22/2005
QC CODE									SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number				
			of	Criteria	Action	of	of	of				
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1-Dichloroethene	μg/Kg	0.65	6%	TAGM 4046	400	0	1	18	520 U	470 U	670 U	490 U
Acetone	μg/Kg	3.8	6%	TAGM 4046	200	0	1	18	2100 U	1900 U	2700 U	1900 U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	2	18	1000 U	930 U	1300 U	970 U
cis-1,2-Dichloroethene	μg/Kg	20	28%	TAGM 4046		0	5	18	520 U	470 U	670 U	490 U
Ethyl Benzene	μg/Kg	80	17%	TAGM 4046	5500	0	3	18	54 J	470 U	670 U	490 U
Meta/Para Xylene	μg/Kg	150	6%	TAGM 4046		0	1	18	150 J	470 U	670 U	490 U
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	2	18	520 U	470 U	670 U	490 U
Ortho Xylene	μg/Kg	42	11%	TAGM 4046		0	2	18	42 J	470 U	670 U	490 U
Tetrachloroethene	μg/Kg	1.7	6%	TAGM 4046	1400	0	1	18	520 U	470 U	670 U	490 U
Toluene	μg/Kg	210	6%	TAGM 4046	1500	0	1	18	210 J	470 U	670 U	490 U
trans-1,2-Dichloroethene	μg/Kg	1.3	6%	TAGM 4046	300	0	1	18	520 U	470 U	670 U	490 U
Trichloroethene	μg/Kg	28000	94%	TAGM 4046	700	7	17	18	240 J	130 J	670 U	22000 J
Vinyl Chloride	μg/Kg	7.4	6%	TAGM 4046	200	0	1	18	520 U	470 U	670 U	490 U

Table 3-4 Building 813/814 Stockpile VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY


LOCATION ID									SP813-8	
MATRIX									SOIL	
SAMPLE ID									123706	
TOP OF SAMPLE									N/A	
BOTTOM OF SAMPLE									N/A	
SAMPLE DATE									12/21/2004	
QC CODE									SA	
STUDY ID									SRI	
			Frequency			Number	Number	Number		
			of	Criteria	Action	of	of	of		
Parameter	Units	Maximum	Frequency	Type	ction Lev	Exceed	Detect	Analyses	Value	(Q)
1,1-Dichloroethene	μg/Kg	0.65	6%	TAGM 4046	400	0	1	18	0.65	J
Acetone	μg/Kg	3.8	6%	TAGM 4046	200	0	1	18	3.8	J
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	2	18	1	J
cis-1,2-Dichloroethene	μg/Kg	20	28%	TAGM 4046		0	5	18	20	
Ethyl Benzene	μg/Kg	80	17%	TAGM 4046	5500	0	3	18	1.7	U
Meta/Para Xylene	μg/Kg	150	6%	TAGM 4046		0	1	18	1.7	U
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	2	18	1.7	U
Ortho Xylene	μg/Kg	42	11%	TAGM 4046		0	2	18	1.7	U
Tetrachloroethene	μg/Kg	1.7	6%	TAGM 4046	1400	0	1	18	1.7	J
Toluene	μg/Kg	210	6%	TAGM 4046	1500	0	1	18	1.7	U
trans-1,2-Dichloroethene	μg/Kg	1.3	6%	TAGM 4046	300	0	1	18	1.3	J
Trichloroethene	μg/Kg	28000	94%	TAGM 4046	700	7	17	18	18000	J
Vinyl Chloride	μg/Kg	7.4	6%	TAGM 4046	200	0	1	18	7.4	

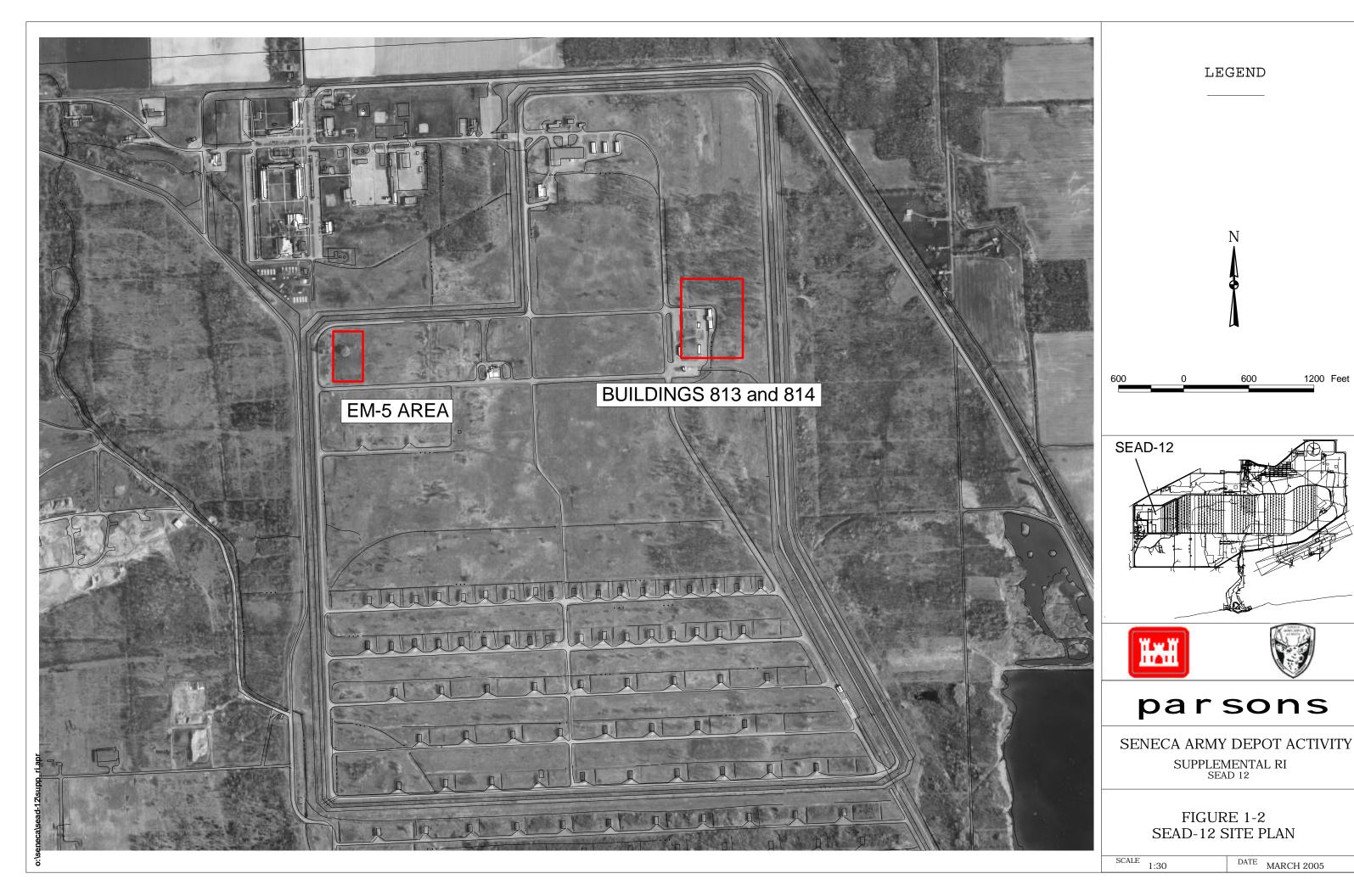
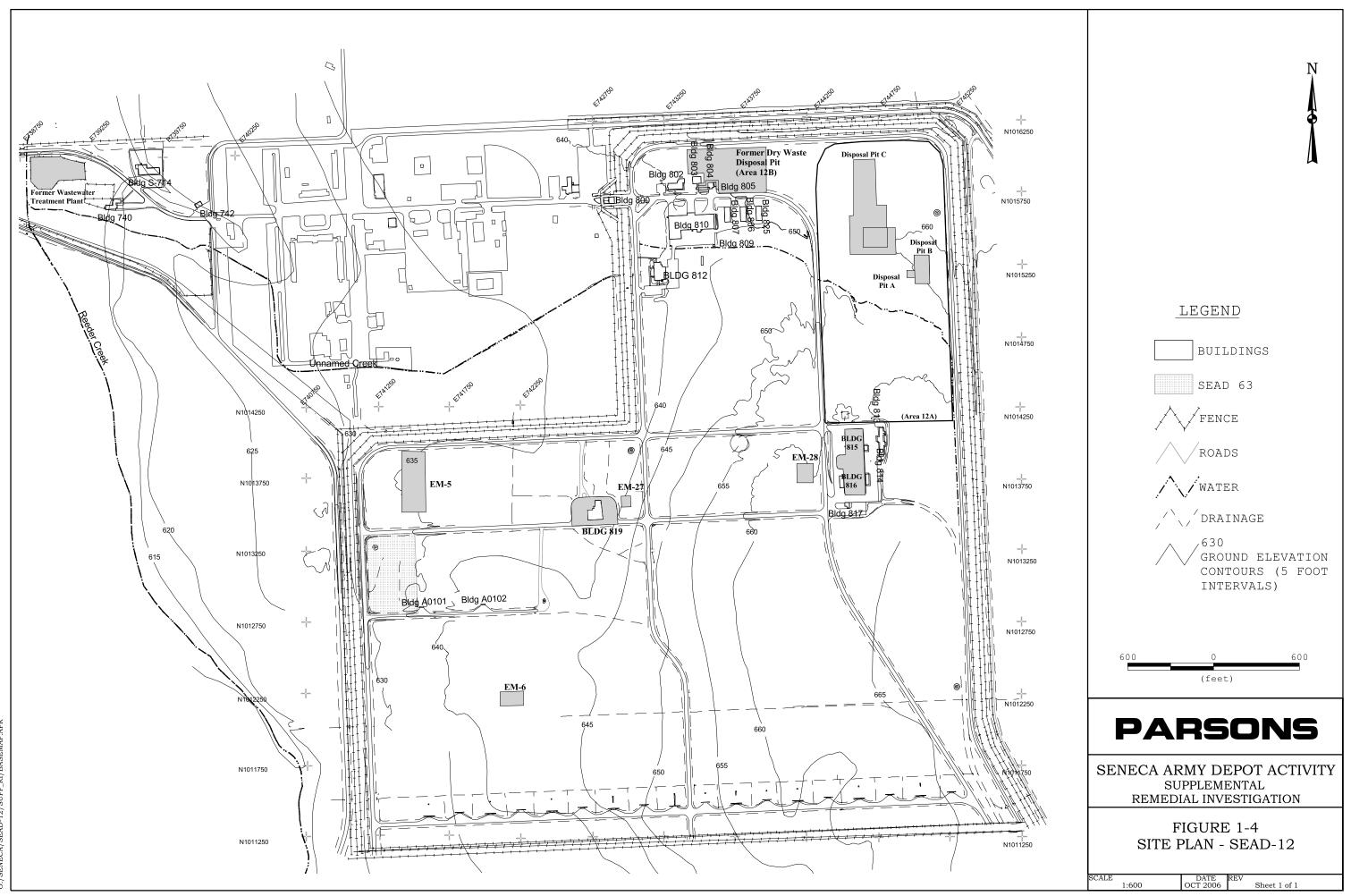

LOCATION ID									SP813-17	
MATRIX									SOIL	
SAMPLE ID									123667	
TOP OF SAMPLE									N/A	
BOTTOM OF SAMPLE									N/A	
SAMPLE DATE									11/28/2005	
QC CODE									SA	
STUDY ID									SRI	
			Frequency			Number	Number	Number		
			of	Criteria	Action	of	of	of		
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value	(Q)
1,1-Dichloroethene	μg/Kg	0.65	6%	TAGM 4046	400	0	1	18	4.6	U
Acetone	μg/Kg	3.8	6%	TAGM 4046	200	0	1	18	18	U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	2	18	0.48	J
cis-1,2-Dichloroethene	μg/Kg	20	28%	TAGM 4046		0	5	18	4.6	U
Ethyl Benzene	μg/Kg	80	17%	TAGM 4046	5500	0	3	18	4.6	U
Meta/Para Xylene	μg/Kg	150	6%	TAGM 4046		0	1	18	4.6	U
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	2	18	0.38	J
Ortho Xylene	μg/Kg	42	11%	TAGM 4046		0	2	18	4.6	U
Tetrachloroethene	μg/Kg	1.7	6%	TAGM 4046	1400	0	1	18	4.6	U
Toluene	μg/Kg	210	6%	TAGM 4046	1500	0	1	18	4.6	U
trans-1,2-Dichloroethene	μg/Kg	1.3	6%	TAGM 4046	300	0	1	18	4.6	U
Trichloroethene	μg/Kg	28000	94%	TAGM 4046	700	7	17	18	3.4	J
Vinyl Chloride	μg/Kg	7.4	6%	TAGM 4046	200	0	1	18	4.6	U

Table 3-5 Comparison of RI and SRI Pb-210 Results for EM-5 Soil Samples


	SRI Result					
Loc_ID	(pCi/g)	SRI Q	SRI Uncertainty	RI Result (pCi/g)	RI Q	RI Uncertainty
SS12-102	3.46	U	+/- 4.13	27.5	U	
SS12-107	1.56	U	+/- 4.49	55.9		+/- 35.2
SS12-107 (D)	3.11	U	+/- 2.97	55.9		+/- 35.2
SS12-108	1.88	U	+/- 6.59	50.6		+/- 32.8
SS12-109	1.60	U	+/- 2.71	23.1	UJ	
SS12-117	2.64	U	+/- 5.05	53.2		+/- 36.2
SS12-118	1.54	U	+/- 2.15	32.7	U	
SS12-119	2.92	U	+/- 3.92	50.4		+/- 32.2
SS12-120	0.827	U	+/- 7.86	24.2	U	
TP12-15C	1.64		+/- 2.25	79	J	+/- 48.6
TP12-15A	0.0728	U	+/- 2.07	50	J	+/- 49.4

Figures

LEGEND

SG12-128

• SOIL GAS SAMPLE LOCATION

MW12-37

 MONITORING WELL LOCATION subsurface soil samples also collected

SS12-67

▲ SURFACE SOIL SAMPLE LOCATION

SW/SD12-30

• SURFACE WATER/SEDIMENT SAMPLE LOCATION

PARSONS


SENECA ARMY DEPOT ACTIVITY

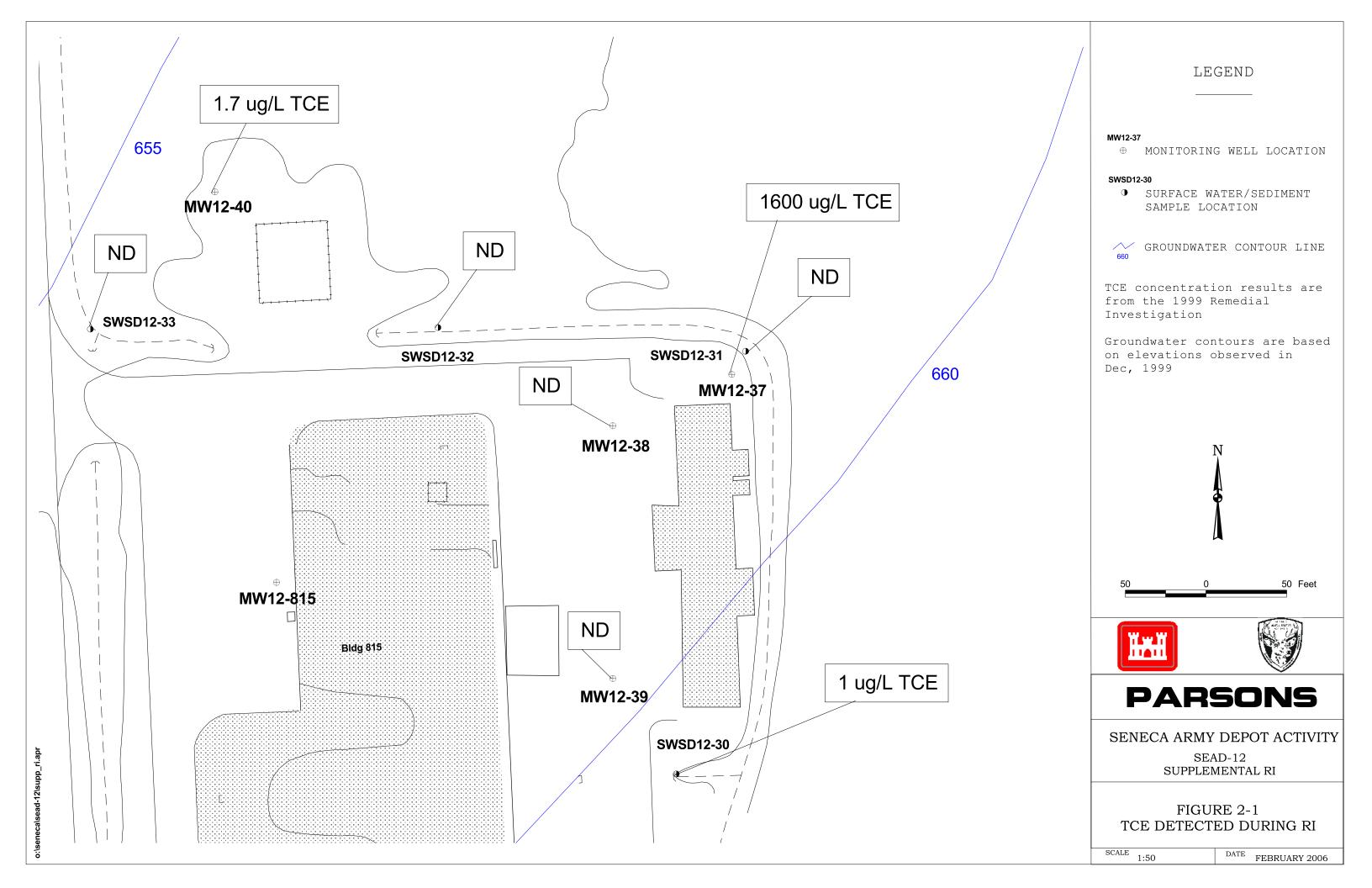
SEAD-12 SUPPLEMENTAL RI

FIGURE 1-5 RI SAMPLING LOCATIONS BUILDINGS 813 and 814

SCALE 1:50

DATE OCTOBER 2006

PREVIOUS SUBSURFACE SOIL SAMPLE LOCATION


PARSO

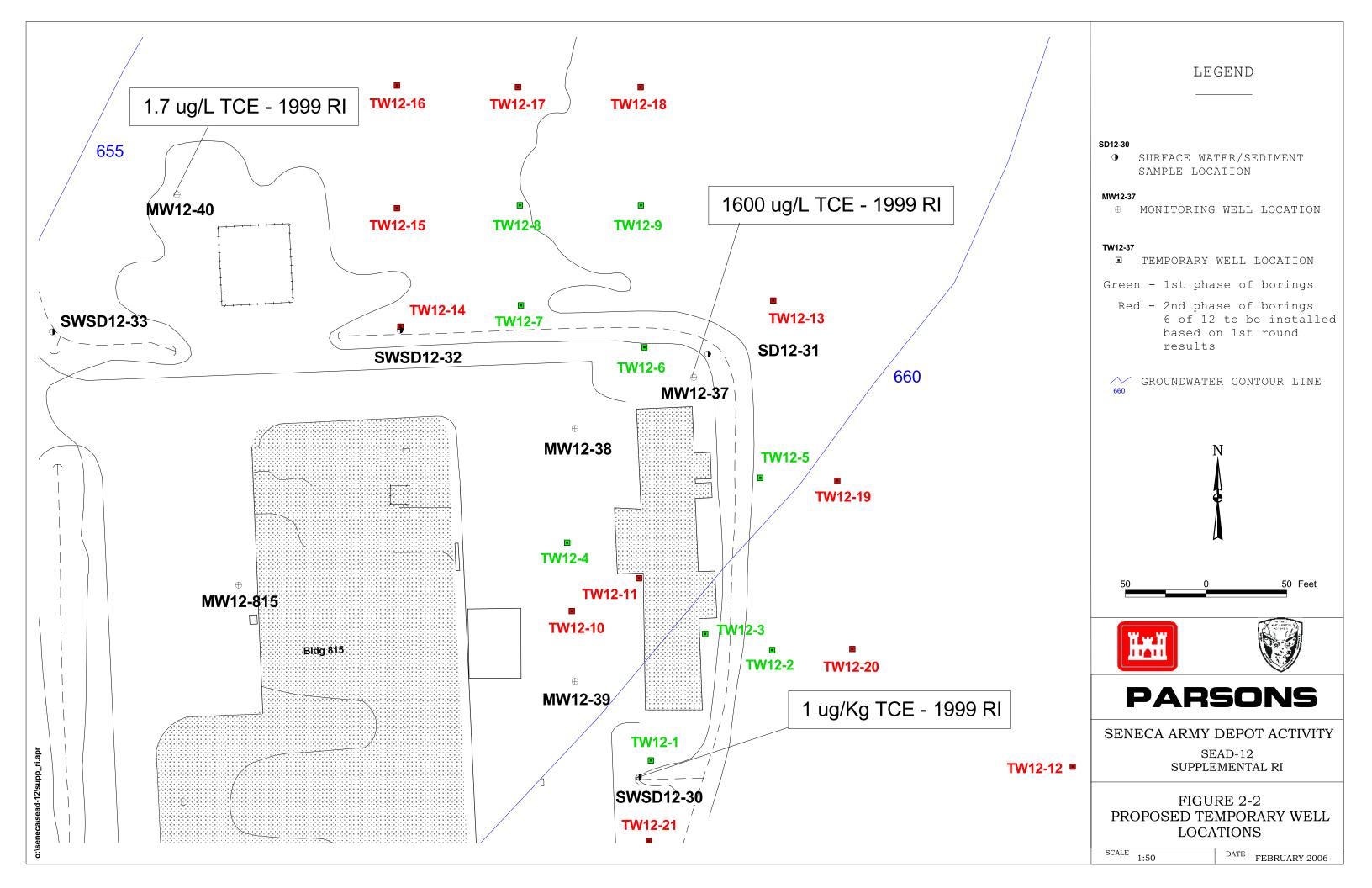
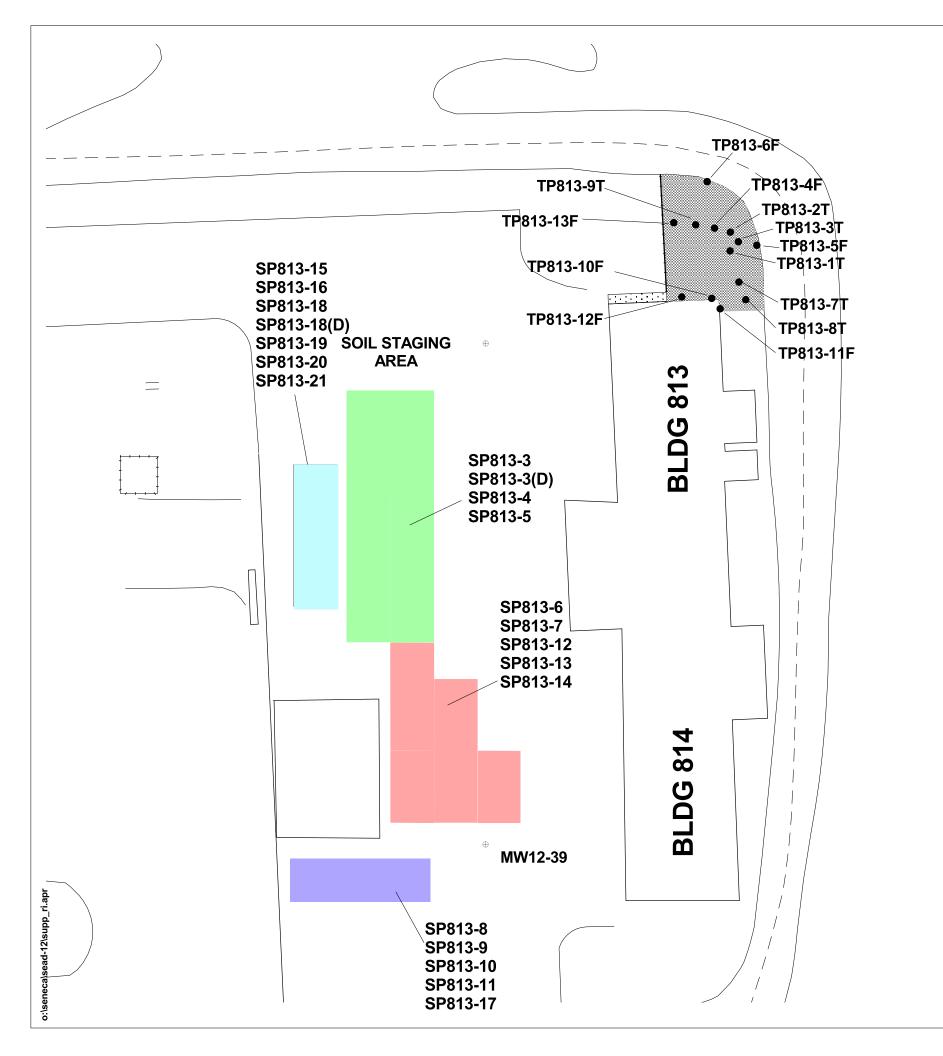

SENECA ARMY DEPOT ACTIVITY SEAD-12 SUPPLEMENTAL RI

FIGURE 1-6 PREVIOUS SOIL SAMPLE LOCATIONS AT EM-5


SCALE 1:100

OCTOBER 2006

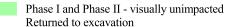
LEGEND

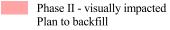
TP813-2T

Soil Sample Location in Excavation

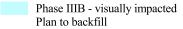
T suffix - temporary sample location removed during next phase of excavation

F suffix - final confirmatory sample location


SP813-2

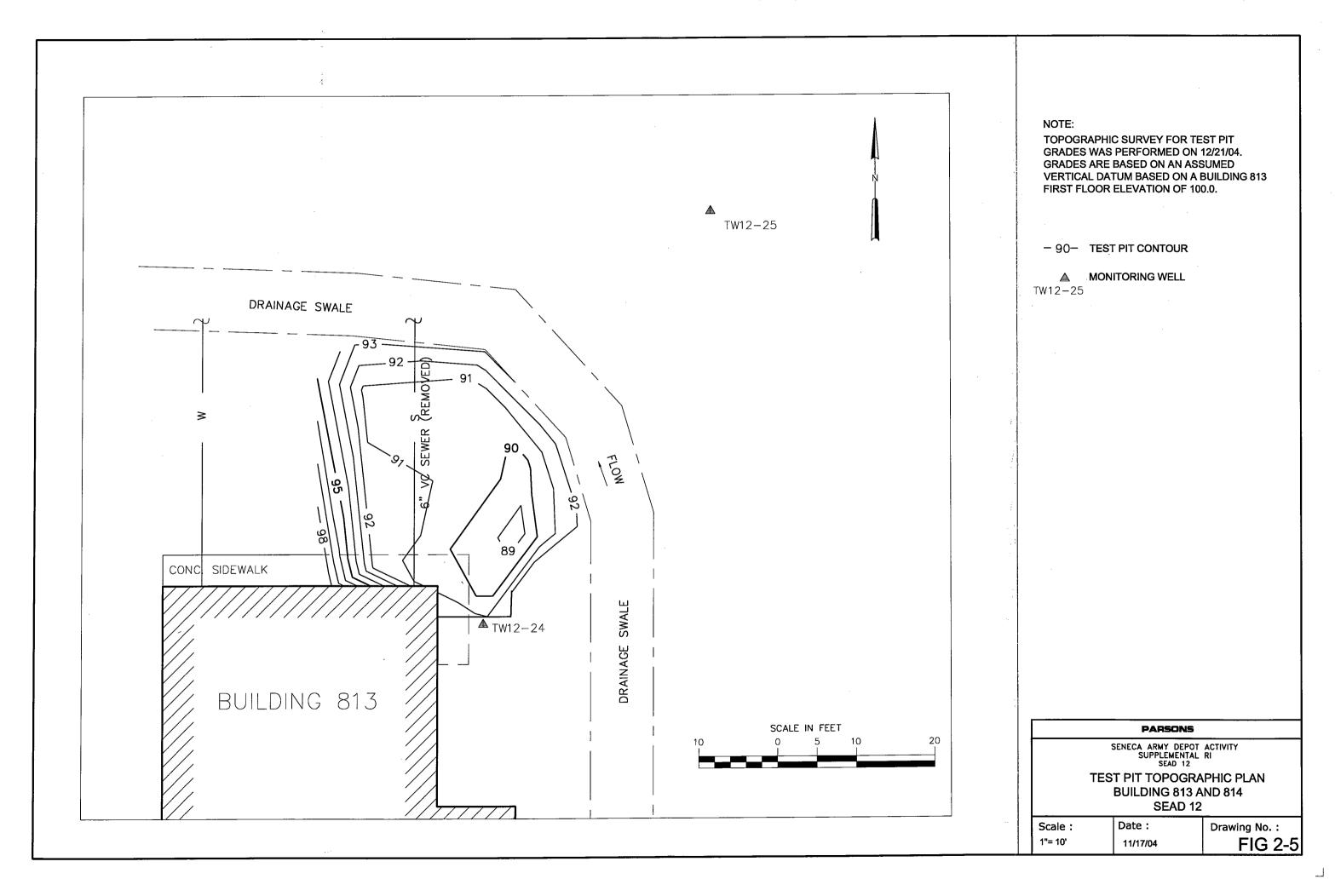

Stockpile Sample Location



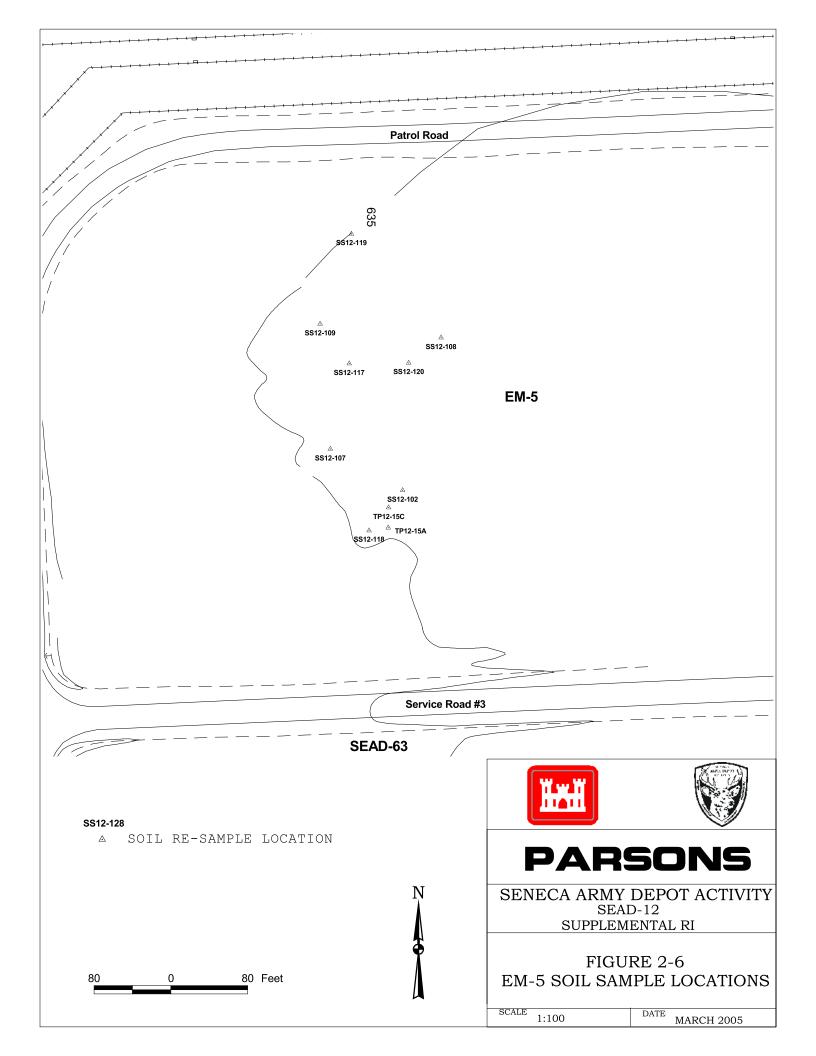

Approximate Area of Excavation

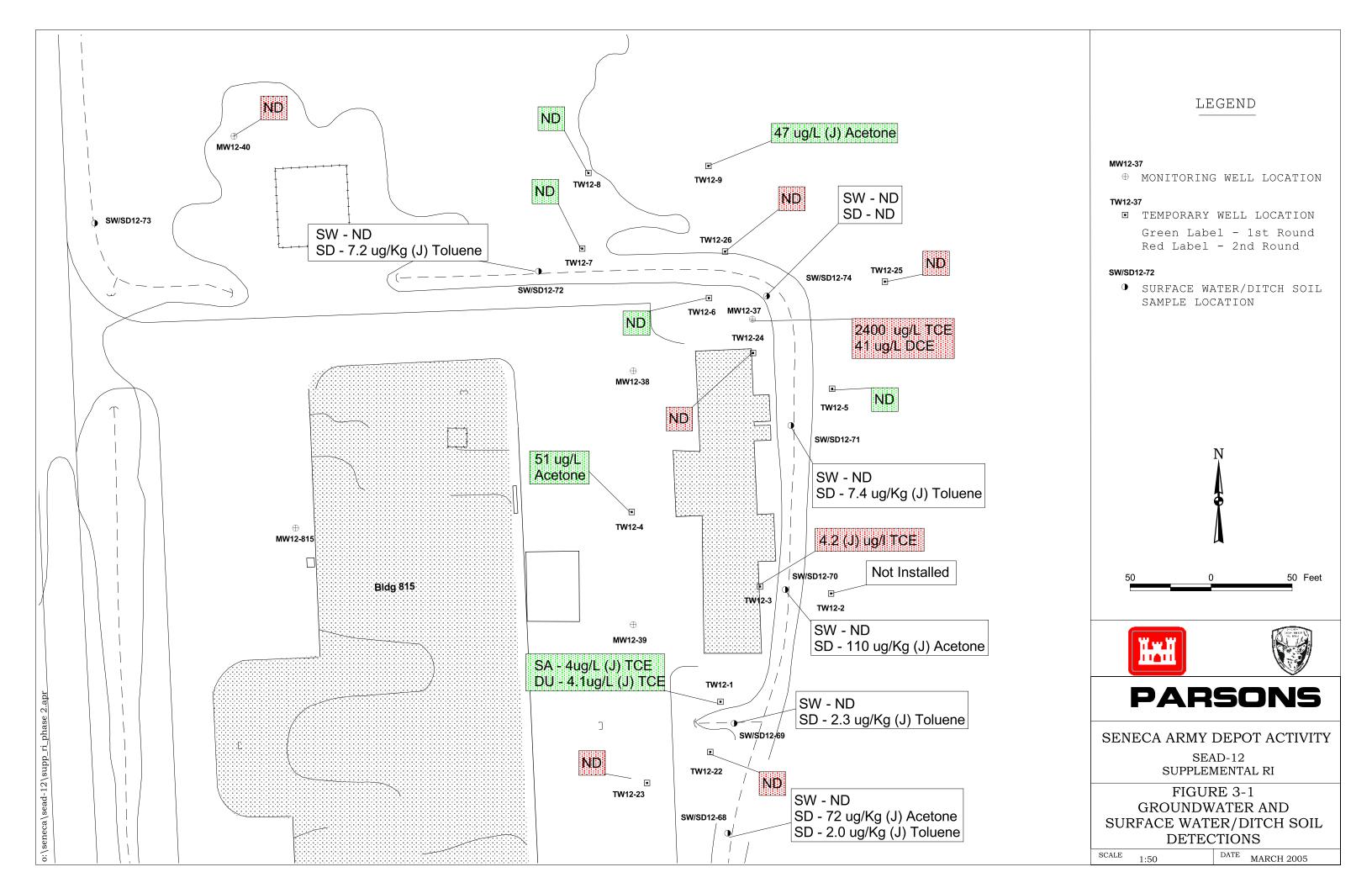
Stockpile Groups

PARSONS


SENECA ARMY DEPOT ACTIVITY

SEAD-12 SUPPLEMENTAL RI


FIGURE 2-4 SAMPLE LOCATIONS FROM TEST PIT AT BUILDINGS 813 AND 814


SCALE 1:30

DATE OCTOBER 2006

L

Stockpile	Samples Collected	Date	TCE Concentration	Average Stockpile Concentration
(approx. 150 tons)	SP813-3 SP813-3(D) SP813-4 SP813-5	12/9/04 12/9/04 12/9/04 12/9/04	3,100 ug/Kg 190 ug/Kg 110 ug/Kg 9.3 ug/Kg	588.1 ug/Kg * (backfilled)
	SP813-6 SP813-7	12/9/04 12/9/04	7,400 ug/Kg 1,700 ug/Kg	4,550 ug/Kg
(approx. 120 tons)	SP813-12 SP813-13 SP813-14	7/22/05 7/22/05 7/22/05	510J ug/Kg 240J ug/Kg 130J ug/Kg	293 ug/Kg (plan to backfill)
(approx. 40 tons)	SP813-8 SP813-9 SP813-10 SP813-11 SP813-17	12/21/04 7/22/05 7/22/05 7/22/05 11/28/05	18,000 ug/Kg 160J ug/Kg 110J ug/Kg 410J ug/Kg 3.4J ug/Kg	171 ug/Kg (plan to backfill)
	SP813-15 SP813-16	7/22/05 7/22/05	670U ug/Kg 22,000J ug/Kg	11,168 ug/Kg
(approx. 40 tons)	SP813-18 SP813-18(D) SP813-19 SP813-20 SP813-21	2/14/06 2/14/06 2/14/06 2/14/06 2/14/06	1,200J ug/kg 58J ug/Kg 6.3 ug/Kg 120 ug/Kg 160 ug/Kg	229 ug/Kg* (plan to backfill)

^{*} Concentration used for SP813-3 and SP813-18 = (SA + DU)/2

LEGEND

TP813-2T

Soil Sample Location
 in Excavation
 T suffix - temporary sample location removed
 during next phase of excavation
 F suffix - final confirmatory sample location

SP813-2

• Stockpile Sample Location

Stockpile Groups

Phase I and Phase II - visually unimpacted Returned to excavation

Phase II - visually impacted Plan to backfill

Phase IIIA - visually impacted Plan to backfill

Phase IIIB - visually impacted Plan to backfill

PARSONS

SENECA ARMY DEPOT ACTIVITY SEAD-12 SUPPLEMENTAL RI

FIGURE 3-3
TCE CONCENTRATIONS IN
STOCKPILE SAMPLES AT
BUILDINGS 813 AND 814

SCALE 1:30

DATE OCTOBER 2006

Appendix A

Temporary Well Construction Diagrams

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL ROADWAY BOX - SURFACE COMPLETION

				
PARSONS ENGINEERING SCIENCE, INC.		CLIENT:	USACOE	WELL#: MWJW12-/
PROJECT: RI FIELD INVEST	FIGATION	PROJEC	T NO:	
SWMU # (AREA): SEAD-	12	INSPE	CTOR:	McAllister
SOP NO.:		СНЕСКЕ	DBY:	
DRILLING CONTRACTOR: Noth nagle		POW DEPTH (ft) :		
DRILLER: Jay.		INSTALLATION :	STARTED:	
DRILLING COMPLETED: May 24 2	1004	INSTALLATION (COMPLETED:	
BORING DEPTH:		SURFACE COMPI	LETION DATE:	
DRILLING METHOD(S):	<u>. </u>	COMPLETION CO	ONTRACTOR/CREW:	
BORING DIAMETER(S):		BEDROCK CONF	TRMED (Y/N?)	·
PROTECTIVE SURFACE CASING				
DIAMETER (ft):			LENGTH (ft):	
RISER				
TYPE: DIAMETER(in): 2/ucq			TR (ft):	3.29
DIAMETER(in): 2/uc4			LENGTH (ft):	10.29
SURFACE COLLAR				
TYPE:			RADIUS (ft):	
THICKNESS OF CENTER (ft):		THIC	KNESS OF EDGE (in):	
SCREEN			<u>, , , , , , , , , , , , , , , , , , , </u>	
TYPE: PVC			TSC (ft):	5.2. ft 5 foot
DIAMETER (in):	SLOT SIZE:	0.010	LENGTH (ft):	5 foot
POINT OF WELL (SILT SUMP)			<u> </u>	
TYPE: end Cap	BSC (ft):		POW(ft):	
GROUT ,				
TYPE: HOAR	TG (ft):		LENGTH (ft):	
SEAL				
TYPE: Growler Bente	TBS (ft):	Serface	LENGTH (ft):	464
SAND PACK				
FINE SAND TYPE: #00	TSP (ft):	4.00	LENGTH (ft):	64
COARSE SAND TYPE:	TSP (ft):		LENGTH (ft):	
ACRONYMS				
TR Top of Riser		tom of Screen	TO	•
TSC Top of Screen BGD Background		nt of Well o of Sand Pack	TB	S Top of Bentonite Seal
COMMENTS			. 31 . 23.	
Temporay well no	t yet compl	eru.		
	# 477 pages			IDEA GE
SEE DAGE 2 FOR SCHEMATIC	* ALL DEPTH ME	ASUREMENTS REFEREN	CED TO GROUND SU	JRFACE

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL ROADWAY BOX - SURFACE COMPLETION

PARSONS ENGINEERI	NG SCIEN	CE, INC.		CLIENT:	USACOE	WELL#: MW 7W12-3
PROJECT:	RI FIE	LD INVESTIGA	ATION	PROJE	CT NO:	
SWMU # (AREA):		SEAD- 12	RI	INSPE	CTOR:	McAllista
SOP NO.:	Builda	813/814		СНЕСКІ	ED BY:	
DRILLING CONTRACTOR:	Hoth	nazle		POW DEPTH (ft)	:	9' 10"
DRILLER:				INSTALLATION	STARTED:	
DRILLING COMPLETED:	May	24 2009		INSTALLATION	COMPLETED:	
BORING DEPTH:	10.7	15		SURFACE COMP	PLETION DATE:	Tempora
DRILLING METHOD(S):	#54	(6)		COMPLETION C	ONTRACTOR/CREW:	
BORING DIAMETER(S):	6	inch		BEDROCK CON	FIRMED (Y/N?)	<u> </u>
PROTECTIVE SURFACE	CE CASINO	<u> </u>	***	-		
DIAMETER (ft):					LENGTH (ft):	
RISER	<u> </u>					
TYPE:	2:	nch PVC			TR (ft):	
TYPE: DIAMETER(in):		2144				
SURFACE COLLAR	d 'Ass					
TYPE:					RADIUS (ft):	
THICKNESS OF CENTER (ft):				THIC	CKNESS OF EDGE (in):	
SCREEN			<u> </u>			
ТҮРЕ:	Puc	-			TSC (ft):	5' 10'
DIAMETER (in):	1	<u> </u>	SLOT SIZE:	• O10	LENGTH (ft):	5' 10' 5 feat
POINT OF WELL (SIL	Γ SUMP)					
TYPE:		Cap	BSC (ft):	9 kept 10 clack	Y POW(ft):	9 fact 10 in
GROUT						
	Chip	Bentonile	TG (ft):_		LENGTH (ft):	
SEAL		D , 1		-		.0 ,
TYPE:	Chip	Benlouile	TBS (ft):	4 fact he Surl	LENGTH (ft):	4 feet
SAND PACK				40.4		~ ^ , , , ,
FINE SAND TYPE:	#00		TSP (ft):_	4 feet	LENGTH (ft):	b fout luin
COARSE SAND TYPE:			TSP (ft):		LENGTH (ft):	
ACRONYMS						
	Top of Riser			Bottom of Screen	TC	•
	Top of Screen Background			Point of Well Fop of Sand Pack	TB	S Top of Bentonite Seal
COMMENTS: Temporary well not yet completed						
SEE PAGE 2 FOR SCHEM	A A TOTAL	*	ALL DEPTH	MEASUREMENTS REFERE	NCED TO GROUND SI	URFACE

PAGE 1 OF 2

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL

ROA	ADWAY BOX - S	SURFACE COMP	PLETION	TW12-4
PARSONS ENGINEERING SCIENCE,	INC.	CLIENT:	USACOE	WELL#: ***
	INVESTIGATION SEAD- 12 RD 3/8/4	PROJEC INSPE CHECKI	CTOR:	743156 McAllister
DRILLING CONTRACTOR: Nothing DRILLER:		POW DEPTH (ft) INSTALLATION	:	8.65
DRILLING COMPLETED: May 14 BORING DEPTH: 9.75 DRILLING METHOD(S): HSA		INSTALLATION SURFACE COMP COMPLETION CO		Тещрапу
BORING DIAMETER(S): 614	ch	BEDROCK CONI	FIRMED (Y/N?)	<u> </u>
PROTECTIVE SURFACE CASING		:		
DIAMETER (ft):			LENGTH (ft):	
RISER TYPE: DIAMETER(in):			TR (ft):_ LENGTH (ft):_	
SURFACE COLLAR TYPE: THICKNESS OF CENTER (ft):		THIC	RADIUS (ft): KNESS OF EDGE (in):	
SCREEN TYPE: PVC DIAMETER (in): 2 lucu	SLOT SIZE:	O. D IO		3.75 5 Fout
POINT OF WELL (SILT SUMP) TYPE: end Cap	BSC (ft):	<i>8.</i> € 5	POW(ft):	8.65
GROUT TYPE:	TG (ft):		LENGTH (ft):	
SEAL TYPE: Chip Ben	toute TBS (ft):_	Surface	LENGTH (ft):	3feet
SAND PACK FINE SAND TYPE: # 00 COARSE SAND TYPE:	TSP (ft):	3 feet	LENGTH (ft):LENGTH (ft):	5.65
ACRONYMS TR Top of Riser TSC Top of Screen BGD Background	POW Po	ottom of Screen pint of Well op of Sand Pack	TG TBS	Top of Grout Top of Bentonite Seal
COMMENTS: Temporay well	not yet co	mpleted		
SEE PAGE 2 FOR SCHEMATIC	* ALL DEPTH M	IEASUREMENTS REFERENC	CED TO GROUND SUI	RFACE

OVERBURDEN MONITORING WELL COMPLETION REPORT & INSTALLATION DETAIL TEMPORARY WELL - SURFACE COMPLETION

				1112 22 11011	
PARSONS ENGINE	ERING SCIENCE, INC.		CLIENT:	USACOE	WELL#: MWT6/125
PROJECT:	RI FIELD INVESTION	GATION	PRO	JECT NO:	
SWMU # (AREA):	SEAD-	12_	INS	PECTOR:	McAllisten
SOP NO.:			CHEC	CKED BY:	
DRILLING CONTRACTO	or: Nothnagle		POW DEPTH (ft) :	
DRILLER:	Jay		INSTALLATIO	•	
DRILLING COMPLETED	44 4 / 1 / 44	1	INSTALLATIO	N COMPLETED:	
BORING DEPTH:			SURFACE CO	MPLETION DATE:	
DRILLING METHOD(S):			COMPLETION	CONTRACTOR/CREW:	
BORING DIAMETER(S):			BEDROCK CO	ONFIRMED (Y/N?)	
PROTECTIVE SURE	FACE CASING			·¥ 7.1 3	· · · · · · · · · · · · · · · · · · ·
DIAMETER (ft):				LENGTH (ft):	:
RISER					
TYI	PE: PVC			TR (ft):	8.65
DIAMETER(i	2		-	LENGTH (ft):	12 18
SURFACE COLLAR			-		
TYI				RADIUS (ft):	
THICKNESS OF CENTER			Т	HICKNESS OF EDGE (in):	
SCREEN	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
TYI	pe. PVC			TO (1)	6.5 feet
DIAMETER (in):	Linch	SLOT SIZE:	0.010	TSC (ft): LENGTH (ft):	<u> </u>
- 		. GEOT SIZE.		LENGTH (II):	
POINT OF WELL (S	PE: End Cap	PGG (2)		haurr	
	re: Live Cup	BSC (ft):		POW(ft):	. respec
GROUT	PE: None				· · · · · · · · · · · · · · · · · · ·
TYI	PE: INDIC	TG (ft):	7	LENGTH (ft):	
SEAL	PIRI	1	e (1CL
TYI	PE: Grandan Benleni	e TBS (ft):	Surface	LENGTH (ft):	<u>4ft</u>
SAND PACK	400		101		est a
FINE SAND TYPE:	#00	TSP (ft):	4H bys.	LENGTH (ft):	
COARSE SAND TYPE:		TSP (ft):		LENGTH (ft):	
ACRONYMS				Total Control	in the second se
TR	Top of Riser	BSC	Bottom of Screen	TO	•
TSC BGD	Top of Screen Background	POW TSP	Point of Well Top of Sand Pack	ТВ	S Top of Bentonite Seal
COMMENTS:	Dackground	101	TOP OF SAIRL FACK		
COMMENTS:					7022
					. 1994.
		* ALL DEPTH	MEASUREMENTS REFER	ENCED TO GROUND SI	URFACE
SEE PAGE 2 FOR SCH	IEMATIC				

