

U.S. ARMY CORPS OF ENGINEERS

HUNTSVILLE DIVISION

TRIAL BURN PLAN

DEACTIVATION FURNACE

SENECA ARMY DEPOT ROMULUS, NEW YORK

VOLUME I OF 2

PREPARED FOR

U.S. ARMY CORPS OF ENGINEERS HUNTSVILLE, ALABAMA

PREPARED BY

ATTACHMENT 1

RESPONSE TO EPA REGION II COMMENTS DATED MARCH 31, 1992

SENECA ARMY DEPOT (SEAD) EPA ID #NY0213820830 TRIAL BURN PLAN COMMENT RESPONSES

Comment #1

§2.3.5: All practical steps must be taken to prevent the opening of the baghouse bypass. The steps should include redundant thermocouples. For example, all waste feed must be stopped and air to coolers increased before the bag house is bypassed. Please include a section describing the actions to prevent this bypass. Please be advised that any time that the baghouse is by passed or the furnace is not within the permitted operating windows while there is waste in the kiln will be considered violations of the permit.

Response #1

All practical steps will be taken to prevent the opening of the baghouse bypass. The only time the baghouse will be bypassed is if there is a system failure which causes a fire in the baghouse. If thermocouples indicate a temperature increase above 600°F the air flowrate will be increased to the air coolers and the waste feed to the deactivation furnace will be shut off. If for any reason the baghouse is bypassed the AWFSO System stops all waste feed. During start up the baghouse is bypassed, but only prior to the feeding of waste.

Comment #2

Table 4-2: What munitions contain hexachlorobenzene? Unless a Class 1 POHC is included in the trial burn, no munitions containing Class 1 POHCs will be permitted in the furnace.

Response #2

Munitions Nos. 201 and 202 contain hexachlorobenzene (HCB). HCB which is a class 1 substance will be burned as a POHC during the trial burn.

Comment #3

§6.2.3: The most recent version of the metals train in the BIF regulations. This method is acceptable for lead.

Response #3

The most recent version of the metals train (is) in the BIF regulations will be used. (Section 6.2.3 is now 7.2.3)

Comment #4 Page 7-5: The AWFSO for kiln pressure should be checked at - 0.08, not positive pressure. Response #4 The text has been corrected accordingly. (Page 7-5 is now 8-5) Comment #5 Table 8-1: December and January are not great months to do stack testing. Please try to accelerate the testing or take appropriate steps to protect sampling equipment for the cold temperatures. Table 8-1 has been revised and is now Table 9-1. It is expected that the Trial Response #5 Burn will begin no earlier than March of 1993. If required, precautions will be taken to protect sampling equipment from inclement weather. Comment #6 Page F-7: This approval was given for nitroglycerin and only approved for dinitrotoluene to eliminate the need for two sampling trains. Since Seneca Army Depot will be measuring these two materials in separate tests, MM5 train should be used for dinitrotoluene. Response #6 Page F-7. The MM5 train will be used for dinitrotoluene (DNT). Comment #7 Page M-19, Response 54: It is never to late to correct mistakes. Response #7 Mistakes will be corrected. Comment #8 Page M-21, Response 60: Toluene is not mentioned on page F-3, nor is there a Section (4) in Appendix F. Response #8 Toluene is no longer a POHC for the trial burn. All references to toluene have

been removed.

Comment #9 Chemists review comments on QA Plans by Seneca Army Depot (Romulus) for

Applicability to Seneca's Upcoming Trial Burn.

Response #9

The QA/QC Plan for the Trial Burn was completely rewritten. All of EPA's concerns as put forward in the comments have been addressed in the new document.