PAGE 1 OF 2

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL

ROADWAY BOX	- SURFACE COMPLETION	1 WIZ- 6
PARSONS ENGINEERING SCIENCE, INC.	CLIENT: USACOE	WEL L.#: MW -
PROJECT: RI FIELD INVESTIGATION	PROJECT NO:	743156
SWMU#(AREA): SEAD- 12 RI	INSPECTOR:	mallister
SOP NO.: Buildry 813/814	CHECKED BY:	
DRILLING CONTRACTOR: Nothings	POW DEPTH (ft):	10.0
DRILLER:	INSTALLATION STARTED:	
DRILLING COMPLETED: May 25 1004	INSTALLATION COMPLETED:	
BORING DEPTH: 10.30	SURFACE COMPLETION DATE:	Temporg
DRILLING METHOD(S):	COMPLETION CONTRACTOR/CREW:	
BORING DIAMETER(S):	BEDROCK CONFIRMED (Y/N?)	<u> </u>
PROTECTIVE SURFACE CASING		
DIAMETER (ft):	LENGTH (ft):	
RISER		
ТҮРЕ:	TR (ft):_	
DIAMETER(in):	LENGTH (ft):	
SURFACE COLLAR		
ТҮРЕ:	RADIUS (ft):	
THICKNESS OF CENTER (ft):	THICKNESS OF EDGE (in):	
SCREEN	No.	
TYPE: PVC	TSC (ft):	5 feet
DIAMETER (in): 2. Such SLOT SIZE	- A A/A	~ ^ /
POINT OF WELL (SILT SUMP)		
TYPE: <u>Fud Cap</u> BSC (ft	9.90 POW(ft):	10.00
GROUT		
TYPE: TG (ft	LENGTH (ft):	
SEAL		
TYPE: Chip Bentonite TBS (ft): 4.5 ft Bgs LENGTH (ft):	5.5ft
SAND PACK		1011
FINE SAND TYPE: # OO TSP (ft	:: Surface LENGTH (A):	4.Sfeet
COARSE SAND TYPE: TSP (ft): LENGTH (ft):	
ACRONYMS		
TR Top of Riser BSC TSC Top of Screen POW	Bottom of Screen TG	•
TSC Top of Screen POW BGD Background TSP	Point of Well TBS Top of Sand Pack	Top of Bentonite Seal
COMMENTS: Temporay Well not yel	completed	
* ALL DEPT	H MEASUREMENTS REFERENCED TO GROUND SU	IRFACE.
SEE PAGE 2 FOR SCHEMATIC	A STANDER BY COMMERCENCY OF PRINCIPLE OF THE PRINCIPLE OF	IN ACC

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL TW 12-7

PARSONS ENGINEERI	NG SCIENCE, INC.		CLIENT:	USACOE	WELL#: MW	"E
PROJECT:	RI FIELD INVESTIG	ATION	PROJEC	T NO:		. 14.44
SWMU # (AREA):	SEAD- /	2	INSPEC	CTOR:	McAllosta	7555 2575
SOP NO.:			CHECKE	D BY:		_
DRILLING CONTRACTOR:	Nothnagle		POW DEPTH (ft) :		//	13 SEL
DRILLER:	Jay		INSTALLATION S	STARTED:		
DRILLING COMPLETED:	May 24 20	204	INSTALLATION (COMPLETED:		•
BORING DEPTH:			SURFACE COMPL	ETION DATE:		. Ken
DRILLING METHOD(S):			COMPLETION CO	NTRACTOR/CREW:		- Au
BORING DIAMETER(S):			BEDROCK CONF	IRMED (Y/N?)		
PROTECTIVE SURFAC	E CASING					
DIAMETER (ft):				LENGTH (ft):	:	TEUA.
RISER				272.2.7	· · · · · · · · · · · · · · · · · · ·	
ТҮРЕ: _	PVC			TR (ft):	200 steka	<i>)</i> ==
DIAMETER(in):	2 inch			LENGTH (ft):		31.1
SURFACE COLLAR	. (,			76.176.
TYPE:	None			RADIUS (ft):	:	200
THICKNESS OF CENTER (ft):			THICK	KNESS OF EDGE (in):		-222
SCREEN	_					• • •
TYPE:_	DVC			TSC (ft):	Afect	ture.
DIAMETER (in):	Linch	SLOT SIZE:	0.01	LENGTH (ft):	200	
POINT OF WELL (SILT				- 2		
ТҮРЕ: _	End Cap	BSC (ft):	9.064	POW(ft):	9.025	128
GROUT		- 		17700		25 4 2
TYPE: _	None	TG (ft):		LENGTH (ft):	:	
SEAL						
TYPE: _	Guanaulan Barbuil	e TBS (ft):	Surface	LENGTH (ft):	3.5 Ft	22.2
SAND PACK			A. 1			n Assa
FINE SAND TYPE:	#1 sand	TSP (ft):	3.5 ft bgs	LENGTH (ft):	5.5 ft.	W. STEVE
COARSE SAND TYPE:		TSP (ft):	<u></u>	LENGTH (ft):	:	- gray
ACRONYMS						TOTAL
	Top of Riser		ottom of Screen	Te	•	***
	Top of Screen Background		rint of Well op of Sand Pack	TE	BS Top of Bentonite Se	al
COMMENTS: Dal L	hole 9.028 Ft			17 12-2	The state of the s	
equal or						7.00 gard 7.10 gard
total we	11 hearnt 12.10					
						1 (27)
SEE PAGE 2 FOR SCHEM		ALL DEPTH M	EASUREMENTS REFERENCE	CED TO GROUND S	URFACE	

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL 7012-8

PARSONS ENGINEERI	NG SCIENCE, INC.		CLIENT:	USACOE	WELL#: MW
PROJECT:	RI FIELD INVESTIGAT	NOL	PR	OJECT NO:	743 <i>15</i> 6
SWMU # (AREA):	SEAD- 1入	PL	_ 15	ISPECTOR:	McAllosten
SOP NO.:			СНЕ	ECKED BY:	
DRILLING CONTRACTOR:	Mothnagle		POW DEPTH	(ft):	· · · · · · · · · · · · · · · · · · ·
DRILLER;			INSTALLATI	ON STARTED:	
DRILLING COMPLETED:	My 25 2004	7	INSTALLATI	ON COMPLETED:	
BORING DEPTH:	10 feet		SURFACE CO	OMPLETION DATE:	
DRILLING METHOD(S):	H-5A		COMPLETIO	N CONTRACTOR/CREW:	
BORING DIAMETER(S):	61464		BEDROCK (CONFIRMED (Y/N?)	
PROTECTIVE SURFACE	CE CASING			<u> </u>	
DIAMETER (ft):			_	LENGTH (ft):	
RISER			<u> </u>	- :::::::::::::::::::::::::::::::::::::	
				TR (ft):	·
			,		
SURFACE COLLAR					
				RADIUS (ft):	
THICKNESS OF CENTER (ft):			-	THICKNESS OF EDGE (in):	
SCREEN	<u></u>				
TYPE:	PVC			TSC (6)-	Steel
DIAMETER (in):		SLOT SIZE:	0.010	LENGTH (ft):	5 foot
POINT OF WELL (SILT	r SUMP)				
·		BSC (ft):		POW(ft):	
GROUT		200 (19)		101(10)	
TYPE:		TG (fi)		LENGTH (ft):	
SEAL		10 (II).		LENGTH (II).	
SEAL TYPE:	Chip Bentonik	TBS (ft):	Surface	LENGTH (ft):	4 feet
SAND PACK	11		10		10 1
FINE SAND TYPE:	#60	TSP (ft):	4 feet	LENGTH (ft):	6 feet
COARSE SAND TYPE:		TSP (ft):		LENGTH (ft):	
ACRONYMS					
	Top of Riser	BSC	Bottom of Screen	TG	-
	Top of Screen Background	POW TSP	Point of Well Top of Sand Pack	TBS	S Top of Bentonite Seal
COMMENTS:	porary well				
SEE PAGE 2 FOR SCHEM		LL DEPTH	MEASUREMENTS REFE	ERENCED TO GROUND SU	JRFACE

PAGE 1 OF 2

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL TW 12-9										
PARSONS ENGINEERI	NG SCIENCE, INC.		CLIENT:	USACOE	WELL#: MW					
PROJECT:	RI FIELD INVESTIG	ATION	PROJECT	ΓNO:	743 156					
SWMU # (AREA):	SEAD- /	LRC	INSPEC	TOR:	mcullister					
SOP NO.:	743 156		CHECKEI	BY:						
DRILLING CONTRACTOR:	Moth nagle		POW DEPTH (ft):		941					
DRILLER:	44		INSTALLATION S	TARTED:						
DRILLING COMPLETED:	May 25 20	04	INSTALLATION C	OMPLETED:	<u> </u>					
BORING DEPTH:	10.2feet	<u> </u>	SURFACE COMPL	ETION DATE:	Temporary.					
DRILLING METHOD(S):	<u> </u>		COMPLETION CO	NTRACTOR/CREW:	- 1 2					
BORING DIAMETER(S):	6 inc	1	BEDROCK CONFI	RMED (Y/N?)	<u>Y</u>					
PROTECTIVE SURFAC	E CASING									
DIAMETER (ft):				LENGTH (ft):						
RISER										
ТҮРЕ:_				TR (ft):						
DIAMETER(in):_				LENGTH (ft):	:					
SURFACE COLLAR										
TYPE:_				RADIUS (ft):						
THICKNESS OF CENTER (ft):			THICK	NESS OF EDGE (in):						
SCREEN TYPE: _ DIAMETER (in):	PVC 2.lncg	SLOT SIZE:	0.010	TSC (ft): LENGTH (ft):	4.11 ft 5 foot					
		SLOT SIZE:		LENGTH (II).						
POINT OF WELL (SILT TYPE:_	End Cap	BSC (ft):	9.01	POW(ft):	9.4					
GROUT										
ТҮРЕ:_		TG (ft):		LENGTH (ft):						
SEAL TYPE:	Chip Benleutle	TBS (ft):	Surface	LENGTH (ft):	4.51					
SAND PACK			1 T N		1 - C1					
FINE SAND TYPE:	# 00	TSP (ft):	4. 5 ft.	LENGTH (ft):	4.5 f					
COARSE SAND TYPE:		TSP (ft):		LENGTH (ft):						
ACRONYMS										
TSC 1	Гор of Riser Гор of Screen Background	POW Poi	tom of Screen nt of Well o of Sand Pack	то тв	*					
COMMENTS: Tempo		ALL DEPTH ME	ASUREMENTS REFERENCE	CED TO GROUND S	URFACE					

SEE PAGE 2 FOR SCHEMATIC

OVERBURDEN MONITORING WELL **COMPLETION REPORT & INSTALLATION DETAIL** W12-22 **ROADWAY BOX - SURFACE COMPLETION** PARSONS ENGINEERING SCIENCE, INC. CLIENT: USACOE WELL #: MW 743156 RI FIELD INVESTIGATION PROJECT: PROJECT NO: SWMU # (AREA): SEAD- 12 RIC madister INSPECTOR: SOP NO .: CHECKED BY: 23.514 DRILLING CONTRACTOR: POW DEPTH (ft): DRILLER: INSTALLATION STARTED: Tone 2004 DRILLING COMPLETED: INSTALLATION COMPLETED: 245 Temporary BORING DEPTH: SURFACE COMPLETION DATE: 145*A* DRILLING METHOD(S): COMPLETION CONTRACTOR/CREW: 6 lucn BORING DIAMETER(S): BEDROCK CONFIRMED (Y/N?) PROTECTIVE SURFACE CASING DIAMETER (ft): LENGTH (ft): RISER Duc TYPE: TR (ft): Zinch DIAMETER(in): LENGTH (ft): SURFACE COLLAR RADIUS (ft) THICKNESS OF CENTER (ft): THICKNESS OF EDGE (in): SCREEN DVC TYPE: TSC (ft): 0.010 DIAMETER (in): SLOT SIZE: LENGTH (ft): POINT OF WELL (SILT SUMP) BSC (ft): POW(ft): GROUT TYPE: C TG (ft): LENGTH (ft): SEAL TYPE: Chip Bentonit TBS (ft): LENGTH (ft): SAND PACK 9 feet 400 12 feet FINE SAND TYPE: TSP (ft): LENGTH (ft): COARSE SAND TYPE: TSP (ft): LENGTH (ft): **ACRONYMS** TR Top of Riser BSC **Bottom of Screen** TG Top of Grout TSC Top of Screen POW Point of Well Top of Bentonite Seal RGD Background TSP Top of Sand Pack COMMENTS: Temporay we (1 * ALL DEPTH MEASUREMENTS REFERENCED TO GROUND SURFACE

SEE PAGE 2 FOR SCHEMATIC

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL POADWAY BOY - SURFACE COMPLETION TW12-23

	ROADWAY BOX - SURFACE COMPLETION 1 CONTRACT COMPLETION										
PARSONS ENGINEERING	SCIENCE, INC.		CLIENT:	USACOE	WELL#: MW						
PROJECT:	RI FIELD INVESTIGAT		PRO:	IECT NO:	743156						
SWMU # (AREA):	SEAD- /2	RI	INS	PECTOR:	mcalloster						
SOP NO.:	7431%		СНЕС	CKED BY:							
DRILLING CONTRACTOR:	Nothnagle		POW DEPTH (ft) :	13.25						
DRILLER:			INSTALLATIO	N STARTED:							
DRILLING COMPLETED:	June 9 2004		INSTALLATIO	N COMPLETED:							
BORING DEPTH:	23.3ft		SURFACE CO	MPLETION DATE:	Temportry						
DRILLING METHOD(S):			COMPLETION	CONTRACTOR/CREW:							
BORING DIAMETER(S):			BEDROČK CO	ONFIRMED (Y/N?)	<u> </u>						
PROTECTIVE SURFACE	CASING										
DIAMETER (ft):		·		LENGTH (ft):							
RISER	Dik										
ТҮРЕ:	PUC			TR (ft):							
DIAMETER(in):	2 juin			LENGTH (ft):	14 fect						
SURFACE COLLAR											
түре:				RADIUS (ft):							
THICKNESS OF CENTER (ft):			T	HICKNESS OF EDGE (in):							
SCREEN	£		delimite A.	_	,2 D						
ТҮРБ:	Puc		0.640	TSC (ft):	13.3						
DIAMETER (in):	2inch s	SLOT SIZE:	0.000	LENGTH (ft):	10 Foot						
POINT OF WELL (SILT S	SUMP)		4 >								
ТҮРЕ:	End Cap	BSC (ft):	23.25	POW(ft):	23.3						
GROUT											
ТҮРЕ:		TG (ft):		LENGTH (ft):							
SEAL											
TYPE:	Chip Benloute	TBS (ft):	8.984	LENGTH (ft):	2.7						
SAND PACK	•			01	401						
FINE SAND TYPE:	too	TSP (ft):	BA# 11	LENGTH (ft):	2 feet						
COARSE SAND TYPE:		TSP (ft):		LENGTH (ft):							
ACRONYMS		1.51									
	p of Riser		ottom of Screen	TC	•						
<u> </u>	p of Screen ckground		vint of Well op of Sand Pack	ТВ	S Top of Bentonite Seal						
COMMENTS					 						
Tempona	ny Well				٠						
	v										
	* Al	LL DEPTH M	EASUREMENTS REFEI	RENCED TO GROUND S	URFACE						

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL
TEMPORARY WELL - SURFACE COMPLETION 12-24

PARSONS ENGINEERI	NG SCIENCE, INC.		CLIENT:	USACOE	WELL#: MW
PROJECT:	RI FIELD INVESTIGAT	YON	- PF	ROJECT NO:	
SWMU # (AREA):	SEAD- 12		n	NSPECTOR:	
SOP NO.:			СН	ECKED BY:	
DRILLING CONTRACTOR:	Nothraule	· · · · · · · · · · · · · · · · · · ·	POW DEPTE	H (ft) :	<u> </u>
DRILLER:	Joh			TON STARTED:	
DRILLING COMPLETED:	June 10	2004	INSTALLAT	TION COMPLETED:	
BORING DEPTH:			SURFACE C	COMPLETION DATE:	
DRILLING METHOD(S):			COMPLETIO	ON CONTRACTOR/CREW:	
BORING DIAMETER(S):			BEDROCK	CONFIRMED (Y/N?)	
PROTECTIVE SURFAC	CE CASING				*,0
DIAMETER (ft):				LENGTH (ft):	. · · · · · · · · · · · · · · · · · · ·
RISER	`				
ТҮРЕ: _	pr			TR (ft):	8.0{
DIAMETER(in):	2 inch			LENGTH (ft):	
SURFACE COLLAR					
TYPE:				RADIUS (ft):	
THICKNESS OF CENTER (ft):				THICKNESS OF EDGE (in):	
SCREEN					
TYPE:	PVC			TSC (ft):	43 feet
DIAMETER (in):	Linch	SLOT SIZE: _	0.0	LENGTH (ft):	C A 1.
POINT OF WELL (SILT					
ТҮРЕ:	End Cap	BSC (ft):		POW(ft):	
GROUT	_				1.2
TYPE:	None	TG (ft):		LENGTH (ft):	
SEAL		10 (11)			2
	Grundan Bentoute	TBS (ft):	Surface	LENGTH (ft):	3.1 64
SAND PACK			3 / Cast		1001
FINE SAND TYPE:	#1 sand	TSP (ft):	D.1 teet	LENGTH (ft):	6.2 feet
COARSE SAND TYPE:		TSP (ft): _		LENGTH (ft):	
ACRONYMS				1000	
	Top of Riser		Bottom of Screen	TC	Top of Grout
	Top of Screen Background		Point of Well Top of Sand Pack	ТВ	S Top of Bentonite Seal
	refusal @ 9.364			nute 3.1 to Sonf	a <i>e</i>
COMMENTS: Augus	CUT		-11 D. 11.		20 C
Screen	D HOOT	10	That Death	13.01	
#1 San	d to 3.1 feet		8Mekup	3.4 feet	5
SEE PAGE 2 FOR SCHEM		LL DEPTH I	MEASUREMENTS REF	ERENCED TO GROUND SU	JRFACE
	4110				

PAGE 1 OF 2

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL

	ROADWAY	BOX -	SURFACE COM	PLETION	1 W (L-25			
PARSONS ENGINEER	ING SCIENCE, INC.		CLIENT:	USACOE	WELL#: NAW			
PROJECT:	RI FIELD INVESTIG	ATION	РРРОЛ	ECT NO:	743156			
SWMU # (AREA):	SEAD-	2 RI	INSP	ECTOR:	uncallister			
SOP NO.:			_ СНЕСТ	KED BY:				
DRILLING CONTRACTOR:	Nothnagle		POW DEPTH (fit):	12.3ft			
DRILLER:			INSTALLATION	I STARTED:				
DRILLING COMPLETED:	June 9 200		INSTALLATION	COMPLETED:				
BORING DEPTH:	12.3 feet		SURFACE COM	PLETION DATE:	1 emporay			
DRILLING METHOD(S):	HSA		COMPLETION	CONTRACTOR/CREW:				
BORING DIAMETER(S):	6;'nc	n	BEDROCK CONFIRMED (Y/N?)					
PROTECTIVE SURFA	CE CASING							
DIAMETER (ft):			-	LENGTH (ft):				
RISER								
ТҮРЕ:			··	TR (ft):	 -			
DIAMETER(in):			-	LENGTH (ft):				
SURFACE COLLAR								
TYPE:			_	RADIUS (ft):				
THICKNESS OF CENTER (ft)	<u>: </u>		THI	ICKNESS OF EDGE (in):				
SCREEN	Dir							
ТҮРЕ:			- 41.44	TSC (ft):	1.3ft			
DIAMETER (in):	2,'nc9	SLOT SIZE	0.010	LENGTH (ft):	4.85foot			
POINT OF WELL (SIL	- i ^		12 00					
ТҮРЕ:	End Cap	BSC (ft)	12.25	POW(ft):	12.3			
GROUT								
TYPE:		TG (ft):		LENGTH (ft):				
SEAL	a Dil		<i>5</i> 3 <i>C</i> 1					
ТҮРЕ:	Chip Bentonile	TBS (ft):	5.2 feet	LENGTH (ft):	5.2 feet			
SAND PACK	1100				4 - 41			
FINE SAND TYPE:	#00	TSP (ft):	s.2 feet	LENGTH (ft):	.8,9 TT			
COARSE SAND TYPE:		TSP (ft):		LENGTH (ft):				
ACRONYMS								
TR	Top of Riser	BSC	Bottom of Screen	TG	•			
TSC BGD	Top of Screen Background	POW TSP	Point of Well Top of Sand Pack	TB:	Top of Bentonite Seal			
COMMENTS:				<u> </u>				
Tempor	my well to							
					•			
CEE DACE A POR COVER		* ALL DEPTH	MEASUREMENTS REFERE	NCED TO GROUND SU	JRFACE			

PAGE 1 OF 2

OVERBURDEN MONITORING WELL

COMPLETION REPORT & INSTALLATION DETAIL ROADWAY BOX - SURFACE COMPLETION

	ROADWAY	BOX - S	SURFACE COMP	LETION	TW12-26		
PARSONS ENGINEERI	ING SCIENCE, INC.		CLIENT:	USACOE	WELL#:-MW		
PROJECT:	RI FIELD INVESTIGA	TION	PROJEC	CT NO:	743156		
SWMU # (AREA):	SEAD- /	2 RI	INSPE	CTOR:	mcAllisle		
SOP NO.:			СНЕСКІ	ED BY:	· · · · · · · · · · · · · · · · · · ·		
DRILLING CONTRACTOR:	Mothnagle		POW DEPTH (ft)		10.964		
DRILLER:			INSTALLATION	STARTED:			
DRILLING COMPLETED:	June 9 2004		INSTALLATION	COMPLETED:			
BORING DEPTH:	11 feet	<u> </u>	SURFACE COMPLETION DATE:				
DRILLING METHOD(S):	HsA		COMPLETION CO				
BORING DIAMETER(S):	61nch		BEDROCK CON	FIRMED (Y/N?)			
PROTECTIVE SURFAC	CE CASING						
DIAMETER (ft):				LENGTH (ft):_			
RISER	0.11						
TYPE:	DVC			TR (ft):_			
DIAMETER(in):	Lincu			LENGTH (ft):_			
SURFACE COLLAR		:					
ТҮРЕ:			•	RADIUS (ft):			
THICKNESS OF CENTER (ft)			THIC	KNESS OF EDGE (in):_			
SCREEN	D: \(\cdot \)				- 01		
TYPE:	pvc			TSC (ft):_	5.9Ch		
DIAMETER (in);	2.lnca	SLOT SIZE:	O-0W	LENGTH (ft):	5 foot		
POINT OF WELL (SIL	Г SUMP)		, med l				
TYPE:	End Cap	BSC (ft):_	10.854	POW(ft):	10.9 ff		
GROUT							
TYPE:		TG (ft):		LENGTH (ft):			
SEAL			^		4 - 01		
TYPE:	Chip Bentonite	TBS (ft):_	Surface	LENGTH (ft):	\$.9Ct		
SAND PACK			4 - 41				
FINE SAND TYPE:	#00	TSP (ft):	4.9 ft	LENGTH (ft):	6 feet		
COARSE SAND TYPE:		TSP (ft):		LENGTH (ft):			
ACRONYMS							
TR	Top of Riser	BSC B	ottom of Screen	TG	Top of Grout		
	Top of Screen Background		oint of Well op of Sand Pack	TBS	Top of Bentonite Seal		
		101 1	op or oand rack				
Temp	oncy well						
•	-						
	* /	ALL DEPTH M	IEASUREMENTS REFEREN	CED TO GROUND SU	RFACE		

Appendix B

Sampling Records

SAMPLING RECORD - SURFACE WATER DATE: June 12 2004 PARSONS McAllister CONSULTANT: INSPECTOR: SEAD PROJECT: RE LABORATORY: Chemlech Ruldon 813-814 K. Hummber LOCATION: LAB. STAFF: WEATHER / FIELD CONDITIONS CHECKLIST CHAIN OF CUSTODY #: (RECORD MAJOR CHANGES) GROUND / SITE REL. WIND (FROM) TIME TEMP **WEATHER** HUMIDITY VELOCITY DIRECTION SURFACE **MONITORING** (0 - 360) INSTRUMENT (24 HR) (APPRX) (GEN.) (APPRX) (APPRX) CONDITIONS **DECTECTOR** 630 M:00 West uet Overcust HKH 10-15am PLD Ppm LOC SAMPLE MON. **TURBIDITY** SPEC QC SPL SAMPLING CONT VOC CLR ID **DFS** DEPTH TIME TEMP (NTU) pH COND D.O. DEVICE TYPE / SIZE (Y/N) SW/SD 13430 72/.77 3/40ml VOA 1ft Hostu 6.30 ·31 15:10 20B BOHLE 12-68 121000 SWISD 7.4 .46 3/40 ml VOA 7.1 bottle 1.5 -18 15:45 22.2 63.9 .b 12(00) 12-69 SW 15D .75 7.2 3/4cml VOA 1600 47.2 nb 7.1 1861 ·6f 13.96 boffle 12/002 N 12.70 SWISD 7.3 .73 7.5 3/40ml .SH 16:20 19.44 bottle 1.84 76ato 121003 ·470 12.71 WA SW/SD 44.6 ntu 7.3 .70 8.06 bottle 3/40 M 311 11:40 21 56 121006 1.294 · (Agen VOA 12-74 SWISD 3/40m 72 5.52 68 bottle 34 17:00 2015 20 121004 Oppor 12.72 JUA sulsb 12/005 3/20cm/ 26 nfc 75 70 7.62 1.411 5 10.31 bofflo 17:40 Oppm 12.73 ubul.

DFS-DISTANCE FROM SHORE (FEET)
IDENTIFY UNITS FOR ALL MEASURMENTS
CLEANING PROCEDURES ACCORDING TO SOP

PAGE OF

				NG R	ECOI	RD - SURFACE SOIL/S	EDIMEN	VT.		c
	PAR	50N	IS		CLIENT:	INSPECTOR:		DATE: ナ	une 24 2	2004
PROJE	CT:	<u> </u>	1-5	Resample			SURFACE	SOIL '		IMENT
COMMENTS:	Samples	Со	llected	with a	Carbon	steel split spoon	GM -Mrell	MONITO ADNIE er - Ludlum		- 385.A O K(C)
	SAMPLE IN	FORM.	TION			SOIL INF	ORMATION		<u> </u>	1
LOCATION	SAMPLE NUMBER	SA	MPLE TH (in) ВОТТОМ	TIME (military)	GRAB or COMPOSITE SAMPLE	SAMPLE DESCRIPTION (Burmister method)	USCS Classification	VOC Screen (PPM)	QC Split (yes or no)	Other Notes
55 12 - 118	123678	0	.2	લાગ		Dry brown, Silfally soft loose, Some Shade figurents fine to course Agular		0.0	No	
5512-102	123677	0	.2	11:40		Do brown Sill & Clg Soft loose Some State fagments five to come Ay		0.0	No	
SS12-107	123676	0	.2	12:03		Moist. brown Silt4 Clay. Some Shale fugments f-c trace organic		0.0	Yes	
5512-120	123671	0	.2	12:08		Moist brown Silf & Clay some shale framents trace organic		0.0	No	
5512-108	123673	0	.2	12:18		Dry brown Siltend Cly soffloor Some shale figures than concurre		0.0	No	
S512-117	123674		.2	12:29		Dry 11. brown Siltard Cly. trace organic material (mads)		0.0	No	Nails and wood at lac
5512-109	123267 12326745 123267450	٥	-2	12:40		Dry It- brown Silk and Clay Some Gravel M-C trae organic		0.0	Yes	Scrup MS MRO MSD
TP12-15C	123680	8.0	5.6 5	15:46		It. Grey Si't & Cly. Some Grovel little Organic mak	_	0.0	No	
5512-119	123670	0	.2	13:09	·	11-Gny 5+11+ ECly sono Gravel m-c trave organic		0.0	No	
TP 15A	123675	3.0	3.5	15:39		Wet, It-gray to brown Sitacly- Some Grevel (skele) m-C		00	No	
Rinse Blank										

(MRD sample collected at SS 12-109 123267)

PAGE #1 of 2

.SAI	MPLIN	G REC	<u> </u>	<u> </u>	DWAI	EK		
PARSONS			CLIENT	<u> </u>		WELL#:	TWI	2 · [
PROJECT (STUDY_ID):	50	EAD 12	RI		DATE:	5/2	-	
SWMU # (AREA):	30,76	m 8/3/8	34	_	LABORAT	ORY: C	<u>hemfek</u>	
SCREENED INTERVAL (TOC):		3:55 to	855 1	_	MONITORI	NG DATE:		
STATE WELL PERMIT #:	* Not 5	Langura	cleusto	ų .	INSTRUM	ENT	. DE	TECTOR
WEATHER:		720		_	PID	/ FID	φ	•
FREE PRODUCT (NO/ YES) Thickness		N						****
BOREHOLE DIAMETER FACTORS								<u> </u>
DIAMETER (INCHES):	1 1.:	()	3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0		0.367 0.6	554 1.02	1.47 2.0	00 2.61	3.30 5.8	7
PURGE METHOD:	Blodder	Poop	•	OC CONCENTRA		1.14	Ø	
STATIC DEPTH TO WATER (TOC):		\$ 6.50	STANDING WA	ATER VOLUME I	N WELL (gallons)		1.0	
WELL DEPTH (TOC):	13.	25	THREE WELL	VOLUMES (gallo	ns):	3.4		
FEET OF WATER IN WELL:	7.		ONE:		TWO:	THRE	Е;	
Measure	indicator para	PUF meters after ea	RGING DA		more than 3 re			
	14:26	15:26	15:35	15:44	15:53	16:02	(6:11	16:20
Time: Depth to Water (ft)	7.60	8.72	8.72	8.72	8.72	8.72	8.72	8.72
Depth to bottom				•			0 12	
opening of							·	
	10.5	10.5	10.5	10.5	10.5	10.5	<i>V</i> -S	10.5
Purge Device (TOC)	80 m/	1.	10.1	/Anal	60-01		60 nd	1 1
Flow Rate (ml/min.)	ON	60 ml	60 m	60ml	(GU MAN)	60ml	0 1M	60m/
Volume of Water	C1			1.			A =	
Removed (gals)	Scoul	3700ml	4200 ml	4700	5200	5700ml	6200 m	6700ml
pН	~ 5	7.18	722	7.21	7.20	7.19	7.16	7.15
Specific Conductivity (umhos)	8 7	1.25	1.21	1,20	LIB	1.19	1.13	1.12
Dissolve Oxygen (DO)	¥.E	9.38	5.89	5.37	4.77	4.47	3.80	3.40
Temperature (deg. C)	27	19.00	19.97	20.1	20.35	2040	19.84	19.73
ORP (mV)	\$ 8	138	120	114	108	106	102	102
		78	56.5	52.5	489	50	51	5/
Turbidity (NTU)	EDOTH TO H				' ' ' -		01	<u> </u>
<u></u>	CPIH IOV	VATER ME	ASUKEM	ENIS AFI	EK PUKGI	NG		<u> </u>
	1	Depth to	Water (ft)	Pre-Purge / "Sta	atic" Wate	,		 %
Date	Time		Purge"	-	umn (ft)		olumn (ft)	RECOVERY
Notes:	<u>.l.</u>	<u> </u>		1		<u> </u>		1
* Purging should not ex	ceed 5 volur	nes						
(1) Determine water column in the			e" and "static"	conditions)				
by subtracting the measured wa								

Purse began at 14:26 it look I hoor to establish a flow rate of 60 ml/num with a stobilized water level of 8.72 feet.

PAGE #2 of 2

SAI	MPLIN	G REC	ORD - (GROUN	IDWA T	ER		
PARSONS			CLIENT	:		WELL#	: Tw 17	1-1
PROJECT (STUDY_ID):	5€	AD I	2 RI		DATE:	8/:	26/04	
SWMU # (AREA):	Bu	riding 8	13/814	<u> </u>	LABORAT		Chemtek	<u> </u>
SCREENED INTERVAL (TOC):	73	·55 - 8	55 #		MONITOR			
STATE WELL PERMIT #:	# Not :	50000	elevotion	•	INSTRUM	ŒNT	D	ETECTOR
WEATHER:	•	Sun	720	•	PID	/ FID	Ø	
FREE PRODUCT (NO/ YES) Thickness		NA		<u> </u>				
BOREHOLE DIAMETER FACTORS	<u></u>				<u> </u>			
DIAMETER (INCHES):	1 1.5	/ · }	3 4	5	6 7	8	9 10	
GALLONS/FOOT:		0.163	0.367 0.6			00 2.61		87
PURGE METHOD:	Bladde		_WELL HEAD V	OC CONCENTRA	ATION (ppm):		<u>B</u>	
STATIC DEPTH TO WATER (TOC):		50	_STANDING WA	TER VOLUME I	N WELL (gallons): 19	.14	· · · · · · · · · · · · · · · · · · ·
WELL DEPTH (TOC):		.55	THREE WELL V	VOLUMES (gallon	ns):		149	
FEET OF WATER IN WELL:	7.0		ONE:		TWO:	THR	EE:	
Manaura	indicator nom		RGING DA			d*\		
TIME BEGIN PURGING: Measure	indicator para	imeters after ea	ich voiunie (ai	1/2 Volume m	TIME END	-		
Time:	16:29	16:38	16:47	16:56				
Depth to Water (ft)	8.72	8.72	8.72	8.72	co			T
Depth to bottom		1		1	2			
opening of					克			
	10.5	10.5	10.5	10.5	10			
Purge Device (TOC) Flow Rate (ml/min.)	60 m/	60ml	60ml	60ml	<u>\$</u>	 		
	77.77	 •			8		1	
Volume of Water	7,200 ml	7700ml	Broom	87comi	/			
Removed (gals) pH	7.16	7.17	717	7.17	®			
	1.10	1.09	1.08	1.07	-		-	
Specific Conductivity (umhos)		1:			R			-
Dissolve Oxygen (DO)	3.4	2.65	2.50	2.43	Ö	<u> </u>	-	1
Temperature (deg. C)	19.21	19.87	19.85	19.80		<u> </u>		
ORP (mV)	99	97	96	97			<u> </u>	<u> </u>
Turbidity (NTU)	52.3	59	56	54				
DF	ртн то ч	VATER ME	EASUREMI	ENTS AFTI	ER PURGI	ŅĠ		
		Denth to	Water (ft)					%
Date	Time		Purge"	Pre-Purge / "State Colum	tic" Wate mn (ft)		Column (ft)	RECOVERY
		†		 		 		-
Notes:	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>
* Purging should not exc	ood 5 volun	mac						
(1) Determine water column in the b			" and "static"	conditions)				
by subtracting the measured wat		-	/ Clarie Co	oonanc,				
(2) Divide the "after purge" water co		-	olumn and mu	Itiply by 100				

Do has not Stabilized continue to collect field parameters Although Sample time is 16:20

	Well Number: TW12-1		SAMPLING INFOR	MATION		
1	Well Number: 1 W 2 P	Jung	en e			• •
57	SAMPLE PARAMETER	TIME	CONTAINER	COLOR		TURBIDITY SAMPLE AFTER (CHECK ONE)
	VOC NYC CLPAS	P 16:20	40 ml VOA	None		122275
l	1	1	2-40 M 1/0A	1		122284
٨ ا			2-40 ml VOA		•	120100
4			2.40 ml vot			120001
			2.40 mi VOA		3 4	122275
t	Y	7	2.40 ml VOA		•	122275/
ŀ			राष्ट्रद		: ;	
ŀ						
t						
t						
E	QA\QC:					<u> -</u> -
Ç	QA/QC DUPLICATE SAMPLE COLL Duplicate Sample Name:	ECTED: (YES	or NO [2228	84		٠.
Ç	QA\QC RINSATE SAMPLE NAME:	. ^	120 100	9	• •	
N	MATRIX SPIKE SAMPLE COLLECT	ED: YES Or	NO [122]	fsus 15msD		
1						
Ī	INVESTIGATION DERIVED WAS	TE (IDW):	3 5, 2	•	•	
Ī	INVESTIGATION DERIVED WAS	FE (IDW): . Date	·	•		· · · · · · · · · · · · · · · · · · ·
Ī		Date Date ansfered to Drum	5/27 3/9/			· · · · · · · · · · · · · · · · · · ·
n		Date	5/27 3901			· · · · · · · · · · · · · · · · · · ·

2 of 2

Page 1of

SA	MPLIN	G REC	ORD -	GROUN	NDWAT	ER		
PARSONS			CLIENT	: SEAD	- 12	WELL#	TW12	- 1
PROJECT (STUDY_ID):	SEA	D-12-	RT.		DATE:	5/2	6/04	
SWMU # (AREA):	56	10 12		_	LABORAT	ORY:	Chempek	
SCREENED INTERVAL (TOC):	11.75	- 6.75		_	MONITORI	NG DATE:	5/26	3
STATE WELL PERMIT #:				_	INSTRUM	ENT	DE'	TECTOR
WEATHER:	Sun	700		_	PID	/ FID	Ø	•
FREE PRODUCT (NO/ YES) Thickness		NA			.]			,
BOREHOLE DIAMETER FACTORS			·		. ģ			
DIAMETER (INCHES):	1 1.5	/ \	3 4	-	6 7	8	9 10	
GALLONS/FOOT:		0.163		554 1.02	1.47 2.0	00 2.61	3.30 5.87	<u> </u>
PURGE METHOD:	Bladder		•	OC CONCENTR			777	
STATIC DEPTH TO WATER (TOC):	7.0		STANDING W	ATER VOLUME	IN WELL (gallons			-
WELL DEPTH (TOC):	11.7			VOLUMES (galk		2.2		·
FEET OF WATER IN WELL:	4.70		ONE: • 5	<u>C</u>	TWO:	THR	ee: 2.3	<u> </u>
Meacure	indicator para				f more than 3 re	equired*)		
TIME BEGIN PURGING: 486		5/2 7	ich volume (a	. 172 Volumo I	TIME END I		14:14	
Time:	14:00	865 D	10:29	1058	10:47	10:58	(1:05	
Depth to Water (ft)	7.8	7.80	7.82	7:82	782	7.82	782	
Depth to bottom								
opening of		A W	201	011	aff	all	984	
• •	98F	19A	984.	94	141	9H	715	
Purge Device (TOC)	100 mille	BS w/onin	65 min	65 N	65 ml	65mi	65W1.	
Flow Rate (ml/min.)	(COMING	O MORE	0-14.4	0.3 80	0. 101	0000	10000	
Volume of Water		Of an a		2/00	lina	4700	6150	5
Removed (gals)	(800 m)	2500 el	30.50	3600	4150		5250	2
рН	_	6.8(6.80	6.78	6.74	6.70	6.69	<u> </u>
Specific Conductivity (umhos)		5.12	5.22	5.25	5.26	5.26	5.25	2
Dissolve Oxygen (DO)	_	3.14	3.02	2.92	2.76	1.56	2.55	4
	-	18.2	18.2	18.2	18:14	18.24	18-24	7
Temperature (deg. C)	-	1 4	20	+	24	26	18	6
ORP (mV)	-	14		122	-			<u>G</u>
Turbidity (NTU)	<u>. </u>	29.3	24.5	12.8	23	<u> 1</u> 2	13	
D1	EPTH TO V	VATER ME	ASUREM	ENTS AFT	ER PURGI	NG		
		l <u>.</u> .	40.					
Date	Time		Water (ft) Purge"	Pre-Purge / "St	tatic" Water lumn (ft)		Column (ft)	% RECOVER
2410					(/			
:			_	 	•	 		
	<u> </u>	.]				<u> L. </u>		<u> </u>
Notes:	15 1						,	
* Purging should not ex			" and "atatic"	conditions)				
(1) Determine water column in the by subtracting the measured wa			and static	conditions)				
(2) Divide the "after purge" water c			olumn and mu	ltiply by 100	1 - 11	% 54	oc	
to determine the percent of reco	_				(5940)	n = 376	D M(

14:14 Stop pumpy at 100 mylmin well has drawn bown to 83ft. 69:30 Mg 27 2004 Puzal 1500 ml yesterdy # 122278

Well Number TW12-4		SAMPLING INFORMA	ATION	
Well Number: 1012 SAMPLING DEVICE:				
DAYK LINU DEVICE.		•		
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYC CLP		240 ml van	Clean	122278
		· .		
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
				-
		•		
QA\QC:		<u></u>		
QA/QC DUPLICATE SAMPLE COLLECT	ED: YES	or NO		
Duplicate Sample Name:			•	
QA\QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED:	YES or	NO		
INVESTIGATION DERIVED WASTE (IDW):			
	f		· · · · · · · · · · · · · · · · · · ·	
Volume Transf	Date:	24h		· ·
	rum Number:			· · · · · · · · · · · · · · · · · · ·
	•			
COMMENTS:				
	20	d a L Illia	1) 11	Liber
Sample 1222	to c	collected at 11.10	this weu	ω~>
drawn down	/	11 6/1	I had IGM	M Rouwed
Offmur soon	compe	ry on 0/2	1500	¥
the well Tw				
tody before	Sample	122278 W	as collected.	
U	4	=	•	

SAI	MPLIN	G REC	ORD - (GROUN	DWAT			
PARSONS			CLIENT:			WELL#:	TW 12	· 5
PROJECT (STUDY_ID):	SEAL	D IZ KII	<u> </u>		DATE:		H04	
SWMU # (AREA):	Build	top 813/8	8/4		LABORAT		Chemlek	
SCREENED INTERVAL (TOC):					MONITORI	NG DATE:		
STATE WELL PERMIT #:					INSTRUM	ENT	DE	TECTOR
WEATHER:	5	un 70°			PID	/ FID	Ø	
FREE PRODUCT (NO/ YES) Thickness		MA						
BOREHOLE DIAMETER FACTORS								,
DIAMETER (INCHES):	1 1.5	/ 1	3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0		0.367 0.6	54 1.02	1.47 2.0	0 2.61	3.30 5.87	<u> </u>
PURGE METHOD:	Blodd	w	WELL HEAD VO	OC CONCENTRA	TION (ppm):		2	
STATIC DEPTH TO WATER (TOC):	8.10		STANDING WA	TER VOLUME IN	I WELL (gallons)		101	
WELL DEPTH (TOC):	13-65	-:	THREE WELL V	OLUMES (gallon	s):	2.7		
FEET OF WATER IN WELL:	5.55	TOTAL	ONE:	- 1	TWO:	THRE	3E:	
Massura	*		RGING DA'			iad*\		
TIME BEGIN PURGING: /4:36	indicator para	meters after ea	ich volume (ai	1/2 volume ii i	more than 3 re TIME END P			
Time:	15:36	15:40	15:50	1530-	1600	1625	16.10	
Depth to Water (ft)	8.70	8.70	8.70	8.75	8-75	8.75	8.75	
Depth to bottom					 			
-	,, , ,	11	l , _					
opening of	11.65	11.65	11.65	11.65	1165	11.65	11.65	
Purge Device (TOC)	ļ <u>.</u>	<u> </u>	<u> </u>	11.65 40mc	11/0-		`	- N
Flow Rate (ml/min.)	40ml	40ml	Asml	40mC	York	lon/	40MI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Volume of Water						_		July 1
Removed (gals)	2500	2900	3400 N					K.
рН	6.71	6.53	6.72	6.76	674	670	6.71	0
Specific Conductivity (umhos)	1.14	2.19	2.19	2,2/	2,24	2.26	2.25	2
Dissolve Oxygen (DO)	10.06	6.95	6.60	6.80	663	6-60	6.59	R
Temperature (deg. C)	19.59	20 AO	20.72	20,78	20,40	20.40	20.40	2
ORP (mV)	14	26	14	16	24	26	26	8
Turbidity (NTU)	32.5	133	44.4	23	69.4	76.4	98.5	÷
		VATER ME	EASUREMI	ENTS AFTI	ER PURGI	NG		
			-					
_			Water (ft)	Pre-Purge / "Stat				%
Date	Time	"After	Purge"	Colur	nn (ft)	Water C	column (ft)	RECOVERY
								ļ
Notes:								
 * Purging should not exc 								
(1) Determine water column in the b			" and "static"	conditions)				
by subtracting the measured wat (2) Divide the "after purge" water co			olumn and mul	ltinly by 100				

* Turbidity is not 985 the weter is not worky properly

Well Number: TW 12-5 SAMPLING DEVICE: Bladden Po	· · · · · · · · · · · · · · · · · · ·	SAMPLING INFORM	ATION	•
SAMPLING DEVICE: Bladden Pe	mp.			•
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC MYSCLPAS	16:00	2-40 ml VOA	No color	1222 79
				·.
				·
Duplicate Sample Name: QAVQC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: INVESTIGATION DERIVED WASTE (Volume Transf	IDW):	2901]
COMMENTS: Sample # 122 TW12-5	1279	collected at		soupe fer
• • • • • • • • • • • • • • • • • • • •			en e	

page 1 of

SGAD Building (6.05 Son No.	-17 23(84 - 5-05 - 70°		· .	DATE: LABORATO MONITORII INSTRUMI	5/2' ORY : NG DATE:	TW 12 7104	-6
Son N/	~ \$.05 —		- -	LABORATO MONITORI	5/2' ORY : NG DATE:		
Son N/	~ \$.05 —		· ·	MONITORI	ORY : NG DATE:		
Son N/	-	<u> </u>					
1.5	- 70°			INSTRUM			
1.5	700		Sou 70°				TECTOR
	1			PID /	FID		
	_						
ስ በበን	$\binom{2}{2}$	3 4	5	6 7	8	9 10	
	0.163	0.367 0.65	54 1.02	1.47 2.00		3.30 5.87	<u>'</u>
Bladder		WELL HEAD VO	OC CONCENTRA	TION (ppm):	00		
7-45		STANDING WA	TER VOLUME IN	WELL (gallons):	.91	<u>48</u>	
13.05		•	OLUMES (gallon	•		E: 2.73	
5.06		ONE:		TWO:	THRE	E: 7.73	
rator narame		RGING DAT		more than 3 rec	mired*)		
ator parame	ters after car	cii voiunie (at		TIME END P	=		
30 /	108	1115	1120	1125	1130	1135	1140
-	3.26	5 H		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			9
, 73 0	1-20	" note		-			
ŀ							1
				_			
3,00 1	3,05	13.05	13.05.	_ رــــ	シー		<u> </u>
15	20	20	20 -	- で	ے و <u>۔</u>		5
- (647	6.35	6.38	6.42	6.44	6.45	6.45
	-		444				2.55
					-		7.90
١,	- 7/						21.59
,			7 3	2.3			(B)
	100		200				572
	7.8					90,3	3 /./
H TO WA	TER ME	ASUREME	ENTS AFTE	K PURGIN	IG .		
	Denth to	Water (ft)					%
Time	-				Water Co	olumn (ft)	RECOVERY
			 				
		1	I		1		
			<u> </u>				
5 volumes	,	<u></u>					
5 volumes		" and "static" o	conditions)				·
	- (- (- (- (5 20 - 6.47 - 2.65 - (0.86) - (1.76) - (2 - (9.8) ITO WATER ME	5 20 20 - 6.47 6.35 - 2.65 2.66 - (0.8(9.07 - (1.71 19.53 12 22 - 19.8 24.0 TO WATER MEASUREME	5 20 20 20 - - 6.47 6.35 6.38 - 2.65 2.66 2.69 - (0.86 9.07 8.75 - (1.76 19.53 19.70 - (2 22 23 - 19.8 24.0 26.7 TO WATER MEASUREMENTS AFTE	5 20 20 20 -> 6.47 6.35 6.38 6.42 - 2.65 2.66 2.69 2.62 - (0.86 9.07 8.75 8.58 - (1.76 19.53 (9.70 20.10 - (2 22 23 23 - (9.8 24.0 26.7 34.6) TO WATER MEASUREMENTS AFTER PURGIN Depth to Water (ft) Pre-Purge / "Static" Water	5 20 20 20 -> -> - 6.47 6.35 6.38 6.42 6.49 - 2.65 2.66 2.69 2.62 2.59 - (0.86 9.07 8.75 8.58 8.20) - (1.76 19.53 19.70 20.10 20.60 12 22 23 23 26 - (1.8 24.0 26.7 34.6 40.0 Depth to Water (ft) Pre-Purge / "Static" Water	5 20 20 20 -> -> -> -> -> -> -> -> -> -> -> -> ->

Note:

** Low and Flow rate to 59 secr sefill to I see dirchare time to lose up low fech orse rate of wall. Did this at is 1050 gwsmpr ** OTW drapply slowly at marriana of low rate able to he produced by Sladon Mans. A final DTW will be

to determine the percent of recovery for the well.

beck of

SAI	MPLIN	G REC	ORD - (GROUN	DWAT	ER		
PARSONS			CLIENT:			WELL#:	TW12	6
PROJECT (STUDY_ID):	564	D 12-	- RI		DATE:	1	127/04	
SWMU # (AREA):	Build	day 813	1814	_	LABORAT			
SCREENED INTERVAL (TOC):				_	MONITORI	NG DATE:		
STATE WELL PERMIT #:			····	_	INSTRUM	ENT		TECTOR
WEATHER:	$\overline{}$	Jun 70	, o	_	PID /	/ FID	Ø	
FREE PRODUCT (NO/ YES) Thickness		<u> </u>					<u> </u>	·
BOREHOLE DIAMETER FACTORS				_	_	2		
DIAMETER (INCHES): GALLONS/FOOT:	1 1.5 0.041 0.09	4 1	3 4 0.367 0.69	5 i54 1.02	6 7 1.47 2.0	8 10 2.61	9 10 3.30 5.87	,
PURGE METHOD:	Bladder			OC CONCENTRA	- .		Ø	
STATIC DEPTH TO WATER (TOC):	7-45		_	TER VOLUME IN		:	9143	
WELL DEPTH (TOC):	13.05		-	OLUMES (gallon				
FEET OF WATER IN WELL:			ONE:		TWO:	THRE	E: 2-73	5
		PUI	RGING DAT	ΓA:				
	indicator parai	meters after ea	ich volume (at			-		
TIME BEGIN PURGING:	11.50	11ºEE	1 1111		TIME END P	T	12:25	1-11-7
Time:	11:50	11:55	12:00	12:05	12:10	12:20	12.25	12:30
Depth to Water (ft)	!	ļ	!					
Depth to bottom		1	1					
opening of	اعد در		!					
Purge Device (TOC)	13.05	13.05	13,05	13.05	3.05	1308	13.05	1305
Flow Rate (ml/min.)	20ml	20 ml/m	20ml/m	20 ml/m	20 ml/m	20 mym	10 adjun	20 mllon
Volume of Water					* ********	7-07		· · · · · ·
Removed (gals)		1	!					
pH	6.64	6.46	6.46	6.47	6.48	649	648	6.48
	249	2.47	2.48	245	2.43	2.40	2.36	2.35
Specific Conductivity (umhos)	 	7.24	7.71	7.19	711	7.01	6.93	6.87
Dissolve Oxygen (DO)	7.39	1100	1101		11 17	12.4	10 70	4
Temperature (deg. C)	21.72	21.83	21.91	-	22.07			2280
ORP (mV)	16	15	14	14	12	11	10	8
Turbidity (NTU)	80.1	94.7	110	126	138	183	228	297
DF	EPTH TO W	ATER ME	ASUREMF	ENTS AFTE	ER PURGIN	√G		
	!			1				
Date	Time		Water (ft) Purge"	Pre-Purge / "Stati Colum	tic" Water mn (ft)		olumn (ft)	% RECOVERY
								-
· · · · · · · · · · · · · · · · · · ·	 	 						
Notes:	<u> </u>	<u> </u>		<u></u>		<u> </u>		
* Purging should not exc	eed 5 volun	neg						
(1) Determine water column in the b			" and "static"	conditions)				
by subtracting the measured water				,				
(2) Divide the "after purge" water co	olumn by the "s	static" water co	olumn and mul	tiply by 100				

Sample Collected @ 12:30 # 122280 4000 ml purged

Well Number: Two 2 6 SAMPLE PARAMETER TIME CONTAINER COLOR TURBITY SAMPLE TAFTER CHECK ONE) WENDER OF THE CHECK ONE) L 22280 CANCE: QANCE: QANCE: QANCE COLURE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QALC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW):			SAMPLING INFOR	MATION	₹
QAQC: QAQC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QAQC RINSATE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Volume Transfered to Drun: TURBIDITY SAMPLE T. AFTER (CHECK ONE) AND COLUMN No. (OLUA 122280 1 22880 1 22880 1		$\frac{\partial \theta_{k}}{\partial t} = - \Delta t$.	* · · · · · · · · · · · · · · · · · · ·	· A
ATTER (CHECK ONE) COLOR AFTER (CHECK ONE) 1 22280 2 40ml WA No COLOA 1 22280 2 40ml WA 1 22280 2 40ml WA No COLOA 1 22280 2 40ml WA	AMPLING DEVICE:				TUDDIDITY CANDI E TAKE
QAVQC: QAVQC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QAVQC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: Volume Transfered to Drum: 1.5/27 1.544	SAMPLE PARAMETER				
QAVQC: QAVQC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: Volume Transfered to Drum: 1.51.7	LOC NYS CLPAP	(CLA)	2-40ml voa	No colua	122280
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4				•	No.
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4					
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4				* * * * * * * * * * * * * * * * * * * *	
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4	 ···		•		
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4					
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 6/2-7 Volume Transfered to Drum: 1-344					
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: Volume Transfered to Drum:	And the second s			•	
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 6/2-7 Volume Transfered to Drum: 1-3-4	•			in in the second of the second	
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4	1000		4. 4		
QA/QC DUPLICATE SAMPLE COLLECTED: YES or NO Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: YES or NO INVESTIGATION DERIVED WASTE (IDW): Date: 5/2-7 Volume Transfered to Drum: 1-3/4					
Date: 5/2-7 Volume Transfered to Drum: 1-314	Ouplicate Sample Name: ANQC RINSATE SAMPLE NAME:	- 1			***. ***
Volume Transfered to Drum: 1-850	NVESTIGATION DERIVED WASTE	(IDW):		×	
		Date:			
		sfered to Drum: Drum Number:			
Diametramote	•	Diam Number.			
COMMENTS:	OMMENTS:			W. Barrier	
Final DTW was 9.00 often Sampley.	[earl DTW way	9.00	offer Samp	ltry.	

SAI	MPLIN	G REC	ORD -	GROUN	IDWAT	ER		
PARSONS		•	CLIENT	:		WELL#	: TWI	۲.7
PROJECT (STUDY_ID):	SEAL) 12 RI			DATE:			
SWMU # (AREA):	Rudi		1814	_	LABORAT	ORY:		
SCREENED INTERVAL (TOC):		7		_	MONITOR	ING DATE:		<u> </u>
STATE WELL PERMIT #:				_	INSTRUM		DE	TECTOR
WEATHER:	76	100 POM				/ FID	0	
FREE PRODUCT (NO/ YES) Thickness		NA		_		, , ,		
BOREHOLE DIAMETER FACTORS					11			
DIAMETER (INCHES):	1 1	$\sqrt{2}$	3	4 5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0		0.367 0.	.654 1.02	1.47 2.	00 2.61	3.30 5.8	7
PURGE METHOD:	Redde	- Fund	WELL HEAD	OC CONCENTRA	ATION (ppm):		Ø	
STATIC DEPTH TO WATER (TOC):	7.3		- STANDING W	ATER VOLUME I	N WELL (gallons): •	774	
WELL DEPTH (TOC):	12.10		- THREE WELL	VOLUMES (gallos	ns):			
FEET OF WATER IN WELL:	4.7	5	ONE:		TWO:	THR	EE: 2.32	-
		PUI	RGING DA	TA:				
Measure	indicator para	meters after ea	ich volume (a	t 1/2 volume if	more than 3 re	equired*)		
TIME BEGIN PURGING:			1		TIME END	PURGING:		
Time:	14:60	14:16						
Depth to Water (ft)	8-35	8.35						
Depth to bottom			1 . ^					
opening of	las	100 0	β,					
Purge Device (TOC)		10.5	\$					·
Flow Rate (ml/min.)	Admi	Aoul	8					
Volume of Water					Ì			
Removed (gals)	6500	7000	6,		1			
pН	6.81	6.81	6					
Specific Conductivity (umhos)	2.6A	2.63	8					
Dissolve Oxygen (DO)	1.89	1.89	0					
Temperature (deg. C)	16.54	16.59	2					
ORP (mV)	59	57	1					
Turbidity (NTU)	30	36.7.	0					
	РТН ТО V	VATER ME	ASUREM	ENTS AFT	ER PURGI	NG		
_	m.		Water (ft)	Pre-Purge / "Sta				%
Date	Time	"After	Purge"	Colu	ımn (ft)	Water C	Column (ft)	RECOVERY
						ļ		
Notes:					:			
* Purging should not exc								
(1) Determine water column in the b		_	" and "static"	conditions)				
by subtracting the measured wat		-	dume e- 4	delale by 100				
(2) Divide the "after purge" water co to determine the percent of recov	-		ouna and m	ашрау бу 100				

Sample Collected @ 14:10 Sample # 1222Bl

SAI	MPLIN	G REC	ORD - (GROUN	DWAT	ER		
PARSONS			CLIENT:	:		WELL#	TWIZ	1-7
PROJECT (STUDY_ID):	<u>S6</u>	AD 12			DATE:		5127/04	
SWMU # (AREA):	Boile		/314	•	LABORAT	ORY:	ches	wek
SCREENED INTERVAL (TOC):	10'1	100 5.10		•	MONITORI	NG DATE:		
STATE WELL PERMIT #:				•	INSTRUM	ENT	DF	ETECTOR
WEATHER:	50	ou 70	, -	•	PID	/ FID	More	140
FREE PRODUCT (NO/ YES) Thickness		N4		-			R	
BOREHOLE DIAMETER FACTORS		~						
DIAMETER (INCHES):	1 1.5	- 1)	3 -4	•	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0		0.367 0.6		1.47 2.0	00 2.61	3.30 5.8	1
PURGE METHOD:	Bladh	_	_	OC CONCENTRA			77	
STATIC DEPTH TO WATER (TOC):	7.3		STANDING WA	TER VOLUME I	N WELL (gallons)	· • f	49	
WELL DEPTH (TOC):	4.75		_	VOLUMES (gallor			EE: 2-32	
FEET OF WATER IN WELL:	<u>. 7.F</u> 2		ONE:	TDA.	TWO:	THRE	iE:	
Measure TIME BEGIN PURGING:	indicator para		RGING DA' ach volume (at		more than 3 re		_	
Time:	12:3/	/2:44	12:57	13:10	13:13	13:26	13:39	13:52
Depth to Water (ft)	8.20	8.30	8.35	8.35	8.55	8.35	8-35	8.35
Depth to bottom					**			
opening of	10.6	10.6	10.6	10.6	IAI	10.6	10.6	10.6
Purge Device (TOC)			1	10 -	10.6		(5.0	
Flow Rate (ml/min.)	4000/	Aoni	46m1	Aom l	Aom1	40mi	40ml	Aoud
Volume of Water					1	•		
Removed (gals)	1500 m	3000ml	3500m/	4600	4560	5000	5500	6660
рН	6-61	648	6-61	6.69	6.71	6.65	6.69	6.78
Specific Conductivity (umhos)	2.5%	2.66	2.59	2.58	2.62	2.67	2.68	2.67
Dissolve Oxygen (DO)	5.07	4.11	3.27	2.89	2.63	2.38	2.01	1.90
Temperature (deg. C)	20.62	20.79	10.78	20.65	19.30	17.30	16.62	16.63
ORP (mV)	65	73	67	64	64	69	66	60
Turbidity (NTU)	0	0	0	7.5	8.9	9.1	23.5	26.3
DF	PTH TO W	ATER MF	ASUREMI	ENTS AFTI	ER PURGIN	NG		
Date	Time	1 ~	Water (ft) r Purge"	Pre-Purge / "Stat Colui	utic" Water umn (ft)		olumn (ft)	% RECOVERY
	<u> </u>		•				·	
Notes:	<u> </u>	<u> </u>	 	<u> </u>		<u> </u>	<u></u>	<u>l</u>
* Purging should not exc (1) Determine water column in the b	orehole(for bo	th "after purge	e" and "static" (conditions)				

(2) Divide the "after purge" water column by the "static" water column and multiply by 100

Well Number 7		SAMPLING INFORM	MATION	
SAMPLING DEVICE:		·		
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYS CLP ASP	1440	2-40ml VOA	None	122281
	* .			
				·
*	• •	,		
	• .			
	•			
QA/QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: INVESTIGATION DERIVED WASTE (YES or	NO .	·	
; :	Date:	5/27		
Volume Transf	ered to Drum:	2 34		
D	rum Number:			
COLORONA				
comments: Sande Collect	1 1 0	1/11/11/11	71201	
Sample Collect	ed C	14:10 # (2281	
			•	

PARSONS PROJECT (STUDY_ID): SWMU # (AREA): SCREENED INTERVAL (TOC):	SE Builde	40 i.	CLIENT: 2 KI 184		DATE:		TW 12	-8
SWMU # (AREA): SCREENED INTERVAL (TOC):	SE Buildi	40 l 4 30/	2 RI 184		DATE:			
SWMU # (AREA): SCREENED INTERVAL (TOC):	Builde	4 33/	184	. ,				
SCREENED INTERVAL (TOC):	<u> </u>			ŗ	LABORAT		nember	
	`				MONITORI			
STATE WELL PERMIT #:	٠				INSTRUM		DE	TECTOR
WEATHER:	•	Sun	700		PID /	/ FID	Ø	
FREE PRODUCT (NO/ YES) Thickne		NA						
BOREHOLE DIAMETER FACTORS								
DIAMETER (INCHES):	1 1.5		3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.09		0.367 0.65	54 1.02	1.47 2.00	0 2.61	3.30 5.87	
PURGE METHOD:	Bladde	r pomp	WELL HEAD VO	OC CONCENTRA	TION (ppm):	<u> </u>	5 	
STATIC DEPTH TO WATER (TOC):	4.7	·	STANDING WA	TER VOLUME IN	N WELL (gallons):	D	・グナー	
WELL DEPTH (TOC):	12.4	.	THREE WELL V	OLUMES (gallon:	s):		3.Lgallons)
FEET OF WATER IN WELL:	52		ONE:		TWO:	THRE	Е:	
Manage	! 4! ston mano		RGING DA		45.cm 2 ma	!! * \		
Measu TIME BEGIN PURGING:	ıre indicator paraı	meters after eac	ch volume (at		more than 3 red TIME END P	-		
Time:	13.25	13:31	13:45		14:05	14:10	14:15	14:20
Depth to Water (ft)	7.35	7.50	7.70	7.85	7.85	7.85	7.85	7.85
Depth to bottom	1,					, 55		
-			!	'		ļ		
opening of	1240	1240	12.40	12:40	1240	124	12 40	meda
Purge Device (TOC)							12.46	1270
Flow Rate (ml/min.)	30 ml/m	30a//m	304/m	30 MI/M	30 Ala	30 melan	30 m/a	Dala
Volume of Water				1				
Removed (gals)	!				, , , , ,	, , ,		1.00
pН				6.69	6.65	6.64	6.6/	6.61
Specific Conductivity (umhos)				2.63	2.76	2.75	2.74	2.72
Dissolve Oxygen (DO)				10.31	8.14	7.48	7.15	6.53
Temperature (deg. C)				20.06	20.60	20.80	20.95	21.56
ORP (mV)				<i>5</i> 5	54	64	<i>55</i>	86
Turbidity (NTU)				31.5	20.2	20.5	25.8	268
	DEPTH TO W	ATER ME	ASUREME		ER PURGIN	1G		T
		_	Water (ft)	Pre-Purge / "Stati				%
Date	Time	"After	Purge"	Colur	mn (ft)	Water Co	olumn (ft)	RECOVERY
		<u> </u>		<u> </u>		<u> </u>		
		l			!			
Notes:								
* Purging should not e	xceed 5 volun	ies						
(1) Determine water column in th		= -	" and "static" (conditions)				
by subtracting the measured v (2) Divide the "after purge" water			.1	(c) -1 1 100				

SAI	SAMPLING RECORD - GROUNDWATER										
PARSONS			CLIENT:			WELL#:	TW12	-8			
PROJECT (STUDY_ID):	SEA	0 12	RI		DATE:		127/04				
SWMU # (AREA):	Buildin	4 813/2		•	LABORAT	ORY: (Chenteel	1			
SCREENED INTERVAL (TOC):		-			MONITORI						
STATE WELL PERMIT #:				· !	INSTRUM	ENT	DE	TECTOR			
WEATHER:	5.	n 70°		•	PID	/ FID	P				
FREE PRODUCT (NO/ YES) Thickness		NA									
BOREHOLE DIAMETER FACTORS											
DIAMETER (INCHES):	1 1.5	()) 3 4	5	6 7	. 8	9 10	1			
GALLONS/FOOT:	0.041 0.09		0.367 0.65		1.47 2.0	00 2.61	3.30 5.87	<u>'</u>			
PURGE METHOD:	7,000er		-	OC CONCENTRA			<u> </u>				
STATIC DEPTH TO WATER (TOC):	11/2		-		N WELL (gallons):	<u>_</u>) "				
WELL DEPTH (TOC):	5.2			OLUMES (gallon	•	<u>2.5</u>					
FEET OF WATER IN WELL:			ONE: C	<u>}~\</u>	TWO:	THRE	BE: 2.59				
Measure	indicator paran				more than 3 re	auired*)					
TIME BEGIN PURGING:					TIME END P	URGING:					
Time:	H:25	14:30	14:35	14:40	14:45	14:50	14:55	15:00			
Depth to Water (ft)	7.85	7.85	7.85	7.85	7-85	7.85	785	7.85			
Depth to bottom	[]						1				
opening of	48 61			'			1 1	1 1			
Purge Device (TOC)	12.40	12.40	12.40	1240	12.40	12.40	1240	12.40			
Flow Rate (ml/min.)	304/4	30m/m	30vel/un	30100	30mm/m	30 ml/m	3044	30MI/M			
Volume of Water	_	-			[!		Ī !				
Removed (gals)	-	- 1	-	-	-	- !		-			
рН	6.62	6.62	6-62	6.61	6.62	6.63	6.63	6.64			
Specific Conductivity (umhos)	2.67	2.69	2.61	1.58	2.54	2.49	1-46	242			
Dissolve Oxygen (DO)	6.49	6.08	583	5.58	5.37	5.16	5.03	5.00			
Temperature (deg. C)	21.7	21.78	21.73	21-88	12.32	22.53	22.67	72.51			
ORP (mV)	56	58	59	61	61	62	62	63			
Turbidity (NTU)	31	31.8	36-2	382	40.1	40.4	48.5	55.7			
	PTH TO W				<u> </u>	1G					
<u>.</u> .	_	_	Water (ft)	Pre-Purge / "Stati				%			
Date	Time	"Atter	Purge"	Colun	mn (ft)	Water Co	olumn (ft)	RECOVERY			
	 			<u> </u>		<u> </u>		1			
				<u> </u>		<u> </u>					
Notes:											
* Purging should not exce			- "								
(1) Determine water column in the be by subtracting the measured water			' and "static" c	onditions)							

to determine the percent of recovery for the well.

Sample Collected et 15:15

(2) Divide the "after purge" water column by the "static" water column and multiply by 100

(22282

2 gallons purged

SA	MPLIN	G REC	ORD - (GROUN	DWAT	ER		
PARSONS			CLIENT	·		WELL # :	TW 12	<i>-8</i>
PROJECT (STUDY_ID):	SEAR) 12	RI		DATE:		: 27	
SWMU # (AREA):	R.V.	u 80/8		-	LABORAT		rentem	
SCREENED INTERVAL (TOC):		y 00/6	<i></i>	•	MONITORI			
				•	INSTRUM		DE	TECTOR
STATE WELL PERMIT #:	<	on 70°	,	-			Ø	TECTOR
WEATHER:				-	PID	FID		
FREE PRODUCT (NO/ YES) Thickness	<u> </u>	N4			<u> </u>	· · ·		
BOREHOLE DIAMETER FACTORS				•			9 10	
DIAMETER (INCHES): GALLONS/FOOT:	I 1.5	()	3 4 0.367 0.6	5 54 1.02	6 7 1.47 2.0	8 0 2.61	3.30 5.87	,
	RADA	Punp				2.01	3.50 5.0.	
PURGE METHOD:	<u>Dooder</u>	- Charles	WELL HEAD V				. 42	
STATIC DEPTH TO WATER (TOC):	13.4	<u> </u>	-		N WELL (gallons):		41	· ·
WELL DEPTH (TOC):	17.4		THREE WELL Y	OLUMES (gallo	ns):		34	,
FEET OF WATER IN WELL:	5.2	-	ONE:	77	TWO:	THRE	E: 2-54	
			RGING DA					
Measur TIME BEGIN PURGING:	e indicator para	meters after ea	ach volume (at	1/2 volume if	more than 3 real			
	15.00	1000	10.10		TIME END F	OKGING.	Ι	ı
Time:	15:05	15:10	15:15			<u> </u>		
Depth to Water (ft)	7.85	7.85						
Depth to bottom			00				•	ļ
opening of	1111		(1)					
Purge Device (TOC)	12-40	12.40	\$				ļ	
Flow Rate (ml/min.)	30 ml/m	30ml/m	-5					
Volume of Water		_						
Removed (gals)	,		0					
pН	6.66	6.66						
Specific Conductivity (umhos)	2.39	2.35	che					
Dissolve Oxygen (DO)	4.87	4.75	B					
Temperature (deg. C)	12.52	22.60	25					
ORP (mV)	63	63	25.5	ļ				
Turbidity (NTU)	67.8	68						
D	ЕРТН ТО V	VATER ME	EASUREMI	ENTS AFT	ER PURGIN	\G		
						,		
_	j		Water (ft)	Pre-Purge / "St				%
Date	Time	"After	Purge"	Coli	uma (ft)	Water C	olumn (ft)	RECOVERY
Notes:	1	·						-
* Purging should not ex	ceed 5 volun	nes						
(1) Determine water column in the			e" and "static"	conditions)				
by subtracting the measured wa		_						
(2) Divide the "after purge" water of			olumn and mu	ltiply by 100				
to determine the percent of reco	overy for the we	:11.						

Sample Collected at 15:15 sample # 122282

71112-8		SAMPLING INFORM	IATION	· · · · · · · · · · · · · · · · · · ·
Well Number: TW 12-8 SAMPLING DEVICE: Blodlen	Pump			
SAMPLING DEVICE: Sampling DEVICE:	Fump			
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYS CLP ASP	15:15	2-40 ml VOA	No Color	12282
Vooring Cal not	1045		I W COLOR	IFEDE
	· · ·			
	. 1			• •
	1			
	 			
	1			
QA/QC DUPLICATE SAMPLE COLLEC Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED	: YES or	or NO		
INVESTIGATION DERIVED WASTE	(IDW):			
	Date			
Volume Trans	fered to Drum: Drum Number:			
COMMENTS:				
Sample Cellec	Lo a	15:15 1222	BL	
Care Care	eo G			

SAMPLING RECORD - GROUNDWATER												
PAR S ONS				CLIE	ENT:			V	VELL#:	TW	1-17	9
PROJECT (STUDY_ID):	564	Ŋ	12_	<u>KI</u>			DATE:			127/0		
SWMU # (AREA):	Ruldi	NI.	8/3/	1814			LABO	RATOR		Ch	emle	54
SCREENED INTERVAL (TOC):		0					MONIT	ORING	DATE:	5	5/27	,
STATE WELL PERMIT #:							INSTE	RUMEN	T		DET	ECTOR
WEATHER:	<u>5</u> 0	m	70	•				PID / F	(D		Ø	
FREE PRODUCT (NO/ YES) Thickness		M										
BOREHOLE DIAMETER FACTORS			\sim									
DIAMETER (INCHES):		1.5	$\binom{2}{1}$	3	4	5	6	7	8	9	10	
GALLONS/FOOT:		0.092	0.163	0.367	0.654	1.02	1.47	2.00	2.61	3.30	5.87	
PURGE METHOD:	Bailer			_			ATION (ppm					
STATIC DEPTH TO WATER (TOC):	12.			_			N WELL (ga	illons):				
WELL DEPTH (TOC):		<u>0</u> 5		-	ELL VOLU	JMES (gallo	•					
FEET OF WATER IN WELL:		<u></u>	PI	ONE: RGING	DATA	•	TWO	:	THRE	E:		
Measure	indicator pa	ramet					more than	3 requi	red*)			
TIME BEGIN PURGING:					`		TIME EI	•				
Time:	15:35											
Depth to Water (ft)												
Depth to bottom												
opening of	[(,\)							ŀ			ŀ	
Purge Device (TOC)	A											
Flow Rate (ml/min.)	- M											
Volume of Water	1											
Removed (gals)												
pН	8,	\perp					<u> </u>					
Specific Conductivity (umhos)	<u>a</u>											
Dissolve Oxygen (DO)	8	\perp							<u></u>			
Temperature (deg. C)	7											
ORP (mV)	228	ļ		<u> </u>						<u> </u>		.
Turbidity (NTU)	33			<u>l</u>								
DE	PTH TO	WA]	TER MI	EASURI	EMEN7	rs afti	ER PUR	GING				
	1											
Date	Time			Water (ft r Purge"	t) Pre	Purge / "Sta-	tic" \ mn (ft)	Water	Water Co	olumn (f	,	% RECOVERY
		T	7 11107	Turgo		Cold	illin (it)	-	water ex	Manin (1	"	RECO VERT
		+			-						$\overline{}$	
Notes:	L	_i			1				 		I	
* Purging should not exc	eed 5 volu	mes										
(1) Determine water column in the b			after purge	e" and "sta	atic" cond	litions)						
by subtracting the measured wat			-							r		
(2) Divide the "after purge" water co	-		c" water c	olumn and	d multiply	y by 100						
to determine the percent of recov	cry for the w	CII.										

* See back page for samply Details

·	 . <u>-</u>	CAMPI DIC DICODA	A A THORY	
Well Number: TW 12-9		SAMPLING INFORM	MATION	
77				
SAMPLING DEVICE: Sailer				
SAMPLE PARAMETER	TD 473	COLUM ANION	201.05	TURBIDITY SAMPLE TAKEN
	TIME	CONTAINER	COLOR	AFTER (CHECK ONE)
VOC MYS CLPASP	15:35	2-40ml VOA	No Color	122283
			· · · · · · · · · · · · · · · · · · ·	
				İ
.• :	*			
	- -			
		,		
QA\QC: QA/QC DUPLICATE SAMPLE COLLECT	ED: YES	or NO		•
Duplicate Sample Name:	ED. 113	OF INC		
QA\QC RINSATE SAMPLE NAME:				
MATRIX SPIKE SAMPLE COLLECTED:	YES or	NO		
INVESTIGATION DERIVED WASTE (IDW):			
	Date:			\neg
Volume Transf		-		
D	rum Number:			
•				
COMMENTS:				
COMMENTS:		1 .		1 , C/200
There is not	enough	water in	this well to	ion the
Call A	1	. 11	1 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	, Literalan
cample. H gro	b sa	mple will	be collected with	4 a dedicated
L. J. 11 N/2	Saci	· ./ //.		
Dailer with 170	pongr	nd of we	well or sandpace	f. Greeb
Sample 1222	83	collected at	15:35 / 5/2	۲7
			<i>(</i> '	·

5/26 ms, uso, RB, TB, SA, DU Tw- 12-1 Did not inskull 12-2 DRY 12-3 12.4 5-27 5.27 125 12-6 5-27 12.7 5.27 5.27 12.8 Grob

SAMPLING RECORD - GROUNDWATER									
PARSONS			CLIENT:		***	WELL#:	: TW12-	3	
PROJECT (STUDY_ID):	554	D 12	RF		DATE:	JUNC	11 2004		
SWMU # (AREA):	Builde	m Di	3/8/4	-	LABORATORY:				
SCREENED INTERVAL (TOC):		-		-	MONITORI	ING DATE:			
STATE WELL PERMIT #:				-	INSTRUM		DF	ETECTOR	
WEATHER:	Sui	Sun 70°			PID	/ FID			
FREE PRODUCT (NO/ YES) Thickness				<u> </u>					
BOREHOLE DIAMETER FACTORS		^^							
DIAMETER (INCHES):	1 1.5	()	3 4	=	6 7	8	9 10		
GALLONS/FOOT:		0.163	0.367 0.6		1.47 2.0	00 2.61	3.30 5.87	1	
PURGE METHOD:	Bladder	· · · · · · · · · · · · · · · · · · ·	-	OC CONCENTRA		<u>_</u>			
STATIC DEPTH TO WATER (TOC):	12.75	525	-		IN WELL (gallons)	r1	·0S		
WELL DEPTH (TOC):	6.50		-	VOLUMES (gallor	·		- 15		
FEET OF WATER IN WELL:	<u> </u>		ONE: RGING DA'	<u>TA.</u>	TWO:	THRE	EE: 3.15		
Measure	indicator para	meters after ea			more than 3 re	equired*)			
TIME BEGIN PURGING:					TIME END P	PURGING:			
Not real time + USE time 9 Time:	20.45	21105	21120	21135	21:46	21:55	22:00	22:05	
Depth to Water (ft)		8.175	8.250		813	8.3	5.325	8.325	
Depth to bottom									
opening of	100	_ '		_			_		
Purge Device (TOC)	W	- !			_	_	_		
Flow Rate (ml/min.)	25 m/m							 	
		 			-	 			
Volume of Water	0.15	0.20	0.25	0.30	0.33	6.4			
Removed (gals)	<u> </u>	<u> </u>		<u> </u>		<u></u>		<u> </u>	
pН	7.21	7.20	7.20	7.19	7.16	7.15	7.15	7.14	
Specific Conductivity (umhos)	1.45	1.42	1.37	1.37	1.39	1.38	1.38	1.37	
Dissolve Oxygen (DO)	1.71	0.86	0.70	0.70	0.73	0,91	0.86	1.04	
Temperature (deg. C)	19.13	17.70	19.23	19.68	20.76	22.93	23.46	24.27	
ORP (mV)	92	72	72	59	61	90	97	105	
Turbidity (NTU)	48.2	50.2	34.6	31.2	27.0	17.7	18.5		
	PTH TO W	VATER ME	ASUREMI		ER PURGI	:			
_	!	1 ~	Water (ft)	Pre-Purge / "Stat			I	%	
Date	Time	"After	Purge"	Colur	ımn (ft)	Water Co	olumn (ft)	RECOVERY	
	 !		<u> </u>	<u> </u>		<u> </u>		<u> </u>	
				<u> </u>					
Notes:									
* Purging should not exc									
(1) Determine water column in the b			" and "static" o	conditions)					
by subtracting the measured water (2) Divide the "after purge" water co		=	olumn and mul	tiply by 100					

Sample # 122277 collected @ 11:30

SAMPLING RECORD - GROUNDWATER									
PARSONS			CLIENT		WELL#: TU12-3				
PROJECT (STUDY_ID):	SEA	D 12 i	≥I	· · · · · · · · · · · · · · · · · · ·	DATE:	July			
SWMU # (AREA):	Bulde	m 8/3/	814	-	LABORAT		11 ~2	77	
SCREENED INTERVAL (TOC):		U J	<u> </u>	-	MONITORI		T		
STATE WELL PERMIT #:		·		-	INSTRUM		-	· ·	
WEATHER:	Sur	700		-		/ FID	וע	ETECTOR	
FREE PRODUCT (NO/ YES) Thickness			······································	-	110	, LID			
BOREHOLE DIAMETER FACTORS					<u></u>		1		
DIAMETER (INCHES):	l 1.	5 (2)	3 4	5	6 7	8	9 10		
GALLONS/FOOT:	0.041 0.0	0.162	0.367 0.6	54 1.02	1.47 2.0	0 2.61	3.30 5.8	17	
PURGE METHOD:			WELL HEAD V	OC CONCENTR	ATION (ppm):				
STATIC DEPTH TO WATER (TOC):		· <u>25</u>	STANDING WA	TER VOLUME	IN WELL (gallons):		1.05		
WELL DEPTH (TOC):	12	-75	THREE WELL V	/OLUMES (gallo	ns):				
FEET OF WATER IN WELL:		·50	ONE:		TWO:	THRE	E: 3.1	5	
Misson			RGING DA						
Measure TIME BEGIN PURGING:	indicator para	meters after ea	ach volume (at	1/2 volume if	more than 3 red				
Time:	22:12	27:18	22:23	<u> </u>	TIME END P	URGING: 20	55 34		
Depth to Water (ft)	8.325	8.350	8.350		 			<u> </u>	
Depth to bottom									
opening of	10.01								
Purge Device (TOC)	10 tt	_					_		
Flow Rate (ml/min.)	25ml/m					-	·		
Volume of Water			2	Tutal Parge	0.5 gals				
Removed (gals)			0.5	Pulze	0.3 9413				
рН	7.14	7.14	7.13						
Specific Conductivity (umhos)	1.39	1.39	1.39	-					
Dissolve Oxygen (DO)	1.33	1.35	1.38	···					
Temperature (deg. C)		25.30	25.62						
ORP (mV)	112	114	115						
Turbidity (NTU)		18.3						 	
DE	РТН ТО W	ATER ME	ASUREME	NTS AFT	ER PURGIN	G			
Date	Time	•	Water (ft) Purge"	Pre-Purge / "Sta Colu	tic" Water mn (ft)	Water Co	lumn (ft)	% RECOVERY	
	-								
			•			·			
Purging should not exce (1) Determine water column in the be by subtracting the measured water column in the best column in the best column in the best column in the best column in the percent of recovery to determine the percent of recovery.	orehole(for bot r level from th umn by the "si	h "after purge' e well point. tatic" water co			_				

Well Number: TW 12-3		SAMPLING INFORMA	TION	·
SAMPLING DEVICE: LOW FOW	,			
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN
VOC NYS CLPASP	11:30	2-40ml VOA Hel	COLOR	AFTER (CHECK ONE)
		·		10 5
	 		· · · · · · · · · · · · · · · · · · ·	-
	-			
QAVQC: QAVQC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QAVQC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: NVFSTIGATION DERIVED WASTER	YES or	or NO		
NVESTIGATION DERIVED WASTE (IDW):			
Volume Transf		The 4		
_	,			
the Water leve Purge perond. The lowest whome of 2.75 inches	The s	Sample vale QED pump	of 15 ml/s	minute was the decadown

SAMPLING RECORD - GROUNDWATER									
PARSONS	PARSONS CLIENT: WELL#: TW12-12								
PROJECT (STUDY_ID):	SEAG) 12	RI		DATE: June 10, 2004				
SWMU # (AREA):	Builde	813/8	· · · · · · · · · · · · · · · · · · ·	-	LABORATORY: Chentech				
SCREENED INTERVAL (TOC):)		•	MONITORI				
STATE WELL PERMIT #:				-	INSTRUM		DE	TECTOR	
WEATHER:	Rus	1 60°		-	PID/FID			_	
FREE PRODUCT (NO/ YES) Thickness		<u></u>	·····	-					
BOREHOLE DIAMETER FACTORS					<u>,,</u>	Fortification of the Control of the			
DIAMETER (INCHES):	1 1.:	$5 \left(2\right)$	3 4	5	6 7	8	9 10		
GALLONS/FOOT:	0.041 0.0	0.163	0.367 0.6	554 1.02	1.47 2.0	0 2.61	3.30 5.87	7	
PURGE METHOD:			WELL HEAD VO	OC CONCENTRA	ATION (ppm):		. 4		
STATIC DEPTH TO WATER (TOC):	5.6		STANDING WA	TER VOLUME I	N WELL (gallons):	3.	15		
WELL DEPTH (TOC):	25.2	<u> </u>	THREE WELL V	OLUMES (gallon	ıs):		- A F		
FEET OF WATER IN WELL:	19.5		ONE:	=	TWO:	THRE	E: 9.5		
Mascura	indicator nam	PUN	RGING DA'	TA:					
TIME BEGIN PURGING: 13: 33 cure	indicatoi para	meters and ea	15!16	1/2 volume 11	more than 3 rea	quirea*) URGING:		ļ	
Time:	14:40	14:497		15:26	15:36	15:46	15:56	16:06	
Depth to Water (ft)		7.65	7.625	7.59	7.59	7.63	7.78	7.96	
Depth to bottom									
opening of	4 4 61								
Purge Device (TOC)	30th								
Flow Rate (ml/min.)	40ml/m	80 m/m	50 ~1/m	400/	35~1/2	50 m/m	sofil/m	ap ny	
	1. soft as:			_	-	· · · · · · · · · · · · · · · · · · ·			
Volume of Water	.75	0.85	1.0	1.25	1.40	1.75	2.0	2.45	
Removed (gals)	_ `		<u></u> -					ļ	
pН	6.47	6.69	6.67	6.63	6.66	6.67	4.66	6.65	
Specific Conductivity (umhos)	2.07	1:05	1.04	1.03	1.10	1.00	1.00	0.99	
Dissolve Oxygen (DO)	2.10	1.76	1.95	1.55	1.44	1.39	1,36	1.30	
Temperature (deg. C)	4.57	13.26	13.88	13.96	13.97	14.00	13.92	13.66	
ORP (mV)	46	44	44	45	44	43	42	40	
Turbidity (NTU)	85.9	71.2	36.9	23.6	21.3	18.0	18.4	16.2	
		 			ER PURGIN		V - •		
1			Water (ft)	Pre-Purge / "Stat	tic" Water			- %	
Date	Time	"After	Purge"	-	mn (ft)	Water Co	olumn (ft)	RECOVERY	
		<u> </u>							
,									
Notes:									

* Purging should not exceed 5 volumes

- (1) Determine water column in the borehole(for both "after purge" and "static" conditions) by subtracting the measured water level from the well point.
- (2) Divide the "after purge" water column by the "static" water column and multiply by 100 to determine the percent of recovery for the well.

Sample 122285 @ 16:50

Page 20f3

SAMPLING RECORD - GROUNDWATER								
PARSONS			CLIENT:	:		WELL #:	TWIZ	-22
PROJECT (STUDY_ID):	Sco	yd 12 i	RI		DATE:	June	e 10 1	2004
SWMU # (AREA):	30:10	lan 813	1814	-	LABORAT		•	
SCREENED INTERVAL (TOC):	······································			-	MONITORI			
STATE WELL PERMIT #:				•	INSTRUM		D!	ETECTOR
WEATHER:	Rat	1 60°		-		/ FID	\\	,
FREE PRODUCT (NO/ YES) Thickness				- 1		7		
BOREHOLE DIAMETER FACTORS		$\overline{}$		 	<u> </u>			
DIAMETER (INCHES):	l 1.5	$5 \left(\begin{array}{c} 2 \end{array} \right)$	3 4	. 5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0	092 0.162	0.367 0.6	554 1.02	1.47 2.0	00 2.61	3.30 5.8	87
PURGE METHOD:			WELL HEAD V	OC CONCENTRA	ATION (ppm):			
STATIC DEPTH TO WATER (TOC):		67	STANDING WA	TER VOLUME IN	N WELL (gallons)):	3.18	
WELL DEPTH (TOC):	25.	.20	THREE WELL V	VOLUMES (gallon	ns):			
FEET OF WATER IN WELL:	19.	53	ONE:		TWO:	THRE	E: 9:5	5
			RGING DA					
· ·	indicator para	meters after ea	ich volume (at	1/2 volume if		=		
TIME BEGIN PURGING:	 	т:	T*** ***	T C	TIME END P	URGING:		· ·
Time:	16:16	-	16138	16:46				
Depth to Water (ft)	7.90	7.90	7.90	7.80				
Depth to bottom			!		Total			
opening of		!	!		Total Purge	5 gal		
Purge Device (TOC)	!	!		!				
Flow Rate (ml/min.)	45 m/m	30 m/m	20 ~1/m	35~1/2				
Volume of Water			2.60					
Removed (gals)	6,1	()	[7,00				
	1.65	6.63	011	6.65				
pH	19 98	0.97	200					
Specific Conductivity (umhos)				0.97		<u> </u>		
Dissolve Oxygen (DO)	1.31	1,34		1.29				<u> </u>
Temperature (deg. C)		14,23	15.05	15.21				
ORP (mV)	40	42	43	41				
Turbidity (NTU)	13.4	14.5	13.4	16.0				
DE	РТН ТО W	ATER ME	ASUREME	ENTS AFTE	ER PURGIN	1 <u>G</u>		
								T
Parta	Time		Water (ft)	Pre-Purge / "Stati			- (0)	%
June 10 2004	Time	"After Purge" Colu			mn (ft)	Water Co		RECOVERY
50 re 10 mg	16:46	7-80	3	5.67		14	<i>.5</i> 3	
Notes:						<u> </u>		
* Purging should not exce								
(1) Determine water column in the be			' and "static" c	onditions)				
by subtracting the measured water		•						
(2) Divide the "after purge" water co.	lumn by the "s	tatic" water co	lumn and mult	tiply by 100				

Poge 30f3

1012.22		SAMPLING INFOR	MATION		
MMPLING DEVICE: ON Flow					
AMPLING DEVICE: (OU Flow				W W. F	
SAMPLE PARAMETER	TIME	CONTAINER	COLOR		TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYS CLPASP	16:50	2-40ml/04 Hel		···· · · ·	13.4
VUL IN 15 CAMP	10.00	2. Anniem 114	<u> </u>		13.1
		:			
				····	
 	-				
				•	
AAQC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: AAQC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED:		or NO			
NVESTIGATION DERIVED WASTE (IDW):				
	Date:	JOHL ID			٦
Volume Transi]
Ι	Drum Number:	Deconi			
COMMENTS:			:		
\mathcal{C}					36
Sample 127	1295	(a) (6:50)	June 10	2004	5-Jgalous Pu
				•	
•					

SAI	MPLIN	G REC	ORD - (GROUN	IDWAT	ER		
PARSONS			CLIENT	•	=	WELL#:	TW 12.	23
PROJECT (STUDY_ID):	Buildi.	u 813/8	314		DATE:	June	10 200	
SWMU # (AREA):	Sood	12 RE		-	LABORAT		hented	
SCREENED INTERVAL (TOC):				-	MONITORI	-		
STATE WELL PERMIT #:				-	INSTRUM		DE	TECTOR
WEATHER:	Rain	600		-	PID	/ FID		
FREE PRODUCT (NO/ YES) Thickness		********		-				
BOREHOLE DIAMETER FACTORS		~						
DIAMETER (INCHES):	1 1.	$5 \left(\begin{array}{c} 2 \\ 2 \end{array}\right)$	3 4	5	6 7	8	9 10	
GALLONS/FOOT:		092 0168	0.367 0.6	554 1.02	1.47 2.0	0 2.61	3.30 5.8	7
PURGE METHOD:	low Flo		WELL HEAD V	OC CONCENTRA	ATION (ppm):		Ø	
STATIC DEPTH TO WATER (TOC):	8:9		_STANDING WA	TER VOLUME I	N WELL (gallons)	<u> X</u>	.64	
WELL DEPTH (TOC):	15.2		THREE WELL	VOLUMES (gallor	1\$):		-0.01	
FEET OF WATER IN WELL:	16.2		ONE:		TWO:	THRE	E: 7.94	
Managera	indicator nam		RGING DA		more than 2 ra	anirad*)		
TIME BEGIN PURGING:	mulcator para	imeters after ea	acii volume (at	1/2 volume n	more than 3 re TIME END P	-		
Time:	15:40	15:45	15:50	15:55	16:00	/6:05	16:10	16:15
Depth to Water (ft)	9.45	9.75	9.75	9.75	9.75	9.75	9.75	9.75
Depth to bottom		• • • • • • • • • • • • • • • • • • •						
opening of	20F1	20ft	0,		4.01			
Purge Device (TOC)	Yeh.	WFF	20ft	20ft	soft	30ft	120 Ft	20lh
Flow Rate (ml/min.)	40alla	40ml/m	40m/m	40ml/m	40ml/m	40m//m	40mllm	40m/4
Volume of Water						15.		
Removed (gals)						2.5gal		
pH	6.95	6.95	6.95	6.96	6.95	6.95	6.95	6.95
Specific Conductivity (umhos)	756	754	.752	750	.750	.752	.750	.748
Dissolve Oxygen (DO)	2.56	2.56	2.49	2.42	2.41	2.40	2.33	2.30
Temperature (deg. C)	14-90	14.95	15.00	15.30	15.53	15:38	15.68	15.98
ORP (mV)	60	60	61	61	6(61	62	62
Turbidity (NTU)	8.01	7.44	6.4	5.90	5.64	5.53	5.45	5.5/
		VATER ME	EASUREMI	ENTS AFTI	ER PURGIN	NG	<u> </u>	<u> </u>
700.2 1.								
Date	Time	1	Water (ft) Purge"	Pre-Purge / "Sta Colu	tic" Water mn (ft)		olumn (ft)	% RECOVERY
					".'.			
							·	
Notes:	L	<u> </u>	·····	1				L
* Purging should not exc (1) Determine water column in the b by subtracting the measured wat (2) Divide the "after purge" water co	orehole(for bo er level from t	oth "after purge he well point.	e" and "static"	conditions)	e purped	5.25	Spallons	
to determine the percent of recov	ery for the we	II.	· .					

Sample = 12286 16:15 12286 M5 16:15 12286 M50 16:15 12297 Doplicate 17:00

SAI	MPLIN	G REC	ORD -	GROUN	DWAT	ER		
PARSONS .		···	CLIENT	:	· · · · · · · · · · · · · · · · · · ·	WELL#:	TW-	۲3
PROJECT (STUDY_ID);	Build	ing \$13/	24		DATE:		e 10 20	04
SWMU # (AREA):	SE	10 12	RT.	_	LABORAT		Chembers	
SCREENED INTERVAL (TOC):				-	MONITORI	NG DATE:		`
STATE WELL PERMIT #:		-	<u></u>	-	INSTRUM		DE	TECTOR
WEATHER:	Rain	600		-	 	/ FID		
FREE PRODUCT (NO/ YES) Thickness								
BOREHOLE DIAMETER FACTORS								
DIAMETER (INCHES):	1 1.5		3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0			554 1.02	1.47 2.0	00 2.61	3.30 5.8	7
PURGE METHOD:	Bladde		_WELL HEAD V				11	
STATIC DEPTH TO WATER (TOC):	8.95 25·20	· · · · · · · · · · · · · · · · · · ·	_		N WELL (gallons)	: <u> </u>	.64	
WELL DEPTH (TOC):		· · · · · · · · · · · · · · · · · · ·	_	VOLUMES (gallo			* G1	
FEET OF WATER IN WELL:	16.25		ONE: RGING DA	т	TWO:	THRE	E: 7.94	
. Measure	indicator para				more than 3 re	conired*)		
TIME BEGIN PURGING: (2:58	maiouri p			1/2 /0.0	TIME END P	• •		
Time:	14:30	14:40	14:55	15:10	15:15	15:25	15:30	15:35
Depth to Water (ft)	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75
Depth to bottom								
opening of	1001							
	Joth	20ft	20Ct	20ft	11/4	20ft		
Purge Device (TOC)	40 mllm	40 m/m	Aimlim	Asm/m	40Mcm	40m/m	40ml/m	40m/m
Flow Rate (ml/min.)	TUMILIM	MANA	No mills	-Condison	- CUMPLIA	4074/11	40744 101	doulless.
Volume of Water	Igallon							
Removed (gals)	L.		ļ ,	, ,	<u> </u>	<u> </u>		
pН	6.89	6.89	6.89	6.90	6.91	6.91	692	6.95
Specific Conductivity (umhos)	.761	.755	.754	755	.755	-756	754	.755
Dissolve Oxygen (DO)	3.07	3.40	2.99	2.83	2.81	2.79	1.68	1.63
Temperature (deg. C)	4.99	15.40	15.80	16.33	16.32	15.48	15.42	14.92
ORP (mV)	59	60	61	61	61	60	60	59
Turbidity (NTU)	12.9	13.3	13.0	9.14	8.63	8.42	8.46	8.45
	***************************************		<u> </u>	ENTS AFTI	ER PURGIN	NG		
	[
			Water (ft)	Pre-Purge / "Sta	tic" Water			%
Date	Time		Purge"		mn (ft)	<u> </u>	olumn (ft)	RECOVERY
June 10 2004	16:15	9.7	5	0.	95	(6-)	45	
Notes:								-

- * Purging should not exceed 5 volumes
- (1) Determine water column in the borehole(for both "after purge" and "static" conditions) by subtracting the measured water level from the well point.
- (2) Divide the "after purge" water column by the "static" water column and multiply by 100 to determine the percent of recovery for the well.