ATTACHMENT 2

RESPONSE TO DRAFT NYSDEC COMMENTS
DATED FEBRUARY 3, 1991

SENECA ARMY DEPOT (SEAD) EPA ID# NY0213820830 TRIAL BURN PLAN COMMENT RESPONSES

1.0 INTRODUCTION

Comment #1

Page 1-1, second paragraph: the regulations and EPA and NYSDEC guidance require certain performance requirements in addition to those standards described on page 1-1. The Trial Burn (TB) must demonstrate that emissions of HCl, metals, and products of incomplete combustion (PICS) do not exceed acceptable limits. In order to demonstrate compliance with all applicable regulations and guidance, SEAD must revise the list of performance standards to include testing for HCl emissions, a complete metal analysis, and a full scale priority pollutant scan to analyze all organic and inorganic priority pollutants. Enclosure III contains a listing of metals of major concern required to be analyzed (others may be required) and Enclosure IV lists the 129 priority pollutants that are part of the EPA priority pollutant analytical scan.

Response #1

The Trial Burn Plan has been completely rewritten to demonstrate compliance with all State and Federal ambient air quality standards and guidance. SEAD followed State (Air Guide-1) and Federal guidance (Volume IV of the incineration series entitled, "Guidance on Metals and Hydrogen Chloride Controls for Hazardous Waste Incinerator") in setting waste feed rates, so that metals and potentially hazardous organic compounds will be controlled.

Comment #2

In addition, in light of the chlorine content in many of the waste streams, SEAD must also add dioxin/furan testing as part of the TB performance requirements. Please revise Page 1-1.

Response #2

Dioxin and furans have been added to the list of parameters to be tested in a trial burn. Performance requirements for dioxin and furans will be met. The text has been revised to reflect this.

Document: SEADTB2

Submittal: Final

Comment #3

SEAD must revise the application to provide up-to-date engineering drawings, making sure all drawings represent the furnace at SEAD. It is the responsibility of the applicant to provide all necessary details required to demonstrate compliance.

Response #3

Engineering drawings of the deactivation furnace were provided in the Hazardous Waste Management Facilities RCRA Part B permit application. In some cases the drawings are labeled Toelle Army Depot. The Deactivation Furance located at Toelle is identical to that at Seneca Army Depot in every respect but one. The unit at SEAD is composed of the exact same components in the exact same arrangement, except that the SEAD unit is a mirror image of that located at Toelle. This has no bearing on the system's performance or the ability to of an operator to tell where a valve, controller, etc. is. In all cases the most accurate up to date drawings and figures have been presented.

Drawings not previously available for the cyclone and the baghouse have been included in the Trial Burn Plan (see map pockets 1 and 2).

2.0 **ENGINEERING DESCRIPTION**

2.2 Description of Major Components

Comment #4

Throughout the application, SEAD has maintained that fugitive emissions will be controlled by keeping the kiln pressure below atmospheric. This does not appear to be the case. The model 1236 APE Rotary Kiln Incinerator is commonly referred to as a "popping furnace" namely because of the popping sound that occurs periodically due to sudden explosions of munitions within the kiln. This in turn causes a sudden increase in pressure inside the kiln above atmospheric pressure. Fugitive emissions from the combustion zone must be controlled by keeping the combustion zone totally sealed against fugitive emissions (which is virtually impossible), maintaining a combustion zone pressure lower than that of atmospheric, or by some equivalent alternate means of control. If SEAD still maintains that

fugitive emissions will be controlled through negative pressure, describe how, where, and with what instrument that this pressure will be measured. This pressure should be measured at the worst case location (i.e. the location of highest pressure). This may require measurement at several locations. Operation of the kiln above-0.08 in. wc (below atmosphere) with munitions in the combustion chamber will not be permitted. In addition, please provide information on how the shroud will work to prevent fugitive emissions from the discharge end of the conveyor (i.e., shrouding). This area must be enclosed with the exhaust emissions from the enclosure entering an appropriate air pollution control unit prior to discharge to the environment.

Document: SEADTB2

Submittal: Final

Response #4

The kiln pressure is controlled by a pressure control loop (P-1201) as shown on SK 88-07 and described in the text.