Well Number: TW12-23 SAMPLING DEVICE: low Flow					
SAMPLE PARAMETER	ТІМЕ	CONTAINER	COLOR		TURBIDITY SAMPLE TAKEN
VOC NYSCLPASD	1645	2-40ml VOA H	el		5.51
	·				
					· · · · · · · · · · · · · · · · · · ·
	ļ				
]- -					· · · · · · · · · · · · · · · · · · ·
					·
	<u>,.</u>				
	· ·				· · · · · · · · · · · · · · · · · · ·
				F	
QA\QC: QA\QC DUPLICATE SAMPLE COLLEC					
QA/QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED INVESTIGATION DERIVED WASTE Volume Tran	O: (IDW):	2297 5 (0) NO 3200 10	•		
QA/QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QA/QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED INVESTIGATION DERIVED WASTE Volume Trans COMMENTS: Sample = 127 127 127	Date of the store	2297 5 101 NO 3.23 Decrit	Sangle Madrix Spike MS Dyplicate Dyplicate	Juk	10

SA	MPLIN	G REC	ORD - (GROUN	DWAT	ER		
PARSONS		· .	CLIENT		 	<u> </u>	TWZ-	14
PROJECT (STUDY_ID):	SEAL) 12.0	7		DATE:	June.		
SWMU # (AREA):	B.:1	44" 813	lou	-				
SCREENED INTERVAL (TOC):		and Did	1017	-	LABORAT		en tech	
STATE WELL PERMIT #:		·.		-	MONITORI			
WEATHER:	Sui	1 740		-	INSTRUM		DE	TECTOR
FREE PRODUCT (NO/ YES) Thickness		77	· · · · · · · · · · · · · · · · · · ·	-	PID	/ FID		
BOREHOLE DIAMETER FACTORS	· <u> </u>				<u></u>		<u></u>	
DIAMETER (INCHES):	l 1,	· •	3 4	5				
GALLONS/FOOT:		992 (163)	0.367 0.6	•	6 7 1.47 2.0	8 M 241	9 10	
PURGE METHOD:	Bladde	v		OC CONCENTRA		2.61	3.30 5.8	<i>T</i>
STATIC DEPTH TO WATER (TOC):	8.7				N WELL (gallons)		c 	
WELL DEPTH (TOC):	130			OLUMES (galke		6	4	
FEET OF WATER IN WELL:	4.7		ONE:	OLUMES (gailer			A 00	
			RGING DA	ΤΔ.	TWO:	THRE	E: 208	
Measure	indicator para				more than 3 re	ouired*)		
TIME BEGIN PURGING:					TIME END P			
Time:	15:28	15:33	15:38	15:43	15:48	15:52	15:58	16'09
Depth to Water (ft)	9.15	9.15	9,2	9.2	9.2	9,2	1,2	9.2
Depth to bottom								
opening-of								
Purge Device (TOC)				ļ		1		
Flow Rate (ml/min.)	25~1/2	25 m/m	25 2/	25 1/2	25 00/	25 AY	2541	25 m/m
Volume of Water	,,,,	7//	/m	//n	03 /m	100	12	c Im
Removed (gals)			0.15			0.25		
	705	701		7 .				
pH Specific Conductivity	7.05	7.06	7.07	7.08	7.08	7.68	7.08	7.08
Specific Conductivity (umhos)	1.26	1.25	1.25	1.25	1,24	1.24	1.23	1.23
Dissolve Oxygen (DO)	4.76	4.16	3.99	3.69	3.53	3.35	3,30	3.30
Temperature (deg. C)	18.71	18.43	18.54	18,19	18.27	18,10	18,10	18,28
ORP (mV)	103	102	104	100	102	102	104	105
Turbidity (NTU)	48.4	45.3	38,3	39.5	351	43.1	38,2	33.7
DE	РТН ТО W	ATER ME	ASUREME	NTS AFTE				
				, <u> </u>				
Data			Water (ft)	Pre-Purge / "Stat	ic" Water		•	%
Date	Time	"After	Purge"	Colur	nn (ft)	Water Co	olumn (ft)	RECOVERY
								
Notes:								
* Purging should not exc	eed 5 volum	ies						
(1) Determine water column in the b	orehole(for bot	h "after purge"	and "static" c	onditions)				
by subtracting the measured wat	er level from th	e well point.						
(2) Divide the "after purge" water co	numn by the "s	tatic" water co	lumn and muli	tiply by 100				•

to determine the percent of recovery for the well.

SA	MPLIN	G REC	ORD -	GROUN	NDWAT	ER			
PARSONS			CLIEN			WELL#	·Τω	117 - 1	14
PROJECT (STUDY_ID):	SEA	D 12	EE		DATE:		. ,		
SWMU # (AREA):	Builde	m 813/	94		LABORAT	FORY ·		······	· · · · · · · · · · · · · · · · · · ·
SCREENED INTERVAL (TOC):			_ <u> </u>			ING DATE:	T		
STATE WELL PERMIT #:					INSTRUM		+	DETE	CTOR
WEATHER:		n 740				/FID	+	DETE	CIOR
FREE PRODUCT (NO/ YES) Thicknes	SS						 		
BOREHOLE DIAMETER FACTORS				 					
DIAMETER (INCHES): GALLONS/FOOT:	1 1.	()	3	4 5	6 7	8	9	10	
PURGE METHOD:		0.163		0.654 1.02		00 2.61	3.30	5.87	
	law flow			VOC CONCENTRA					
STATIC DEPTH TO WATER (TOC):	8.75			ATER VOLUME I		i):	.69		
WELL DEPTH (TOC): FEET OF WATER IN WELL:	13·01 4·26		THREE WELI	. VOLUMES (gailo	ns):				
LET OF WATER IN WELL:	4.20	Ditt	ONE:	4 673 4	TWO:	тнг	REE: 3	<u>-08</u>	
Measur	e indicator para		RGING D				_	16	170 Sarpled
TIME BEGIN PURGING:		meters after Ce	ich volume (at 1/2 volume ii		equired*) PURGING:	1648		Sarples
Time:	16:08	[6:13				CKOING.	10,10		
Depth to Water (ft)	9.2	9.2							
Depth to bottom							 		
opening of									
Purge Device (TOC)			1						
Flow Rate (ml/min.)	25 1/2	25 m/m					 		
Volume of Water		0.3		Total	OUR	66/8	<u> </u>		
Removed (gals)		0,7		Purse	0.42	1700			
рН	7.08	7.08							
Specific Conductivity (umhos)	1.23	1.23					<u> </u>		
Dissolve Oxygen (DO)	3.30	3,26							
Temperature (deg. C)	18.25	15130							
ORP (mV)	107	108							
Turbidity (NTU)	34.4	33.5							
DI	EPTH TO W	ATER ME	ASUREM	ENTS AFTI	ER PURGII	NG			
		_							
Date	Time		Water (ft) Purge"	Pre-Purge / "Stat	ic" Water nn (ft)		Column (ft		% ECOVERY
						- Value	zorum (m	- ``	ECOVERT
								\neg	
Notes:						1			
* Purging should not exc									
(1) Determine water column in the l	borehole(for bot	h "after purge"	and "static"	conditions)					
by subtracting the measured water co. (2) Divide the "after purge" water co.	ter level from th	e well point.	lume	drinte to too					
to determine the percent of reco	very for the wel	l.	rumn and Mi	nabiš pš 100					

Samplet 122287 6 16:19

Tul 12.24		SAMPLING INFORMA	TION	
Well Number: TW 12-24 SAMPLING DEVICE: low Flow	,	*.		
SAMPLING DEVICE: LOW - LOW	<u> </u>			
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
VOC NYSCLPASP	16:19	2-40 ml Non Ha	COLOR	" ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
M 12 Days	10.14	A-TOMINON ITCI		33.5nlv
				,
			· · · · · · · · · · · · · · · · · · ·	
QA\QC: QA\QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name: QA\QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED:		or NO		
INVESTIGATION DERIVED WASTE (IDW):			
·		·		
Volume Transf	Date ered to Drum			
	rum Number			
	• •			
COMMENTS:		•		
	_			
Sanglet 12228	37 Co	lected @ 16:19		
Sample		•		
				İ

Page 10f3

SA	<u>MPLIN</u>	G REC	ORD -	GROUN	NDWAT	ER		
PARSONS			CLIENT			T	·TWIZ	25
PROJECT (STUDY_ID):	SEA	13 12	RI		DATE:		1 2004	~3
SWMU # (AREA):	Buile	da 813/6	314	_	LABORAT		ewlech	
SCREENED INTERVAL (TOC):				-		ING DATE:	Correct	
STATE WELL PERMIT #:				-	INSTRUM		DI	TECTOR
WEATHER:	_Sun	70°		-		/ FID	 	ILCIOR
FREE PRODUCT (NO/ YES) Thickness	i	W		-			†	
BOREHOLE DIAMETER FACTORS		\sim			<u> </u>			
DIAMETER (INCHES): GALLONS/FOOT:	1 1.	1 7	3 4	5	6 7	8	9 10	
PURGE METHOD:	0.041 0.0	092 10163		554 1.02		00 2.61	3.30 5.8	7
STATIC DEPTH TO WATER (TOC):	- 2/	6		OC CONCENTRA				
WELL DEPTH (TOC):	14.8			TER VOLUME I):	0	
FEET OF WATER IN WELL:	6.19		_	VOLUMES (gallor	ns):			7
	6.13		ONE:	TA	TWO:	THRI	ее: 3 0	
Measure	indicator para				more than 3 m	equired*\		
TIME BEGIN PURGING: 11:43	_				TIME END I			
Time:	12:30	12:35	12:40	12:45	12:50	12:55	13:00	13:05
Depth to Water (ft)	9.48	9.45	9.451	9-454	9.45	945	9.45	9.50
Depth to bottom					•	1.5	7.13	1.00
opening of	in e							
Purge Device (TOC)	12.5	12.5	12.5					
Flow Rate (ml/min.)	30m//m	30m/m	Bom//m	30ml/m	30m/m	30 m/m	30m/m	Zoud
Volume of Water				0 0 1 mg/pm	35.434	3514/101	Jomyay	30m/m
Removed (gals)	· Boul	3242ml	3343	3543	3693	3943	3993	4(4341
рН	7.14	7./3	7.11	7.08	6.98	6.89	6.93	7.08
Specific Conductivity (umhos)	1.15	1.12	1.10	1.13	1.15	1.4	1.18	1.16
Dissolve Oxygen (DO)	6.07	6.08	6.10	7	5.99	5.79	—	
Temperature (deg. C)	15.21	15.23		6.05			5.63	5.68
			15.43	15.23	14.61	14.55	15.55	16.13
ORP (mV)	63	65	66	70	76	87	74	67
Turbidity (NTU)	35.0	33.2	30.6	360	36.4	35.6	31.6	
DE	PTH TO W	ATER ME	ASUREME	NTS AFTE	ER PURGI	VG ⋅		
Date	Time	Depth to "After	Water (ft) Purge"	Pre-Purge / "Stat	ic" Water nn (ft)		olumn (ft)	%
June 11 2004	13:45	9.57		8.65		Water Co	olumn (II)	RECOVERY
				000	<u></u>		<u></u> .	
Notes:						<u> </u>		<u> </u>
* Purging should not exce (1) Determine water column in the beauty subtracting the many	orehole(for bot	h "after purge"	and "static" c	conditions)				
by subtracting the measured water (2) Divide the "after purge" water co	r level from th lumn by the "e	e well point.	lumn and well	tinhuhu 100				i
to determine the percent of recov	ery for the well	<u>l.</u>	rann and mul	upiy by 100				,

	MPLIN	G KEC	OKD - (JKUUN	UWAT	EK	<u> </u>	-
PARSONS	<u> چنبر</u>		CLIENT	•		WELL#	TW12-	25
ROJECT (STUDY_ID):	_ <u>5</u> E/	4D 12	RI	•	DATE:		11 2004	<u> </u>
VMU # (AREA):	Boi	ldry 613	1814	_	LABORAT		herten	 -
CREENED INTERVAL (TOC):				_	MONITORI		JUNE 10	2004
ATE WELL PERMIT #:				_	INSTRUM	ENT		TECTOR
EATHER:		1720		•	PID	/ FID	Q	8
REE PRODUCT (NO/ YES) Thickney	ss	NA						
OREHOLE DIAMETER FACTORS AMETER (INCHES):	1 1	. 1	٠.					
LLONS/FOOT:	•	$\begin{pmatrix} 2' \\ 0.163 \end{pmatrix}$) 3 4 0.367 0.6	-	6 7	8	9 10	
RGE METHOD:				OC CONCENTRA	1.47 2.0	0 2.61	3.30 5.8	7
ATIC DEPTH TO WATER (TOC):	8.65	,' — — —	_	TER VOLUME I			1.0	
ELL DEPTH (TOC):	148	<u> </u>		OLUMES (gailon			7-0	
ET OF WATER IN WELL:	6.	!5	ONE:	OCCIVICS (gandi	TWO:	Time	ie: 3 t	
		PUI	RGING DA	TA:	140.	THRE	EE: J	<u> </u>
ME BEGIN PURGING: 11.43	e indicator para	imeters after ea	nch volume (at	1/2 volume if			•	
	171/4	1246	1 .5.5		TIME END P			·
Time:	13:/0	13:15	13:20		13:30	13:35	1	13:45
Depth to Water (ft)	9.50	9.55	9.55	9.55	9.55	9.57	9.57	
Depth to bottom		·						
opening of	}							Sam
Purge Device (TOC)	12.5	12.5	12.5	12.5	12.5	12.5	12.5	Ē
Flow Rate (ml/min.)	30m//m	30 m//m	30m/m				 	3
	J(/m	JU MI [JA	JUMIJA	30al/m	30m//m	30m/m	30m/m	ž
Volume of Water	4293	4443	Acco.	4743m	4893	60.00		
Removed (gals)	 		4593m1	~ (W >W	7075	5043	5193	02
рН	7.10	7.15	7.17	7.17	7:17	717	7.16	6 5
Specific Conductivity (umhos)	1.18	1.16	1.17	1.15	1.16	1.17	1.16	82
Dissolve Oxygen (DO)	5.67	5.67	5.66	5.67	5.66	5.66	5.66	\$ 00
Temperature (deg. C)	16.35	16-14	16.61	174	16.37			S OS
	65	65	66			16.53	16.47	
			166	66	67	67	67	
ORP (mV)								
ORP (mV) Turbidity (NTU)	20.1	/4.6	10.7	8.98	8.54	8-34	8.10	
ORP (mV) Turbidity (NTU)		/4.6	10.7	8.98	8.54	8-34		
ORP (mV) Turbidity (NTU)	20.1	/4.6 ATER ME	10.7 asureme	8.98 NTS AFTE	8.54 R PURGIN	8-34		
ORP (mV) Turbidity (NTU)	20.1	/4:6 ATER ME	10.7	8.98 NTS AFTE	8.54 R PURGIN	8.34 IG	8.10	%
ORP (mV) Turbidity (NTU) DI	20.1 EPTH TO W	/4:6 ATER ME	10.7 ASUREME	8.98 NTS AFTE	8.54 R PURGIN	8.34 IG		% RECOVERY
ORP (mV) Turbidity (NTU) DI	20.1 EPTH TO W	/4:6 ATER ME	10.7 ASUREME	8.98 NTS AFTE	8.54 R PURGIN	8.34 IG	8.10	9

Sample ID # 127288 @ 13'45

(2) Divide the "after purge" water column by the "static" water column and multiply by 100

Total volume Purged 1.9 gallons (includes flow cell Volume 750ml)

Page 3 of 3

C NYSCLPASP	13:45	2-40 ml voatki		AFTER (CHECK ONE)
	1			
		,		
			· ·	
	, .			
			· · · · · · · · · · · · · · · · · · ·	
	_		•	
RINSATE SAMPLE NAME: IX SPIKE SAMPLE COLLECTE TIGATION DERIVED WAST		NO		
	Date:			7
Volume Tra	nsfered to Drum: Drum Number:	lagal Decon (7
		ı		
IENTS:		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		- 1-1-1
Sample #12	22288 (@ 13:45		
•				•
1 1 .				
Water level in	well	dropped 1.5	inches throngwart	Puso

Page 10f3

SA	MPLIN	G REC	ORD - (GROUN	IDWAT	ER		
PARSONS			CLIENT			WELL#:	TW12-	26
PROJECT (STUDY_ID):	SEAL) 12 RI			DATE:	TUA	e 11 200	
SWMU # (AREA):	Buildre	2 813		•	LABORAT		entech	
SCREENED INTERVAL (TOC):		, , ,	·	•	MONITOR			
STATE WELL PERMIT #:				•	INSTRUM		Di	ETECTOR
WEATHER:	50	n 700		-		/ FID		STECTOR
FREE PRODUCT (NO/ YES) Thickness		NA	 	•	<u></u>	7110		-
BOREHOLE DIAMETER FACTORS					<u> </u>			
DIAMETER (INCHES):	1 1	5 2	3 4	5	6 7	8	9 10	
GALLONS/FOOT:	0.041 0.0	092 0.163	0.367 0.6	54 1.02	1.47 2.0		3.30 5.8	
PURGE METHOD:			WELL HEAD V	OC CONCENTRA	ATION (ppm);	•		
STATIC DEPTH TO WATER (TOC):	8.1	0	_	TER VOLUME I			945	
WELL DEPTH (TOC):	/3-		-	OLUMES (gallor	-			
FEET OF WATER IN WELL:	5.8		ONE:	OLOMES (ganor			E: 2.8	1
			RGING DA	TA·	TWO:	THRE	E:)
TIME BEGIN PURGING: 12:01	indicator para				more than 3 re	equired*)		
	1 1	· · · · · · · · · · · · · · · · · · ·		· · · · ·	TIME END I	URGING:		
Time:	12:55	1:05	1:10	1:15	1:20	1:25	1:30	1:35
Depth to Water (ft)	8.725		3.775	8.79	8.8	8.7	8.8	8.825
Depth to bottom								
opening of								
							ĺ	
Purge Device (TOC)	2001/	25-1/	 	 -		ļ		
Flow Rate (ml/min.)	26~/m	25 ~ 1/m	ļ		<u> </u>			25 ~/~
Volume of Water	0.15	0.2	1 7 KY	0.25	022	4.3		
Removed (gals)		0.2	0.00	0.20	0.27	0.5		1
рН	4.29	6.28	6.24	6.26	6.18	4.15	6.15	/ 12
	 	1.18				 	6.15	4.13
Specific Conductivity (umhos)	1.20		1.18	1.17	1.17	1.17	1.17	1.17
Dissolve Oxygen (DO)	4.11	5.34	5.14	5.15	5.06	4.83	4.82	4.79
Temperature (deg. C)	20.73		21.20	20.98	21.17	21.74	21.80	21.15
ORP (mV)	62	64	73	80	84	87	77	85
Turbidity (NTU)	135	132	110	90.2	89.7	88.2	78.8	80.1
DI	EPTH TO W	ATER ME	CASUREME	NTS AFTI				
				·		,		
•			Water (ft)	Pre-Purge / "Stat	tic" Water			%
Date	Time	"After	Purge"	Colu	mn (ft)		olumn (ft)	RECOVER
							-	
Notes:	·	L		L		L		<u> </u>
 Purging should not exc 	eed 5 volum	100			•			
(1) Determine water column in the b	orehole(for bo	th "after nurge	" and "static" 4	conditions				
by subtracting the measured wat	er level from th	e well point.		.c.idittotta)				
(2) Divide the "after purge" water co	olumn by the "s	tatic" water co	Olumn and mul	tiply by 100				

Sample 122284@13:53 Towards to 269

Page 20f3

SA	MPLIN	G REC	ORD	- GROU	NDW.	ATE	R	•	The Political Parties
PARSONS			CLIE				ELL#	. TW	12-26
PROJECT (STUDY_ID):	SEAL) 12.	KI		DATE		June	11 2	2004
SWMU#(AREA):	Buildun	93/8	14		1	RATOR		6.00	<u> </u>
SCREENED INTERVAL (TOC):						ORING		1	reen
STATE WELL PERMIT #:						RUMEN		 	DETECTOR
WEATHER:	Su	n 70°		_		PID / FI		 -	DETECTOR
FREE PRODUCT (NO/ YES) Thickness		WA	 -		<u> </u>	. 107 11		 	
BOREHOLE DIAMETER FACTORS	 			*************************************		 -		1	
DIAMETER (INCHES):	1 1.:	$5 \qquad \binom{2}{2}$	3	4 5	6	7	8	9	10
GALLONS/FOOT:	0.041 0.0	92 0.163	0.367	0.654 1.02	1.47	2.00	2.61	3.30	5.87
PURGE METHOD:	<u> </u>		WELL HEAD	D VOC CONCENTR	ATION (ppn	ı):			
STATIC DEPTH TO WATER (TOC):	840		STANDING	WATER VOLUME	IN WELL (g	illons):	.9	45	
WELL DEPTH (TOC):	1340		THREE WEI	LL VOLUMES (galle	ms):				
FEET OF WATER IN WELL:	_ 5∙8		ONE:		TWO	:	THRI	EE: 28	3
Manager			RGING I						
TIME BEGIN PURGING:	indicator para	meters after ea	ich volume	(at 1/2 volume if					
Time:	1:40		T		TIME E	ND PURC	GING:	7	
Depth to Water (ft)	8.825				╁			<u> </u>	
Depth to bottom	,	\			 	-		 	17
opening of		M							
Purge Device (TOC)		Jet .							
Flow Rate (ml/min.)	250/m								
Volume of Water		2							
Removed (gals)		8							1
pН	6.11	2				_		<u> </u>	
Specific Conductivity (umhos)	1.18	•							
Dissolve Oxygen (DO)	4.84	13						 	
Temperature (deg. C)	21.97	. <u>'</u>						 	
ORP (mV)	93	W							
Turbidity (NTU)	76.9	_						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
DE	РТН ТО W	ATER ME	ASURE	MENTS AFT	ER PUR	GING			
		_							
Date	Time		Water (ft) Purge"	Pre-Purge / "Sta		Vater			%
June 1/ 2004	13:53	8.8		8.6	omn (ft)		Water C	olumn (ft)	RECOVERY
	رما ۱۰	0.0	, ,	- O-10					
Notes:									
* Purging should not exce (1) Determine water column in the be by subtracting the measured water (2) Divide the "after purge" water col to determine the percent of recover	orehole(for both r level from the umn by the "st	h "after purge" e well point. atic" water co							

Sample ID # 122289 @ 13:53 Volume porged is 45 gallon

		SAMPLING INFO	RMATION	, , ,
Well Number: TW12-26 SAMPLING DEVICE: low Flow				·
SAMPLING DEVICE: LOW Flow	•	,		
				TURBIDITY SAMPLE TAKEN
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	AFTER (CHECK ONE)
VOC NYS CLPASP	13:53	2-40 ml/004		76.9
			-	
			· ·	
QA/QC:	men. Vec	or NO		
QA/QC DUPLICATE SAMPLE COLLECT Duplicate Sample Name:	IED: IES	oi NO		
QA\QC RINSATE SAMPLE NAME:				
MATRIX SPIKE SAMPLE COLLECTED:	YES or	NO		
INVESTIGATION DERIVED WASTE (IDW):			
	~ .	A laterth	 	_, [
Volume Transi	Date: fered to Drum:	\$(164		_
	Orum Number:	Person (]
COMMENTS:				
	A -	A 12.05	11 - 4 .1	15 10/1
12 Sample # 12	12 99	(7)83	the sample rate of	uos 23 milio
the lowest rate	160 (DED DOWN	wdl so.	
the romati me	LAC ,	~ 10.4	V	
		•		-

	AZAI		CORD -		AD WA		41:1:	
PARSONS		<u> </u>	CLIENT	:		WELL#	. MW i	1-37
PROJECT (STUDY_ID):	55		RF.	.	DATE:	June	11 200	4
SWMU # (AREA):	Build	ing BB	1814	_	LABORA	TORY :	Chemfech	
SCREENED INTERVAL (TOC):		-		_	MONITOR	ING DATE:	JUNE 1	12004
STATE WELL PERMIT #:				_	INSTRUM	MENT	DI	ETECTOR
WEATHER:	<u>Su</u>	1 750		_	PID	/ FID		
FREE PRODUCT (NO/ YES) Thicknes	s	<u>N</u> A	<u> </u>					
BOREHOLE DIAMETER FACTORS DIAMETER (INCHES):								
GALLONS/FOOT:		$\begin{array}{cccc} 0.5 & & & 2 \\ 0.092 & & & & & & \\ \end{array}$)	4 5	6 7	8	9 10	
PURGE METHOD:	13624		· · · · · · · · · · · · · · · · · · ·	654 1.02		00 2.61	3.30 5.8	87
TATIC DEPTH TO WATER (TOC):		5	_	OC CONCENTR			170	
/ELL DEPTH (TOC):	13.9				IN WELL (gailons	3):	1-10	
EET OF WATER IN WELL:	6.3			VOLUMES (galk	ons):		3 1 2	
	9.		ONE: RGING DA	TA.	TWO:	THE		
Measur	e indicator par		ach volume (at		bla quoli	y were	13# 97	18073
IME BEGIN PURGING: 14:30	<u> </u>		(4.	· · · · · · · · · · · · · · · · · · ·	TIME END		Sample L	lee :
Time:	15:00	15:05	15:10	15:15	15:20	15:25	(5:32	15:35
Depth to Water (ft)	\$.75	7.75	7.82	785	7.85	7.85	-	+
Depth to bottom			 		100	1.02	7.87	787
opening of	11.0	11.0	111			ĺ		
Purge Device (TOC)		1 11.0	11.0	11.0	111.0	11-0	111	110
Flow Rate (ml/min.)	25ml/h	2511	25M/	25M1	100 11	06.1	10	11.0
	- Juni (1)	7554	13111	ויייכא	25MI	25ml	25ml	25ml
Volume of Water	750.1	!						
Removed (gals)	750m		<u>.</u>				<u> </u>	
pН	6	6.90	691	6.81	6.80	6.82	7.00	7.08
Specific Conductivity (umhos)		962	-951 .	.99	.97	.94	. 821	.817
Dissolve Oxygen (DO)	3 6	19345	1849727	2.60	2.41	2.01	2.02	2.02
Temperature (deg. C)	77	19.45	18.99	20-11	20.7	20.5	20.70	19.88
ORP (mV)	7	87	87	88	89	90	84	88
Turbidity (NTU)	3	34.8	33.7	18.3	8.08	8-06	8.25	8.44
DE	ертн то v		EASUREMI		ED DIDCT	NC	1 0 -0	10.11
	T			AFI	IN I UNGI	10		
Dec			Water (ft)	Pre-Purge / "Sta	nic" Water			%
Date	Time	"After	Purge"	4 -	ima (ft)		olumn (ft)	RECOVERY
						L		
otes:			<u> </u>	·				<u> </u>
 Purging should not exc 								
(1) Determine water column in the b	orehole(for bo	th "after purge	" and "static"	conditions)				
by subtracting the measured wat	a= 11 C	harmall makes						

gwsmpr

1 of 2

SA	MPLIN	G REC	ORD -	GROUN	NDWAT	ER				
PARSONS			CLIENT			WELL#	MWI	17-37		
PROJECT (STUDY_ID):	554	D-12			DATE:		11 200			
SWMU # (AREA):	Bisto		1814		LABORATORY: Cheinfoch					
SCREENED INTERVAL (TOC):				-	MONITORING DATE:					
STATE WELL PERMIT #:				-	INSTRUM					
WEATHER:	5	in 740		-	PID	DI	ETECTOR			
FREE PRODUCT (NO/ YES) Thicknes			PID	<u></u>						
BOREHOLE DIAMETER FACTORS					<u> </u>		<u></u>			
DIAMETER (INCHES):	1 1.	5 /2	3 4	5	6 7	8	9 10			
GALLONS/FOOT:		0,163	0.367 0.6	654 1.02	1.47 2.0		3.30 5.8	17		
PURGE METHOD:	Slade	les .	WELL HEAD V	OC CONCENTR.	ATION (ppm):					
STATIC DEPTH TO WATER (TOC):	7.1	5	_STANDING WA	ATER VOLUME I	N WELL (gallons	: 1.10	0			
WELL DEPTH (TOC):	13.0	10	THREE WELL	VOLUMES (gallo	ns):	,	·	· · · · · · · · · · · · · · · · · · ·		
FEET OF WATER IN WELL:			ONE:		TWO:	THRE	E: 3.50	'		
		PUI	RGING DA	TA:						
Measure TIME BEGIN PURGING:	e indicator para	imeters after ea	nch volume (at	1/2 volume if			•	* *		
Time:	15:40	15:45	15:50	·14 • 15 P	TIME END P		1 // **	1 ***		
Depth to Water (ft)	7.87	7.87		/\$:55 7 8 7	16:00	16:05	16:10	16:15		
Depth to bottom	1.01	FOT	7.87	101	7.87	7.90	7.90	7.90		
		1	İ							
opening of	11.0	((.0	11.0		1	١				
Purge Device (TOC)		11.0	1	1(.0	11.0	11.0	11.0	11.0		
Flow Rate (ml/min.)	25m//m	25ml/m	25m//m	25ml/m	26m/m	25m/m	25 Mon	25M/m		
Volume of Water						-	<i> </i>			
Removed (gals)								3900 m		
рН	7.18	7:18	7.17	7.17	7.16	7.16	7.16	1 = -		
Specific Conductivity (umhos)	.760	768	.759	745	.736	.723	.712	7.16		
Dissolve Oxygen (DO)	1.96	1.95	1.94					.713		
	20.06		18 84	1.93	1.90	1.90	. 1.90	1.90		
Temperature (deg. C)	+	2018	19.41		19-86	19.89	19.43	20.21		
ORP (mV)	88	87	87	87	86	<i>8</i> 6	.86	86		
Turbidity (NTU)	8.25	8.12	7.93	4.90	4.54	4.23	4.13	4.08		
DE	PTH TO W	ATER ME	ASUREME	ENTS AFTI	ER PURGIN	√G	· · · · · · · · · · · · · · · · · · ·			
				·						
Date	Time	-	Water (ft)	Pre-Purge / "Stat		•		%		
		"After	rurge	Colui	nn (ft)	Water Co	olumn (ft)	RECOVERY		
										
Notes:	L									
	,									
* Purging should not exc	ced 5 volum	ies Luca								
 Determine water column in the b by subtracting the measured water 	er level from th	n latter purge'	and "static" o	conditions)						
(2) Divide the "after purge" water co	dumn by the "s	tatic" water on	lumn and mol	tiply by 100						
to determine the percent of recov	very for the wal		, and mun							

Sample # 122291 collected at 16115 1.1 gallons purged /wL= 7.90ft

Well Number: MW 12-37		SAMPLING INFORM	ATION	
SAMPLING DEVICE: LOW Flow				
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	TURBIDITY SAMPLE TAKEN AFTER (CHECK ONE)
NYS CLP ASP (VOC)	16:15	2-40ml VOA HU	4.08 tubility	THE TEXT CITE ON CO.
	<u> </u>			
QA\QC:		<u> </u>		
Duplicate Sample Name: QAVQC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: INVESTIGATION DERIVED WASTE (I	•	NO		
DERIVED WASTE (I		The Name of State of		
Volume Transfe		1.13al		_
D	rum Number:	Saul 4-1		
COMMENTS:	<u> </u>			
Sample Collected	((a)	16:15 1222	91	
Jampse Collected			``(

Page 10f3

SA	MPLIN	G REC	ORD -	GROUN	DWAT	ER A	16/2-2	10	
PARSONS			CLIENT				MW-4		
PROJECT (STUDY_ID):	SEAH	0 12			DATE:	JVne			
SWMU # (AREA):	Builde	7 813/86	4	-	LABORAT		- 11 /00		
SCREENED INTERVAL (TOC):	8.3			-	MONITORI		l		
STATE WELL PERMIT #:				-	INSTRUM	·	DE	TECTOR	
WEATHER:	SUI	1 700	·	-		/ FID	DE	TECTOR	
FREE PRODUCT (NO/ YES) Thickness		NA		-	110				
BOREHOLE DIAMETER FACTORS					1	 	<u>L </u>		
DIAMETER (INCHES):	1 1.5	$\sqrt{2}$	3 4	5	6 7	8	9 10		
GALLONS/FOOT:	0.041 0.0		0.367 0.6	54 1.02	1.47 2.0	0 2.61	3.30 5.8	7	
PURGE METHOD:	Bladde		WELL HEAD V	OC CONCENTRA	TION (ppm):				
STATIC DEPTH TO WATER (TOC):	<u>8.65</u>		STANDING WA	TER VOLUME I	N WELL (gallons)		5		
WELL DEPTH (TOC):	13.30		THREE WELL	OLUMES (gallon	ıs);				
FEET OF WATER IN WELL:	4.65		ONE:		TWO:	THRE	E: 2.2	7	
Mar			RGING DA						
TIME BEGIN PURGING: 0905	indicator para	meters after ea	ich volume (at	1/2 volume if					
Time:	09:35	09:40	09:45	AG C C	TIME END P				
				0950	0955	10:00	10:05	10:16	
Depth to Water (ft)	9.15	9.15	<i>4.15</i>	9.15	9.15	9.15	9.15	9.15	
Depth to bottom				:					
opening of	1461		Α,	۸,	۸,				
Purge Device (TOC)	lott	10ff	loff	loft	10ft	10ff	10\$4	10F4	
Flow Rate (ml/min.)	40mllm	40ml/m	40ml/m	40 ml/m	Avml/m	40 ML	40 ml/m	40mln	
Volume of Water	22				-				
Removed (gals)	•33	•							
рН	6.53	6.50	6.49	6.48	650	6.53	6.63	6.64	
Specific Conductivity (umhos)	.749	.775	760	.770	. 767	750	.753	750	
Dissolve Oxygen (DO)	2.02	2.08	2.04	2.05	2.01	1.99	200	1.95	
Temperature (deg. C)	15.85		15.70	15.66	15.21	14.75	14.80	14.83	
ORP (mV)	91	92	92	92	91	92	93	93	
Turbidity (NTU)	13-1	12.2	12.5	11.3	10.6	10.3	10.5		
	РТН ТО W	ATER ME					10.3	10.2	
	T			ACTO ALTE	KIUKUI	IG.		·	
_		Depth to 1	Water (ft)	Pre-Purge / "State	c" Water			%	
Date	Time	"After	Purge"	Colum		Water Co	lumn (ft)	RECOVERY	
·									
Notes:									
* Purging should not exce	ed 5 volum	es							
(1) Determine water column in the bo	orehole(for bot	h "after purge"	and "static" o	onditions)					
by subtracting the measured water (2) Divide the "after purge" water set	r level from the	e well point.							
(2) Divide the "after purge" water col to determine the percent of recove	umn by the "st ery for the well	auc water col	tumn and mult	uply by 100					

Page 20f3

SA	MPLIN	G REC	<u> ORD - (</u>	<u> FROUN</u>	DWAT	ER				
PARSONS			CLIENT:			WELL#:	MWI	2.40		
PROJECT (STUDY_ID):	SEA	0 12			DATE:	JUAC 11	2504			
SWMU # (AREA):	Builde	Mr 813	LABO			PRATORY:				
SCREENED INTERVAL (TOC):	8.38	to 13.		•	MONITORI	NG DATE:				
STATE WELL PERMIT #:		, -		-	INSTRUM	ENT	DE	TECTOR		
WEATHER:	Son	70°		•	PID	/ FID				
FREE PRODUCT (NO/ YES) Thickness		NA		•						
BOREHOLE DIAMETER FACTORS			· · · · · · · · · · · · · · · · · · ·		/ <u></u>		· · · · · · · · · · · · · · · · · · ·			
DIAMETER (INCHES):	1 1.5	$\binom{2}{2}$	3 4	5	6 7	8	9 10			
GALLONS/FOOT:	0.041 0.0	92 0.163	0.367 0.6	54 1.02	1.47 2.0	0 2.61	3.30 5.8	7 .		
PURGE METHOD:	low flow		WELL HEAD V	OC CONCENTRA	ATION (ppm):			_		
STATIC DEPTH TO WATER (TOC):	<u>8.65</u>	•	STANDING WA	TER VOLUME II	N WELL (gallons)	:	75			
WELL DEPTH (TOC):	13.30	****	THREE WELL V	OLUMES (gallor	ıs):					
FEET OF WATER IN WELL:	4.65		ONE:		TWO:	THRE	ie: 2.3	17		
			RGING DA		,	4 145				
Measure TIME BEGIN PURGING:	indicator para	meters after ea	ich volume (at	1/2 volume if	more than 3 re					
	10:15	10:20	10:15	10:30	10:35	10:40	10:45	(0:50		
Time:	<u> </u>			•		-	 	 		
Depth to Water (ft)	9.15	9.15	9.15	9.5	9.15	9.15	9.15	9.15		
Depth to bottom										
opening of	10ft	1201	i i Cl	LaCL .		_				
Purge Device (TOC)	MAL	1011	10ff	loft	10th	10ft	loft	10ft		
Flow Rate (ml/min.)	40ml/m	40ml/m	40m/u	Hoalin	4011/m	40m/m	40milm	40ml/m		
Volume of Water			-			•	•			
•	1.0gal			İ		1.30al	,			
Removed (gals)	 	/ /5	//7	100	/ OA	7 04	700	700		
pH	6.64	6.65	6.67	6.89	6.90	7.00	7.00	7.00		
Specific Conductivity (umhos)	1.75(.754	.700	.551	,550	-548	548	.547		
Dissolve Oxygen (DO)	1.89	1.84	1.79	1.75	11.73	1.74	1.73	1.74		
Temperature (deg. C)	14.93	15.05	14.79	14.80	14.95	15.23	15.15	15.20		
ORP (mV)	93	92	81	81	80	79	76	77		
Turbidity (NTU)	11.1	12.7	8.8	8.3	72	20	1.7	2.2		
	EPTH TO W				1		<u>l</u>	<u>L</u>		
		·	ASORDATI	1	'	1		· ·		
,		Depth to	Water (ft)	Pre-Purge / "Sta	tic" Water	ļ		%		
Date	Time	"After	Purge"		mn (ft)		olumn (ft)	RECOVER		
June 11 2004	10:50	9.15	th	8.65						
Notes:	<u> </u>	<u> </u>						.t		
* Purging should not ex	ceed 5 volun	nes								
(1) Determine water column in the			" and "static"	conditions)						
by subtracting the measured wa	ter level from ti	he well point								

Sample # 122290 Collected at 10:50

to determine the percent of recovery for the well.

Well Number:		SAMPLING INFORM	MATION	
Well Number: MW12-40 SAMPLING DEVICE: low Flow	•	e e e e e e e e e e e e e e e e e e e		
SAMA DATO DEFICE.				TURBIDITY SAMPLE TAKEN
SAMPLE PARAMETER	TIME	CONTAINER	COLOR	AFTER (CHECK ONE)
VOC NYS CLPASP	10.50	2-40ml/164 Hel		2.2 ntu
		-		
	L			
	1			
	-			
	<u></u>			
	1	1		
Duplicate Sample Name: QA\QC RINSATE SAMPLE NAME: MATRIX SPIKE SAMPLE COLLECTED: INVESTIGATION DERIVED WASTE (Volume Transf	(IDW): Date: fered to Drum:	:: Jr. U 2009 :: U-55al		
	Drum Number			
•			• •	
		-	•••	
COMMENTS:				**

Appendix C

Test Pit Logs

Appendic C Index of Test Pit Location IDs and Sample IDs SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

Location ID	Sample ID
TP813-1T	123682
TP813-2T	123683
TP813-3T	123684
TP813-3T (Dup)	123686
TP813-4F	123688
TP813-5F	123689
TP813-6F	123691
TP813-7T	123692
TP813-8T	123693
TP813-9T	123694
TP813-10F	123701
TP813-11F	123702
TP813-12F	123703
TP813-13F	123704
TP813-13F (Dup)	123705

				TE	ST PIT REPO		NGE 1 OF			
	PAR	SONS			CLIENT: USACOE	TEST PIT NO.:	SEAD 12			
PROJECT: LOCATION:		12 Test Pit it - East side	- Seneca Q A	Агеа		JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson				
TEST PIT DATA LENGTH V	/IDTH	DEPTH 3 to 8 ft	Excavator	EX	CAVATION METHOD	CONTRACTOR: Environmental Products & Services START DATE: 11/3/04 COMPLETION DAT 11/11/04				
MONITORING DATA						CHECKED BY: J. Rossmann				
INSTRUMENT PID FID	DE	ETECTOR	BACKGRO 0 0	DUND	TIME/DATE 11/3/04 11/10/04 & 11/11/04	QA/QC DUPLICATE SAMPLE: YES OR Duplicate Sample Number: MRD Sample Number: QA/QC Rinsate Sample Number: Comments:	NO :			
DEPTH (FT) VOC		DEPTH RANGE	STRATA		DESC (As per Burmeister: color, grain size, M	MPLE RIPTION MAJOR COMPONENT, Minor Components size, density, stratification, wemess, etc.)	REMARKS			
1	123689	3 to 4 feet		Sam FID Grey	wn, fine/medium, TILL. Dry to make ple collected at roughly same elevated reading not on actual sample. Clod/brown SHALE fragments. of excavation at the drainage ditch evation sloped - depth varied from S	ation as other sides. see proximity a. Original area of	-			

Cross Section:

Drange Ditel

bottom

123689 Fractured Shulp

Vicinity of

south side

						TE	ST PIT REPO		KGE 1 OF			
		ı	PARS	SONS			CLIENT: USACOE	TEST PIT NO.:	SEAD 12			
PROJI LOCA				12 Test Pit t - North side		Area		JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson				
TEST	PIT D	ATA		-				CONTRACTOR: Environmental Products &	Services			
LENGT	T		отн	DEPTH	1	EXC	CAVATION METHOD	START DATE: 11/3/04				
				3 to 8 ft	Excavator			COMPLETION DAT 11/11/04	<u> </u>			
								CHECKED BY: J. Rossmann				
MONITOR	ING D	ΑΤΔ			<u> </u>			QA/QC DUPLICATE SAMPLE: YES OR	NO			
	RUMEN		DE	TECTOR	BACKGRO	OUND	TIME/DATE	Duplicate Sample Number:	NO			
PII					0		11/3/04	MRD Sample Number:				
FII	D				0		11/10/04 & 11/11/04	QA/QC Rinsate Sample Number:				
								Comments:				
			s	AMPLE	STRATA		<u></u>					
DEPTH (F	FT)	voc	NO.	DEPTH RANGE				SAMPLE SCRIPTION	REMARKS			
		:						, MAJOR COMPONENT, Minor Components n-size, density, stratification, wetness, etc.)				
1					_	Tops	soil					
<u>,</u>						_			-			
2					_	- Bros	wn, fine/medium, TILL. Dry to	moiet	-			
3						- 510	wn, mic/medium, 1122. Dry to	moist.				
4		0	123691	3 to 4 feet		Sam	ple collected at roughly same ele	vation as other sides.]			
<u> </u>			123			Grey	y/brown SHALE fragments.		_			
5						_			-			
6						_			-			
\ <u></u>					_	End	of excavation at the drainage dit	ch. Original area of	1 -			
7						exca	vation sloped - depth varied fron	n South/West sides.				
						<u>_</u>			_			
8									_			
<u>,</u>						_			-			
9——	\dashv								-			
10	\dashv											
]]			
11												

Cross Section:

Draing in the Disternal Draing in T2+03f4

123691

East

				7	TEST PIT	REPO		AGE 1 OF
		PARS	ONS		CLIENT:	USACOE	TEST PIT NO.:	SEAD 12
PROJECT: LOCATION	_		12 Test Pit t - South sid	- Seneca Q A e	теа		JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson	
TEST PIT D	ΔΤΔ				"- <u></u>	• • • • • • • • • • • • • • • • • • • •	CONTRACTOR: Environmental Products a	& Services
LENGTH		ЭТН	DEPTH 10 ft	Excavator	EXCAVATION METHO)D	START DATE: 11/3/20 COMPLETION DA' 11/11/20 CHECKED BY: J. Rossmann	04
MONITORING I INSTRUME PID FID		DE	TECTOR	BACKGROU 0	JND TIME/I 11/3/2004 11/10/04 & 11/11/04	DATE	QA/QC DUPLICATE SAMPLE: YES C Duplicate Sample Number: MRD Sample Number: QA/QC Rinsate Sample Number:	PR NO
		,	SAMPLE	STRATA			Comments:	
DEPTH (FT)	voc	NO.	DEPTH RANGE	STACE	(As per Burmeister: with amount i	DESC	AMPLE CRIPTION MAJOR COMPONENT, Minor Components -size, density, stratification, wetness, etc.)	REMARKS
3 4 5					Topsoil Brown, fine/medium, T	FILL. Dry to 1	moist.	
6	6.3	123692; 123693	5-6 ft		•	ained soil, som	e odor. Grey and slightly wet. lear out the contamination.	-
Cross Section	n:						annel 1 ft extra 2	Building 803

Bern

Sidewalk

· 123693 (after excurally 4 mone frest)
· 123692

Come a of "Starring+Smell"

				r -	ΓE	ST PIT	REPO	RT		· ·	
	ı	PARS	SONS			CLIENT:	USACOE	TEST PIT NO.:		SEAD 12	
PROJECT: LOCATION			12 Test Pit t - West side	- Seneca Q A	теа			JOB NUMBER: GROUND ELEV: INSPECTOR:	743156-03100 S. Anderson		
TEST PIT D	r	OTH	DEPTH 10 ft	Excavator	EXCAVATION METHOD Excavator			CONTRACTOR:			
MONITORING I INSTRUME PID FID		DE	TECTOR	BACKGROU 0	1	TIME/1 11/3/04 11/10/04 & 11/11/04	DATE	QA/QC DUPLICAT Duplicate Sample Numb MRD Sample Numb QA/QC Rinsate Sam Comments:	er:	NO	
DEРТН (FT)	voc	NO.	AMPLE DEPTH RANGE	STRATA	<u>.</u>		DESC	AMPLE CRIPTION MAJOR COMPONENT, N -size, density, strainteation,		REMARKS	
1	0.1	123694 123688	5-6 ft		Rusty Fracto	oil m, fine/medium, T metal debris four ured Shale mixed wer line found above	nd about 4.5 to with Brown Ti	5 feet. Sampled			
Cross Section:				Sov	Buil	3	Sof	1 236	,94	nash	

TEST PIT REPORT								
PARSONS						CLIENT: USACOE	TEST PIT NO.:	SEAD 12
PROJECT:SEAD 12 Test Pit - Seneca Q A LOCATION:Test Pit - Northeast corner of but							JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson	
TEST PIT DATA LENGTH WI		DTH DEPTH		EXCAVATION METHOD Excavator		CAVATION METHOD	CONTRACTOR:	
MONITORING DATA INSTRUMENT DETECTOR PID FID			ETECTOR	BACKGROUND TIME/DATE 0 12/20/2004 0 12/21/2004		12/20/2004	QA/QC DUPLICATE SAMPLE: YES OR NO Duplicate Sample Number: MRD Sample Number: QA/QC Rinsate Sample Number: Comments:	
DEPTH (FT)	voc	NO.	DEPTH RANGE	STRATA		DE	SAMPLE SCRIPTION e, MAJOR COMPONENT, Minor Components ann-size, density, stratification, weiness, etc.)	REMARKS
1		123701 123702	3-4 ft 4-5 ft		123 123 123 und	wn, fine/medium, TILL. Dry to 702 collected on east side of bui 701 collected on north side of bui er outlet of destroyed sewer pipe ctured Shale mixed with Brown ned soils observed and removed npetent Bedrock	lding corner uilding corner	-

TEST PIT REPORT									
	PARSONS		CLIENT: USACOE	TEST PIT NO.:	SEAD 12				
PROJECT: _ LOCATION:	SEAD 12 Test Pit Test Pit - West sid			JOB NUMBER: 743156-03100 GROUND ELEV: INSPECTOR: S. Anderson					
TEST PIT DATA	ІДТН ДЕРТН	FX	CAVATION METHOD	CONTRACTOR: Environmental Products &	NTRACTOR: Environmental Products & Services				
EEROII	10 ft			COMPLETION DA3 12/21/2004 CHECKED BY: E Ashton					
MONITORING DATA INSTRUMENT	DETECTOR	BACKGROUND	TIME/DATE	QA/QC DUPLICATE SAMPLE: YES OR NO Duplicate Sample Number:					
PID FID	- DEADGRON	0 0	12/21/2004	MRD Sample Number: QA/QC Rinsate Sample Number:					
				Comments:					
	SAMPLE	STRATA		ALCO E	REMARKS				
DEPTH (FT) VOC	NO. DEPTH		SAMPLE DESCRIPTION (As per Burmeister: color, grain size, MAJOR COMPONENT, Minor Components		KEIVIANNS				
1	2-3 ft 402521 3-4 ft	Bro	psoil bwn, fine/medium, TILL. Dry to actured Shale mixed with Brown T cavation halted at 5'						

Cross Section:

Appendix D

Laboratory SOP EML HASL-300 EPA Method 901.1 The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 1 of 12

VERIFY THE VALIDITY OF THIS SOP EACH DAY IN USE

STANDARD OPERATING PROCEDURE

FOR

THE DETERMINATION OF GAMMA ISOTOPES

(GL-RAD-A-013 REVISION 10)

APPLICABLE TO METHODS: EPA 600/4-80-032 Method 901.1 (Modified) DOE EML HASL-300 (Modified)

PROPRIETARY INFORMATION

This document contains proprietary information that is the exclusive property of General Engineering Laboratories, LLC (GEL). No contents of this document may be reproduced or otherwise used for the benefit of others except by express written permission of GEL.

GEL's Document Control
Officer certifies this
document to be a true copy
of the fully executed
original.

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 2 of 12

TABLE OF CONTENTS

1.0	STANDARD OPERATING PROCEDURE FOR THE DETERMINATION OF GAMMA ISOTOPES	š3
2.0	METHOD OBJECTIVE, PURPOSE, CODE AND SUMMARY	3
3.0	METHOD APPLICABILITY	3
4.0	DEFINITIONS	3
5.0	METHOD VARIATIONS	.,4
6.0	SAFETY PRECAUTIONS AND WARNINGS	4
7.0	INTERFERENCES	
8.0	APPARATUS, MATERIALS, REAGENTS, EQUIPMENT, AND INSTRUMENTATION	5
9.0	SAMPLE HANDLING AND PRESERVATION	
10.0	SAMPLE PREPARATION	5
11.0	PREPARATION OF STANDARD SOLUTIONS AND QUALITY CONTROL STANDARDS	7
12.0	INSTRUMENT CALIBRATION AND PERFORMANCE	7
13.0	ANALYSIS AND INSTRUMENT OPERATION	8
14.0	EQUIPMENT AND INSTRUMENT MAINTENANCE	8
15.0	DATA RECORDING, CALCULATION, AND REDUCTION METHODS	8
16.0	QUALITY CONTROL REQUIREMENTS	10
17.0	DATA REVIEW, APPROVAL, AND TRANSMITTAL	
18.0	RECORDS MANAGEMENT	12
19.0	LABORATORY WASTE HANDLING AND WASTE DISPOSAL	
20.0	REFERENCES	

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 3 of 12

1.0 STANDARD OPERATING PROCEDURE FOR THE DETERMINATION OF GAMMA ISOTOPES

2.0 METHOD OBJECTIVE, PURPOSE, CODE AND SUMMARY

- 2.1 This standard operating procedure provides the necessary instructions to conduct the analysis for Gamma Isotopes in water, soil, urine and miscellaneous matrices.
- 2.2 Water samples are counted in Marinelli beakers. Soil samples are sealed in aluminum cans, which are counted immediately if Ra-226 is not desired. If Ra-226 is desired, the sealed can is set aside to allow secular equilibrium between Rn-222 and Bi-214. Quantification is done by the abundance of the 609 KeV Bi-214 line.
- 2.3 This method has been modified from the source method EPA 600/4-80-032 "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," August 1980, Method 901.1, and the Department of Energy (DOE) EML Procedures Manual source method for Gamma PHA in soils and sediments, HASL-300. For all matrices, similar principles of radiochemical concentration and counting are used.
- 2.4 This method has been modified on the basis of GEL's Performance Based Measurement System (PBMS).

3.0 METHOD APPLICABILITY

- 3.1 Minimum Detectable Activity (MDA): The MDA is based upon sample volume, instrument background, instrument efficiency, count time and other statistical factors, as well as specific isotopic values such as abundance and half-life.
- 3.2 Method Precision: If the activity is greater than 5 times the RDL (Required Detection Limit) an allowed method precision of equal to or less than 20% is used. For activity between the MDA and 5 times the RDL, an allowed method precision of 100% is used. There are no requirements if the activity is less than the MDA.
- 3.3 Method Bias (Accuracy): The method accuracy requirement for gamma spectroscopy is \pm 25% of the true value.
- Analysts go through a partnered training program with an already certified analyst for gamma spectroscopy. The analyst receives training on reviewing of standard analytical requirement such as RPD, method bias and technical review of gamma spectra. The analyst can then become qualified to perform the analysis by passing an unknown sample analysis and correctly identifying the isotope(s). Technical training records are maintained electronically by the Quality Systems staff.

4.0 **DEFINITIONS**

- 4.1 <u>Clean Line</u>: An energy line of an isotope with no known energy lines of other isotopes within 2 KeV. (This excludes daughters that use the same line for quantification.)
- 4.2 <u>Interfered Line</u>: An energy line of an isotope with one or more energy lines of one or more different isotopes within 2 KeV.
- 4.3 <u>Single and Double Escape Interference Lines</u>: When high energy gamma lines above 511 KeV have a large emission rate, it is possible to see single and double escape lines caused by electron capture (energy line 511 is a single escape line, energy line 1022 is a double escape line.) For example, for 10,000 gps at 1332, the single

The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 4 of 12

escape interference line can be seen at 1332-511=821, and the double escape interference line at 1332-1022=310.

- 4.4 <u>Summation Interference</u>: When high gamma emission rates are seen, sample summation can occur. Prominent in geometries close to detection and in low energy range (i.e., 10,000 gps at 88 KeV, 15,000 gps at 210 KeV), a summation interference can be seen at 88+88=176 KeV, 210+210=420 KeV, 210+88=298KeV
- 4.5 <u>Palse Positive</u>: An isotope that has failed one or more of several tests including halflife, abundance, and energy tolerance (± 2 KeV)
- 4.6 <u>Abundance Test</u>: The test where the software calculates the total possible lines from the library and checks to see how many were actually seen. The cutoff for a positive identification is 75%.
- 4.7 Energy Tolerance: The test where the software checks the energy line in the spectrum to see if it is within the energy tolerance setting. (The standard setting is 2 KeV.) If it is within this setting then the line is associated with that nuclide. The energy line can be associated with more than one nuclide.
- 4.8 <u>Half-Life Test</u>: The test to determine if the half-life of the isotope is long enough not to have decayed away. The half-life of the sample is the time from sample date to analysis date plus 1/2 the count time. A limit of no more than eight half-life is the standard setting.
- 4.9 <u>Key Line</u>: The line chosen by the builder of the library to be the prominent line of the isotope. This line is used in the MDA table for purposes of calculating activity, error and MDA. For non-identified isotopes the key line is used as the basis for calculating a region around the key line and then calculating and activity error and MDA. Usually this line is the most abundant line on a line that is relatively free from interference.
- 4.10 Abundance: The branching ratio or ratio of disintegration of the isotope at a particular energy. For example, Cobalt-60 has an abundance, or branching ratio, of 99% at 1332 KeV
- 4.11 <u>Accuracy</u>: The error of the reported result due to the counting statistics of the instrument used for quantification.
- 4.12 <u>Back Scatter</u>: The detection of a count that occurs when an event interacts with counting materials, changes direction, and scatters back to the detector.

5.0 METHOD VARIATIONS

Modifications to the procedure are limited to GEL's use of additional isotopes for the daily calibration check and the inclusion of a more stringent calibration and resolution periodicity.

6.0 SAFETY PRECAUTIONS AND WARNINGS

- 6.1 Keep hands free from moving parts of canning device and Gamma shields.
- 6.2 Personnel performing this analytical procedure are trained in and follow the safe laboratory practices outlined in the Safety, Health and Chemical Hygiene Plan, GL-LB-N-001.
- 6.3 Personnel handling radioactive materials are trained in and follow the procedures outlined in GL-RAD-S-004 for Radioactive Material Handling.

The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 5 of 12

- 6.4 Personnel handling biological materials are trained in and follow the procedures outlined in GL-RAD-S-010 for Handling Biological Materials.
- 6.5 If there is any question regarding the safety of any laboratory practice, stop immediately, and consult qualified senior personnel such as a Group or Team Leader.

7.0 INTERFERENCES

- 7.1 Some Gamma isotopes emit gamma lines that may overlap with other isotopes. If the energies of the two isotopes are within 2 KeV, the peaks may not be resolvable and will give a positive bias to the result. This problem is minimized by careful review of the peak search.
- 7.2 Soil samples may vary in density from the standard used for calibration. This may bias the results due to self-absorption of lower energy (<100 K).

8.0 APPARATUS, MATERIALS, REAGENTS, EQUIPMENT, AND INSTRUMENTATION

- 8.1 Ancillary Equipment
 - 8.1.1 100 cc aluminum cans with lids for soil and miscellaneous samples
 - 8.1.2 Gelman Sciences PETRI dish for soil and miscellaneous samples
 - 8.1.3 2 L and 500 mL Marinelli beakers for water samples
 - 8.1.4 Air displacement pipette. 1 mL
 - 8.1.5 Can annealing tool
 - 8.1.6 Graduated cylinder
- 8.2 Reagents, Chemicals and Standards
 - 8.2.1 NIST traceable mixed gamma standard in 100cc aluminum can
 - 8.2.2 NIST traceable 2.0 liter mixed gamma standard in 2 L Marinelli beaker
 - 8.2.3 NIST traceable mixed gamma standard in 0.5 L Marinelli
 - 8.2.4 NIST traceable mixed gamma standard in snap falcon PETRI dish
 - 8.2.5 Standard soil blank
 - 8.2.6 NIST traceable aqueous Cs-137 standard
 - 8.2.7 Mixed Gamma Standard: Contains Am-241, Co-57, Co-60, Y-88, Sr-113, Pb-210, Cd-109 as a minimum.
- 8.3 Instrumentation
 - 8.3.1 High purity germanium detector, with associated electronics and data reduction software
 - 8.3.2 Top loader balance

9.0 SAMPLE HANDLING AND PRESERVATION

- 9.1 For soil samples, 500g of sample should be collected, preferably in a plastic container to avoid breakage.
- 9.2 For water samples, 2 liters of sample should be collected in a plastic container and preserved to pH2 with Nitric acid.

10.0 SAMPLE PREPARATION

- 10.1 Soil sample preparation.
 - 10.1.1 Prepare the sample for gamma counting in accordance with SOP GL-RAD-A-021 "Soil sample preparation for the determination of radionuclides".

- 10.1.2 Fill the appropriate container with sample prepared from step 10.1.1 using the following steps as a guideline:
 - 10.1.2.1 If Ra-226 analysis is required, the sample is placed in a 100cc can for in-growth.

NOTE: It is recommended that in-growth be allowed 14 days to quantify Ra-226. Shorter intervals can be used at the request of the client. However, shorter in-growth periods may decrease the accuracy of the data. If there is insufficient mass of sample to fill the 100cc can, contact the team or group leader.

- 10.1.2.2 All homogenized samples shall be placed in the 100cc can.

 Determine the net weight of the sample. If the net weight is less than 55 grams or greater than 190 grams, contact the team or group leader to determine the appropriate counting container.

 Record sample weight and date on sample container.
- 10.1.2.3 If there is insufficient sample to fill the 100cc can, place sample in the 10cc petri dish, cap and seal. Record sample weight and date on sample container.
- 10.1.2.4 If there is insufficient sample to fill the 10cc petri dish, perform the following digestion process:
 - 10.1.2.4.1 Weigh out an appropriate aliquot into a labeled teflon beaker. Record this weight on the sample container.
 - 10.1.2.4.2 Add 10 mL of concentrated nitric acid to each sample.
 - 10.1.2.4.3 Place samples on medium heat (~300 °F) and cover each sample with a teflon lid. Reflux all samples for 30 minutes.
 - 10.1.2.4.4 Remove teflon lids and add 5 mL concentrated hydrochloric acid and 10 mL hydrofluoric acid to each sample. Cover samples and reflux for 120 minutes.
 - 10.1.2.4.5 Remove teflon lids and allow samples to evaporate to dryness.
 - 10.1.2.4.6 Add 5 mL of concentrated nitric acid and evaporate to dryness.
 - 10.1.2.4.7 Repeat Step 10.3.6.
 - 10.1.2.4.8 Add 5 mL of concentrated nitric acid to the dry samples. Place the samples back on the hotplate long enough so that the dried sample dissolves into the acid.
 - 10.1.2.4.9 Transfer solution to a 500 mL vessel and dilute to 500 mL. Record original sample mass and diluted volume on sample
- 10.2 Water sample preparation

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002 GL-RAD-A-013-Rev 9 Page 7 of 12

10.2.1 Mix and measure an appropriate volume into a 2 L or 500 mL Marinelli beaker and record the volume on the Gamma que sheet.

If Radium analysis is required, measure 100 mL and seal in a 100 cc can. Record volume, sealed date, and sealed time on Gamma que sheet.

10.3 Urine Sample Preparation

- 10.3.1 Place a 24-hour urine container (or other suitable container) on a balance and tare the balance.
- 10.3.2 Transfer the entire volume of the sample received to the tared container and record the volume of sample received.
- 10.3.3 Add 8 M HNO₃ acid to the original sample container (typically 25 50 mL). Shake in the container and then heat in a microwave for approximately 30 seconds to remove sample residue from the sides of the sample container.
- 10.3.4 Add the nitric acid rinse to the 24-hour urine container and record the volume of the original sample plus acid.
- 10.3.5 Cap and shake the 24-hour urine container to homogenize the sample. Transfer an aliquot (typically 500 mL) of this solution to a Marinelli Beaker.
- 10.3.6 Record the amount of the original sample, excluding the nitric acid added, on the gamma spec que sheet.

 Example: 800 mL is received and 50 mL of 8 M HNO₃ is added from the rinse of the sample container. 500 mL is transferred to the Marinelli Beaker. The recorded volume on the que sheet should be (500 mL/850 m/) x 800 mL = 470.6 mL.
- 10.4 Preparation of miscellaneous matrices
 - 10.4.1 Prepare the sample in accordance with SOP GL-RAD-A-026 "Preparation of Special Matrices for the Determination of Radionuclides."
 - 10.4.2 Once the appropriate section of GL-RAD-A-026 has been performed, prepare the sample for gamma counting by referring to section 10.1.2 above.

11.0 PREPARATION OF STANDARD SOLUTIONS AND QUALITY CONTROL STANDARDS

Refer to "Preparation of Radioactive Standards" (GL-RAD-M-001) for instructions concerning the preparation of standard solutions.

12.0 INSTRUMENT CALIBRATION AND PERFORMANCE

- 12.1 The gamma spectrometer should be calibrated for the appropriate geometry every 12 months or when daily QC check standards indicate instrument problems. Refer to "Gamma Spectroscopy System Operating Procedure" (GL-RAD-I-001) for calibration instructions.
- 12.2 Refer to "Gamma Spectroscopy System Operating Procedure" (GL-RAD-I-001) for instructions concerning the Gamma Spectrometer.

The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002

GL-RAD-A-013-Rev 9 Page 8 of 12

12.3 Refer to "Counting Room Instrument Maintenance and Performance Checks" (GL-RAD-I-010) for instructions concerning instrument maintenance.

13.0 ANALYSIS AND INSTRUMENT OPERATION

- 13.1 Prepare the sample as outlined in section 10.0
- 13.2 Place the sample on the detector and count the sample an appropriate amount of time in the gamma shield. See "Gamma Spectroscopy System Operating Procedure" (GL-RAD-I-001) for specific instructions on operating the gamma spectrometers.

14.0 EQUIPMENT AND INSTRUMENT MAINTENANCE

- 14.1 Refer to "Gamma Spectroscopy System Operating Procedure" (GL-RAD-I-001) for instructions concerning the Gamma Spectrometer.
- 14.2 Refer to "Counting Room Instrument Maintenance and Performance Checks" "
 (GL-RAD-I-001) for instructions concerning instrument maintenance.

15.0 DATA RECORDING, CALCULATION, AND REDUCTION METHODS

15.1 Data Recording

Record the following information on the Gamma Que Sheet: preparation date, analyst's initials, spike isotope, spike code, spike volume, LCS isotope, LCS code, LCS volume, nominal concentration LCS, and nominal concentration MS. For each sample record the detector number, sample mass, sample date and time.

15.2 The instrument will report sample pCi/g or pCi/L according to the following equations:

Sample pCi/g =
$$\frac{A*d}{2.22*E*V*B*CNT*ABS}$$

Sample pCi/L =
$$\frac{A*d}{2.22*E*V*B*CNT}$$

Where:

A = net peak area (counts)

ABS = relative absorption factor

B = abundance (gammas/disintegration)

E = counting Efficiency (counts/gamma)

V = sample volume (grams or liters)

ct = sample count time (minutes)

$$d = decay factor = d = \frac{1}{e^{\lambda_i}}$$

15.3 Counting uncertainty is calculated according to the following equation:

pCi/unit = Ac * 1.96
$$\sqrt{\left(\frac{\text{ef} - \text{er}}{\text{E}}\right)^2 + \left(\frac{\text{pk} - \text{er}}{\text{pk}}\right)^2 + \left(\frac{\text{ab} - \text{er}}{\text{A}}\right)^2 + \left(\frac{\text{sy}}{100}\right)^2 + \left(\text{Decay}\right)^2}$$

Where:

Ac = Activity from 15.2

Decay =
$$\left(\frac{T_{1/2 \text{ err}}}{T_{1/2}}\right)^2 * \left[\frac{\lambda \text{Er}}{1 - e^{-\lambda E_r}} - \lambda (T_s + E_r) - 1\right]$$

15.4 The method MDA in pCi/g or pCi/L are calculated according to the following equations:

MDA (pCi/unit) =
$$\frac{d * \left(2.71 + 4.66 \sqrt{\text{cpm}_{b} * \text{ct}}\right)}{2.22 * \text{E} * \text{V} * \text{B} * \text{ct}}$$

Where:

A = net peak area (counts)

ABS = relative absorption factor

B = abundance (gammas/disintegration)

E = counting Efficiency (counts/gamma)

V = sample volume (grams or liters)

ct = sample count time (minutes)

 $d = decay factor = d = \frac{1}{e^{-\lambda t}}$

15.5 The absorption factor is calculated by the following equations:

$$I_1 = \frac{\ln((SSepm - Sepm)/ECepm)}{(((SSepm - Sepm)/ECepm) - 1)}$$

$$I_0 = \frac{In((SSTepm - STepm)/ECepm)}{(((SSTepm - Sepm)/ECepm) - 1)}$$

$$ABS = \frac{1}{10}$$

Where:

SScpm = sample plus the source cpm at the region of interest

Scpm = sample cpm at the region of interest

ECcpm = source cpm on the empty can at the region of interest in = natural logarithm

SStcpm = standard plus the source cpm at the region of interest

Stepm = standard plus the source cpm at the region of in Stepm = standard cpm at the region of interest

- 15.6 The VAX operating system will report the following information with each completed sample:
 - 15.6.1 The nuclide identification report
 - 15.6.2 The minimum detectable activity report
 - 15.6.3 The peak search report.
- 15.7 The following criteria are used to accept a reported gamma isotope from the NID report:
 - 15.7.1 The peak FWHM should be less than 2 KeV.

General Engineering Laboratories, LLC P.O. Box 30712, Charleston, SC 29417

	The Determination of Gamma Isotopes	
SOP Effective Date: 2/4/92		GL-RAD-A-013-Rev
Revision 9 Effective June 2002		0L-R/1D-A-V13-K6V

- 15.7.2 The activity of a non-target isotope will not be reported unless it is greater than the minimal detectable activity of a method blank with similar volume and count time.
- 15.7.3 The energy tolerance should be between 2 and 3 KeV.
- 15.7.4 The sensitivity setting should be between 0.1 and 3. The default setting is 3.
- 15.7.5 Start channel on peak search should be approximately 50 and end channel should be 4096.
- 15.7.6 The confidence level setting should be 5.
- 15.7.7 These settings should not be changed without approval from a group leader.
- 15.8 The following guidelines are used to accept unidentified lines on the peak search after environmental background subtraction:
 - 15.8.1 The line matches the natural fingerprint of the Uranium-238 or Thorium-232 decay chains (i.e. 63, 75, 93, 239, 295, 352, 511, 609, 1120, etc.).
 - 15.8.2 The line matches as a summation peak from two other lines in the spectrum.
 - 15.8.3 The line has a net area of less than 20.

16.0 QUALITY CONTROL REQUIREMENTS

16.1 Analyst and Method Verification

Refer to "Analyst and Analytical Methods Validation Procedures" (G-RAD-D-003) for instructions concerning the validation of analysts and analytical methods.

- 16.2 Method Specific Quality Control Requirements
 - 16.2.1 A method blank will accompany each batch of 20 or less samples. The reported value should be less than or equal to the CRDL for all target isotopes. Matrix spikes are prepared by spiking a portion of the QC sample with Cs-137 (as a minimum).
 - 16.2.2 For water samples only, a matrix spike (MS) should be run with every batch of 20 samples. The recovery of the spike should fall between 75 and 125%. The recovery is calculated as follows:

$$\%REC = \frac{\text{spike(pCi/g)} - \text{sample(pCi/g)}}{\text{spikedamount(pCi/g)}} *100$$

or:

$$%REC = \frac{\text{spike(pCi/L)} - \text{sample(pCi/L)}}{\text{spikedamount(pCi/L)}} * 100$$

NOTE: Performing a matrix spike on a soil sample would result in direct contamination of the sample, therefore, only water samples require an MS.

A sample duplicate should be run with every batch of 20 or less samples. The relative percent difference (RPD) between the sample and the duplicate should be ≤0 20%. The RPD is calculated as follows.

General Engineering Laboratories, LLC P.O. Box 30712, Charleston, SC 29417 SOP Effective Date: 2/4/92 Revision 9 Effective June 2002 GL-RAD-A-013-Rev 9 Page 11 of 12

$$RPD = \frac{\text{high sample (pCi/g) - low sample (pCi/g)}}{\text{Average (pCi/g)}}$$

or:

$$RPD = \frac{\text{high sample (pCi/L) - low sample (pCi/L)}}{\text{Average (pCi/L)}}$$

- 16.2.4 A laboratory control spike (LCS) should be run with every batch of 20 samples or less. The recovery of the spike should fall between 75 and 125%. The LCS should contain Cs-137 as a minimum. Some clients may request a mixed gamma standard. For soils, a mixed gamma expired calibration source may be used as an LCS. For liquids and filters, spike a blank sample with Cs-137 as a minimum.
- 16.2.5 The recovery is calculated as follows:

$$LCS = \frac{observed_pCi/g}{known_pCi/g} *100$$

or:

$$LCS = \frac{observed_pCi/L}{known_pCi/L} *100$$

16.3 Actions required if the Quality Control Requirements Are Not Met

If any of the above criteria cannot be satisfied, the analyst should inform the group
leader and initiate a non-conformance report as outlined in "Documentation of
Nonconformance Reporting and Dispositioning, and Control of Nonconforming
Items" (GL-QS-E-004).

17.0 DATA REVIEW, APPROVAL, AND TRANSMITTAL

- 17.1 The first level of review is the analyst review. The analyst will perform the following steps of review:
 - 17.1.1 Visually check the que sheet, spreadsheet, raw data and data report to make sure the information has been transcribed correctly.
 - 17.1.2 Review the raw data to see if there are any hits not on the requested list. If there are, report to the client by adding the information into LIMS.

A true identification or a "hit" is any isotope greater than 10 pCi/L or 5 pCi/g on the identified nuclide list. The error must also be less than 40% of the result and not have interference by another isotope or have a very short half-life.

- 17.1.3 Check to see that the required detection limit (RDL) is met if required.
- 17.1.4 Check hits to see if they are true hits (see 18.1.2.1) and not an interference or a false positive.

Identifications are classified into two categories: false positives (interference), and true identification (hit). The false positives are rejected by checking the abundance test results for the isotope and by checking last results for the half-life. The result is considered

General Engineering Laboratories, LLC P.O. Box 30712, Charleston, SC 29417

The Determination of Gamma Isotopes

SOP Effective Date: 2/4/92 Revision 9 Effective June 2002 GL-RAD-A-013-Rev 9 Page 12 of 12

interference and rejected by checking to see if there are any clean lines in sample spectrum for the isotope. If none exist, then the identification is rejected. If the key line has a possible interference and secondary lines do not confirm the activity calculation, the identification is rejected. Isotopes that pass these criteria are accepted as true identifications. The above tests and criteria are standard and will be followed unless directed otherwise by contract, specification or instructions.

17.1.5 Complete the batch checklist.

- 17.2. The second level review is performed by the Data Validator or Report Specialist, who reviews the batch checklist, checks requested and non-requested hits, and reviews the transcription.
- 17.3 After the review process is complete, the data is transmitted from the laboratory personnel to the reporting personnel as outlined in "Data Review and Validation Procedures" (GL-RAD-D-003).

18.0 RECORDS MANAGEMENT

- Each analysis that is performed on the instrument is documented in the run log according to "Run Logs" (GL-LB-E-009).
- 18.2 All raw data printouts, calculation spreadsheets and batch checklists are filed with the sample data for archival and review.

19.0 LABORATORY WASTE HANDLING AND WASTE DISPOSAL

- 19.1 All soil sample cans are opened and sample returned to original sample containers after completion of batch.
- 19.2 Radioactive waste is disposed of as outlined in the Laboratory Waste Management Plan (GL-LB-G-001).

20.0 REFERENCES

- 20.1 USEPA. Prescribed Procedures for Measurement of Radioactivity in Drinking Water. Method 901.1, August 1980,
- 20.2 Canberra Nuclear Genie System Spectroscopy, Applications and Display User's Guide. Vol. I and II, May 1991.
- 20.3 EML procedures manual, HASL-300-Ed.25, 1982.

General Engineering Laboratories, LLC P.O. Box 30712, Charleston, SC 29417

Appendix E

Analytical Results

Building 813/814 Groundwater VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TW12-1	TW12-1 (D)	TW12-3	TW12-4	TW12-5	TW12-6	TW12-7	TW12-8	TW12-9	TW12-22	TW12-23
MATRIX									GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW
SAMPLE ID									122275	122284	122277	122278	122279	122280	122281	122282	122283	122285	122286
TOP OF SAMPLE									5.20	5.20	5.00	3.75	8.70	5.00	7.10	5.00	4.90	13.50	13.30
BOTTOM OF SAMPLE									10.20	10.20	10.00	8.75	13.70	10.00	12.10	10.00	9.90	23.50	23.30
SAMPLE DATE									5/26/2004	5/26/2004	6/11/2004	5/27/2004	5/27/2004	5/27/2004	5/27/2004	5/27/2004	5/27/2004	6/11/2004	6/10/2004
QC CODE									SA	DU	SA	SA	SA	SA	SA	SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number											
			of	Criteria	Action	of	of	of											
Parameter	Unit	Maximum		Туре	Level	Exceedances	Detections A	Analyses	Value (C	, , ,	Value (Q	,	, , ,	Value (0	, , , , , , , , , , , , , , , , , , , ,	Value	· /	Value (Q)	
1,1,1-Trichloroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1,2,2-Tetrachloroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1,2-Trichloroethane	μg/L	0	0%	NYSDEC CLASS GA	1	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1-Dichloroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,1-Dichloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 UJ	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2,4-Trichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dibromo-3-Chloropropane	μg/L	0	0%	NYSDEC CLASS GA	0.04	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dibromoethane	μg/L	0	0%	NYSDEC CLASS GA	0.0006	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dichloroethane	μg/L	0	0%	NYSDEC CLASS GA	0.6	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,2-Dichloropropane	µg/L	0	0%	NYSDEC CLASS GA	1	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,3-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
1,4-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Acetone	μg/L	51	12%	NIVODEO OL AGO OA	4	0	2	17	50 UJ	50 U	50 UJ	51	50 U	50 U	50 U	50		50 U	50 U
Benzene	μg/L	0	0%	NYSDEC CLASS GA	1 00	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Bromodichloromethane	µg/L	0	0%	NYSDEC CLASS GA NYSDEC CLASS GA	80 80	0	0	17 17	10 UJ 10 UJ		10 U 10 U	10 U	10 U	10 U	10 U 10 U	10		10 U 10 U	10 U 10 U
Bromoform Carbon Disulfide	μg/L	0	0%	NYSDEC CLASS GA	80	0	0	17			10 UJ	10 U	10 U	10 U		10			10 UJ
Carbon Distillide Carbon Tetrachloride	µg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ 10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 UJ 10 U	10 U
Chlorobenzene	μg/L μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Chlorodibromomethane	µg/L	0	0%	NYSDEC CLASS GA	80	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Chloroethane	µg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Chloroform	μg/L	0	0%	NYSDEC CLASS GA	7	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
cis-1,2-Dichloroethene	µg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
cis-1,3-Dichloropropene	µg/L	0	0%	NYSDEC CLASS GA	0.4	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Cyclohexane	µg/L	0	0%		0	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Ethyl Benzene	µg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Isopropylbenzene	µg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Meta/Para Xylene	µg/L	0	0%			0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Methyl Acetate	µg/L	0	0%			0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Methyl bromide	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Methyl butyl ketone	μg/L	0	0%			0	0	17	50 UJ	50 U	50 UJ	50 U	50 U	50 U	50 U	50	UJ 50 UJ	50 UJ	50 UJ
Methyl chloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Methyl cyclohexane	μg/L	0	0%			0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Methyl ethyl ketone	μg/L	0	0%			0	0	17	50 UJ	50 U	50 U	50 U	50 U	50 U	50 U	50	U 50 UJ	50 U	50 U
Methyl isobutyl ketone	μg/L	0	0%			0	0	17	50 UJ	50 U	50 U	50 U	50 U	50 U	50 U	50	U 50 UJ	50 U	50 U
Methyl Tertbutyl Ether	μg/L	0	0%			0	0	17	10 UJ	10 U	10 UJ	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Methylene Chloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Ortho Xylene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Styrene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Tetrachloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U		10		10 U	10 U
Toluene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U		10		10 U	10 U
trans-1,2-Dichloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10	U 10 UJ	10 U	10 U
Trans-1,3-Dichloropropene	μg/L	0	0%	NYSDEC CLASS GA	0.4	0	0	17	10 UJ		10 U	10 U	10 U	10 U		10		10 U	10 U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	4.0 J	4.1 J	4.2 J	10 U	10 U	10 U		10		10 U	10 U
Trichlorofluoromethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ		10 U	10 U	10 U	10 U		10		10 U	10 U
Vinyl Chloride	μg/L	0	0%	NYSDEC CLASS GA	2	0	0	17	10 UJ		10 U	10 U	10 U	10 U	10 U	10		10 U	10 U
Dichlorodifluoromethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 U	10 UJ	10 U	10 U	10 U	10 U	10	U 10 UJ	10 UJ	10 UJ

Building 813/814 Groundwater VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TW12-23 (D)	TW12-24	TW12-25	TW12-26	MW12-37	MW12-40
MATRIX									GW	GW	GW	GW	GW	GW
SAMPLE ID									122297	122287	122288	122289	122291	122290
TOP OF SAMPLE													7.53	
BOTTOM OF SAMPLE									13.30 23.30	8.10 13.10	7.30 12.30	5.90 8.90	12.43	8.30 13.30
SAMPLE DATE									6/10/2004	6/11/2004	6/11/2004	6/11/2004	6/11/2004	6/11/2004
QC CODE									DU	SA	SA	SA	SA	SA SRI
STUDY ID						NI:	Niversity	NI	SRI	SRI	SRI	SRI	SRI	SKI
			Frequency	Outs - ut -	A -4!	Number	Number	Number						
Parameter	Unit	Maximum	of Detection	Criteria	Action Level	of Evandances	Of	of	Value (Q	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1,1-Trichloroethane		0		Type NYSDEC CLASS GA		Exceedances 0	0	,	10 U	10 U	. ,	10 U	. ,	value (Q)
	µg/L	0	0%	NYSDEC CLASS GA	5 5	0	0	17	10 U	10 U	10 U 10 U	10 U	10 U 10 U	10 U
1,1,2,2-Tetrachloroethane	µg/L	0	0%		5	0	0	17 17	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	µg/L		0%	NYSDEC CLASS GA NYSDEC CLASS GA			0							
1,1,2-Trichloroethane	µg/L	0	0%		1 5	0	0	17	10 U	10 U	10 U	10 U 10 U	10 U	10 U
1,1-Dichloroethane	µg/L	-	0%	NYSDEC CLASS GA	_	-	0	17	10 U	10 U	10 U		10 U	10 U
1,1-Dichloroethene 1,2,4-Trichlorobenzene	µg/L	0	0%	NYSDEC CLASS GA NYSDEC CLASS GA	5 5	0	0	17 17	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U
	µg/L		0%		_	-	-							
1,2-Dibromo-3-Chloropropane	µg/L	0	0%	NYSDEC CLASS GA	0.04	0	0	17 17	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dibromoethane 1,2-Dichlorobenzene	µg/L	0	0%	NYSDEC CLASS GA NYSDEC CLASS GA	0.0006	0	0	17	10 U 10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U
·	µg/L	-	0%		3	0	0							
1,2-Dichloroethane	μg/L	0	0%	NYSDEC CLASS GA	0.6	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloropropane	µg/L	0	0%	NYSDEC CLASS GA	1	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	3	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Acetone	μg/L	51	12%	NIVODEO OL AGO OA	-	0	2	17	50 U	50 U	50 U	50 U	50 U	50 U
Benzene	μg/L	0	0%	NYSDEC CLASS GA	1	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	μg/L	0	0%	NYSDEC CLASS GA	80	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Bromoform	μg/L	0	0%	NYSDEC CLASS GA	80	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Carbon Disulfide	μg/L	0	0%		_	0	0	17	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ
Carbon Tetrachloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Chlorobenzene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Chlorodibromomethane	μg/L	0	0%	NYSDEC CLASS GA	80	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Chloroethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	μg/L	0	0%	NYSDEC CLASS GA	7	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	μg/L	41	6%	NYSDEC CLASS GA	5	1	1	17	10 U	10 U	10 U	10 U	41	10 U
cis-1,3-Dichloropropene	μg/L	0	0%	NYSDEC CLASS GA	0.4	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Cyclohexane	μg/L	0	0%		_	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Ethyl Benzene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Isopropylbenzene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Meta/Para Xylene	μg/L	0	0%			0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl Acetate	μg/L	0	0%		_	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl bromide	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl butyl ketone	μg/L	0	0%			0	0	17	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ	50 UJ
Methyl chloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl cyclohexane	μg/L	0	0%			0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methyl ethyl ketone	μg/L	0	0%			0	0	17	50 U	50 U	50 U	50 U	50 U	50 U
Methyl isobutyl ketone	μg/L	0	0%			0	0	17	50 U	50 U	50 U	50 U	50 U	50 U
Methyl Tertbutyl Ether	μg/L	0	0%			0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Methylene Chloride	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Ortho Xylene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Styrene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Toluene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Trans-1,3-Dichloropropene	μg/L	0	0%	NYSDEC CLASS GA	0.4	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethene	μg/L	2400	24%	NYSDEC CLASS GA	5	1	4	17	10 U	10 U	10 U	10 U	2400	10 U
Trichlorofluoromethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Vinyl Chloride	μg/L	0	0%	NYSDEC CLASS GA	2	0	0	17	10 U	10 U	10 U	10 U	10 U	10 U
Dichlorodifluoromethane	μg/L	0	0%	NYSDEC CLASS GA	5	0	0	17	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ	10 UJ

Building 813/814 Surface Water VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									C\\\\\10 C0	CW42 CO	CW42.70	C\\\\10.71	CW42.72	CM42 72 (D)	CW42 72	C\\\(10.74
LOCATION ID MATRIX									SW12-68 SW	SW12-69 SW	SW12-70 SW	SW12-71 SW	SW12-72 SW	SW12-72 (D) SW	SW12-73 SW	SW12-74 SW
SAMPLE ID									121000	121001	121002	121003	121004	121007	121005	121006
TOP OF SAMPLE									0	0	0	0	0	0	0	0
BOTTOM OF SAMPLE									0	0	0	0	0	0	0	0
SAMPLE DATE									6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004
QC CODE									SA							
STUDY ID									SRI							
			Frequency			Number	Number	Number						0	0	
			of	Criteria	Action	of	of	of								
Parameter	Unit	Maximum	Detection	Type	Level	Exceedances	Detections	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1,1,2-Tetrachloroethane	μg/L	0	0%			0	0	8	0.22 U							
1,1,1-Trichloroethane	μg/L	0	0%			0	0	8	0.24 U							
1,1,2,2-Tetrachloroethane	μg/L	0	0%			0	0	8	0.21 U							
1,1,2-Trichloroethane	μg/L	0	0%			0	0	8	0.24 U							
1,1-Dichloroethane	μg/L	0	0%			0	0	8	0.21 U							
1,1-Dichloroethene	μg/L	0	0%			0	0	8	0.16 U							
1,1-Dichloropropene	μg/L	0	0%			0	0	8	0.21 U							
1,2,3-Trichlorobenzene	μg/L	0	0%			0	0	8	0.18 U							
1,2,3-Trichloropropane	μg/L	0	0%			0	0	8	0.28 U							
1,2,4-Trichlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.20 U							
1,2,4-Trimethylbenzene	μg/L	0	0%			0	0	8	0.24 U							
1,2-Dibromo-3-Chloropropane	μg/L	0	0%			0	0	8	0.20 R							
1,2-Dibromoethane	μg/L	0	0%			0	0	8	0.20 U							
1,2-Dichlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.17 UJ							
1,2-Dichloroethane	μg/L	0	0%			0	0	8	0.21 U							
1,2-Dichloropropane	μg/L	0	0%			0	0	8	0.21 U							
1,3,5-Trimethylbenzene	μg/L	0	0%			0	0	8	0.22 U							
1,3-Dichlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.20 UJ							
1,3-Dichloropropane	μg/L	0	0%			0	0	8	0.22 U							
1,4-Dichlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.20 UJ							
2,2-Dichloropropane	μg/L	0	0%			0	0	8	0.20 U							
2-Chlorotoluene	μg/L	0	0%			0	0	8	0.50 U							
Acetone	μg/L	0	0%			0	0	8	1.5 R							
Acrylonitrile	μg/L	0	0%			0	0	8	0.94 R							
Allyl Chloride	μg/L	0	0%			0	0	8	0.18 U							
Benzene	μg/L	0	0%			0	0	8	0.24 UJ							
Bromobenzene	μg/L	0	0%			0	0	8	0.21 UJ							
Bromodichloromethane	μg/L	0	0%			0	0	8	0.20 U	0.20 U	0.20 U	0.20 U	0.20 UJ	0.20 U	0.20 U	0.20 U
Bromoform	μg/L	0	0%			0	0	8	0.22 U							
Butyl chloride	μg/L	0	0%			0	0	8	0.22 U							
Carbon Disulfide	μg/L	0	0%			0	0	8	0.18 U							
Carbon Tetrachloride	μg/L	0	0%	111/00550.01		0	0	8	0.22 U							
Chlorobenzene	μg/L	0	0%	NYSDEC Class C	5	0	0	8	0.21 UJ							
Chlorodibromomethane	μg/L	0	0%			0	0	8	0.17 U							
Chloroethane	µg/L	0	0%			0	0	8	0.19 U	0.19 U	0.19 U	0.19 U	0.19 UJ	0.19 U	0.19 U	0.19 U
Chloroform	µg/L	0	0%			0	0	8	0.22 U							
cis-1,2-Dichloroethene	μg/L	0	0%			0	0	8	0.24 U							
cis-1,3-Dichloropropene	µg/L	0	0%			0	0	8	0.19 U							
Cyclohexane Dichlorodifluoromethane	µg/L	0	0%			0	0	8	N/A	N/A	N/A 0.09 U	N/A	5 U 0.09 U	N/A 0.09 U	N/A	N/A
	µg/L	0	0%			-			0.09 U	0.09 U		0.09 U			0.09 U	0.09 U
Diisopropyl Ether Ethyl Benzene	μg/L	0	0% 0%			0	0	8	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ	0.21 U 0.21 UJ
Ethyl ether	μg/L	0	0%			0	0	8	0.21 U	0.21 UJ 0.21 U	0.21 UJ	0.21 UJ 0.21 U	0.21 U	0.21 UJ 0.21 U	0.21 UJ 0.21 U	
Ethyl methacrylate	μg/L μg/L	0	0%			0	0	8	0.21 U	0.21 U 0.25 U	0.21 U	0.21 U	0.21 U	0.21 U 0.25 U	0.21 U 0.25 U	0.21 U 0.25 U
Hexachlorobutadiene	μg/L μg/L	0	0%	NYSDEC Class C	0.01	0	0	8	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U	0.25 U 0.17 U
Hexachloroethane	μg/L μg/L	0	0%	NYSDEC Class C	0.6	0	0	8	0.17 U							
Isopropylbenzene	μg/L μg/L	0	0%	INTODEC Class C	0.0	0	0	8	0.20 UJ							
Meta/Para Xylene	μg/L	0	0%			0	0	8	0.43 UJ	0.43 UJ	0.43 UJ	0.43 UJ	0.20 UJ	0.43 UJ	0.43 UJ	0.43 UJ
Methacrylonitrile		0	0%			0	0	8	0.43 U							
Methyl Acetate	μg/L μg/L	0	0%			0	0	8	N/A	N/A	N/A	N/A	5 U	N/A	N/A	N/A
Methyl bromide	μg/L μg/L	0	0%			0	0	8	0.22 U							
Methyl butyl ketone	μg/L μg/L	0	0%			0	0	8	1.1 U							
Methyl chloride	μg/L μg/L	0	0%			0	0	8	0.11 U							
Methyl cyclohexane	μg/L μg/L	0	0%			0	0	8	0.11 U	0.11 U N/A	0.11 U	0.11 U	5 U	0.11 U	0.11 U	0.11 U
Methyl ethyl ketone	μg/L μg/L	0	0%			0	0	8	0.94 R							
Methyl iodide	μg/L μg/L	0	0%			0	0	8	0.94 K	0.94 K 0.14 U	0.94 K	0.94 R 0.14 U	0.94 K	0.94 K	0.94 K	0.94 K
Methyl isobutyl ketone	μg/L μg/L	0	0%			0	0	8	1.0 U							
Methyl methacrylate	μg/L μg/L	0	0%			0	0	8	0.53 U							
Methyl Tertbutyl Ether	μg/L μg/L	0	0%			0	0	8	0.37 U	0.33 U	0.37 U	0.37 U	0.33 U	0.33 U	0.33 U	0.37 U
Methylene bromide		0	0%			0	0	8	0.37 U							
ivieuryierie bronniue	μg/L	U	U 70	1		_ U	U	0	U.24 U							

Building 813/814 Surface Water VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SW12-68	SW12-69	SW12-70	SW12-71	SW12-72	SW12-72 (D)	SW12-73	SW12-74
MATRIX									SW	SW	SW	SW	SW	SW	SW	SW
SAMPLE ID									121000	121001	121002	121003	121004	121007	121005	121006
TOP OF SAMPLE									0	0	0	0	0	0	0	0
BOTTOM OF SAMPLE									0	0	0	0	0	0	0	0
SAMPLE DATE									6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004
QC CODE									SA	SA	SA	SA	SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI
			Frequency	Criteria	Action	Number of	Number	Number								
Methylene Chloride	μg/L	0	0%	NYSDEC Class C	200	0	0	8	0.18 U	0.18 U	0.18 U					
Naphthalene	μg/L	0	0%			0	0	8	0.17 U	0.17 U	0.17 U	0.17 U	0.17 UJ	0.17 U	0.17 U	0.17 U
n-Butylbenzene	μg/L	0	0%			0	0	8	0.20 U	0.20 U	0.20 U					
Ortho Xylene	µg/L	0	0%			0	0	8	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ	0.21 UJ
p-Chlorotoluene	μg/L	0	0%			0	0	8	0.22 U	0.22 U	0.22 U					
p-Isopropyltoluene	μg/L	0	0%			0	0	8	0.22 U	0.22 U	0.22 U					
Propionitrile	μg/L	0	0%			0	0	8	3.3 R	3.3 R	3.3 R					
Propylbenzene	μg/L	0	0%			0	0	8	0.24 U	0.24 U	0.24 U					
sec-Butylbenzene	μg/L	0	0%			0	0	8	0.20 U	0.20 U	0.20 U					
Styrene	μg/L	0	0%			0	0	8	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ	0.19 UJ
t-Butyl Alcohol	μg/L	0	0%			0	0	8	2.2 R	2.2 R	2.2 R					
tert-Butylbenzene	μg/L	0	0%			0	0	8	0.18 U	0.18 U	0.18 U					
Tetrachloroethene	μg/L	0	0%			0	0	8	0.34 U	0.34 U	0.34 U					
Tetrahydrofuran	μg/L	0	0%			0	0	8	0.78 R	0.78 R	0.78 R					
Toluene	μg/L	0	0%	NYSDEC Class C	6000	0	0	8	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ	0.22 UJ
trans-1,2-Dichloroethene	μg/L	0	0%			0	0	8	0.22 U	0.22 U	0.22 U					
Trans-1,3-Dichloropropene	μg/L	0	0%			0	0	8	0.19 U	0.19 U	0.19 U					
Trans-1,4-Dichloro-2-butene	μg/L	0	0%			0	0	8	1.4 R	1.4 R	1.4 R					
Trichloroethene	μg/L	0	0%	NYSDEC Class C	40	0	0	8	0.24 U	0.24 U	0.24 U					
Trichlorofluoromethane	μg/L	0	0%			0	0	8	0.09 U	0.09 U	0.09 U					
Vinyl Chloride	μg/L	0	0%			0	0	8	0.14 U	0.14 U	0.14 U					

Building 813/814 Ditch Soil VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

								DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL	DITCH SOIL
						1	1								
								124250	124251	124252	124253	124254	124257	124255	124256
								0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
								6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004
								SA	SA	SA	SA	SA	DU	SA	SA
								SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI
		Frequency			Number	Number	Number	91	<u> </u>					<u> </u>	¥1.11
			Criteria	Action			-								
Units	Maximum							Value (Q)	Value (Q)	Value (Q)	Value (O)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
	0					0	8							, ,	12 UJ
	0					0	8								12 UJ
OO/ICO			17 COW 4040	000		-	8								12 UJ
						0	8								12 UJ
LIG/KG	U		TAGM 4046	200		- 0	8								12 UJ
						-	8								12 UJ
	_					-	9								12 UJ
JUING			1701VI 4040	3400		- 0	Ω								12 UJ
							Ω								12 UJ
HC/KC			TACM 4046	7000			Ω								12 UJ
							Ω								12 UJ
UG/NG			1 AGIVI 4040	100			Ω								12 UJ
HC/KC			TACM 4046	1600			Ω								12 UJ
							0								12 UJ
							0								62 UJ
	-						-								
UG/KG			1 AGIVI 4046	60			8								12 UJ
							8								12 UJ
110/140			TA CN4 4040	0700			8								12 UJ
							8								12 UJ
						-	8								12 UJ
UG/KG			TAGM 4046	1700			8								12 UJ
110 "10			T. 014 4040	1000			8								12 UJ
						-	8								12 UJ
UG/KG			TAGM 4046	300			8								12 UJ
	U						8								12 UJ
	U					- 0	8								12 UJ
							8								12 UJ
							8								12 UJ
UG/KG			TAGM 4046	5500		- 0	8								12 UJ
						<u> </u>	8								12 UJ
						-	8								12 UJ
	U						8								12 UJ
						-	8								12 UJ
							8								62 UJ
	0					0	8								12 UJ
	0	0%			0	0	8								12 UJ
	0	0%				0	8								62 UJ
UG/KG	0	0%	TAGM 4046	1000		0	8								62 UJ
	0					0	8								12 UJ
UG/KG	0	0%	TAGM 4046	100	0	0	8								12 UJ
	0	0%			0	0	8								12 UJ
	0	0%			0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
UG/KG	0	0%	TAGM 4046	1400	0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
UG/KG	7.4	63%	TAGM 4046	1500	0	5	8	2.0 J	2.3 J	12 UJ	7.4 J	7.2 J	5.7 J	12 UJ	12 UJ
UG/KG	0	0%	TAGM 4046	300	0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
	0	0%			0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
UG/KG	0	0%	TAGM 4046	700	0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
	0	0%			0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
UG/KG	0	0%	TAGM 4046	200	0	0	8	11 UJ	8.1 U	12 UJ	14 UJ	9.6 U	12 UJ	12 UJ	12 UJ
	UG/KG UG/KG UG/KG	UG/KG 0 UG/KG 0	UG/KG 0 0% UG/KG 0 0%	Units Maximum Frequency Type UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 0 0% TAGM 4046 UG/KG 110 25% TAGM 4046 UG/KG 110 25% TAGM 4046 UG/KG 0 0% TAGM 4046	Units Maximum Frequency Type Action Leve UG/KG 0 0% TAGM 4046 800 UG/KG 0 0% TAGM 4046 600 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 200 UG/KG 0 0% TAGM 4046 400 UG/KG 0 0% TAGM 4046 3400 UG/KG 0 0% TAGM 4046 3400 UG/KG 0 0% TAGM 4046 7900 UG/KG 0 0% TAGM 4046 100 UG/KG 0 0% TAGM 4046 1600 UG/KG 0 0% TAGM 4046 1600 UG/KG 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 8500 UG/KG 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 600 UG/KG 0 0% TAGM 4046 100 UG/KG 0 0% TAGM 4046 300 UG/KG 0 0% TAGM 4046 300 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 300 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 500 UG/KG 0 0% TAGM 4046 1000	Units Maximum Frequency Type Action Leve Exceed UG/KG O 0% TAGM 4046 800 O O O O O O O O O	Units Maximum Frequency Type Action Leve Exceed Detect UG/KG 0 0% TAGM 4046 800 0 0 0 0 0 0 0 0	Units	Units	Units	United Delect Delect Delect Analyses Value (Q) Value (Q) Value (Q) United (Q) Unite	United December Company Comp	United Delite D		