The rotating kiln is enclosed by a sealed shroud which is kept at negative pressure. The kiln is also maintained under negative pressure in most circumstances. It is likely that when munitions explode in the kiln, positive pressure is created and fugitive emissions may be generated. If fugitive emissions were released from flanged sections of the kiln they would be captured by the surrounding shroud. There is also a shroud above the feed conveyor.

SEAD proposes to test for fugitive particulate emissions during the trial burn. If they are found to be a problem then operational or physical changes will be implemented and described in the deactivation furnace permit application.

Comment #5

The last paragraph regarding the Automatic Waste Feed Monitoring System (AWFMS) must reference the map from the application labelled SK89-09-01. Figure 2.2 does not provide the necessary details. In addition, map SK89-09-01 references several other maps corresponding to the same series (i.e., SK89-09-02, SK89-09-03, etc...). None of these maps were found. Please include them with the revised application.

Response #5

The paragraph has been revised to reference SK89-09-01. SK89-09-01 through 20 were included in the 6 NYCRR Part 373 Permit Application.

Comment #6

Annex A consists of a series of maps showing engineering drawing details pertaining to the APE 1236 Rotary Kiln Incinerator. The maps are reduced copies of the original engineering drawing provided and are, for the most part, no longer readable. In addition, some represent the deactivation furnace at Toele Army Depot (TEAD). Please omit Annex A from the TBP and present all engineering details by referencing the original maps provided with the application. Be sure to revise this throughout the entire TBP.

Response #6

Annex A was deleted. Most appropriate drawings that relate to the trial burn were included in the 6 NYCRR Part 373 Permit Application. Additional drawings are included in this submittal.

Comment #7

The full size engineering drawing ACT-377-200 as for the burner and blower assembly was not provided with the application. The reduced drawing in Annex A is unclear. Please provide the full size drawing with the revised application.

Response #7

A full size drawing were provided as part of the NYCRR Part 373 permit application.

Comment #8

The minimum kiln temperature is stated to be 300 degrees Fahrenheit on page 2-6 of the Trial Burn Plan. Several munitions listed in Table 3-1 give the minimum kiln temperature to be 250 degrees Fahrenheit. Please revise where appropriate.

Response #8

Table 3-1 (now Table 4-1) has been revised and no longer contains minimum kiln temperature data. Kiln operational data is now included in Appendix N. The reference to temperature on page 2-6 (now page 2-8) has been changed to $250^{\circ}F$.

Comment #9

Page 2-7; The information provided on the kiln speed versus the kiln residence time is based upon testing conducted at TEAD. Are the

Response #9

Comment #10

Response #10

Comment #11

Response #11

Comment #12

Response #12

Comment #13

Response #13

of Appendix O.

Document: SEADTB2 Submittal: Final

dimensions of the rotary kiln at SEAD exactly the same as the rotary kiln at Toele? Please revise this information to omit reference to TEAD and making any necessary changes to the table provided to correspond to the rotary kiln incinerator at SEAD.
TEAD's deactivation furnace is identical to SEAD's. The reference has been revised to note this similarity.
Details of the afterburner are shown on the Southern Technologies drawing 11268-10-3, not 11268-10-1. Please revise.
Details of the afterburner are shown on 11268-10-1 not 11268-10-3. 10-3 shows elevations not details. Both drawings were included in the 6 NYCRR Part 373 Permit Application.
Describe in the text of this section the purpose of the FSG panel. What do the letters "FSG" stand for?
FSG stands for Flame Safeguard Panel. A description of the function of the FSG is now included in the text (see page 2-11).
Please indicate how and where the high temperature and low temperature gas cooler exit temperatures will be measured.
High and low temperature gas cooler temperature will be measured at the control panel. The thermocouples and control loops are described in Section 2. The locations of the thermocouples are shown in drawing SK89-02-02, which is located in Map Pocket 5 of Appendix O.
Please provide the engineering drawing showing the design details of the cyclone.
The engineering drawing showing the design details of the cyclone are

shown in drawing No. BC86-510-1, which is located in map pocket 1

Comment #14

Please provide the engineering drawing showing the design details of the baghouse.