Building 813/814 Test Pit VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									TP813-1T	TP813-2T	TP813-3T	TP813-3T (D)	TP813-4F	TP813-5F	TP813-6F	TP813-7T	TP813-8T
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123682	123683	123684	123686	123688	123689	123691	123692	123693
TOP OF SAMPLE									7	7	6	6	4	3	3	5	5
BOTTOM OF SAMPLE									7.5	7.5	6.5	6.5	5	4	4	6	6
SAMPLE DATE									11/3/2004	11/3/2004	11/3/2004	11/3/2004	11/10/2004	11/10/2004	11/10/2004	11/10/2004	11/11/2004
QC CODE									SA	SA	SA	DU	SA	SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI	SRI
0.02.12			Frequency			Number	Number	Number	O. W.	Or ti	Orti	Or ti	Or ti	Orti	Orti	Or vi	Orti
			of	Criteria	Action	of	of	of									
Parameter	Unit	Maximum	Detection	Туре	Level	Exceedances		Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value	(Q) Value	(Q) Value (Q)
1,1,1-Trichloroethane	μg/Kg	0	0%	TAGM 4046	800	0	0	15	0.18 UJ	0.22 UJ	56 U	0.18 U	510 U	490 U	390 L	` '	· /
1.1.2.2-Tetrachloroethane	μg/Kg	0	0%	TAGM 4046	600	0	0	15	0.35 UJ	71 UJ	68 U	0.36 U	510 U	490 U	390 L		
1.1.2-Trichloroethane	μg/Kg	0	0%	171GW 4040	000	0	0	15	0.33 UJ	0.42 UJ	71 U	0.34 U	510 U	490 U	390 L	_	
1,1-Dichloroethane	μg/Kg	0	0%	TAGM 4046	200	0	0	15	0.23 UJ	0.29 UJ	30 U	0.24 U	510 U	490 U	390 L		
1.1-Dichloroethene	μg/Kg	3.2	13%	TAGM 4046	400	0	2	15	0.14 UJ	0.18 UJ	3.2 J	1.3 J	510 U	490 U	390 L	_	
1.2-Dichloroethane	μg/Kg	0	0%	TAGM 4046	100	0	0	15	2.0 UJ	2.5 UJ	3.2 J 44 U	2.1 U	510 U	490 U	390 (
1,2-Dichloropropane	μg/Kg	0	0%	TAGIVI 4040	100	0	0	15	0.22 UJ	0.28 UJ	44 U	0.23 U	510 U	490 U	390 L	_	
Acetone	μg/Kg μg/Kg	32	13%	TAGM 4046	200	0	2	15	4.9 UJ	6.1 UJ	450 U	5.1 U	2000 U	2000 U	1600 L	_	
Benzene		0	0%	TAGM 4046	60	0	0	15	0.13 UJ	0.17 UJ	33 U	0.14 U	510 U	490 U	390 L		
Bromodichloromethane	μg/Kg	0	0%	1 AGIVI 4040	00	0	0	15	0.13 UJ	0.17 UJ	48 UJ	0.14 U	510 U	490 U	390 (_	
Bromoform	μg/Kg μg/Kg	0	0%			0	0	15	0.22 UJ	0.27 UJ	35 U	0.23 U	510 U	490 U	390 (
Carbon Disulfide		6.6	7%	TAGM 4046	2700	0	1	15	0.20 UJ	6.6 J	54 U	0.20 UJ	1000 U	980 U	780 L		
Carbon Tetrachloride	μg/Kg	0.6	0%	TAGM 4046	600	0	0	15	0.07 UJ	0.24 UJ	65 U	0.07 UJ	510 U	490 U	390 L		
Chlorobenzene	μg/Kg	0	0%	TAGM 4046	1700	0	0	15	0.19 UJ	0.24 UJ	51 U	0.20 U	510 U	490 U	390 L		
	μg/Kg		0%	1 AGIVI 4046	1700	0	0	15	0.23 UJ 0.19 UJ		52 U			490 U	390 t	-	
Chlorodibromomethane	μg/Kg	0	0%	TACM 4040	1000	0	0			0.24 UJ		0.20 U	510 U		390 t		
Chloroethane	μg/Kg		13%	TAGM 4046	1900 300		2	15	0.34 UJ	0.43 UJ	120 U	0.36 UJ	510 U	490 U	390 L		
Chloroform	μg/Kg	1.6	47%	TAGM 4046	300	0	7	15	0.16 UJ	0.19 UJ	1.6 J	0.16 U	510 U	490 U		-	
cis-1,2-Dichloroethene	μg/Kg	2800					0	15	13 J	19 J	21	9.1	510 U	490 U	390 L		590 U
cis-1,3-Dichloropropene	μg/Kg	0	0%	TA ON 4 4040	5500	0	0	15	0.13 UJ	0.16 UJ	21 U	0.13 U	510 U	490 U	390 L		
Ethyl Benzene	μg/Kg	0	0%	TAGM 4046	5500	0	Ū	15	0.16 UJ	0.20 UJ	56 U	0.17 U	510 U	490 U	390 L		
Meta/Para Xylene	μg/Kg	0	0%			0	0	15	0.34 UJ	0.42 UJ	130 U	0.35 U	510 U	490 U	390 L	-	
Methyl bromide	μg/Kg	0	0%			-	0	15	0.46 UJ	0.58 UJ	110 U	0.48 UJ	510 U	490 U	390 L	_	
Methyl butyl ketone	μg/Kg	0	0%			0	0	15	2.1 UJ	2.6 UJ	91 U	2.2 U	1000 U	980 U	780 L		
Methyl chloride	μg/Kg	0	0%	TA ON 4 40 10	000	0	0	15	0.22 UJ	0.27 UJ	94 U	0.22 U	510 U	490 U	390 L		
Methyl ethyl ketone	μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	1.5 UJ	1.9 UJ	390 U	1.5 U	1000 U	980 U	780 L		
Methyl isobutyl ketone	μg/Kg	0	0%	TAGM 4046	1000	0	0	15	1.6 UJ	2.0 UJ	180 U	1.6 U	1000 U	980 U	780 L		
Methylene Chloride	μg/Kg	0	0%	TAGM 4046	100	0	0	15	0.44 UJ	0.56 UJ	85 U	0.46 UJ	510 U	490 U	390 L	_	
Ortho Xylene	μg/Kg	0	0%			0	0	15	0.28 UJ	0.35 UJ	50 U	0.29 U	510 U	490 U	390 L		
Styrene	μg/Kg	0	0%			0	0	15	0.20 UJ	0.26 UJ	47 U	0.21 U	510 U	490 U	390 L	_	
Tetrachloroethene	μg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	0.42 UJ	0.52 UJ	45 UJ	0.43 U	510 U	490 U	390 L		
Toluene	μg/Kg	100	7%	TAGM 4046	1500	0	1	15	0.17 UJ	0.21 UJ	53 U	0.18 U	510 U	490 U	100 J		
trans-1,2-Dichloroethene	μg/Kg	0	0%	TAGM 4046	300	0	0	15	0.24 UJ	0.30 UJ	71 U	0.25 U	510 U	490 U	390 L		
trans-1,3-Dichloropropene	μg/Kg	0	0%			0	0	15	0.17 UJ	0.21 UJ	58 U	0.17 U	510 U	490 U	390 L		
Trichoroethene	μg/Kg	65000	87%	TAGM 4046	700	9	13	15	11000	7000	60000	65000	540 U	160 J	590	1200	1100
Vinyl Chloride	μg/Kg	1.5	7%	TAGM 4046	200	0	1	15	0.15 UJ	0.19 UJ	37 U	0.16 U	510 U	490 U	390 L	J 440	U 590 U
Percent Solids	%	89.1	73%			0	11	15					85.5	84.3	84.4	86.7	85.2
Total Organic Carbon	mg/Kg		13%			0	2	15					65.5	84.3 4120	5420	80.7	85.2
Total Organic Carbon	ilig/Ng	5420	13%			U		15						4120	5420		

Building 813/814 Test Pit VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID MATRIX SAMPLE ID TOP OF SAMPLE BOTTOM OF SAMPLE SAMPLE DATE QC CODE STUDY ID Parameter 1,1,1-Trichloroethane 1,1,2-Tretrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Mg/Kg Benzene 1,2-Mg/Kg Beromodichloromethane 1,2-Mg/Kg Bromodichloromethane 1,2-Mg/Kg Bromodichloromethane 1,2-Mg/Kg Bromoform 1,2-Mg/Kg	Maximum 0 0 0 0 0 3.2 0 0 3.2 0 0	Frequency of Detection 0% 0% 0% 0% 0% 13% 0% 0%	Criteria Type TAGM 4046 TAGM 4046 TAGM 4046 TAGM 4046	Action Level 800 600	Number of Exceedances 0 0	Number of Detections	Number of Analyses 15	TP813-9T SOIL 123694 5 6 11/11/2004 SA SRI Value (Q)	TP813-10F SOIL 123701 4 5 12/21/2004 SA SRI Value (Q)	TP813-11F SOIL 123702 3 4 12/21/2004 SA SRI Value (Q)	TP813-12F SOIL 123703 2 3 12/21/2004 SA SRI	SOIL 123704 3 4 12/21/2004 SA SRI	P813-13F (D) SOIL 123705 3 4 12/21/2004 DU SRI
SAMPLE ID TOP OF SAMPLE BOTTOM OF SAMPLE SAMPLE DATE QC CODE STUDY ID Parameter 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,2	0 0 0 0 3.2 0 0	of Detection 0% 0% 0% 0% 13% 0%	Type TAGM 4046 TAGM 4046 TAGM 4046	Level 800 600	of Exceedances	of Detections	of Analyses	123694 5 6 11/11/2004 SA SRI	123701 4 5 12/21/2004 SA SRI	123702 3 4 12/21/2004 SA SRI	123703 2 3 12/21/2004 SA SRI	123704 3 4 12/21/2004 SA SRI	123705 3 4 12/21/2004 DU SRI
TOP OF SAMPLE BOTTOM OF SAMPLE SAMPLE DATE QC CODE STUDY ID Parameter 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroptopane 1,2-Dichlo	0 0 0 0 3.2 0 0	of Detection 0% 0% 0% 0% 13% 0%	Type TAGM 4046 TAGM 4046 TAGM 4046	Level 800 600	of Exceedances	of Detections	of Analyses	5 6 11/11/2004 SA SRI	4 5 12/21/2004 SA SRI	3 4 12/21/2004 SA SRI	2 3 12/21/2004 SA SRI	3 4 12/21/2004 SA SRI	3 4 12/21/2004 DU SRI
BOTTOM OF SAMPLE SAMPLE DATE QC CODE STUDY ID Parameter 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropethane 1,2-Dichlorop	0 0 0 0 3.2 0 0	of Detection 0% 0% 0% 0% 13% 0%	Type TAGM 4046 TAGM 4046 TAGM 4046	Level 800 600	of Exceedances	of Detections	of Analyses	6 11/11/2004 SA SRI	5 12/21/2004 SA SRI	4 12/21/2004 SA SRI	3 12/21/2004 SA SRI	4 12/21/2004 SA SRI	4 12/21/2004 DU SRI
SAMPLE DATE QC CODE STUDY ID Parameter 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropethane 1,2-	0 0 0 0 3.2 0 0	of Detection 0% 0% 0% 0% 13% 0%	Type TAGM 4046 TAGM 4046 TAGM 4046	Level 800 600	of Exceedances	of Detections	of Analyses	11/11/2004 SA SRI	12/21/2004 SA SRI	12/21/2004 SA SRI	12/21/2004 SA SRI	12/21/2004 SA SRI	12/21/2004 DU SRI
Parameter Unit 1,1,1-Trichloroethane µg/Kg 1,1,2,2-Tetrachloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloropethane µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 0 0 0 3.2 0 0	of Detection 0% 0% 0% 0% 13% 0%	Type TAGM 4046 TAGM 4046 TAGM 4046	Level 800 600	of Exceedances	of Detections	of Analyses	SA SRI	SA SRI	SA SRI	SA SRI	SA SRI	DU SRI
Parameter Unit 1,1,1-Trichloroethane µg/Kg 1,1,2,2-Tetrachloroethane µg/Kg 1,1,2-Trichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg Acetone µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 0 0 0 3.2 0 0	of Detection 0% 0% 0% 0% 13% 0%	Type TAGM 4046 TAGM 4046 TAGM 4046	Level 800 600	of Exceedances	of Detections	of Analyses	SRI	SRI	SRI	SRI	SRI	SRI
Parameter Unit 1,1,1-Trichloroethane µg/Kg 1,1,2,2-Tetrachloroethane µg/Kg 1,1,2-Trichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloropropane µg/Kg Acetone µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 0 0 0 3.2 0 0	of Detection 0% 0% 0% 0% 13% 0%	Type TAGM 4046 TAGM 4046 TAGM 4046	Level 800 600	of Exceedances	of Detections	of Analyses						
1,1,1-Trichloroethane µg/Kg 1,1,2,2-Tetrachloroethane µg/Kg 1,1,2-Trichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloropropane µg/Kg Acetone µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 0 0 0 3.2 0 0	of Detection 0% 0% 0% 0% 13% 0%	Type TAGM 4046 TAGM 4046 TAGM 4046	Level 800 600	of Exceedances	of Detections	of Analyses	Value (Q)	Value (O)	Value (O)			
1,1,1-Trichloroethane µg/Kg 1,1,2,2-Tetrachloroethane µg/Kg 1,1,2-Trichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloropropane µg/Kg Acetone µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 0 0 0 3.2 0 0	Detection 0% 0% 0% 0% 0% 13% 0%	Type TAGM 4046 TAGM 4046 TAGM 4046	Level 800 600	Exceedances 0	Detections	Analyses	Value (Q)	Value (O)	\/alua (0)	.,, ,,		
1,1,1-Trichloroethane µg/Kg 1,1,2,2-Tetrachloroethane µg/Kg 1,1,2-Trichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloropropane µg/Kg Acetone µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 0 0 0 3.2 0 0	0% 0% 0% 0% 13% 0%	TAGM 4046 TAGM 4046 TAGM 4046	800 600	0			value (Q)				Value (Q)	Value (Q)
1,1,2,2-Tetrachloroethane µg/Kg 1,1,2-Trichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloropropane µg/Kg Acetone µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 0 0 0 3.2 0 0	0% 0% 0% 13% 0%	TAGM 4046	600	-	U		430 U	Value (Q)	1.6 U	Value (Q) 4.9 U	4.3 U	4.5 U
1,1,2-Trichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloropropane µg/Kg Acetone µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 0 3.2 0 0 32	0% 0% 13% 0%	TAGM 4046		U	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
1,1-Dichloroethane µg/Kg 1,1-Dichloroethane µg/Kg 1,2-Dichloroethane µg/Kg 1,2-Dichloropropane µg/Kg Acetone µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 3.2 0 0 32	0% 13% 0%		200	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
1,1-Dichloroethene μg/Kg 1,2-Dichloroethane μg/Kg 1,2-Dichloropropane μg/Kg Acetone μg/Kg Benzene μg/Kg Bromodichloromethane μg/Kg Bromoform μg/Kg	3.2 0 0 32	13% 0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
1,2-Dichloroethane μg/Kg 1,2-Dichloropropane μg/Kg Acetone μg/Kg Benzene μg/Kg Bromodichloromethane μg/Kg Bromoform μg/Kg	0 0 32	0%	1 AGIVI 4040	400	0	2	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
1,2-Dichloropropane µg/Kg Acetone µg/Kg Benzene µg/Kg Bromodichloromethane µg/Kg Bromoform µg/Kg	0 32		TAGM 4046	100	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Acetone μg/Kg Benzene μg/Kg Bromodichloromethane μg/Kg Bromoform μg/Kg	32		TAGIVI 4040	100	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Benzene μg/Kg Bromodichloromethane μg/Kg Bromoform μg/Kg		13%	TAGM 4046	200	0	2	15	1700 U	16 U	4.3 J	32	4.3 U	18 U
Bromodichloromethane μg/Kg Bromoform μg/Kg		0%	TAGM 4046	60	0	0	15	430 U	4 U	4.5 J 1.6 U	4.9 U	4.3 U	4.5 U
Bromoform μg/Kg	0	0%	1 AGIVI 4040	00	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
	6.6	7%	TAGM 4046	2700	0	1	15	860 U	8.1 U	3.2 U	9.9 U	8.6 U	9.1 U
100	0.0	0%	TAGM 4046	600	0	0	15	430 U	6.1 U	3.2 U	9.9 U	4.3 U	4.5 U
1.0.0	0	0%	TAGM 4046	1700	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Chlorobenzene μg/Kg Chlorodibromomethane μg/Kg	0	0%	TAGIVI 4046	1700	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Chloroethane µg/Kg	0	0%	TAGM 4046	1900	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
	1.6	13%	TAGM 4046	300	0	2	15	430 U	4 U	1.6 U	1.4 J	4.3 U	4.5 U
Chloroform µg/Kg cis-1,2-Dichloroethene µg/Kg	2800	47%	1 AGIVI 4040	300	0	7	15	430 U	4 U	1.5 J	4.9 J	4.3 U	4.5 U
cis-1,3-Dichloropropene µg/Kg	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Ethyl Benzene µg/Kg	0	0%	TAGM 4046	5500	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Meta/Para Xylene μg/Kg	0	0%	TAGIVI 4040	3300	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Methyl bromide μg/Kg	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Methyl butyl ketone µg/Kg	0	0%			0	0	15	860 U	8.1 UJ	3.2 UJ	9.9 UJ	8.6 UJ	9.1 UJ
Methyl chloride µg/Kg	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Methyl ethyl ketone μg/Kg	4.5	7%	TAGM 4046	300	0	1	15	860 U	8.1 UJ	3.2 UJ	4.5 J	8.6 UJ	9.1 UJ
Methyl isobutyl ketone µg/Kg	0	0%	TAGM 4046	1000	0	0	15	860 U	8.1 UJ	3.2 UJ	9.9 UJ	8.6 UJ	9.1 UJ
Methylene Chloride μg/Kg	0	0%	TAGM 4046	1000	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Ortho Xylene µg/Kg	0	0%	1/30W 4040	100	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Styrene µg/Kg	0	0%			0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Tetrachloroethene µg/Kg	3.2	7%	TAGM 4046	1400	0	1	15	430 U	3.2 J	1.6 U	4.9 U	4.3 U	4.5 U
Toluene μg/Kg	100	7%	TAGM 4046	1500	0	1	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
trans-1,2-Dichloroethene µg/Kg	0	0%	TAGM 4046	300	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
trans-1,3-Dichloropropene µg/Kg	0	0%	TAGIVI 4040	300	0	0	15	430 U	4 U	1.6 U	4.9 U	4.3 U	4.5 U
Trichoroethene µg/Kg	65000	87%	TAGM 4046	700	9	13	15	1400	4800 J	11	1000 J	1.3 J	4.5 U
Vinyl Chloride µg/Kg	1.5	7%	TAGM 4046	200	0	13	15	430 U	4800 J	1.5 J	4.9 U	4.3 U	4.5 U
γιτητι Officiale μg/Ng	1.0	1 70	1 AGIVI 4040	200	U	ı	10	430 0	4 0	1.00	4.50	4.30	4.50
Percent Solids %	89.1	73%			0	11							
Total Organic Carbon mg/Kg	5420	13%					15	84	81	80.7	77.3	89.1	87.9

Building 813/814 Stockpile VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SP813-1	SP813-2	SP813-3	SP813-3	SP813-4	SP813-5
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123685	123687	123695	123696	123697	123698
TOP OF SAMPLE									N/A	N/A	N/A	N/A	N/A	N/A
BOTTOM OF SAMPLE									N/A	N/A	N/A	N/A	N/A	N/A
SAMPLE DATE									11/3/2004	11/10/2004	12/9/2004	12/9/2004	12/9/2004	12/9/2004
QC CODE									SA	SA	SA	DU	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Units	Maximum	Detection	Type	Level	Exceedances	Detect	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1,1-Trichloroethane	μg/Kg	0	0%	TAGM 4046	800	0	0	18	0.23 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
1,1,2,2-Tetrachloroethane	μg/Kg	0	0%	TAGM 4046	600	0	0	18	0.46 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
1,1,2-Trichloroethane	μg/Kg	0	0%	TAGM 4046		0	0	18	0.44 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
1,1-Dichloroethane	μg/Kg	0	0%	TAGM 4046	200	0	0	18	0.3 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
1,1-Dichloroethene	μg/Kg	0.65	6%	TAGM 4046	400	0	1	18	0.19 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
1,2-Dichloroethane	μg/Kg	0	0%	TAGM 4046	100	0	0	18	2.7 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
1,2-Dichloropropane	μg/Kg	0	0%	TAGM 4046		0	0	18	0.29 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Acetone	μg/Kg	3.8	6%	TAGM 4046	200	0	1	18	6.4 UJ	2700 U	18 U	19 U	19 U	17 U
Benzene	μg/Kg	0	0%	TAGM 4046	60	0	0	18	0.17 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Bromodichloromethane	μg/Kg	0	0%	TAGM 4046		0	0	18	0.29 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Bromoform	μg/Kg	0	0%	TAGM 4046		0	0	18	0.26 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	2	18	0.09 UJ	1400 U	8.8 U	9.5 U	9.6 U	8.4 U
Carbon Tetrachloride	μg/Kg	0	0%	TAGM 4046	600	0	0	18	0.26 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Chlorobenzene	μg/Kg	0	0%	TAGM 4046	1700	0	0	18	0.3 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Chlorodibromomethane	μg/Kg	0	0%	TAGM 4046		0	0	18	0.25 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Chloroethane	μg/Kg	0	0%	TAGM 4046	1900	0	0	18	0.45 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Chloroform	μg/Kg	0	0%	TAGM 4046	300	0	0	18	0.2 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
cis-1,2-Dichloroethene	μg/Kg	20	28%	TAGM 4046		0	5	18	3.3 J	680 U	2.4 J	2.6 J	1.7 J	4.2 U
cis-1,3-Dichloropropene	μg/Kg	0	0%	TAGM 4046		0	0	18	0.17 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Ethyl Benzene	μg/Kg	80	17%	TAGM 4046	5500	0	3	18	0.21 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Meta/Para Xylene	μg/Kg	150	6%	TAGM 4046		0	1	18	0.44 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Methyl bromide	μg/Kg	0	0%	TAGM 4046		0	0	18	0.61 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Methyl butyl ketone	μg/Kg	0	0%	TAGM 4046		0	0	18	2.8 UJ	1400 U	8.8 UJ	9.5 UJ	9.6 UJ	8.4 UJ
Methyl chloride	μg/Kg	0	0%	TAGM 4046		0	0	18	0.28 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Methyl ethyl ketone	μg/Kg	0	0%	TAGM 4046	300	0	0	18	2 UJ	1400 U	8.8 UJ	9.5 UJ	9.6 UJ	8.4 UJ
Methyl isobutyl ketone	μg/Kg	0	0%	TAGM 4046	1000	0	0	18	2.1 UJ	1400 U	8.8 UJ	9.5 UJ	9.6 UJ	8.4 UJ
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	2	18	0.59 UJ	950	4.4 U	4.8 U	4.8 U	4.2 U
Ortho Xylene	μg/Kg	42	11%	TAGM 4046		0	2	18	0.37 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Styrene	μg/Kg	0	0%	TAGM 4046		0	0	18	0.27 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Tetrachloroethene	μg/Kg	1.7	6%	TAGM 4046		0	1	18	0.55 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Toluene	μg/Kg	210	6%	TAGM 4046	1500	0	1	18	0.22 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
trans-1,2-Dichloroethene	μg/Kg	1.3	6%	TAGM 4046	300	0	1	18	0.32 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Trans-1,3-Dichloropropene	μg/Kg	0	0%	TAGM 4046		0	0	18	0.22 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U
Trichloroethene	μg/Kg	28000	94%	TAGM 4046	700	7	17	18	28000	1500	3100	190	110	9.3
Vinyl Chloride	μg/Kg	7.4	6%	TAGM 4046	200	0	1	18	0.2 UJ	680 U	4.4 U	4.8 U	4.8 U	4.2 U

Building 813/814 Stockpile VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SP813-6	SP813-7	SP813-8	SP813-9	SP813-10	SP813-11
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123699	123700	123706	123659	123660	123661
TOP OF SAMPLE									N/A	N/A	N/A	N/A	N/A	N/A
BOTTOM OF SAMPLE									N/A	N/A	N/A	N/A	N/A	N/A
SAMPLE DATE									12/9/2004	12/9/2004	12/21/2004	7/22/2005	7/22/2005	7/22/2005
QC CODE									SA	SA	SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Units	Maximum	Detection	Туре	Level	Exceedances	Detect	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1,1-Trichloroethane	μg/Kg	0	0%	TAGM 4046	800	0	0	18	5.2 U	390 Ù	1.7 U	520 Ù	420 Ù	480 U
1,1,2,2-Tetrachloroethane	μg/Kg	0	0%	TAGM 4046	600	0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
1,1,2-Trichloroethane	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
1,1-Dichloroethane	μg/Kg	0	0%	TAGM 4046	200	0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
1,1-Dichloroethene	μg/Kg	0.65	6%	TAGM 4046	400	0	1	18	5.2 U	390 U	0.65 J	520 U	420 U	480 U
1,2-Dichloroethane	μg/Kg	0	0%	TAGM 4046	100	0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
1,2-Dichloropropane	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Acetone	μg/Kg	3.8	6%	TAGM 4046	200	0	1	18	21 U	1500 U	3.8 J	340 U	1700 U	1900 U
Benzene	μg/Kg	0	0%	TAGM 4046	60	0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Bromodichloromethane	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Bromoform	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	2	18	10 U	770 U	1 J	1000 U	830 U	960 U
Carbon Tetrachloride	μg/Kg	0	0%	TAGM 4046	600	0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Chlorobenzene	μg/Kg	0	0%	TAGM 4046	1700	0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Chlorodibromomethane	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Chloroethane	μg/Kg	0	0%	TAGM 4046	1900	0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Chloroform	μg/Kg	0	0%	TAGM 4046	300	0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
cis-1,2-Dichloroethene	μg/Kg	20	28%	TAGM 4046		0	5	18	5.4 U	390 U	20	520 U	420 U	480 U
cis-1,3-Dichloropropene	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Ethyl Benzene	μg/Kg	80	17%	TAGM 4046	5500	0	3	18	5.2 U	390 U	1.7 U	33 J	80 J	480 U
Meta/Para Xylene	μg/Kg	150	6%	TAGM 4046		0	1	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Methyl bromide	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Methyl butyl ketone	μg/Kg	0	0%	TAGM 4046		0	0	18	10 UJ	770 U	3.3 UJ	1000 U	830 U	960 U
Methyl chloride	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Methyl ethyl ketone	μg/Kg	0	0%	TAGM 4046	300	0	0	18	10 UJ	770 U	3.3 UJ	1000 UJ	830 UJ	960 UJ
Methyl isobutyl ketone	μg/Kg	0	0%	TAGM 4046	1000	0	0	18	10 UJ	770 U	3.3 UJ	1000 UJ	830 UJ	960 UJ
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	2	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Ortho Xylene	μg/Kg	42	11%	TAGM 4046		0	2	18	5.2 U	390 U	1.7 U	520 U	31 J	480 U
Styrene	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Tetrachloroethene	μg/Kg	1.7	6%	TAGM 4046	1400	0	1	18	5.2 U	390 U	1.7 J	520 U	420 U	480 U
Toluene	μg/Kg	210	6%	TAGM 4046	1500	0	1	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
trans-1,2-Dichloroethene	μg/Kg	1.3	6%	TAGM 4046	300	0	1	18	5.2 U	390 U	1.3 J	520 U	420 U	480 U
Trans-1,3-Dichloropropene	μg/Kg	0	0%	TAGM 4046		0	0	18	5.2 U	390 U	1.7 U	520 U	420 U	480 U
Trichloroethene	μg/Kg	28000	94%	TAGM 4046	700	7	17	18	7400 J	1700	18000 J	160 J	110 J	410 J
Vinyl Chloride	μg/Kg	7.4	6%	TAGM 4046	200	0	1	18	5.2 U	390 U	7.4	520 U	420 U	480 U

Building 813/814 Stockpile VOC Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID									SP813-12	SP813-13	SP813-14	SP813-15	SP813-16	SP813-17
MATRIX									SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
SAMPLE ID									123662	123663	123664	123665	123666	123667
TOP OF SAMPLE									N/A	N/A	N/A	N/A	N/A	N/A
BOTTOM OF SAMPLE									N/A	N/A	N/A	N/A	N/A	N/A
SAMPLE DATE									7/22/2005	7/22/2005	7/22/2005	7/22/2005	7/22/2005	11/28/2005
QC CODE									SA	SA	SA	SA	SA	SA
STUDY ID									SRI	SRI	SRI	SRI	SRI	SRI
			Frequency			Number	Number	Number						
			of	Criteria	Action	of	of	of						
Parameter	Units	Maximum	Detection	Type	Level	Exceedances	Detect	Analyses	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1,1-Trichloroethane	μg/Kg	0	0%	TAGM 4046	800	0	0	18	580 Ù	520 Ù	470 U	670 U	490 Ù	4.6 U
1,1,2,2-Tetrachloroethane	μg/Kg	0	0%	TAGM 4046	600	0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
1,1,2-Trichloroethane	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
1,1-Dichloroethane	μg/Kg	0	0%	TAGM 4046	200	0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
1,1-Dichloroethene	μg/Kg	0.65	6%	TAGM 4046	400	0	1	18	580 U	520 U	470 U	670 U	490 U	4.6 U
1,2-Dichloroethane	μg/Kg	0	0%	TAGM 4046	100	0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
1,2-Dichloropropane	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Acetone	μg/Kg	3.8	6%	TAGM 4046	200	0	1	18	2300 U	2100 U	1900 U	2700 U	1900 U	18 U
Benzene	μg/Kg	0	0%	TAGM 4046	60	0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Bromodichloromethane	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Bromoform	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Carbon Disulfide	μg/Kg	1	11%	TAGM 4046	2700	0	2	18	1200 U	1000 U	930 U	1300 U	970 U	0.48 J
Carbon Tetrachloride	μg/Kg	0	0%	TAGM 4046	600	0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Chlorobenzene	μg/Kg	0	0%	TAGM 4046	1700	0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Chlorodibromomethane	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Chloroethane	μg/Kg	0	0%	TAGM 4046	1900	0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Chloroform	μg/Kg	0	0%	TAGM 4046	300	0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
cis-1,2-Dichloroethene	μg/Kg	20	28%	TAGM 4046		0	5	18	580 U	520 U	470 U	670 U	490 U	4.6 U
cis-1,3-Dichloropropene	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Ethyl Benzene	μg/Kg	80	17%	TAGM 4046	5500	0	3	18	580 U	54 J	470 U	670 U	490 U	4.6 U
Meta/Para Xylene	μg/Kg	150	6%	TAGM 4046		0	1	18	580 U	150 J	470 U	670 U	490 U	4.6 U
Methyl bromide	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Methyl butyl ketone	μg/Kg	0	0%	TAGM 4046		0	0	18	1200 U	1000 U	930 U	1300 U	970 U	9.2 U
Methyl chloride	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Methyl ethyl ketone	μg/Kg	0	0%	TAGM 4046	300	0	0	18	1200 UJ	1000 UJ	930 UJ	1300 UJ	970 UJ	9.2 U
Methyl isobutyl ketone	μg/Kg	0	0%	TAGM 4046	1000	0	0	18	1200 UJ	1000 UJ	930 UJ	1300 UJ	970 UJ	9.2 U
Methylene Chloride	μg/Kg	950	11%	TAGM 4046	100	1	2	18	580 U	520 U	470 U	670 U	490 U	0.38 J
Ortho Xylene	μg/Kg	42	11%	TAGM 4046		0	2	18	580 U	42 J	470 U	670 U	490 U	4.6 U
Styrene	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Tetrachloroethene	μg/Kg	1.7	6%	TAGM 4046	1400	0	1	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Toluene	μg/Kg	210	6%	TAGM 4046	1500	0	1	18	580 U	210 J	470 U	670 U	490 U	4.6 U
trans-1,2-Dichloroethene	μg/Kg	1.3	6%	TAGM 4046	300	0	1	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Trans-1,3-Dichloropropene	μg/Kg	0	0%	TAGM 4046		0	0	18	580 U	520 U	470 U	670 U	490 U	4.6 U
Trichloroethene	μg/Kg	28000	94%	TAGM 4046	700	7	17	18	510 J	240 J	130 J	670 U	22000 J	3.4 J
Vinyl Chloride	μg/Kg	7.4	6%	TAGM 4046	200	0	1	18	580 U	520 U	470 U	670 U	490 U	4.6 U

EM-5 Soil Sample Radiological Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID]			SS12-106	SS12-107	SS12-107 (D)	SS12-108	SC12 100	0040 447
MATRIX						SOIL	SOIL	SOIL SOIL	SOIL SOIL	SS12-109 SOIL	SS12-117 SOIL
SAMPLE ID					Ì	123677	123676	123681	123673	123672	123674
TOP OF SAMPLE						0	0	0	0	123072	0
BOTTOM OF SAMPLE	E]			0.2	0.2	0.2	0.2	0.2	0.2
SAMPLE DATE						6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004
QC CODE						SA	SA	DU	SA SA	SA SA	SA SA
STUDY ID						SRI	SRI	SRI	SRI	SRI	SRI
			Frequency	Number	Number						- SKI
			of	of	of						
Parameter	Unit	Maximum	Detection	Detections	Analyses	Value (Q) Uncertai	nty Value (Q) U	ncertainty Value (Q) Uncertain	y Value (Q) Uncertainty	Value (Q) Uncertainty	Value (Q) Uncertainty
Actinium-228	PCI/G	0.962	100%	11	11	0.784 0.187	0.851 0.22		0.946 0.194	0.779 0.223	0.760 0.204
Americium-241	PCI/G	0	0%	0	11	0.0239 U 0.113	0.0428 U 0.10		-0.0957 U 0.120	0.0531 U 0.0998	-0.0298 U 0.103
Antimony-124	PCI/G	0	0%	0	11	0.0166 U 0.0211	0.0147 U 0.02		-0.0124 U 0.0213	-0.00663 U 0.0287	-0.0124 U 0.0247
Antimony-125 Barium-133	PCI/G	0	0%	0	11	0.0275 U 0.0455	0.0382 U 0.05		-0.037 U 0.0529	0.0128 U 0.0615	-0.0538 U 0.064
Barium-140	PCI/G PCI/G	0	0%	0	11	-0.0106 U 0.0238	0.0107 U 0.02		0.00497 U 0.0259	0.0014 U 0.0308	-0.000114 U 0.0336
Beryllium-7	PCI/G	0 0	0%	0	11	0.0291 U 0.114	0.151 U 0.16		0.058 U 0.161	0.113 U 0.159	-0.0223 U 0.150
Bismuth-212	PCI/G	0.747	0% 100%	11	11	0.138 U 0.153	0.021 U 0.18		0.0871 U 0.170	0.0144 U 0.216	0.0661 U 0.213
Bismuth-214	PCI/G	0.747	100%	11 11	11 1	0.556 0.216 0.773 0.100	0.572 0.28		0.434 0.327	0.747 0.326	0.484 0.350
Cerium-139	PCI/G	0.007	0%	0	11	-0.00395 U 0.0147	0.800 0.12		0.706 0.106	0.787 0.139	0.637 0.114
Cerium-141	PCI/G	0	0%	0	11	0.00766 U 0.0355	0.00289 U 0.010	· · · · · · · · · · · · · · · · · · ·	0.00118 U 0.0158	-0.00882 U 0.0193	0.00217 U 0.0186
Cerium-144	PCI/G	0	0%	0	11	-0.0462 U 0.098	0.0171 U 0.038		0.0247 U 0.0453	0.054 U 0.0538	0.0311 U 0.0385
Cesium-134	PCI/G	0	0%	0	11	0.00 UJ 0.0282	0.00 UJ 0.03		-0.0244 U 0.110	-0.0427 U 0.130	-0.012 U 0.123
Cesium-136	PCI/G	0	0%	0	11	0.048 U 0.0496	-0.00783 U 0.063		0.0406 U 0.0288 -0.0124 U 0.0533	0.00335 U 0.034	0.045 U 0.0397
Cesium-137	PCI/G	0.522	82%	9	11	0.102 0.0312	0.399 0.059	31331 33 1311	-0.0124 U 0.0533 0.324 0.053	-0.0114 U 0.0672 0.382 0.0641	0.0167 U 0.0674
Chromium-51	PCI/G	0	0%	0	11	-0.0313 U 0.166	-0.0595 U 0.22°		0.0324 0.033 0.271 U 0.192	0.0206 U 0.234	0.522 0.0556
Cobalt-56	PCI/G	0	0%	0	11	0.0141 U 0.0218	0.00667 U 0.046		-0.00477 U 0.0215	0.0266 U 0.0254	0.124 U 0.236 0.0292 U 0.0275
Cobalt-57	PCI/G	0	0%	0	11	0.00773 U 0.0125	-0.00296 U 0.014		0.00419 U 0.0135	0.00397 U 0.0157	-0.0066 U 0.0151
Cobalt-58	PCI/G	0	0%	0	11	-0.00491 U 0.0203	-0.00472 U 0.023		-0.00256 U 0.0232	-0.00683 U 0.0225	-0.00622 U 0.0243
Cobalt-60	PCI/G	0	0%	0	11	0.000928 U 0.0212	0.0093 U 0.026		0.0107 U 0.023	0.000628 U 0.0282	0.0174 U 0.0285
Europium-152	PCI/G	0	0%	0	11	-0.0291 U 0.0468	-0.0133 U 0.059	3 -0.0493 U 0.0533	-0.0218 U 0.0566	0.0348 U 0.0626	-0.0599 U 0.0683
Europium-154	PCI/G	0	0%	0	11	0.057 U 0.072	-0.0136 U 0.077	0.00815 U 0.0635	-0.0285 U 0.0726	-0.0119 U 0.0844	0.0326 U 0.0779
Europium-155	PCI/G	0	0%	0	11	0.0532 U 0.0829	0.0911 U 0.057		0.0762 U 0.0787	0.0724 U 0.0665	0.00 UJ 0.104
Iridium-192	PCI/G	0	0%	0	11	0.00731 U 0.0162	-0.00821 U 0.020		0.0237 U 0.0179	0.00221 U 0.0225	0.00172 U 0.0229
Iron-59 Lead-210	PCI/G	0	0%	0	11	0.00422 U 0.048	0.0117 U 0.053		-0.0298 U 0.0526	0.0374 U 0.0607	-0.0591 U 0.0567
Lead-211	PCI/G PCI/G	0	0% 0%	0	11	3.46 U 4.13	3.11 U 2.97	1.56 U 4.49	1.88 U 6.59	1.60 U 2.71	2.64 U 5.05
Lead-211	PCI/G	0.966	100%	0 11	11	0.127 U 0.465	-0.138 U 0.543		-0.129 U 0.616	0.442 U 0.669	0.270 U 1.38
Lead-214	PCI/G	0.932	100%	11	11	0.856 0.0961 0.843 0.115	0.948 0.108		0.940 0.113	0.775 0.095	0.759 0.0663
Manganese-54	PCI/G	0.0254	9%	1	11	-0.00636 U 0.0205	0.932 0.145		0.809 0.118	0.885 0.134	0.722 0.120
Mercury-203	PCI/G	0.0254	0%	Ö	11	-0.00858 U 0.0214	0.0227 U 0.023 0.00996 U 0.027		0.0227 U 0.0393	0.0207 U 0.0342	0.00675 U 0.0262
Neodymium-147	PCI/G	0	0%	0	11	0.00261 U 0.234	-0.0883 U 0.281	6 0.0203 U 0.021 0.0512 U 0.233	0.0218 U 0.0282	0.0348 U 0.0351	0.029 U 0.0336
Neptunium-239	PCI/G	0	0%	0	11	-0.0178 U 0.0943	0.0389 U 0.107		0.279 U 0.244	0.0788 U 0.303	0.306 U 0.315
	PCI/G	0	0%	0	11	0.00928 U 0.0177	0.0143 U 0.024		-0.0648 U 0.105 -0.0118 U 0.0178	-0.0409 U 0.116	-0.0769 U 0.113
Niobium-95	PCI/G	0	0%	0	11	-0.0188 U 0.0248	0.0506 U 0.038		0.0216 U 0.0299	-0.0188 U 0.0212 0.0285 U 0.0332	0.0084 U 0.0244
Potassium-40	PCI/G	27.6	100%	11	11	21.8 1.94	21.5 1.91	23.0 1.88	23.6 2.02	20.1 1.80	0.0182 U 0.0328 18.2 1.14
	PCI/G	0	0%	0	11	-0.00695 U 0.0175	-0.000243 U 0.022		-0.00283 U 0.0186	0.011 U 0.0219	0.00 UJ 0.0507
	PCI/G	0	0%	0	11	0.0227 U 0.0213	-0.00604 U 0.025		0.0112 U 0.0241	0.00711 U 0.0301	0.0123 U 0.028
······································	PCI/G	0.867	100%	11	11	0.773 0.100	0.800 0.127		0.706 0.106	0.787 0.139	0.637 0.114
	PCI/G	0.962	100%	11	11	0.784 0.187	0.851 0.228		0.946 0.194	0.779 0.223	0.760 0.204
	PCI/G	0	0%	0	11	0.0306 U 0.162	0.0972 U 0.207	0.135 U 0.165	0.044 U 0.168	0.115 U 0.203	0.0861 U 0.199
	PCI/G	0	0%	0	11	-0.0236 U 0.0195	0.0014 U 0.022		0.0108 U 0.0207	0.00223 U 0.0269	3.170E-05 U 0.0245
	PCI/G	0 0 0 0 0 0 0	0%	0	11	0.0203 U 0.0257	-0.00748 U 0.027	······································	-0.0102 U 0.026	-0.00436 U 0.0301	0.0118 U 0.0279
······································	PCI/G	0.327	100%	11	11	0.327 0.0513	0.245 0.048		0.283 0.0527	0.310 0.0547	0.251 0.0595
·····	PCI/G PCI/G	0.867	100%	11	11	0.773 0.100	0.800 0.127		0.706 0.106	0.787 0.139	0.637 0.114
······	PCI/G	0	0%	0	11	0.954 U 1.05	0.640 U 1.13	0.453 U 1.20	1.04 U 1.46	0.266 U 1.44	0.164 U 1.27
······	PCI/G	0	0%	0	11	-0.0184 U 0.0215	-0.0165 U 0.027		0.00428 U 0.0248	-0.0176 U 0.0277	-0.0113 U 0.0303
	PCI/G	0	0% 0%	0	11	0.0332 U 0.154	0.0834 U 0.186	0.0828 U 0.121	0.107 U 0.194	0.00 UJ 0.229	0.140 U 0.164
	PCI/G	0	0%	0	11	0.954 U 1.05	0.640 U 1.13	0.453 U 1.20	1.04 U 1.46	0.266 U 1.44	0.164 U 1.27
	PCI/G	0	0%		11	0.00253 U 0.0168 -0.0907 U 0.0515	-0.0075 U 0.023		0.0122 U 0.0185	-0.00218 U 0.0233	0.010 U 0.0246
······	PCI/G	0	0%	0	11	0.0328 U 0.0518	0.0219 U 0.061		0.00679 U 0.0553	-0.0264 U 0.073	0.0242 U 0.0643
						0.0020 0 0.0016	0.00339 U 0.040	5 0.0271 U 0.0342	0.0274 U 0.038	0.0647 U 0.0457	-0.00139 U 0.0457

EM-5 Soil Sample Radiological Results SEAD-12 SRI Seneca Army Depot Activity, Romulus, NY

LOCATION ID			T	1		SS12-118	SS12-109	0040 400				·	
MATRIX			<u> </u>		<u> </u>	SOIL	SOIL SOIL	SS12-120		TP12-15A		TP12-15C	
SAMPLE ID			 	<u> </u>	<u> </u>	123678	123670	SOIL		SOIL		SOIL	
TOP OF SAMPLE	1		 	 		0		123671	 	123675		123680	
BOTTOM OF SAMPLE			 	1	-	0.2	0	0		3		0.5	
SAMPLE DATE	-		-	 	 	6/24/2004	0.2	0.2		3.5		0.8	
QC CODE	╂			 		·	6/24/2004	6/24/2004		6/24/2004		6/24/2004	
STUDY ID				 	 	SA	SA	SA		SA		SA	
0100110	+		F	Alamakaa	A1	SRI	SRI	SRI		SRI		SRI	
			Frequency	1	Number		***************************************	£	1				
Parameter	Linit	Massimosum	of Detection	of Data etiana	of				***************************************				***
Actinium-228	Unit	Maximum	Detection	Detections	·	Value (Q) Uncertainty		Uncertainty Value		Value	3	Value	(Q) Uncertainty
Americium-241	PCI/G PCI/G	0.962	100%	11	11	0.862 0.198		0.232 0.951	0.245	0.946	0.193	0.934	0.203
Antimony-124	PCI/G	0	0%	0	11	0.0133 U 0.0862	0.012 U (<u> </u>		U 0.0845	-0.0156	U 0.0737
Antimony-125		<u>0</u>	0%	0	11	-0.00984 U 0.0193	0.00784 U (U 0.0184	0.000192	U 0.0183
Barium-133	PCI/G		0%	0	11	-0.0144 U 0.052	0.0387 U (<u> </u>		U 0.0425	-0.0219	U 0.0432
Barium-140	PCI/G	0	0%	0	11	0.00586 U 0.0229	-0.0108 U (<u> </u>	-0.0101	U 0.0232	-0.00994	U 0.0227
	PCI/G	0	0%	0	11	0.0301 U 0.124	-0.0256 U (-0.12	U 0.128	-0.000504	U 0.110
Beryllium-7 Bismuth-212	PCI/G	0	0%	00	11	-0.13 U 0.189	-0.0218 U (<u> </u>	0.117	U 0.152	0.113	U 0.150
	PCI/G	0.747	100%	11	11	0.641 0.274		0.470		0.673	0.226	0.568	0.311
Bismuth-214	PCI/G	0.867	100%	11	11	0.867 0.123		0.641	<u> </u>	0.795	0.114	0.701	0.109
Cerium-139	PCI/G	0	0%	0	11	-0.00412 U 0.0135	-0.002135 U (U 0.0276	0.00448	U 0.0134		U 0.0149
Cerium-141	PCI/G	0	0%	0	11	-0.00805 U 0.0269	0.0269 U (U 0.0742	0.0115	U 0.0226	0.00224	U 0.0376
Cerium-144	PCI/G	0	0%	0	11	-0.0155 U 0.094	-0.0563 U (U 0.154		U 0.0929		U 0.0989
Cesium-134	PCI/G	0	0%	0	11	0.00 UJ 0.0385	0.0203 UJ (······································	UJ 0.0296	0.00	UJ 0.0308	0.00	UJ 0.0319
Cesium-136	PCI/G	0	0%	0	11	-0.0218 U 0.0538	-0.005312 U (U 0.0505	-0.0318	U 0.0486
Cesium-137	PCI/G	0.522	82%	9	11	0.115 0.0366	······································	0.367	0.0684	-0.00818	U 0.0187	0.0134	U 0.0196
Chromium-51	PCI/G	0	0%	0	11	-0.0501 U 0.185	0.0802 U (U 0.252	-0.047	U 0.161	0.173	U 0.222
Cobalt-56	PCI/G	0	0%	0	11	-0.000664 U 0.0204	0.0273 U 0		U 0.0291	0.00292	U 0.0194	-0.0247	U 0.0199
Cobalt-57	PCI/G	0	0%	0	11	-0.00279 U 0.0112	-0.00714 U 0		U 0.0192	-0.00029	U 0.0116		U 0.0121
Cobalt-58	PCI/G	0	0%	0	11	-0.0102 U 0.0193	0.00458 U 0		U 0.0248	0.003	U 0.0188	-0.0191	U 0.0194
Cobalt-60	PCI/G	0	0%	0	11	0.00353 U 0.0239	-0.0125 U 0		U 0.0257	0.000207	U 0.0196		U 0.0201
Europium-152	PCI/G	0	0%	0	11	-0.0408 U 0.0502	-0.0413 U 0		U 0.0683	0.0146	U 0.0448	0.0437	U 0.0735
Europium-154	PCI/G	0	0%	0	11	-0.0664 U 0.0737	0.004132 U 0		U 0.083	-0.00739	U 0.127	-0.00388	U 0.0655
Europium-155	PCI/G	0	0%	0	11	0.0288 U 0.0489	0.054 U 0		U 0.0795	0.0273	U 0.0603	0.0328	U 0.0634
Iridium-192	PCI/G	0	0%	0	11	0.00245 U 0.0174	0.005826 U 0		U 0.0236	-0.00038	U 0.0153	-0.00647	U 0.0167
Iron-59	PCI/G	0	0%	0	11	0.00134 U 0.0484	0.02182 U 0		U 0.061	0.0254	U 0.0506	-0.0163	U 0.0469
Lead-210	PCI/G	0	0%	0	11	1.54 U 2.15	2.922 U 3		U 7.86	0.0728	U 2.07	1.64	U 2.25
Lead-211	PCI/G	0	0%	0	11	0.202 U 0.455	0.1023 U 0		U 0.792	-0.373	U 0.503		U 0.462
Lead-212	PCI/G	0.966	100%	11	11	0.904 0.0901	······································	.0951 0.942	0.112	0.966	0.0903	0.918	0.0896
Lead-214	PCI/G	0.932	100%	11	11	0.813 0.108		.113 0.866	0.137	0.883	0.109	0.882	0.112
Manganese-54	PCI/G	0.0254	9%	1	11	0.027 U 0.0298		.02843 0.0224	U 0.0252	0.000676	U 0.0191	0.0254	0.0187
Mercury-203	PCI/G	0	0%	0	11	0.00751 U 0.0209	0.02333 U 0		U 0.0284	0.00	JJ 0.0256	0.0218	U 0.0261
Neodymium-147 Neptunium-239	PCI/G PCI/G	0	0%	0	11	0.0322 U 0.278			U 0.331		U 0.232		U 0.230
Niobium-94	PCI/G	0	0%	0	11	-0.0514 U 0.0855	-0.01749 U 0		U 0.146		U 0.0906		U 0.0951
Niobium-95	PCI/G		0%	0	11	0.0201 U 0.0239	5.900E-05 U 0	······································	U 0.0252	0.00326		0.013	U 0.0167
Potassium-40		0 27.6	0% 100%	0	11	0.0296 U 0.0582	0.0038 U 0		U 0.0379		U 0.0248		U 0.0255
Promethium-144	PCI/G	27.6	100%	11	11	24.5 1.98		.75 20.3		27.6	2.09	26.4	2.17
Promethium-146	PCI/G	0	0%	0	11	0.00256 U 0.0183	-0.004 U 0		U 0.0253	0.00279		0.0101	U 0.0194
Radium-226	PCI/G	0 0 0 0 0	0%	0	11	0.0136 U 0.0229	0.0169 U 0	····	U 0.032	0.00904		0.00335	U 0.0207
Radium-228	PCI/G	0.867	100%	11	11	0.867 0.123		.116 0.641	0.132	0.795	0.114	0.701	0.109
Ruthenium-106	PCI/G PCI/G	0.962	100%	11	11	0.862 0.198		232 0.951	0.245	0.946	0.193	0.934	0.203
Silver-110m		0	0%	0	11	-0.0261 U 0.166	-0.01654 U 0		U 0.216	0.00541		0.131	U 0.155
Sodium-22	PCI/G	0	0%	0	11	-0.00274 U 0.0207	0.0182 U 0		U 0.0257	-0.00662		-0.0114	U 0.0172
Fhallium-208	PCI/G	0 0	0%	0	11	-0.0258 U 0.0265	-0.001373 U 0		U 0.0297	-0.00271	U 0.0455	-0.00132	U 0.0234
Thorium-230	PCI/G	0.327	100%	11	11	0.308 0.0434		0507 0.255	0.0592	0.321	0.0506	0.276	0.0431
Thorium-234	PCI/G	0.867	100%	11	11	0.867 0.123		116 0.641		0.795	0.114	0.701	0.109
rin-113	PCI/G	0	0%	0	11	0.650 U 1.04	0 UJ 1.		U 1.91	0.868	J 1.02	0.256	U 0.920
Jranium-235	PCI/G	0	0%	0	11	0.00024 U 0.0221	1.305 U 0.		U 0.0326	-0.00572	J 0.0197		U 0.0213
	PCI/G	0	0%	0	11	0.0265 U 0.0954	0.127 U 0.		UJ 0.296	0.0683		0.00922	
Jranium-238	PCI/G	0	0%	0	11	0.650 U 1.04	0.00 UJ 1.		U 1.91	0.868			U 0.920
/ttrium-88	PCI/G	0	0%	0	11	-0.00392 U 0.0174	-0.003045 U 0.		U 0.0212		JJ 0.0168	-0.00253	
Zinc-65 Zirconium-95	PCI/G PCI/G	0	0%	0	11	-0.0131 U 0.0562 0.0335 U 0.0387	-0.000501 U 0.	058 -0.0732	U 0.0748	0.00454			U 0.0535
		0	0%	0	11		0.0294 U 0.						