Response #14

The engineering drawing showing the design details of the baghouse are shown in drawing No. N741382, which is located in map pocket 2 of Appendix O.

Comment #15

Describe at what differential pressure the jet-pulse cleaning system in the baghouse would begin to operate.

Response #15

The jet pulse cleaning system operates with variable timer and duration controls and is not based on differential pressure (dp). Differential pressure, however is monitored and alarmed. Baghouse dp is maintained between 2" and 6" of water. Less than 2" would indicate a broken bag condition while greater than 6" indicates excessive fouling. This is described in Section 2.1.7.

Comment #16

Describe at what temperature at the baghouse exit would the control panel alarm sound.

Response #16

The baghouse high temperature alarm is set for 600°F, a fire condition. The temperature of the baghouse is controlled by the low temperature gas cooler, which maintains a gas exit temperature of 350°F. This results in a Baghouse temperature of approximately 300°F. If the gas temperature leaving the low temperature heat exchanger exceeds 350°F the alarm will sound.

Comment #17

Page 2-14; top of page: "...waste feed can not be fed if baghouse is bypassed? How is this compatible with the "c" which says baghouse will be bypassed during start-up? Is non-hazardous fuel fed during start-up? Please address.

Response #17

Section 2.4 describes start-up procedures. The baghouse is only bypassed prior to waste feed. During startup, No. 2 fuel oil is used until the deactivation furnace reaches its operations temperature, at

that point the baghouse is brought on-line, and then and only then, is waste feed to the furnace.

Document: SEADTB2

Submittal: Final

2.3 Instrumentation

Comment #18

The continuous emissions monitoring system (CEMS) must be installed and operational prior to conducting the trial burn. Verification of operational status should include completion of the manufacturer's written requirements and recommendations for installation, operation, and calibration of the device. In addition, include as part of the Trial Burn Plan the protocol for the 168 hour Performance Specification Test (PST) for the CO and O₂ monitors. The PST requires relative accuracy (RA) tests, calibration error (EC) tests, calibration drift (CD) tests, and response time (RT) tests to be conducted to determine conformance of the CEMs with the specification. These procedures are outlined in Appendices B and F respectively of 40 CFR 60. Please indicate on the test schedule when these performance tests are planned. A protocol for the PST must be submitted as a component of the TBP at least 60 days before the scheduled date of monitor performance testing. The CEMS must meet all the requirements stated in the Methods Manual for Compliance with the BIF Regulations, EPA/530-SW-91-010 (NTIS No. PB-91-120-006) dated December 1990. Be sure to list these activities on the Trial Burn schedule in Table 8.1. Keep in mind the tests are to be complete 2 weeks prior to the trial burn with a written result of the results prepared and submitted to the persons listed below for written approval prior to the trial burn.

> Mrs. Ann Zowner USEPA Building 10, MS 103 2890 Woodbridge Avenue Edison, New Jersey 08837-3679

Ms. Denise Gurtler
NYSDEC
Division of Hazardous Substance Regulation
50 Wolf Road
Albany, New York 12233-7275

Mr. Robert Kerr NYSDEC Division of Air Resources 50 Wolf Road Albany, New York 12233-3257

Response #18

The PST is included in Appendix I.

Comment #19

Include a QA/QC Plan for the operation of the continuous emission monitors during the trial burn period. It is the responsibility of the owner/operator to assure proper calibration, maintenance, and operation of the CEM on a continual basis. Include guidelines on daily calibration of monitors, in addition to guidelines on the daily inspection of calibration data, the recording system, the central panel warning lights, and sample transport/interface systems (e.g., flowmeters, filters, etc...), as appropriate.

Response #19

A complete QA/QC Plan is included in Appendix G.

Comment #20

Page 2-16: The CO monitor must have dual ranges, 0-500 ppm and 0-3000 ppm. This will ensure that spikes up to 3000 ppm are included in the rolling average. Please include the range information in the TBP.

Response #20

The CO monitor is a dual range device with a 0-200 ppm and a 0-3000 ppm range. The text has been revised accordingly (see page 2-17).