Appendix F

Laboratory Certifications And Groundwater Method Detection Limits

Chemtech
Columbia Analytical Services (Rochester, NY)

NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER

Antonia C. Novello, M.D., M.P.H., Dr.P.H.

Expires 12:01 AM April 01, 2006 Issued April 07, 2005

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. DIVYAJIT MEHTA CHEMTECH CONSULTING GROUP 284 SHEFFIELD STREET MOUNTAINSIDE NJ 07092 UNITED STATES NY Lab Id No: 11376 EPA Lab Code:

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES ANALYTICAL SERVICES PROTOCOL All approved subcategories and/or analytes are listed below:

CLP PCB/Pesticides
CLP Semi-Volatile Organics
CLP Volatile Organics
CLP Inorganics

Serial No.: 26443

Property of the New York State Department of Health. Valid only at the address shown. Must be conspicuously posted. Valid certificates have a raised seal. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify laboratory's accreditation status.

NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER

Antonia C. Novello, M.D., M.P.H., Dr.P.H.

Expires 12:01 AM April 01, 2006 Issued April 05, 2005

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. MICHAEL PERRY COLUMBIA ANALYTICAL SERVICES 1 MUSTARD ST - STE 250 ROCHESTER NY 14609 UNITED STATES NY Lab Id No: 10145 EPA Lab Code: NY00032

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES ANALYTICAL SERVICES PROTOCOL All approved subcategories and/or analytes are listed below:

CLP PCB/Pesticides
CLP Semi-Volatile Organics
CLP Volatile Organics
CLP Inorganics

Serial No.: 26394

Property of the New York State Department of Health. Valid only at the address shown. Must be conspicuously posted. Valid certificates have a raised seal. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify laboratory's accreditation status.

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 120001-TB SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-04

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060307.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50 ug/L
74-87-3	Chloromethane	0.50	U	10	0.50 ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50 ug/L
74-83-9	Bromomethane	0.50	U	10	0.50 ug/L
75-00-3	Chloroethane	0.50	U	10	0.50 ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50 ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50 ug/L
67-64-1	Acetone	0.50	U	50	0.50 ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50 ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50 ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50 ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50 ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50 ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50 ug/L
78-93-3	2-Butanone	0.50	U	50	0.50 ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50 ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
67-66-3	Chloroform	0.50	U	10	0.50 ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50 ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50 ug/L
71-43-2	Benzene	0.50	U	10	0.50 ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50 ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50 ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50 ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50 ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50 ug/L
108-88-3	Toluene	0.50	U	10	0.50 ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 120001-TB SDG No.: S2781

Lab Sample ID: S2781-04 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060307.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	49.56	99 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	50.04	100 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	47.37	95 %	80 - 120		SPK: 50
INTERNAL STA	NDARDS					
74-97-5	Bromochloromethane	33875	4.06			
540-36-3	1,4-Difluorobenzene	213839	4.87			
3114-55-4	Chlorobenzene-d5	196461	7.36			

N = Presumptive Evidence of a Compound

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 120100 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-03

File ID: Date Analyzed Analytical Batch ID

VJ060214.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 120100 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-03

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060214.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	44.04	88 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	44.54	89 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.74	93 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	38561	4.06			
540-36-3	1,4-Difluorobenzene	223602	4.87			
3114-55-4	Chlorobenzene-d5	197684	7.36			

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122275 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-01

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060212.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	4.0	J	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122275 SDG No.: S2781

Analytical Method: OLM04,2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-01

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060212.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	38.17	76 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	42.56	85 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	41.53	83 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	45965	4.06			
540-36-3	1,4-Difluorobenzene	225413	4.87			
3114-55-4	Chlorobenzene-d5	206191	7.36			

Sample Wt/Wol:

Report of Analysis

Parsons Engineering Date Collected: 5/26/2004 **Client: Project:** SEAD-12 **Date Received:** 5/28/2004 **Client Sample ID:** SDG No.: 122275MS S2781 Matrix: Lab Sample ID: WATER S2781-05MS

% Moisture: **Analytical Method: OLM04.2** 100

5.0 Soil Aliquot Vol: uL

Units: mL

File ID: Dilution: **Date Analyzed Analytical Batch ID** VJ060221.D 1 6/3/2004 VJ060204

Soil Extract Vol:

uL

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	41		10	0.50	ug/L
74-87-3	Chloromethane	40		10	0.50	ug/L
75-01-4	Vinyl chloride	37		10	0.50	ug/L
74-83-9	Bromomethane	36		10	0.50	ug/L
75-00-3	Chloroethane	38		10	0.50	ug/L
75-69-4	Trichlorofluoromethane	41		10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	39		10	0.50	ug/L
75-35-4	1,1-Dichloroethene	39		10	0.50	ug/L
67-64-1	Acetone	230		50	0.50	ug/L
75-15-0	Carbon disulfide	42		10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	44		10	0.50	ug/L
79-20-9	Methyl Acetate	41		10	0.50	ug/L
75-09-2	Methylene Chloride	42		10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	39		10	0.50	ug/L
75-34-3	1,1-Dichloroethane	41		10	0.50	ug/L
110-82-7	Cyclohexane	41		10	0.50	ug/L
78-93-3	2-Butanone	280		50	0.50	ug/L
56-23-5	Carbon Tetrachloride	47		10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	48		10	0.50	ug/L
67-66-3	Chloroform	43		10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	43		10	0.50	ug/L
108-87-2	Methylcyclohexane	44		10	0.50	ug/L
71-43-2	Benzene	46		10	0.50	ug/L
107-06-2	1,2-Dichloroethane	45		10	0.50	ug/L
79-01-6	Trichloroethene	44		10	0.50	ug/L
78-87-5	1,2-Dichloropropane	44		10	0.50	ug/L
75-27-4	Bromodichloromethane	47		10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	240		50	0.50	ug/L
108-88-3	Toluene	42		10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	36		10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	40		10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	44		10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122275MS SDG No.: S2781

Lab Sample ID: S2781-05MS Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060221.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	140		50	0.50	ug/L
124-48-1	Dibromochloromethane	47		10	0.50	ug/L
106-93-4	1,2-Dibromoethane	42		10	0.50	ug/L
127-18-4	Tetrachloroethene	33		10	0.50	ug/L
108-90-7	Chlorobenzene	42		10	0.50	ug/L
100-41-4	Ethyl Benzene	42		10	0.50	ug/L
136777-61-2	m/p-Xylenes	85		10	0.50	ug/L
95-47-6	o-Xylene	44		10	0.50	ug/L
100-42-5	Styrene	42		10	0.50	ug/L
75-25-2	Bromoform	46		10	0.50	ug/L
98-82-8	Isopropylbenzene	43		10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	52		10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	43		10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	42		10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	44		10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	47		10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	41		10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	40.04	80 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	40.4	81 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.28	93 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	43893	4.06			
540-36-3	1,4-Difluorobenzene	217335	4.87			
3114-55-4	Chlorobenzene-d5	211480	7.36			

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122275MSD SDG No.: S2781

Lab Sample ID: S2781-06MSD Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060222.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	52		10	0.50	ug/L
74-87-3	Chloromethane	54		10	0.50	ug/L
75-01-4	Vinyl chloride	55		10	0.50	ug/L
74-83-9	Bromomethane	52		10	0.50	ug/L
75-00-3	Chloroethane	57		10	0.50	ug/L
75-69-4	Trichlorofluoromethane	54		10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	48		10	0.50	ug/L
75-35-4	1,1-Dichloroethene	52		10	0.50	ug/L
67-64-1	Acetone	310		50	0.50	ug/L
75-15-0	Carbon disulfide	56		10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	57		10	0.50	ug/L
79-20-9	Methyl Acetate	51		10	0.50	ug/L
75-09-2	Methylene Chloride	54		10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	53		10	0.50	ug/L
75-34-3	1,1-Dichloroethane	55		10	0.50	ug/L
110-82-7	Cyclohexane	43		10	0.50	ug/L
78-93-3	2-Butanone	250		50	0.50	ug/L
56-23-5	Carbon Tetrachloride	44		10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	50		10	0.50	ug/L
67-66-3	Chloroform	50		10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	42		10	0.50	ug/L
108-87-2	Methylcyclohexane	42		10	0.50	ug/L
71-43-2	Benzene	45		10	0.50	ug/L
107-06-2	1,2-Dichloroethane	46		10	0.50	ug/L
79-01-6	Trichloroethene	46		10	0.50	ug/L
78-87-5	1,2-Dichloropropane	45		10	0.50	ug/L
75-27-4	Bromodichloromethane	48		10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	260		50	0.50	ug/L
108-88-3	Toluene	43		10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	41		10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	41		10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	44		10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

uL

Report of Analysis

Parsons Engineering Date Collected: 5/26/2004 **Client:**

Project: SEAD-12 **Date Received:** 5/28/2004

Client Sample ID: SDG No.: 122275MSD S2781

Lab Sample ID: WATER S2781-06MSD % Moisture: **Analytical Method: OLM04.2** 100

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:**

Soil Aliquot Vol: uL

File ID: Dilution: **Date Analyzed Analytical Batch ID** VJ060222.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	160		50	0.50	ug/L
124-48-1	Dibromochloromethane	47		10	0.50	ug/L
106-93-4	1,2-Dibromoethane	47		10	0.50	ug/L
127-18-4	Tetrachloroethene	33		10	0.50	ug/L
108-90-7	Chlorobenzene	45		10	0.50	ug/L
100-41-4	Ethyl Benzene	43		10	0.50	ug/L
136777-61-2	m/p-Xylenes	87		10	0.50	ug/L
95-47-6	o-Xylene	44		10	0.50	ug/L
100-42-5	Styrene	43		10	0.50	ug/L
75-25-2	Bromoform	46		10	0.50	ug/L
98-82-8	Isopropylbenzene	44		10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	52		10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	44		10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	43		10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	47		10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	46		10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	43		10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	48.85	98 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	40.81	82 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	45.91	92 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	35425	4.05			
540-36-3	1,4-Difluorobenzene	221128	4.87			
3114-55-4	Chlorobenzene-d5	213878	7.35			

N = Presumptive Evidence of a Compound

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122275RE SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-01RE

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060308.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	5.1	J	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122275RE SDG No.: S2781

Lab Sample ID: S2781-01RE Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060308.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	\mathbf{U}	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	\mathbf{U}	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	37.21	74 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	50.94	102 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	45.31	91 %	80 - 120		SPK: 50
INTERNAL STANDARDS						
74-97-5	Bromochloromethane	44400	4.06			
540-36-3	1,4-Difluorobenzene	213952	4.87			
3114-55-4	Chlorobenzene-d5	193045	7.36			

WATER

Report of Analysis

Parsons Engineering Date Collected: 5/27/2004 **Client:**

Project: SEAD-12 **Date Received:** 5/28/2004

Client Sample ID: SDG No.: 122278 S2781 Matrix: Lab Sample ID:

% Moisture: **Analytical Method: OLM04.2** 100

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:** uL

Soil Aliquot Vol: uL

S2781-07

File ID: Dilution: **Date Analyzed Analytical Batch ID**

VJ060215.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	51		50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122278 SDG No.: S2781

Lab Sample ID: S2781-07 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060215.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	\mathbf{U}	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	49.41	99 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	41.88	84 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.55	93 %	80 - 120		SPK: 50
INTERNAL STANDARDS						
74-97-5	Bromochloromethane	34847	4.07			
540-36-3	1,4-Difluorobenzene	220403	4.87			
3114-55-4	Chlorobenzene-d5	205271	7.36			

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122279 SDG No.: S2781

Lab Sample ID: S2781-11 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060219.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50 ug/L
74-87-3	Chloromethane	0.50	U	10	0.50 ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50 ug/L
74-83-9	Bromomethane	0.50	U	10	0.50 ug/L
75-00-3	Chloroethane	0.50	U	10	0.50 ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50 ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50 ug/L
67-64-1	Acetone	0.50	U	50	0.50 ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50 ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50 ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50 ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50 ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50 ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50 ug/L
78-93-3	2-Butanone	0.50	U	50	0.50 ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50 ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
67-66-3	Chloroform	0.50	U	10	0.50 ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50 ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50 ug/L
71-43-2	Benzene	0.50	U	10	0.50 ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50 ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50 ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50 ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50 ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50 ug/L
108-88-3	Toluene	0.50	U	10	0.50 ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122279 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-11

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060219.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	44.78	90 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	41.41	83 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	47.47	95 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	36371	4.07			
540-36-3	1,4-Difluorobenzene	220182	4.87			
3114-55-4	Chlorobenzene-d5	207403	7.36			

uL

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122280 SDG No.: S2781

Lab Sample ID: S2781-08 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100
Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol:

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060216.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50 ug/L
74-87-3	Chloromethane	0.50	U	10	0.50 ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50 ug/L
74-83-9	Bromomethane	0.50	U	10	0.50 ug/L
75-00-3	Chloroethane	0.50	U	10	0.50 ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50 ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50 ug/L
67-64-1	Acetone	0.50	U	50	0.50 ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50 ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50 ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50 ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50 ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50 ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50 ug/L
78-93-3	2-Butanone	0.50	U	50	0.50 ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50 ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
67-66-3	Chloroform	0.50	U	10	0.50 ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50 ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50 ug/L
71-43-2	Benzene	0.50	U	10	0.50 ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50 ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50 ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50 ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50 ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50 ug/L
108-88-3	Toluene	0.50	U	10	0.50 ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122280 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-08

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060216.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	45.77	92 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	42.06	84 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	45.07	90 %	80 - 120		SPK: 50
INTERNAL STA	NDARDS					
74-97-5	Bromochloromethane	35267	4.07			
540-36-3	1,4-Difluorobenzene	210490	4.88			
3114-55-4	Chlorobenzene-d5	211085	7.36			

Matrix:

Report of Analysis

Parsons Engineering Date Collected: 5/27/2004 **Client:**

Project: SEAD-12 **Date Received:** 5/28/2004

Client Sample ID: SDG No.: 122281 S2781

Lab Sample ID: S2781-09 WATER % Moisture: **Analytical Method: OLM04.2** 100

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:** uL

Soil Aliquot Vol: uL

File ID: Dilution: **Date Analyzed Analytical Batch ID**

VJ060217.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122281 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-09

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060217.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	45.98	92 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	42.42	85 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	42.27	85 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	36505	4.06			
540-36-3	1,4-Difluorobenzene	216403	4.87			
3114-55-4	Chlorobenzene-d5	197320	7.36			

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122282 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-10

File ID: Date Analyzed Analytical Batch ID

VJ060309.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122282 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-10

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060309.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	49.75	100 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	48.37	97 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	41.39	83 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	33992	4.07			
540-36-3	1,4-Difluorobenzene	207615	4.87			
3114-55-4	Chlorobenzene-d5	204251	7.36			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122283 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-12

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060220.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	47	J	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122283 SDG No.: S2781

Lab Sample ID: S2781-12 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060220.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	38.05	76 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	40.82	82 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	41.81	84 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	43946	4.06			
540-36-3	1,4-Difluorobenzene	208457	4.87			
3114-55-4	Chlorobenzene-d5	194168	7.36			

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122283RE SDG No.: S2781

Lab Sample ID: S2781-12RE Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060310.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50 ug/L
74-87-3	Chloromethane	0.50	U	10	0.50 ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50 ug/L
74-83-9	Bromomethane	0.50	U	10	0.50 ug/L
75-00-3	Chloroethane	0.50	U	10	0.50 ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50 ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50 ug/L
67-64-1	Acetone	0.50	U	50	0.50 ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50 ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50 ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50 ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50 ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50 ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50 ug/L
78-93-3	2-Butanone	0.50	U	50	0.50 ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50 ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
67-66-3	Chloroform	0.50	U	10	0.50 ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50 ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50 ug/L
71-43-2	Benzene	0.50	U	10	0.50 ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50 ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50 ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50 ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50 ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50 ug/L
108-88-3	Toluene	0.50	U	10	0.50 ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/27/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122283RE SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-12RE

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060310.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	36.26	73 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	51.74	103 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	45.71	91 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	42766	4.06			
540-36-3	1,4-Difluorobenzene	206147	4.87			
3114-55-4	Chlorobenzene-d5	184504	7.36			

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 5/26/2004

Project: SEAD-12 Date Received: 5/28/2004

Client Sample ID: 122284 SDG No.: S2781

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S2781-02

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060213.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	4.1	J	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

WATER

Report of Analysis

Parsons Engineering Date Collected: 5/26/2004 **Client:**

Project: SEAD-12 **Date Received:** 5/28/2004

Client Sample ID: SDG No.: 122284 S2781 Matrix: Lab Sample ID:

% Moisture: **Analytical Method: OLM04.2** 100

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:** uL

Soil Aliquot Vol: uL

S2781-02

File ID: Dilution: **Date Analyzed Analytical Batch ID** VJ060213.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	43.84	88 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	41.53	83 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	40.17	80 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	37500	4.06			
540-36-3	1,4-Difluorobenzene	220813	4.87			
3114-55-4	Chlorobenzene-d5	209108	7.36			

Client: Parsons Engineering Date Collected:

Project: SEAD-12 Date Received:

Client Sample ID: VBLK01 SDG No.: S2781

Lab Sample ID: VBJ0602W1 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060209.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50 ug/L
74-87-3	Chloromethane	0.50	U	10	0.50 ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50 ug/L
74-83-9	Bromomethane	0.50	U	10	0.50 ug/L
75-00-3	Chloroethane	0.50	U	10	0.50 ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50 ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50 ug/L
67-64-1	Acetone	0.50	U	50	0.50 ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50 ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50 ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50 ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50 ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50 ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50 ug/L
78-93-3	2-Butanone	0.50	U	50	0.50 ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50 ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
67-66-3	Chloroform	0.50	U	10	0.50 ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50 ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50 ug/L
71-43-2	Benzene	0.50	U	10	0.50 ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50 ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50 ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50 ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50 ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50 ug/L
108-88-3	Toluene	0.50	U	10	0.50 ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Soil Extract Vol:

uL

Report of Analysis

Parsons Engineering Date Collected: Client:

Project: SEAD-12 **Date Received:**

Client Sample ID: SDG No.: S2781 VBLK01

Matrix: Lab Sample ID: **VBJ0602W1** WATER

% Moisture: **Analytical Method: OLM04.2** 100 Sample Wt/Wol: **5.0** Units: mL

Soil Aliquot Vol: uL

File ID: Dilution: **Date Analyzed Analytical Batch ID** VJ060209.D 1 6/2/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	42.79	86 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	43.25	86 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	43.64	87 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	55568	4.06			
540-36-3	1,4-Difluorobenzene	251343	4.87			
3114-55-4	Chlorobenzene-d5	235485	7.36			

Client: Parsons Engineering Date Collected:

Project: SEAD-12 Date Received:

Client Sample ID: VBLK02 SDG No.: S2781

Lab Sample ID: VBJ0603W3 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060306.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Parsons Engineering Date Collected:

Project: SEAD-12 Date Received:

Client Sample ID: VBLK02 SDG No.: S2781

Lab Sample ID: VBJ0603W3 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	
VJ060306.D	1	6/3/2004	VJ060204	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	47.54	95 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	48.85	98 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	44.62	89 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	35295	4.06			
540-36-3	1,4-Difluorobenzene	217237	4.87			
3114-55-4	Chlorobenzene-d5	207151	7.36			

uL

Report of Analysis

Client: Parsons Engineering Date Collected:

Project: SEAD-12 Date Received:

Client Sample ID: VLCS01 SDG No.: S2781

Lab Sample ID: BSJ0602W1 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol:

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ060223.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	18		10	0.50	ug/L
74-87-3	Chloromethane	16		10	0.50	ug/L
75-01-4	Vinyl chloride	15		10	0.50	ug/L
74-83-9	Bromomethane	15		10	0.50	ug/L
75-00-3	Chloroethane	16		10	0.50	ug/L
75-69-4	Trichlorofluoromethane	16		10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	16		10	0.50	ug/L
75-35-4	1,1-Dichloroethene	16		10	0.50	ug/L
67-64-1	Acetone	96		50	0.50	ug/L
75-15-0	Carbon disulfide	15		10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	17		10	0.50	ug/L
79-20-9	Methyl Acetate	22		10	0.50	ug/L
75-09-2	Methylene Chloride	17		10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	14		10	0.50	ug/L
75-34-3	1,1-Dichloroethane	18		10	0.50	ug/L
110-82-7	Cyclohexane	16		10	0.50	ug/L
78-93-3	2-Butanone	120		50	0.50	ug/L
56-23-5	Carbon Tetrachloride	19		10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	18		10	0.50	ug/L
67-66-3	Chloroform	17		10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	18		10	0.50	ug/L
108-87-2	Methylcyclohexane	18		10	0.50	ug/L
71-43-2	Benzene	19		10	0.50	ug/L
107-06-2	1,2-Dichloroethane	18		10	0.50	ug/L
79-01-6	Trichloroethene	20		10	0.50	ug/L
78-87-5	1,2-Dichloropropane	17		10	0.50	ug/L
75-27-4	Bromodichloromethane	19		10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	92		50	0.50	ug/L
108-88-3	Toluene	17		10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	14		10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	16		10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	17		10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Soil Extract Vol:

uL

Report of Analysis

Parsons Engineering Date Collected: Client:

Project: SEAD-12 **Date Received:**

Client Sample ID: SDG No.: S2781 VLCS01

Matrix: Lab Sample ID: **BSJ0602W1** WATER

% Moisture: **Analytical Method: OLM04.2** 100 Sample Wt/Wol: **5.0** Units: mL

Soil Aliquot Vol: uL

File ID: Dilution: **Date Analyzed Analytical Batch ID**

VJ060223.D 1 6/3/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	81		50	0.50	ug/L
124-48-1	Dibromochloromethane	18		10	0.50	ug/L
106-93-4	1,2-Dibromoethane	17		10	0.50	ug/L
127-18-4	Tetrachloroethene	21		10	0.50	ug/L
108-90-7	Chlorobenzene	17		10	0.50	ug/L
100-41-4	Ethyl Benzene	17		10	0.50	ug/L
136777-61-2	m/p-Xylenes	37		10	0.50	ug/L
95-47-6	o-Xylene	19		10	0.50	ug/L
100-42-5	Styrene	17		10	0.50	ug/L
75-25-2	Bromoform	18		10	0.50	ug/L
98-82-8	Isopropylbenzene	18		10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	15		10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	16		10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	19		10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	20		10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	17		10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	17		10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	42.48	85 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	41.48	83 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.03	92 %	80 - 120		SPK: 50
INTERNAL STA	NDARDS					
74-97-5	Bromochloromethane	46042	4.05			
540-36-3	1,4-Difluorobenzene	219125	4.87			
3114-55-4	Chlorobenzene-d5	209409	7.35			

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 120002TB SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-12

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061506.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50 ug/L
74-87-3	Chloromethane	0.50	U	10	0.50 ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50 ug/L
74-83-9	Bromomethane	0.50	U	10	0.50 ug/L
75-00-3	Chloroethane	0.50	U	10	0.50 ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50 ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50 ug/L
67-64-1	Acetone	0.50	U	50	0.50 ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50 ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50 ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50 ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50 ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50 ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50 ug/L
78-93-3	2-Butanone	0.50	U	50	0.50 ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50 ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
67-66-3	Chloroform	0.50	U	10	0.50 ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50 ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50 ug/L
71-43-2	Benzene	0.50	U	10	0.50 ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50 ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50 ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50 ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50 ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50 ug/L
108-88-3	Toluene	0.50	U	10	0.50 ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 120002TB SDG No.: S3037

Lab Sample ID: S3037-12 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061506.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.97	110 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	55.87	112 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.63	99 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	30440	4.07			
540-36-3	1,4-Difluorobenzene	215942	4.87			
3114-55-4	Chlorobenzene-d5	194447	7.36			

Analytical Method:

% Moisture:

100

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 120101 SDG No.: S3037

Lab Sample ID: S3037-11 Matrix: WATER

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

OLM04.2

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061551.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 120101 SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-11

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061551.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.19	112 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	49.63	99 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	41.46	83 %	80 - 120		SPK: 50
INTERNAL STA	NDARDS					
74-97-5	Bromochloromethane	23787	4.06			
540-36-3	1,4-Difluorobenzene	178111	4.88			
3114-55-4	Chlorobenzene-d5	180137	7.36			

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122277 SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-13

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061550.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50 ug/L
74-87-3	Chloromethane	0.50	U	10	0.50 ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50 ug/L
74-83-9	Bromomethane	0.50	U	10	0.50 ug/L
75-00-3	Chloroethane	0.50	U	10	0.50 ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50 ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50 ug/L
67-64-1	Acetone	0.50	U	50	0.50 ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50 ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50 ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50 ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50 ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50 ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50 ug/L
78-93-3	2-Butanone	0.50	U	50	0.50 ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50 ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
67-66-3	Chloroform	0.50	U	10	0.50 ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50 ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50 ug/L
71-43-2	Benzene	0.50	U	10	0.50 ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50 ug/L
79-01-6	Trichloroethene	4.2	J	10	0.50 ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50 ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50 ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50 ug/L
108-88-3	Toluene	0.50	U	10	0.50 ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122277 SDG No.: S3037

Lab Sample ID: S3037-13 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061550.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	\mathbf{U}	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.64	117 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	49.7	99 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	45.84	92 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	23704	4.07			
540-36-3	1,4-Difluorobenzene	186098	4.87			
3114-55-4	Chlorobenzene-d5	184234	7.36			

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/10/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122285 SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-01

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061508.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Analytical Method:

100

Report of Analysis

Parsons Engineering Date Collected: 6/10/2004 **Client:**

Project: SEAD-12 **Date Received:** 6/12/2004

Client Sample ID: SDG No.: S3037 122285

Matrix: Lab Sample ID: WATER S3037-01 % Moisture:

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:** uL

Soil Aliquot Vol: uL

OLM04.2

File ID: Dilution: **Date Analyzed Analytical Batch ID** VJ061508.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.55	117 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	54.3	109 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.54	93 %	80 - 120		SPK: 50
INTERNAL STA	NDARDS					
74-97-5	Bromochloromethane	29488	4.07			
540-36-3	1,4-Difluorobenzene	209138	4.88			
3114-55-4	Chlorobenzene-d5	187995	7.36			

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/10/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122286 SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-02

File ID: Date Analyzed Analytical Batch ID

VJ061509.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Parsons Engineering Date Collected: 6/10/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122286 SDG No.: S3037

Lab Sample ID: S3037-02 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061509.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.32	107 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	52.73	105 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	42.44	85 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	30105	4.07			
540-36-3	1,4-Difluorobenzene	206207	4.88			
3114-55-4	Chlorobenzene-d5	190320	7.37			

Parsons Engineering Date Collected: 6/10/2004 **Client: Project:** SEAD-12 **Date Received:** 6/12/2004 **Client Sample ID:** SDG No.: S3037 122286MS Matrix: Lab Sample ID: WATER S3037-03MS

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061510.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	54		10	0.50	ug/L
74-87-3	Chloromethane	52		10	0.50	ug/L
75-01-4	Vinyl chloride	53		10	0.50	ug/L
74-83-9	Bromomethane	53		10	0.50	ug/L
75-00-3	Chloroethane	56		10	0.50	ug/L
75-69-4	Trichlorofluoromethane	55		10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	66		10	0.50	ug/L
75-35-4	1,1-Dichloroethene	77		10	0.50	ug/L
67-64-1	Acetone	260		50	0.50	ug/L
75-15-0	Carbon disulfide	140		10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	59		10	0.50	ug/L
79-20-9	Methyl Acetate	54		10	0.50	ug/L
75-09-2	Methylene Chloride	69		10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	74		10	0.50	ug/L
75-34-3	1,1-Dichloroethane	63		10	0.50	ug/L
110-82-7	Cyclohexane	49		10	0.50	ug/L
78-93-3	2-Butanone	250		50	0.50	ug/L
56-23-5	Carbon Tetrachloride	59		10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	58		10	0.50	ug/L
67-66-3	Chloroform	58		10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	54		10	0.50	ug/L
108-87-2	Methylcyclohexane	46		10	0.50	ug/L
71-43-2	Benzene	52		10	0.50	ug/L
107-06-2	1,2-Dichloroethane	57		10	0.50	ug/L
79-01-6	Trichloroethene	52		10	0.50	ug/L
78-87-5	1,2-Dichloropropane	54		10	0.50	ug/L
75-27-4	Bromodichloromethane	50		10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	270		50	0.50	ug/L
108-88-3	Toluene	54		10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	52		10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	51		10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	52		10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Parsons Engineering Date Collected: 6/10/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122286MS SDG No.: S3037

Lab Sample ID: S3037-03MS Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061510.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	270		50	0.50	ug/L
124-48-1	Dibromochloromethane	51		10	0.50	ug/L
106-93-4	1,2-Dibromoethane	50		10	0.50	ug/L
127-18-4	Tetrachloroethene	48		10	0.50	ug/L
108-90-7	Chlorobenzene	50		10	0.50	ug/L
100-41-4	Ethyl Benzene	50		10	0.50	ug/L
136777-61-2	m/p-Xylenes	100		10	0.50	ug/L
95-47-6	o-Xylene	46		10	0.50	ug/L
100-42-5	Styrene	49		10	0.50	ug/L
75-25-2	Bromoform	52		10	0.50	ug/L
98-82-8	Isopropylbenzene	51		10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	55		10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	50		10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	54		10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	51		10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	56		10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	49		10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	58.96	118 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	50.96	102 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	52.98	106 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	29283	4.05			
540-36-3	1,4-Difluorobenzene	203746	4.88			
3114-55-4	Chlorobenzene-d5	202858	7.36			

uL

Report of Analysis

Client: Parsons Engineering Date Collected: 6/10/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122286MSD SDG No.: S3037

Lab Sample ID: S3037-04MSD Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100
Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol:

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061511.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	45		10	0.50	ug/L
74-87-3	Chloromethane	49		10	0.50	ug/L
75-01-4	Vinyl chloride	51		10	0.50	ug/L
74-83-9	Bromomethane	50		10	0.50	ug/L
75-00-3	Chloroethane	51		10	0.50	ug/L
75-69-4	Trichlorofluoromethane	51		10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	63		10	0.50	ug/L
75-35-4	1,1-Dichloroethene	73		10	0.50	ug/L
67-64-1	Acetone	300		50	0.50	ug/L
75-15-0	Carbon disulfide	130		10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	55		10	0.50	ug/L
79-20-9	Methyl Acetate	55		10	0.50	ug/L
75-09-2	Methylene Chloride	65		10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	71		10	0.50	ug/L
75-34-3	1,1-Dichloroethane	59		10	0.50	ug/L
110-82-7	Cyclohexane	46		10	0.50	ug/L
78-93-3	2-Butanone	250		50	0.50	ug/L
56-23-5	Carbon Tetrachloride	58		10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	55		10	0.50	ug/L
67-66-3	Chloroform	56		10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	53		10	0.50	ug/L
108-87-2	Methylcyclohexane	43		10	0.50	ug/L
71-43-2	Benzene	59		10	0.50	ug/L
107-06-2	1,2-Dichloroethane	59		10	0.50	ug/L
79-01-6	Trichloroethene	50		10	0.50	ug/L
78-87-5	1,2-Dichloropropane	52		10	0.50	ug/L
75-27-4	Bromodichloromethane	51		10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	250		50	0.50	ug/L
108-88-3	Toluene	53		10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	50		10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	50		10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	49		10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/10/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122286MSD SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-04MSD

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061511.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	260		50	0.50	ug/L
124-48-1	Dibromochloromethane	51		10	0.50	ug/L
106-93-4	1,2-Dibromoethane	53		10	0.50	ug/L
127-18-4	Tetrachloroethene	47		10	0.50	ug/L
108-90-7	Chlorobenzene	50		10	0.50	ug/L
100-41-4	Ethyl Benzene	50		10	0.50	ug/L
136777-61-2	m/p-Xylenes	100		10	0.50	ug/L
95-47-6	o-Xylene	45		10	0.50	ug/L
100-42-5	Styrene	49		10	0.50	ug/L
75-25-2	Bromoform	51		10	0.50	ug/L
98-82-8	Isopropylbenzene	49		10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	53		10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	49		10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	49		10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	50		10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	55		10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	50		10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.92	114 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	51.45	103 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	49.93	100 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	30019	4.06			
540-36-3	1,4-Difluorobenzene	202602	4.88			
3114-55-4	Chlorobenzene-d5	202126	7.36			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122287 SDG No.: S3037

Lab Sample ID: S3037-06 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061513.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122287 SDG No.: S3037

Lab Sample ID: S3037-06 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061513.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	53.16	106 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	53.63	107 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.02	102 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	29030	4.07			
540-36-3	1,4-Difluorobenzene	196529	4.88			
3114-55-4	Chlorobenzene-d5	180656	7.36			

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122288 SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-07

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061514.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50 ug/L
74-87-3	Chloromethane	0.50	U	10	0.50 ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50 ug/L
74-83-9	Bromomethane	0.50	U	10	0.50 ug/L
75-00-3	Chloroethane	0.50	U	10	0.50 ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50 ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50 ug/L
67-64-1	Acetone	0.50	U	50	0.50 ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50 ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50 ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50 ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50 ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50 ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50 ug/L
78-93-3	2-Butanone	0.50	U	50	0.50 ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50 ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
67-66-3	Chloroform	0.50	U	10	0.50 ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50 ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50 ug/L
71-43-2	Benzene	0.50	U	10	0.50 ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50 ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50 ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50 ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50 ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50 ug/L
108-88-3	Toluene	0.50	U	10	0.50 ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Matrix:

WATER

Report of Analysis

Parsons Engineering Date Collected: 6/11/2004 **Client:**

Project: SEAD-12 **Date Received:** 6/12/2004

Client Sample ID: SDG No.: S3037 122288

% Moisture: **Analytical Method: OLM04.2** 100

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:** uL

Soil Aliquot Vol: uL

S3037-07

File ID: Dilution: **Date Analyzed Analytical Batch ID** VJ061514.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	57.15	114 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	54.41	109 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.4	93 %	80 - 120		SPK: 50
INTERNAL STANDARDS						
74-97-5	Bromochloromethane	27862	4.07			
540-36-3	1,4-Difluorobenzene	200521	4.88			
3114-55-4	Chlorobenzene-d5	179061	7.36			

Analytical Method:

100

Report of Analysis

Parsons Engineering Date Collected: 6/11/2004 **Client:**

Project: SEAD-12 **Date Received:** 6/12/2004

Client Sample ID: SDG No.: S3037 122289

Matrix: Lab Sample ID: WATER S3037-08 % Moisture:

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:** uL

Soil Aliquot Vol: uL

OLM04.2

File ID: Dilution: **Date Analyzed Analytical Batch ID**

VJ061515.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122289 SDG No.: S3037

Lab Sample ID: \$3037-08 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061515.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.18	108 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	54.74	109 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.87	94 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	29124	4.07			
540-36-3	1,4-Difluorobenzene	190776	4.88			
3114-55-4	Chlorobenzene-d5	175237	7.36			

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122290 SDG No.: S3037

Lab Sample ID: \$3037-09 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061516.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Lab Sample ID:

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122290 SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-09

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061516.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.39	113 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	54.71	109 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.3	101 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	28231	4.07			
540-36-3	1,4-Difluorobenzene	191226	4.87			
3114-55-4	Chlorobenzene-d5	175504	7.37			

Sample Wt/Wol:

Soil Extract Vol:

uL

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122291 SDG No.: S3037

Lab Sample ID: S3037-10 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Soil Aliquot Vol: uL

5.0

Units: mL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061517.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	\mathbf{U}	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	41		10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	2000	E	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	\mathbf{U}	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Lab Sample ID:

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/11/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122291 SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-10

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061517.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	67.3	135 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	36.91	74 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	42.02	84 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	22472	4.06			
540-36-3	1,4-Difluorobenzene	137759	4.87			
3114-55-4	Chlorobenzene-d5	185201	7.35			

uL

Report of Analysis

Parsons Engineering Date Collected: 6/11/2004 **Client:**

Project: SEAD-12 **Date Received:** 6/12/2004

Client Sample ID: SDG No.: S3037 122291DL

Matrix: Lab Sample ID: WATER S3037-10DL

% Moisture: **Analytical Method: OLM04.2** 100

Sample Wt/Wol: **5.0** Units: mL

Soil Extract Vol:

Soil Aliquot Vol: uL

File ID: Dilution: **Date Analyzed Analytical Batch ID**

VJ061552.D 25 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	12	UD	250	12	ug/L
74-87-3	Chloromethane	12	UD	250	12	ug/L
75-01-4	Vinyl chloride	12	UD	250	12	ug/L
74-83-9	Bromomethane	12	UD	250	12	ug/L
75-00-3	Chloroethane	12	UD	250	12	ug/L
75-69-4	Trichlorofluoromethane	12	UD	250	12	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	12	UD	250	12	ug/L
75-35-4	1,1-Dichloroethene	12	UD	250	12	ug/L
67-64-1	Acetone	12	UD	1200	12	ug/L
75-15-0	Carbon disulfide	12	UD	250	12	ug/L
1634-04-4	Methyl tert-butyl Ether	12	UD	250	12	ug/L
79-20-9	Methyl Acetate	12	UD	250	12	ug/L
75-09-2	Methylene Chloride	12	UD	250	12	ug/L
156-60-5	trans-1,2-Dichloroethene	12	UD	250	12	ug/L
75-34-3	1,1-Dichloroethane	12	UD	250	12	ug/L
110-82-7	Cyclohexane	12	UD	250	12	ug/L
78-93-3	2-Butanone	12	UD	1200	12	ug/L
56-23-5	Carbon Tetrachloride	12	UD	250	12	ug/L
156-59-2	cis-1,2-Dichloroethene	12	UD	250	12	ug/L
67-66-3	Chloroform	12	UD	250	12	ug/L
71-55-6	1,1,1-Trichloroethane	12	UD	250	12	ug/L
108-87-2	Methylcyclohexane	12	UD	250	12	ug/L
71-43-2	Benzene	12	UD	250	12	ug/L
107-06-2	1,2-Dichloroethane	12	UD	250	12	ug/L
79-01-6	Trichloroethene	2400	D	250	12	ug/L
78-87-5	1,2-Dichloropropane	12	UD	250	12	ug/L
75-27-4	Bromodichloromethane	12	UD	250	12	ug/L
108-10-1	4-Methyl-2-Pentanone	12	UD	1200	12	ug/L
108-88-3	Toluene	12	UD	250	12	ug/L
10061-02-6	t-1,3-Dichloropropene	12	UD	250	12	ug/L
10061-01-5	cis-1,3-Dichloropropene	12	UD	250	12	ug/L
79-00-5	1,1,2-Trichloroethane	12	UD	250	12	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Report of Analysis

Parsons Engineering Date Collected: 6/11/2004 **Client:**

Project: SEAD-12 **Date Received:** 6/12/2004

Client Sample ID: SDG No.: S3037 122291DL Matrix: Lab Sample ID: WATER

% Moisture: **Analytical Method: OLM04.2** 100

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:** uL

Soil Aliquot Vol: uL

S3037-10DL

File ID: Dilution: **Date Analyzed Analytical Batch ID**

VJ061552.D 25 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	12	UD	1200	12	ug/L
124-48-1	Dibromochloromethane	12	UD	250	12	ug/L
106-93-4	1,2-Dibromoethane	12	UD	250	12	ug/L
127-18-4	Tetrachloroethene	12	UD	250	12	ug/L
108-90-7	Chlorobenzene	12	UD	250	12	ug/L
100-41-4	Ethyl Benzene	12	UD	250	12	ug/L
136777-61-2	m/p-Xylenes	12	UD	250	12	ug/L
95-47-6	o-Xylene	12	UD	250	12	ug/L
100-42-5	Styrene	12	UD	250	12	ug/L
75-25-2	Bromoform	12	UD	250	12	ug/L
98-82-8	Isopropylbenzene	12	UD	250	12	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	12	UD	250	12	ug/L
541-73-1	1,3-Dichlorobenzene	12	UD	250	12	ug/L
106-46-7	1,4-Dichlorobenzene	12	UD	250	12	ug/L
95-50-1	1,2-Dichlorobenzene	12	UD	250	12	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	12	UD	250	12	ug/L
120-82-1	1,2,4-Trichlorobenzene	12	UD	250	12	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	56.8	114 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	51.08	102 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	51.09	102 %	80 - 120		SPK: 50
INTERNAL STA	NDARDS					
74-97-5	Bromochloromethane	26049	4.06			
540-36-3	1,4-Difluorobenzene	203733	4.87			
3114-55-4	Chlorobenzene-d5	193353	7.36			

Lab Sample ID:

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected: 6/10/2004

Project: SEAD-12 Date Received: 6/12/2004

Client Sample ID: 122297 SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

S3037-05

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061512.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Report of Analysis

Parsons Engineering Date Collected: 6/10/2004 **Client:**

Project: SEAD-12 **Date Received:** 6/12/2004

Client Sample ID: SDG No.: S3037 122297 Matrix: Lab Sample ID: WATER

% Moisture: **Analytical Method: OLM04.2** 100

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:** uL

Soil Aliquot Vol: uL

S3037-05

File ID: Dilution: **Date Analyzed Analytical Batch ID** VJ061512.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	\mathbf{U}	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.37	109 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	54.18	108 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	43.86	88 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	29092	4.07			
540-36-3	1,4-Difluorobenzene	196744	4.88			
3114-55-4	Chlorobenzene-d5	181363	7.36			

Report of Analysis

Client: Parsons Engineering Date Collected:

Project: SEAD-12 Date Received:

Client Sample ID: VBLK01 SDG No.: S3037

Lab Sample ID: VBJ0615W1 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061503.D 1 6/14/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50	ug/L
74-87-3	Chloromethane	0.50	U	10	0.50	ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50	ug/L
74-83-9	Bromomethane	0.50	U	10	0.50	ug/L
75-00-3	Chloroethane	0.50	U	10	0.50	ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50	ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50	ug/L
67-64-1	Acetone	0.50	U	50	0.50	ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50	ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50	ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50	ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50	ug/L
78-93-3	2-Butanone	0.50	U	50	0.50	ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50	ug/L
67-66-3	Chloroform	0.50	U	10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50	ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50	ug/L
71-43-2	Benzene	0.50	U	10	0.50	ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50	ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50	ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50	ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50	ug/L
108-88-3	Toluene	0.50	U	10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

uL

Report of Analysis

Client: Parsons Engineering Date Collected:

Project: SEAD-12 Date Received:

Client Sample ID: VBLK01 SDG No.: S3037

Lab Sample ID: VBJ0615W1 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100
Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol:

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061503.D 1 6/14/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	49	98 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	53.32	107 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	46.53	93 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	34765	4.06			
540-36-3	1,4-Difluorobenzene	222766	4.87			
3114-55-4	Chlorobenzene-d5	210058	7.36			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Soil Extract Vol:

uL

Report of Analysis

Parsons Engineering Date Collected: Client:

Project: SEAD-12 **Date Received:**

Client Sample ID: SDG No.: S3037 VBLK02

Matrix: Lab Sample ID: **VBJ0615W3** WATER

% Moisture: **Analytical Method: OLM04.2** 100 Sample Wt/Wol: **5.0** Units: mL

Soil Aliquot Vol: uL

File ID: Dilution: **Date Analyzed Analytical Batch ID**

VJ061535.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71-8	Dichlorodifluoromethane	0.50	U	10	0.50 ug/L
74-87-3	Chloromethane	0.50	U	10	0.50 ug/L
75-01-4	Vinyl chloride	0.50	U	10	0.50 ug/L
74-83-9	Bromomethane	0.50	U	10	0.50 ug/L
75-00-3	Chloroethane	0.50	U	10	0.50 ug/L
75-69-4	Trichlorofluoromethane	0.50	U	10	0.50 ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	0.50	U	10	0.50 ug/L
75-35-4	1,1-Dichloroethene	0.50	U	10	0.50 ug/L
67-64-1	Acetone	0.50	U	50	0.50 ug/L
75-15-0	Carbon disulfide	0.50	U	10	0.50 ug/L
1634-04-4	Methyl tert-butyl Ether	0.50	U	10	0.50 ug/L
79-20-9	Methyl Acetate	0.50	U	10	0.50 ug/L
75-09-2	Methylene Chloride	0.50	U	10	0.50 ug/L
156-60-5	trans-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
75-34-3	1,1-Dichloroethane	0.50	U	10	0.50 ug/L
110-82-7	Cyclohexane	0.50	U	10	0.50 ug/L
78-93-3	2-Butanone	0.50	U	50	0.50 ug/L
56-23-5	Carbon Tetrachloride	0.50	U	10	0.50 ug/L
156-59-2	cis-1,2-Dichloroethene	0.50	U	10	0.50 ug/L
67-66-3	Chloroform	0.50	U	10	0.50 ug/L
71-55-6	1,1,1-Trichloroethane	0.50	U	10	0.50 ug/L
108-87-2	Methylcyclohexane	0.50	U	10	0.50 ug/L
71-43-2	Benzene	0.50	U	10	0.50 ug/L
107-06-2	1,2-Dichloroethane	0.50	U	10	0.50 ug/L
79-01-6	Trichloroethene	0.50	U	10	0.50 ug/L
78-87-5	1,2-Dichloropropane	0.50	U	10	0.50 ug/L
75-27-4	Bromodichloromethane	0.50	U	10	0.50 ug/L
108-10-1	4-Methyl-2-Pentanone	0.50	U	50	0.50 ug/L
108-88-3	Toluene	0.50	U	10	0.50 ug/L
10061-02-6	t-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.50	U	10	0.50 ug/L
79-00-5	1,1,2-Trichloroethane	0.50	U	10	0.50 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Lab Sample ID:

WATER

Report of Analysis

Parsons Engineering Date Collected: Client:

Project: SEAD-12 **Date Received:**

Client Sample ID: SDG No.: S3037 VBLK02 Matrix:

% Moisture: **Analytical Method: OLM04.2** 100

Sample Wt/Wol: **5.0** Units: mL **Soil Extract Vol:** uL

Soil Aliquot Vol: uL

VBJ0615W3

File ID: Dilution: **Date Analyzed Analytical Batch ID** VJ061535.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	0.50	U	50	0.50	ug/L
124-48-1	Dibromochloromethane	0.50	U	10	0.50	ug/L
106-93-4	1,2-Dibromoethane	0.50	U	10	0.50	ug/L
127-18-4	Tetrachloroethene	0.50	U	10	0.50	ug/L
108-90-7	Chlorobenzene	0.50	U	10	0.50	ug/L
100-41-4	Ethyl Benzene	0.50	U	10	0.50	ug/L
136777-61-2	m/p-Xylenes	0.50	U	10	0.50	ug/L
95-47-6	o-Xylene	0.50	U	10	0.50	ug/L
100-42-5	Styrene	0.50	U	10	0.50	ug/L
75-25-2	Bromoform	0.50	U	10	0.50	ug/L
98-82-8	Isopropylbenzene	0.50	U	10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U	10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	0.50	U	10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	0.50	U	10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	0.50	U	10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.50	U	10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	0.50	U	10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	54.15	108 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	51.73	103 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	42.81	86 %	80 - 120		SPK: 50
INTERNAL STANDARDS						
74-97-5	Bromochloromethane	25020	4.06			
540-36-3	1,4-Difluorobenzene	187748	4.87			
3114-55-4	Chlorobenzene-d5	175819	7.36			

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

Soil Extract Vol:

uL

Report of Analysis

Client: Parsons Engineering Date Collected:

Project: SEAD-12 Date Received:

Client Sample ID: VLCS01 SDG No.: S3037

Lab Sample ID: BSJ0615W1 Matrix: WATER

Analytical Method: OLM04.2 % Moisture: 100

Soil Aliquot Vol: uL

5.0

Units: mL

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061505.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	19		10	0.50	ug/L
74-87-3	Chloromethane	19		10	0.50	ug/L
75-01-4	Vinyl chloride	19		10	0.50	ug/L
74-83-9	Bromomethane	20		10	0.50	ug/L
75-00-3	Chloroethane	19		10	0.50	ug/L
75-69-4	Trichlorofluoromethane	18		10	0.50	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	18		10	0.50	ug/L
75-35-4	1,1-Dichloroethene	18		10	0.50	ug/L
67-64-1	Acetone	100		50	0.50	ug/L
75-15-0	Carbon disulfide	21		10	0.50	ug/L
1634-04-4	Methyl tert-butyl Ether	20		10	0.50	ug/L
79-20-9	Methyl Acetate	28		10	0.50	ug/L
75-09-2	Methylene Chloride	20		10	0.50	ug/L
156-60-5	trans-1,2-Dichloroethene	18		10	0.50	ug/L
75-34-3	1,1-Dichloroethane	20		10	0.50	ug/L
110-82-7	Cyclohexane	19		10	0.50	ug/L
78-93-3	2-Butanone	97		50	0.50	ug/L
56-23-5	Carbon Tetrachloride	19		10	0.50	ug/L
156-59-2	cis-1,2-Dichloroethene	18		10	0.50	ug/L
67-66-3	Chloroform	20		10	0.50	ug/L
71-55-6	1,1,1-Trichloroethane	19		10	0.50	ug/L
108-87-2	Methylcyclohexane	18		10	0.50	ug/L
71-43-2	Benzene	17		10	0.50	ug/L
107-06-2	1,2-Dichloroethane	20		10	0.50	ug/L
79-01-6	Trichloroethene	19		10	0.50	ug/L
78-87-5	1,2-Dichloropropane	19		10	0.50	ug/L
75-27-4	Bromodichloromethane	19		10	0.50	ug/L
108-10-1	4-Methyl-2-Pentanone	110		50	0.50	ug/L
108-88-3	Toluene	20		10	0.50	ug/L
10061-02-6	t-1,3-Dichloropropene	17		10	0.50	ug/L
10061-01-5	cis-1,3-Dichloropropene	18		10	0.50	ug/L
79-00-5	1,1,2-Trichloroethane	19		10	0.50	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

Lab Sample ID:

Matrix:

WATER

Report of Analysis

Client: Parsons Engineering Date Collected:

Project: SEAD-12 Date Received:

Client Sample ID: VLCS01 SDG No.: S3037

Analytical Method: OLM04.2 % Moisture: 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

BSJ0615W1

File ID: Dilution: Date Analyzed Analytical Batch ID

VJ061505.D 1 6/15/2004 VJ060204

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
591-78-6	2-Hexanone	84		50	0.50	ug/L
124-48-1	Dibromochloromethane	19		10	0.50	ug/L
106-93-4	1,2-Dibromoethane	18		10	0.50	ug/L
127-18-4	Tetrachloroethene	25		10	0.50	ug/L
108-90-7	Chlorobenzene	20		10	0.50	ug/L
100-41-4	Ethyl Benzene	20		10	0.50	ug/L
136777-61-2	m/p-Xylenes	42		10	0.50	ug/L
95-47-6	o-Xylene	19		10	0.50	ug/L
100-42-5	Styrene	20		10	0.50	ug/L
75-25-2	Bromoform	18		10	0.50	ug/L
98-82-8	Isopropylbenzene	21		10	0.50	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	20		10	0.50	ug/L
541-73-1	1,3-Dichlorobenzene	19		10	0.50	ug/L
106-46-7	1,4-Dichlorobenzene	23		10	0.50	ug/L
95-50-1	1,2-Dichlorobenzene	22		10	0.50	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	19		10	0.50	ug/L
120-82-1	1,2,4-Trichlorobenzene	20		10	0.50	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	50.73	101 %	80 - 120		SPK: 50
2037-26-5	Toluene-d8	53.01	106 %	80 - 120		SPK: 50
460-00-4	4-Bromofluorobenzene	50.32	101 %	80 - 120		SPK: 50
INTERNAL STA	ANDARDS					
74-97-5	Bromochloromethane	36111	4.06			
540-36-3	1,4-Difluorobenzene	236341	4.87			
3114-55-4	Chlorobenzene-d5	215570	7.36			

Appendix G

Excavation Photos

North Side

Building 813 – 11/10/04

Water line

Photo 2

Picture taken looking West

Samples 123692 (TP813-7T) and 123683 (TP813-2T)

Building 813 – 11/10/04

Photo 3

Horizontal view of previous excavation photo

Building 813 – 11/10/04

Building 813 – 11/11/04

Photo 4

Looking East towards excavation – snow fence to help prevent injury

Photo 5

Covered stockpiles – approximately 300 cubic yards

Building 813 – 11/11/04

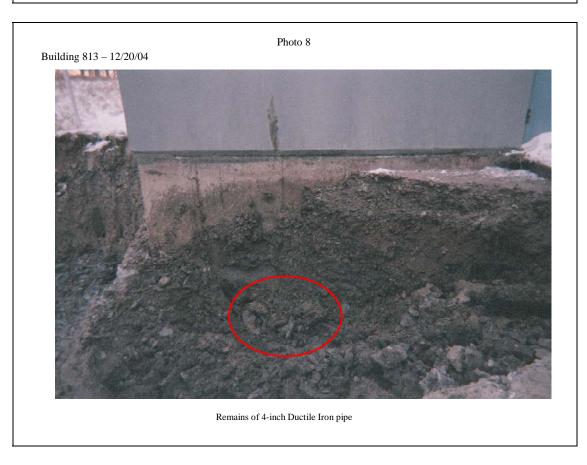

Building 813 – 12/20/04

Photo 6

Phase III excavation near NE corner of Building 813

Appendix H

Response to Comments

NYSDEC

USEPA

Response to Comments from the New York State Department of Environmental Conservation

Subject: Draft Supplemental RI Report for SEAD-12 (May 2005)
Seneca Army Depot
Romulus, New York

Comments Dated: December 28, 2005

Date of Comment Response: February 13, 2006

Comment 1: The subject document has no mention of the analytical laboratory's name or current certifications of Standard Operating procedures (SOPs). Please add this information to the document.

Response 1: Agreed. Deviations and/or updates to the 1995 Generic RI/FS Workplan have been added to the Supplemental RI Report where appropriate. The name of the laboratory that provided the VOC analysis has been specified in Section 2.2 and the certifications have been included in Appendix F. Test pit excavation and test pit sample collection were conducted in accordance with the test pitting techniques outlined in the 1995 Generic RI/FS Workplan. This statement has been included in Section 2.2.3.1.

Comment 2: Both TCE and DCE in groundwater exceeded the NYSDEC GA standard during the most recent sampling round, and at concentrations that could result in indoor air exposure risk in buildings. DEC wants to evaluate further. Please provide the post excavation round of groundwater samples. Please see the USEPA comments on this issue also.

Response 2: Final, post-excavation groundwater sampling was not proposed or performed for the following reasons:

- No exceedances of TCE were detected in wells other than MW12-37 during the Supplement RI.
- MW12-37 has been removed and all the soils surrounding this well have been removed. Water quality downgradient of MW12-37 will only improve now that the contaminated soil and entrained water has been removed.

The indoor air at Building 813 may be evaluated in the future, if indeed a re-user is found to use Building 813. Currently, there are no utilities running to the building and no re-user has been identified for the building. If in the future a re-user is identified, actual indoor air monitoring may be conducted to assess the indoor air quality. Groundwater data are not necessary for this assessment.

Comment 3: Vapor intrusion – A deed restriction that requires indoor air sampling does not reduce the risk of exposure to future occupants for use of the building. Additional justification is needed to support the conclusions of no further action for Building 813/814, like indoor air quality.

Response 3: The planned future land use for SEAD-12 is institutional training. At this time, there are no future occupants of the buildings at SEAD-12. If in the future Building 813 is to be occupied, indoor air sampling will determine whether or not there is a risk and appropriate actions may then be taken. The Army does not feel that additional efforts to ensure there is no risk to occupants that do not exist is prudent use of their funds. However, the Army is willing to put land controls (e.g. an environmental easement) into place so that future investigations will take place before this building is occupied.

Specific Comments:

Comment 1: Page 1-6, Section 1.5.1.4, 3rd paragraph:

The results of the analysis of soil have metals which exceeded TAGM values. It is recommended that you address what action was implemented. The SRI needs to identify any further investigation or remediation which is required for this area or justify the position that the soil in the area is not of concern.

Response 1: Surface soil samples SS12-66, SS12-67, and SS12-68 were collected on the other side of the ditch to the northwest of Building 813/814 during the Remedial Investigation. The metals that exceeded the TAGM for these three samples are shown below.

Loc-id	Parameter	Value	Criteria Value	Maximum	Units
			(TAGM based	Background	
			on SEDA	Concentration	
			background)		
SS12-66	Thallium	1.1	0.855	1.2	Mg/kg
SS12-67	Calcium	154,000	124,300	293,000	Mg/kg
SS12-68	Copper	35.4	33	62.8	Mg/kg
	Lead	31.0	24.4	266	Mg/kg
	Nickel	53.1	50	62.3	Mg/kg

The values detected in these samples are below the maximum background concentration for SEDA. The RI reported that no risk was found within this area due to the presence of heavy metals in soils. The presence of TCE in groundwater at MW12-37 was the only significant source of risk in this area. The text of Section 1.5.1.4 will be revised to clarify this.

Comment 2: Page 3-4 the statement: "Phase II stockpile samples were also collected on December 9, and the Phase II stockpile samples were collected on December 21" is redundant. I believe it should read as Phase I on December 9 and Phase II on December 21. Clarification is requested.

Response 2: The sentence should read, "The Phase II stockpile samples were also collected on December 9, and the Phase III stockpile samples were collected on December 21." The text will be corrected.

Comment 3: Page 4-3 Recommendations: The text states "The stockpiles remaining on-site will be re-sampled in the spring...". Update the final version of the report with the results of that resampling.

Response 3: An update of the re-sampling of the stockpiles has been added to Section 3.3.2 and Section 4.2 and is summarized here.

Phase II and Phase III soils were re-sampled on July 22, 2005. Three additional grab samples were collected at random grid locations within the Phase II stockpile (see Figure 3-3). One additional sample was collected from this stockpile on November 28, 2005. Results indicated that TCE was detected below action levels for each sample and that this soil could be backfilled. Four additional grab samples were collected at random grid locations from the Phase IIIA stockpile. Results indicated that TCE was detected below action levels and that this soil could be backfilled. Two additional grab samples were collected from the Phase IIIB stockpile on a grid basis. One sample had concentrations that were below the TAGM for TCE. However, the other sample SP813-16 had TCE levels at 22,000 ug/Kg. Since this stockpile has not been sampled since July 2005, it will be re-sampled to see if levels have decreased since the summer months. This stockpile will be partitioned and sampled further to determine what portion of the soil may be returned to the excavation and what portion, if any, may need to be taken off-site for disposal. Four additional samples are being collected to make this determination.

Response to Comments from the New York State Department of Environmental Conservation

Subject: Draft Final Supplemental RI Report for SEAD-12 Seneca Army Depot Romulus, New York

Comments Dated: July 24, 2006

Date of Comment Response: October 27, 2006

Comment:

Vapor Intrusion – Reword the recommendation on indoor air at Building 813/814 to state: "An Environmental Easement will be utilized to place a restriction on Building 813/814 stating that an investigation of vapor intrusion potential and indoor air quality must be performed before this building, or any newly constructed building, is occupied. Appropriate mitigation actions will be taken based on this investigation prior to occupancy."

Response:

Agreed. The first bullet on page 4-3 has been revised as suggested by NYSDEC above. Furthermore, the Army will note that the future owner, who is making the decision to occupy the building, be responsible for the testing and any required mitigation, if necessary. Language stating this requirement will be placed in the deed upon transfer and would become part of the institutional controls remedial design.

Response to Comments from the United States Environmental Protection Agency

Subject: Draft Supplemental RI Report for SEAD-12 Seneca Army Depot Romulus, New York

Comments Dated: June 8, 2005

Date of Comment Response: February 13, 2006

This is in reference to the subject document received by this office on May 9, 2005. Please find our comments below.

General Comments:

Comment 1: The subject document makes reference to the old and outdated Generic RI/FS Workplan (Parsons, 1995), however, there is no mention of deviations and/or updates (i.e., laboratory's name, current certifications on SOPs, test pitting procedures, etc.) to it. It is recommended to add a section to address the above requirements.

Response 1: Agreed. Deviations and/or updates to the 1995 Generic RI/FS Workplan have been added to the Supplemental RI Report where appropriate. The name of the laboratory that provided the VOC analysis has been specified in Section 2.2 and the certifications have been included in Appendix F. Test pit excavation and test pit sample collection were conducted in accordance with the test pitting techniques outlined in the 1995 Generic RI/FS Workplan. This statement has been included in Section 2.2.3.1.

Comment 2: Both TCE and DCE in groundwater exceeded the NYSDEC GA standard during the most recent sampling round, and at concentrations that could result in indoor air exposure risk. Yet there is no mention of collecting a final, post-excavation, round of groundwater samples. There is a likelihood of continued groundwater impacts from TCE, and possibly DCE, that should be evaluated further. The highest TCE concentration, identified in MW12-37, increased by 50% between 1997 and 2004.

The SRI work completed was the result of groundwater impacts, and it consisted of soil excavation and removal. The excavation was halted at the building foundation, and the report recommended implementation of future deed restrictions regarding the need to conduct indoor air testing prior to building occupation. If no additional groundwater sampling and analysis is anticipated, how will future indoor air testing results be evaluated in the risk analysis?

Response 2: Acknowledged.

No final, post-excavation groundwater sampling has been proposed for the following reasons:

- No exceedances of TCE were detected in wells other than MW12-37 during the Supplement RI.
- MW12-37 has been removed and all the soils surrounding this well have been removed.

The indoor air at Building 813 may be evaluated in the future, if indeed a re-user intends on using Building 813. The Army will not evaluate future risk of indoor air exposure in anticipation that a

future re-user may someday use the buildings. Currently, there are no utilities running to the building and no re-user has been identified for the building. If in the future a re-user is identified, actual indoor air monitoring may be conducted by the re-user to assess the indoor air quality. Groundwater data are not necessary for this assessment. Text changes in Sections 2.2.1.2 and 4.2 addresses USEPA's concern.

Comment 3: Additional subsurface soil investigations were conducted in the target area to define impacts from TCE. The excavation, then sampling, then excavation, then sampling was used to limit the excavation needed to remove impacted soils surrounding the sewer line. However, the final excavation boundaries appeared to be arbitrary, and were sometimes based upon data apparently collected from elevations above potential areas of significant impact, particularly on the western (downgradient) side of the excavation. The text should be revised to better delineate the final excavation boundaries.

Response 3: Acknowledged. The excavation of soil was advanced to bedrock within the excavation area. Confirmatory soil samples were collected close to the bottom of excavation near the excavation boundary. At the western boundary, a soil sample was collected 3-4 ft bgs from the western excavation boundary. The samples were collected close to the excavation bottom (5 ft bgs.) where fractured shale mixed with brown till was met. The excavation limits were determined based on the confirmatory soil sample results. The western boundary of the wall was also guided by the results of TW12-6 which showed no detection of VOCs in the groundwater at this location. As the VOC concentrations in the confirmatory soil samples collected from the western side were all below the TAGMs, no excavation was conducted beyond the western boundary. Section 2.2.3.3 will be expanded to address this.

Comment 4: Simply implementing a deed restriction that requires indoor air sampling does not reduce the risk of exposure to future occupants of the building. It is not clear that the removal action has adequately addressed the risk of vapor intrusion. Additional justification is needed to support the conclusions of no further action for Building 813/814.

Response 4: The planned future land use for SEAD-12 is institutional training. At this time, there are no future occupants of the buildings at SEAD-12. If in the future Building 813 is to be occupied, indoor air sampling will be performed by the reuser to determine whether or not there is a risk and appropriate actions may then be taken. Additional efforts to ensure there is no risk to potential future occupants is not necessary or justified. However, the Army is willing to put land controls (e.g. an environmental easement) into place to ensure that the necessary evaluations are performed prior to any use of the building by a future reuser.

Comment 5: The results of the excavation work conducted as part of the supplemental investigations, combined with the anticipated future use of the site area for conservation/recreation, and the distance of the site area from sensitive receptors indicates that investigations of surface water and sediments are sufficient. The conclusion of the supplemental investigations that the drainage ditch did not indicate a significant impact to receiving surface water at or downgradient of the study is supported.

Response 5: Agreed.

Comment 6: The text of this report indicates that painting was conducted within the building and so specific VOC compounds, and total VOCs were investigated by means of groundwater and soil sample analysis, and soil gas surveys prior to this SRI. The SRI also included the installation of temporary monitoring wells in areas where high VOC concentrations were

observed in the soil gas. The initial and secondary results of the groundwater sampling and analysis did not confirm the presence of VOC impacts in groundwater that were indicated by colocated soil gas sample concentrations. Provide an explanation for this discrepancy.

Response 6: Soil gas investigations are generally conducted to assist in the planning of additional investigations. Soil gas results do not necessarily predict the concentrations of VOCs in groundwater immediately underlying them. Soil gas originating from groundwater will follow preferential paths within the matrix toward an accumulation or exit point. Some correlation between soil gas and groundwater impacts were found during the RI. Soil gas results near the northeastern portion of the building led to the installation of MW12-37 during the RI where groundwater impacts were found. Other areas showing elevated soil gas readings where no groundwater impacts were found may be points of vapor accumulation within the soil matrix. In general soil gas results are really used as a qualitative tool to plan additional investigations such as groundwater monitoring and could be used to plan future indoor air sampling programs if warranted in the future.

The above explanation has been included in Section 3.1.

Comment 7: No mention is made of as-built drawings documenting the sewer pipe location and construction methods. An evaluation of existing records should be added to the discussion. Furthermore, it is not clear from the text whether bedding materials were used beneath the abandoned sewer pipe. Additional documentation, such as photos of excavations, should be included. If a bedding conduit is still in place, it could be a pathway for VOCs partitioned from the groundwater to enter the building and impact indoor air. Has this potential pathway been investigated?

Response 7: No as built records showing existing sewer lines are available for this building. A 4-inch ductile iron (DI) pipe was found during the excavation near the 4-inch DI end within the foundation. Clay pipe fragments were also found in the excavation. No definitive bedding was found in the area of the pipes. The invert of the pipe was found approximately 4 to 5 feet bgs and the excavation was taken down to native bedrock (7 feet bgs). Therefore, any type of bedding materials, although not observed, would have been removed. The text of Section 2.2.3.1 has been expanded to explain this. Impacts to indoor air will not be investigated, as there is no planned receptor in this building. If in the future a re-user is established, further assessment of the indoor air quality may be performed.

A photo, now included in Appendix G, shows the pipe entering the foundation of the building. Observations made within the building indicate that the drains within the building are all plugged.

Photos of excavations have been included in Appendix G.

Comment 8: There is very limited information provided in the report regarding former painting operations. It is unclear why the detected VOCs are limited to chlorinated solvents, and in exactly what way they would be exclusively associated with the painting operations. Additional documentation should be included if available.

Response 8: A wide variety of materials could be found in paint depending on what type of coating/paint had been used at the site. Chlorinated solvents such as TCE could be used in paint and paint removers (ATSDR, 1997; HSDB, 2005). However, no additional information is available for the former painting operations. The targeted compounds of concern were based on

previous investigations which included a full list of VOCs, and metals. If VOCs other than chlorinated solvents were present in the soils and groundwater, they would have been detected during previous investigation efforts. The Army cannot hypothesize as to why no other VOCs were found. No text change has been made to the document.

Comment 9: The conclusion regarding no further action for EM-5 soils is supported. Soil sampling results support the conclusion that Pb-210 levels are not different from background.

Response 9: Agreed.

SPECIFIC COMMENTS

Comment 1: Page 1-5, Section 1.5.1.1, 1st paragraph: There should be some discussion of the lack of correlation between the soil gas survey and the subsequent groundwater monitoring well concentrations. If the soil gas survey during the remedial investigation "led to the implementation of the SRI," what conclusions can be drawn regarding the representativeness of the data?

Response 1: Soil gas investigations are generally conducted to assist in the planning of additional investigations. Soil gas results near the northeastern portion of the building led to the installation of MW12-37 during the RI where groundwater impacts were found. Other areas showing elevated soil gas hits were investigated during the SRI; however, no groundwater impacts were discovered at these locations. Response to General Comment 6 above explains why soil gas and groundwater results do not always correlate. The point is that soil gas investigation results were followed up with a more thorough groundwater investigation during this SRI and we now have the appropriate data to characterize the site and show that groundwater impacts were truly localized to the northeast corner of the building. Additional text will be added to Section 1.5.1.1 to clarify this point.

Comment 2: Page 2-2, Section 2.2.1.2: It is not clear why no additional groundwater sampling was performed at the conclusion of the SRI. Lack of groundwater sampling combined with lack of subsurface soil sampling to adequate depth creates uncertainty as to whether there are additional contributions to the TCE groundwater plume. At least one additional groundwater monitoring well pair located in the immediate downgradient location of former monitoring well MW12-37 should be done to further characterize the residual source area contributions.

Response 2: See response to general comment 2. Temporary wells were installed downgradient and in the immediate vicinity of MW12-37 (TW12-6, TW12-24, and TW12-26) and none of these wells showed any detections of VOCs prior to the removal action. TW12-6 was 30 feet from MW12-37; TW12-24 is 20 feet from MW12-37 and TW12-26 is 45 feet away from MW12-37. Groundwater impacts were isolated and confined to the area immediately around MW12-37 and this entire area (groundwater and soil) has been removed down to bedrock. No groundwater plume existed beyond the immediate area (within 20 feet of the original well) based on the groundwater data collected.

As discussed in response to general comment 3, soil confirmatory samples were collected on the sides of the excavation near the bedrock surface and all met the TAGM for TCE. Therefore, the soil characterization is sufficient to characterize the residual source area contributions.

- **Comment 3:** Figure A-9, Appendix A, Temporary Well Construction Diagrams: Only two temporary monitoring wells were installed deeper than 15 feet, and both were located significantly upgradient of the area of concern. Why were only shallow monitoring wells installed on the remainder of the site, and how does this limitation affect the overall reliability of the conclusions regarding no further action for groundwater?
- **Response 3**: As specified in Section 2.2.1.1, all temporary wells were advanced to auger refusal, which represents the top of bedrock. As shown in Figure 3-5 in the RI report, the depth to bedrock is greater in the upgradient area. Therefore, the upgradient monitoring wells were installed deeper than the other wells. As all wells were advanced to bedrock, the samples provide sufficient support for the conclusion of no further action for groundwater at the site. No text change has been made to the document.
- **Comment 4: Test Pit Reports, Appendix C:** Soil screening for VOCs during test pit excavations was inconsistently conducted. Only two shallow (2-3 feet depth) soil samples were collected along an excavation wall approximately 45 feet in length. What criteria were used to establish the limit of the western excavation boundary?
- Response 4: Two soil samples were collected 3-4 ft bgs from the western excavation boundary. The samples were collected close to the excavation bottom (5 ft bgs.) where fractured shale mixed with brown till was met. As the VOC concentrations in the samples were all below the TAGMs, no excavation was conducted beyond the western boundary. In addition, groundwater results from TW12-6 (non-detect for all VOCs) located 30 feet from MW12-37 (the impacted well) confirm that TCE is not present in the soils at concentrations contributing to groundwater contamination in this area. The text of Section 2.2.3.3 has been expanded to clarify this point.
- **Comment 5: Appendix C**: There was no identification on the Test Pit Reports to correspond to the Test Pits identified on Figure 3-2. Revise accordingly.
- **Response 5:** Test Pit Reports are presented in Appendix C for the eastern excavation limit (TP813-5F), northern excavation limit (TP813-6F), southern excavation limit (TP813-7T and TP813-8T), western excavation limit (TP813-13F), and the Building northeast corner excavation limit (TP813-10F and TP813-11F), respectively. The IDs for the samples associated with locations remaining after the final phase of the investigation are presented in the Test Pit Reports. A table correlating the Test Pit location ID (e.g. TP813-11F) and the sample ID given in the log (e.g. 123702) has been added to Appendix C to clarify where samples were taken.

Response to Comments from the United States Environmental Protection Agency

Subject: Draft Final Supplemental RI Report for SEAD-12 Seneca Army Depot Romulus, New York

Comments Dated: June 9, 2006

Date of Comment Response: October 27, 2006

General Comments:

Comment 1: Both the New York State Department of Environmental Conservation (NYSDEC) and the U.S. Environmental Protection Agency (EPA) generated comments on the *Draft Supplemental Remedial Investigation for SEAD-12*, dated May 2005. These comments and responses to these comments are included in Appendix H of the *Draft Final Supplemental Remedial Investigation for SEAD-12* (Report). It appears that several issues have not yet been resolved. Although NYSDEC and EPA requested post-excavation groundwater sampling; the facility did not propose further groundwater sampling for two reasons, as stated on the first page of the response to EPA Comments:

- No exceedances of TCE were detected in wells other than MW12-37 during the Supplemental RI, and
- MW12-37 has been removed and all soils surrounding this well have been removed.

These reasons do not appear to provide adequate justification for not collecting post-excavation confirmatory groundwater samples. No evidence has been provided to show that the excavation was successful at remediating groundwater to below action levels. As noted on Page 4-2, confirmatory soil samples collected adjacent to the north side of the building, TP813-10F and TP-813-12F, exhibited trichloroethene (TCE) concentrations (4,800 ug/kg and 1,000 ug/kg, respectively) in excess of the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) soil action level of 700 ug/kg, which is the soil cleanup goal for the protection of groundwater quality. Since soil in these locations could not be removed without compromising the integrity of the building foundation, there is still potential for contaminated soil in this area to contribute to groundwater contamination.

It should also be noted that a majority of the groundwater data obtained during the temporary well installations reported detection limits above the NYSDEC Class GA Groundwater Standards. If these wells exhibited low levels of volatile organic compound (VOC) contamination, the analyses may not have detected the contamination, even if applicable standards were exceeded.

Furthermore, excavation is an intrusive activity that likely has altered the subsurface make-up of the area north of the building. The potential exists for previously immobile contaminants to have become mobile

Army's Response to USEPA Comments on Draft Final Supplemental RI Report for SEAD-12 Comments Dated June 9, 2006 Page 2 of 10

and migrated beyond the known areas of groundwater contamination. As previously stated, at least one additional groundwater monitoring well pair located in the immediate downgradient location of former monitoring well MW12-37 should be installed to further characterize the residual source area contributions, and determine the success of the removal action.

Response 1: Based on the review of the available data at the site, it is the Army's position that the isolated TCE contamination at the site has been removed and no additional sampling is needed. The arguments to support this proposal are as follows:

- 1. The highest concentrations of TCE in the soil have been removed. Soil having the highest TCE concentrations was co-located with the only exceedance of TCE in groundwater at MW12-37. Upon excavation of the soil in this area, there are two remaining TCE exceedances of TAGMs, both of which were found beneath the building footers and additional soil could not be removed without compromising the integrity of the building. The average TCE concentration remaining around the periphery of the building is 976 ppb (includes the two TAGM exceedances beneath the footer) which is 60 times lower than the concentration (65,000 ppb) found near the groundwater exceedance at MW12-37. The highest soil concentration was located 20 feet from the building at MW12-37 indicating that the source of the only groundwater exceedance in the area was not adjacent to or beneath the building. The TCE-impacted soil beneath the footer of the building is residual contamination and not the source of the groundwater impacts that prompted the investigation at Building 813/814.
- 2. Based on historic groundwater measurements in MW12-37 and the May/June 2004 round of water levels at the site, groundwater flow at the site is toward the drainage ditch. The bottom of the drainage ditch is competent shale and TCE was not detected on the downgradient (north side) of the drainage ditch. Groundwater between MW12-37 and the drainage ditch has not been impacted either. Wells located outside of the excavation area were within 20 to 30 feet of MW12-37 and no TCE was detected within these wells. [TW12-6 was 30 feet downgradient from MW12-37; TW12-24 was 20 feet upgradient from MW12-37 and TW12-26 was 45 feet downgradient from MW12-37.]
- 3. All soils present between MW12-37 and the ditch that exceeded TAGMs have been removed. No TCE was detected prior to the excavation downgradient of MW12-37; therefore, there is no reason that any would be detected after the excavation.
- 4. Excavation activities are not expected to significantly impact the mobility of contaminants. Groundwater results collected in 1999 and 2004 confirmed that migration of TCE is extremely limited. The strong affinity of TCE to soil is not expected to be changed by excavation. Although void space was created due to excavation, migration of TCE will not be enhanced due to the strong affinity of TCE to soil. Further, the excavation resulted in source area removal, which helped site cleanup and will prevent further contaminant

Army's Response to USEPA Comments on Draft Final Supplemental RI Report for SEAD-12 Comments Dated June 9, 2006 Page 3 of 10

migration, if any. To conclude, the excavation is not expected to change the mobility of the contaminants at the site and therefore not expected to result in migration to areas that were previously clean. Excavation and evaporation has reduced the source and will prevent future contaminant migration.

In summary, it is the Army's position that installing and monitoring wells downgradient of the MW12-37 location, would reveal what previous groundwater monitoring results have revealed: no groundwater exceedances exist in the area surrounding this well location. TCE has not been detected in samples from wells installed in the immediate vicinity, nor has it been detected in wells installed downgradient on the other side of the drainage ditch.

Detection limits obtained during the sampling effort are adequate to show that data reported as "non-detect" are below NYSDEC GA standards. Please refer to response to Specific Comment 8.

Comment 2: In the previous comments included in Appendix H, EPA also expressed concern that the final excavation limits appeared to be arbitrary, and were sometimes based upon data apparently collected from elevations above potential areas of significant impact (EPA General Comment 3). There still seems to be a disconnect between the facility's response and the depths at which confirmatory sidewall samples were collected. All of the confirmatory samples that define the western, northern, and eastern boundaries of the excavation were collected at 3-4 feet (ft) below ground surface (bgs) (samples TP813-13F, TP813-6F, and TP813-5F). Samples that reported exceedances of TAGM values were collected primarily at deeper depths (between 5 and 7.5 ft bgs). The reported exceedances appear to correlate to some extent with the depth of the potential source of the contamination, a pipe in which the invert of the pipe was found approximately 4 to 5 ft bgs. The shallower sidewall samples may not have been adequate to assess the horizontal extent of the contamination.

However, it is noted that the excavation was advanced to bedrock, and at the western boundary, the depth of the excavation was approximately 5 feet (ft) below ground surface (bgs). Therefore, a sidewall sample (TP813-13F) was collected at 3-4 ft bgs along the western boundary. It is also noted that this western boundary sample was guided by previous results at TW12-6. According to the well completion report for TW12-6, this well was advanced to at least 10 ft below grade to the depth of refusal, which is assumed to be the depth of bedrock. It is not clear why a deeper sidewall sample could not be collected along the western boundary if previous sampling at TW12-6 did not detect bedrock until 10 ft bgs. Please address this discrepancy, and provide additional clarification for the selection of sidewall sample depths on the western, northern, and eastern excavation boundaries. Additional investigations may be necessary in order to confirm that the contamination has been removed at the depths at which it was primarily detected.

Response 2: The Army does not believe that additional investigation is needed in this area. The excavation was advanced to bedrock. Along the edges, the excavation was sloped to prevent potential

Army's Response to USEPA Comments on Draft Final Supplemental RI Report for SEAD-12 Comments Dated June 9, 2006 Page 4 of 10

hazard. The depth of the side wall samples were collected at the half way point along the side slope of the excavation (3-4 feet bgs) as is typically the case. Groundwater levels in the area extend to 2 feet below ground surface which is well above the sample depths. Since TCE concentrations in the groundwater were well below the solubility of TCE in water (1,100 mg/L), the TCE is dissolved and would be evenly distributed within the groundwater column and in contact with soils up to 2 feet below the ground surface. The concentrations of TCE in soils would be similar at all depths since there is no DNAPL present. Since all samples were collected beneath this level, there is added confidence that any impact on the soils from contaminated groundwater would have been detected and sidewall samples are representative of existing conditions.

Comment 3: Both NYSDEC and EPA have indicated in their comments in Appendix H that the proposed deed restriction does not address the risk of potential vapor intrusion to indoor air. The facility has not proposed any additional investigations to assess the potential risk to future occupants of the building based on the assumption that there are no current or future occupants of the building. However, the planned future land use for SEAD-12 is institutional training, and unless this building is slated for demolition, and no buildings will be built in its place, there is potential for this building to be used and occupied in the future. EPA's OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (November 2002) and NYSDEC's Proposed Program Policy for Evaluating the Potential for Vapor Intrusion at Past, Current, and Future Sites (November 2004) should be reviewed for additional information and guidelines for assessing potential vapor intrusion.

Response 3: As discussed during the June 20th and 21st BCT meeting, the Army's position is that since there is no current or planned user of the building, the vapor intrusion exposure pathway is not complete and therefore there is no risk. Currently, the building is secured and there are no utilities. The Army proposes notification to future re-users regarding the potential for subslab contamination. Both NYSDEC and EPA have agreed that this is necessary. Such a notice would communicate the need to determine the risk of potential vapor intrusion to indoor air prior to future occupancy. Although the building could be used and occupied in the future based on the planned future land use (i.e., institutional training), chances are that the building may not be occupied by human receptors for significant amount of time.

This proposal is consistent with the NY State guidance. In NYSDOH's 2005 draft document "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" indicates in Section 3.2.7 (Current and Future Land Uses) that "Both current and future land uses are considered when evaluating the investigation data and determining appropriate actions for further investigation or measures to address exposures. For example, ...b. air sampling of a building may be needed based on the data evaluation. However, provisions may be put in place to defer sampling until occupancy of the building is expected;" Furthermore, NYSDEC's comments on this report dated July 24, 2006 support deferment of sampling and recommend that an environmental easement be utilized to place restriction on the building "stating that an

Army's Response to USEPA Comments on Draft Final Supplemental RI Report for SEAD-12 Comments Dated June 9, 2006 Page 5 of 10

investigation of vapor intrusion potential and indoor air quality must be performed before this building, or any newly constructed building, is occupied."

Although samples collected in 1997 showed soil vapor beneath the building, these results cannot be used to conclude that indoor air quality is unacceptable within the building. Additional testing would be needed to assess the quality of the indoor air. Current guidance suggests that the additional evaluations can be performed immediately prior to building occupation. The Army proposes that the future owner, who is making the decision to occupy the building, be responsible for the testing and any required mitigation, if necessary. Language stating this requirement would be placed in the deed upon transfer and would become part of the institutional controls remedial design.

Comment 4: All the wells installed as part of this investigation were overburden wells, advanced to the top of bedrock. The Report does not discuss the potential for contamination within the bedrock aquifer, and it appears that this has not been assessed. Given the physical and chemical properties of TCE (i.e., most notably, a greater density than water) and the TCE exceedances identified in MW12-37 which was screened at the base of the overburden aquifer, the potential for dissolved phase TCE to migrate vertically through the weathered bedrock and the secondary porosity of the more competent bedrock should be examined.

Response 4: Groundwater contamination does not extend into the competent bedrock at the site. This conclusion is supported by the following facts:

- Although TCE in the pure phase has a greater density than water, groundwater with dissolved TCE at the ppm levels should be neutrally buoyant and will not sink. This fact is supported by a paper titled "Downward Solute Plume Migration: Assessment, Significance, and Implications for Characterization and Implications for Characterization and Monitoring of "Diving Plumes" (API Soil and Groundwater Technical Task Force, 2006).
- A bedrock well (MW12-815) exists approximately 300 ft southwest of MW12-37. Two rounds of samples were collected in April and December 1999, respectively from deep water (i.e., 20 ft bgs.) at MW12-815. No VOCs, SVOCs, pesticides, or PCBs were detected in either round except that toluene was detected in one round at 3.1 ug/L (below the GA Standard of 5 ug/L) and benzo(g,h,i)perylene was detected in one round at 0.052 ug/L (below the reporting limit of 1 ug/L). Several metals were detected in the samples collected from MW12-815 but all metal concentrations were below the GA Standards except that iron concentration detected in one round was slightly above the GA Standard (355 ug/L vs. 300 ug/L) but was considered consistent with Seneca background (a maximum concentration of 69,400 ug/L was observed in the Seneca background data set).

Army's Response to USEPA Comments on Draft Final Supplemental RI Report for SEAD-12 Comments Dated June 9, 2006 Page 6 of 10

- Excavation of soil was extended to competent bedrock. That is, contamination in weathered bedrock, if any, would have been excavated during the SRI.
- The competent bedrock at SEDA generally has very low yield. There has been no connection found at SEDA between contaminant concentrations in the overburden and competent bedrock.

In summary, the TCE present in the groundwater at this site is dissolved and has no tendency to sink; no TCE or biodegradation byproducts were detected in the deep groundwater samples collected approximately 300 ft southwest of MW12-37; the SRI excavation was extended to competent bedrock; and the competent bedrock at SEDA has very low yield. All these support the Army's position that contamination within the bedrock aquifer is not expected. The above discussion has been included in Section 3.

SPECIFIC COMMENTS

Comment 1: Executive Summary, Page ES-1. The second paragraph notes that an abandoned sewer pipe exiting the building was identified as a potential source of the TCE contamination in the vicinity of monitoring well MW12-37. Section 2.2.3.2 (Phase II Test Pitting) and Section 2.2.3.3 (Phase III Test Pitting) note observations of both a 6-inch clay sewer pipe, appearing to run north from the building, and a 4-inch ductile iron pipe, found extending from the building's foundation. Please clarify which pipe, or both of them, is the suspected source of contamination.

Response 1: There is no evidence to indicate that either the 6-inch clay sewer pipe, or the 4-inch ductile iron pipe is the potential source of the TCE contamination in the vicinity of monitoring well MW12-37. The field observations and analytical results do not confirm or rule out the likelihood of either one being the potential source. The executive summary has been revised to include reference of both pipes and to remove the reference of the sewer pipe as the suspected source of contamination.

Comment 2: Section 1.3: Site Physical Characteristics, Page 1-3. This section of the Report describes the site physical characteristics, including topography; however, a topographic map of SEAD-12 has not been provided in the Report. A topographic map is a useful visual aid to support a discussion of surface elevation. Please provide a topographic map of the SEAD-12 area.

Response 2: Acknowledged. A topographic map of the SEAD-12 area is shown in the Final Remedial Investigation Report (Figure 1-4). This Figure has been added to the SRI report as Figure 1-4.

Comment 3: Section 1.3: Site Physical Characteristics, Page 1-3. Since a specific section for hydrogeological characteristics is not included in this Report, this section on site physical characteristics may be appropriate for a discussion of the groundwater flow direction at SEAD-12. Although Figures 2-1 and 2-2 of this Report do include groundwater contours from data collected in 1999, the Report has not

Army's Response to USEPA Comments on Draft Final Supplemental RI Report for SEAD-12 Comments Dated June 9, 2006 Page 7 of 10

explicitly discussed groundwater flow direction and how it has been calculated. It is also not clear whether more recent groundwater elevation measurements may have been collected to refine the contours shown on Figures 2-1 and 2-2, perhaps using data from the temporary well installations. Please revise the Report to include a discussion of the groundwater flow direction, and indicate whether any post-1999 groundwater elevation measurements have been collected.

Response 3: Acknowledged. Groundwater elevations recorded for the temporary wells in 2004 have been included on **Figure 2-3** in the SRI report. A discussion of the groundwater flow has been included in Section 1.3 (Site Physical Characteristics).

Comment 4: Section 2.2.1.2: Groundwater Sampling, Page 2-2. The second paragraph notes that wells were sampled using low-flow procedures and "in general, each well was purged and sampled using a bladder pump." According to the groundwater sampling records in Appendix B, temporary well TW12-9 could not be sampled via low-flow procedures since there was not enough water in the well. Instead, the well was sampled using a bailer. Deviations from proposed sampling techniques should be presented within the text of the Report. The Report should also discuss the potential effects of any deviations on the reported results, such as potential loss of volatile compounds. Please revise Section 2.2.1.2 to include a discussion of the sampling procedures used at temporary well TW12-9.

Response 4: Acknowledged. Section 2.2.1.2 has been revised to include discussion of the sampling procedures used at temporary well TW12-9.

Comment 5: Section 2.2.1.3: Sample Analysis, Page 2-3. It is noted that attempts were made to identify and quantify 10 volatile tentatively identified compounds (TIC) of greatest concentrations, but the outcome of this evaluation does not appear to have been provided in this section or Section 3.0. Please indicate whether any of the volatile TICs were identified or quantified.

Response 5: Acknowledged. No volatile TICs were identified in any groundwater samples collected in 2004. This statement has been included in Section 3.1.

Comment 6: Section 2.2.2: Surface Water/Ditch Soil Investigation, Page 2-3. The description of the surface water/ditch soil samples provided in this section does not appear to correlate with the sample locations shown on Figure 2-3. For example, it is noted that sample SW/SD12-69 was cited to reexamine RI sample location SW/SD12-30. According to Figure 2-3 (Temporary Well and Surface Water/Ditch Soil Sample Locations), sample SW/SD12-69 is shown in the northern portion of the ditch, just west of temporary well sample location TW12-7. This location appears to be located nearly 300 feet away from sample SW/SD12-30, which is shown south of buildings 813 and 814 on Figure 2-1 (TCE Detected During RI). It is also noted in the text that surface water samples SW12-72 and 73 were both collected to the northwest of the elevated TCE detection at MW12-37. Figure 2-3 shows surface water

Army's Response to USEPA Comments on Draft Final Supplemental RI Report for SEAD-12 Comments Dated June 9, 2006 Page 8 of 10

samples SW12-72 and 73 more than 200 feet south of MW12-37. Please revise Section 2.2.2 so that the sample identifications used in the description correlate with the sample identifications shown on Figure 2-3.

Response 6: Acknowledged. The surface water/ditch soil sample locations were not listed correctly in Figure 2-3; the correct locations were presented in Figure 3-1. The description of the surface water/ditch soil samples provided in Section 2.2.2 matches the locations shown in Figure 3-1. Figure 2-3 has been revised to reflect the correct surface water/ditch soil sample locations and to match the Section 2.2.2 description.

Comment 7: Section 2.2.3.2: Phase II Testing Pitting – November 10 and 11, 2004, Page 2-5. Soil sample TP813-4F was collected during test pitting activities, but this sample does not appear to be shown on any figures. Figure 2-4 (Sample Locations from Test Pit at Buildings 813 and 814) should be updated to show the location of TP813-4F.

Response 7: Acknowledged. Figure 2-4 has been updated to show location TP813-4.

Comment 8: Section 3.1: Groundwater Results, Page 3-1. The Report notes that there were no exceedances of NYSDEC Class GA Groundwater Standards in the groundwater samples collected from the Phase I temporary wells. However, Table 3-1 and Appendix E also show that the detection limits for a majority of the VOCs sampled were greater than the applicable groundwater standards or action levels. The detection limit for TCE was 10 ug/l whereas the groundwater standard is only 5 ug/l. The detection limit for vinyl chloride, a daughter product of TCE, was also 10 ug/l, although the groundwater standard is 2 ug/l. Please provide a discussion of how this may affect an interpretation of the results.

Response 8: The groundwater results were reported by Chemtech (Mountainside, NJ). For this project, the NYSDEC ASP CLP format was required. Using this format the reporting limit for TCE is 10 ug/L. However, the laboratory's Method Detection Limit (MDL) for TCE was 0.50 ug/L. An analyte was reported as a detect or as a nondect based on whether or not the concentration was above the laboratory's MDL. All values less than the MDL are reported U (Undetected) and all values between the MDL and Reporting limit are reported as J (Estimated). Therefore, any reported values of 10 ug/L "U" were actually detected below 0.5 ug/L, well below the NYSDEC GA standard. Anything detected between 0.5 ug/L and 10 ug/L would be reported at the value with a "J".

Based on the above discussion, the elevated reporting limits (compared to the NYSDEC GA Standards) do not affect the demonstration of groundwater results compliance with NYSDEC GA Standards. The above discussion has been included in Section 3.1. In addition, a copy of the laboratory MDLs associated with the groundwater samples has been included in Appendix F of the SRI report.

Army's Response to USEPA Comments on Draft Final Supplemental RI Report for SEAD-12 Comments Dated June 9, 2006 Page 9 of 10

Comment 9: Section 3.1: Groundwater Results, Page 3-1. Low concentrations of TCE were detected in temporary wells TW12-1 and TW12-3. Elevated TCE concentrations were also detected in this area during the soil gas survey, particularly in the vicinity of SG12-147 (as shown on Figure 1-4). Please indicate whether a source for this contamination has been identified, particularly since it appears to be located upgradient of the contamination identified north of the buildings near well MW12-37.

Response 9: There is no evidence of potential source associated with the acceptable TCE concentrations detected in TW12-1 and TW12-3 based on the available data. The lines of evidence supporting this statement are summarized below.

- The TCE concentrations detected in TW12-1 and TW12-3 were below the reporting limits and therefore were qualified by the laboratory as J (estimated). The concentrations were below the NYSDEC GA Standard of 5 ug/L.
- TCE or degradation byproduct was not detected in TW12-22, a temporary well approximately 25 ft south of TW12-1.
- TCE or degradation byproduct was not detected in SW12-69 (within 20 ft from TW12-1) or SW12-70 (approximately 30 ft from TW12-3).
- TCE or degradation byproduct was not detected in adjacent wells (within or at 100 ft from TW12-1 or TW12-2) including TW12-23, MW12-39, TW12-4, and TW12-5.
- According to NYSDOH (2005), "Soil vapor results may not indicate a traditional plume-like pattern of contamination (as is often described for groundwater). Rather, the nature and extent of contamination may follow a "hit and miss" pattern." As a result, soil vapor results can only be used as a screening tool for contamination characterization.

Comment 10: Section 3.3.2: Stockpiles, Page 3-4. After re-sampling Phase II and Phase III stockpiles in July and November 2005, it was determined that the samples from the Phase II stockpile and the Phase IIIA stockpiles did not contain TCE above action levels. Therefore, it is noted that these soils will be backfilled into the excavation. The text refers one to Figure 3-3 for the locations of the random grid samples that were collected within the Phase II stockpile, but Figure 3-3 does not show the locations of these samples in relation to samples previously collected in 2004. It is not clear whether concentrations have decreased due to natural processes over the past year or whether samples were collected at completely different locations. Please address this issue prior to backfilling the excavation with the Phase II and IIIA stockpile soil. Additionally, please indicate whether there was still any indication of visual impacts to the Phase II stockpile soil, and if so, whether any samples were collected in areas that were visually impacted.

Response 10: Figure 3-3 presents the location of the stockpiles from different phases (as versus the location of specific sampling point). Stockpile samples were generally collected from random grid locations within the stockpiles. For the Phase IIIB stockpiles, one sample and a field duplicate were collected in February 2006 at the same spot where TCE concentration of 22,000 µg/Kg was detected in

Army's Response to USEPA Comments on Draft Final Supplemental RI Report for SEAD-12 Comments Dated June 9, 2006 Page 10 of 10

July 2005 and the results indicated that the concentrations decreased due to natural processes over the past year.

Some Phase II stockpile soils were collected from areas that were visually impacted including soils near debris (e.g. rusted metal, drain pipe). Representative samples from this stockpile were collected and analyzed and results indicate that the soil is acceptable for backfill. The section has been revised to reflect the above discussion.