Comment #21

Page 2-17, Paragraph 2; Reference engineering drawing SK88-07 in the description of the process controllers.

Response #21

The reference has been included (see paragraph 3 of page 2-18).

Comment #22

For clarity, the subsection regarding the AWFMS should be labelled 2.3.3 instead of 2.3.2. Please correct.

Response #22

The text has been revised accordingly. The section is now 2.2.3.

Comment #23

Page 2-20, Table 2.1: The maximum kiln pressure must be changed to -0.08 in. wc (below atmospheric).

Response #23

The table has been revised accordingly.

Comment #24

Page 2-20, Table 2.1, Note 1: The maximum value for the rolling average of CO corrected for O_2 on a dry basis will not necessarily be 100 ppm. The limit set in the permit will be based upon the result of the TB. Please revise Table 2.1 noting that the maximum value for CO regarding Automatic Waste Feed Shut Off (AWFSO) will be a permit limit. In addition, revise Note 1 to read "Waste is shut-off when the rolling average value of corrected CO is above the limit set in the permit. The waste feed can only be restarted when the rolling average drops below the permit level value."

Response #24

The table has been revised accordingly.

Comment #25

Page 2-21, Table 2.2: The status of the Baghouse Bypass must be recorded.

Response #25

The baghouse status (on-line versus standby) is recorded in the internal memory of computer control system. This information is not normally printed but can be easily retrieved if required.

2.4 Operating Procedures

Comment #26

Page 2-23, Section 2.4.3: A separate section must be included for the emergency AWFSO procedures. This section seems to imply that the procedures listed here happen simultaneously if the AWFSO systems trips the waste feed. This should not be the case as, at a minimum, kiln and afterburner temperature must be maintained until all waste is out of the kiln. When waste feed is to be restarted, it must always be restarted by the operator, not automatically. In another separate section, those events that will cause the opening of the baghouse bypass must be discussed.

Response #26

Section 2.3.3 has been revised to clarify shutdown procedures. A new separate section which discusses baghouse bypass scenarios is included in the TBP (see section 2.3.5).

Comment #27

Please provide details on the inspection of the scrap metal and residue from the demilitarization operation used to determine whether or not reprocessing is required. Discuss the conditions under which reprocessing will occur. SEAD should evaluate and report on the "effectiveness" of the process for the TB and may need to consider changes in operating procedures such as an increase in combustion chamber temperature or greater residence time.

Response #27

For the purpose of the trial burn, scrap metal, residue, ash from the baghouse, ash from the gas coolers and all other waste solids will be treated as a hazardous waste. Please see Section C of the RCRA Part B Subpart X report for additional information. Feedrates will be adjusted to maximize "effectiveness."

3.0 WASTE CHARACTERIZATION

Comment #28

Please reference Table 3.4, Appendix B of the Storage/Incinerator portion of the application in this section.

Munitions that are not characterized can not be incinerated. This includes munitions for which the composition, ash content, chlorine content, metal content, and feedrate has not yet been determined. It would be in SEAD's best interest to determine this information prior to the TB in order for appropriate limits to be established. On the other hand, SEAD could design the TB to have a broad enough scope to handle a variety of waste munition streams. Keep this information in mind when considering the affect of any future waste streams. In addition, it may also be necessary to revise the feed rates (i.e. how many of each will be burned per unit time) established in Table 3.4, Appendix B of the Storage/Incinerator portion of the application.

Response #28

SEAD will not burn any waste which is not characterized. Tables 3-1, 3-2, and 3-3 have been revised to remove uncharacterized wastes.

These tables have been combined and are now represented by Table 4-5. Table 3.4, Appendix B of the Storage/Incinerator portion of the application will be updated after the trial burn establishes allowable feedrates.

Comment #29

Table 3-1; The chlorine content per pound of munition M66A2 is incorrect. Please correct table.

Response #29

The table has been revised accordingly. As described previously Table 3-1 is now Table 4-5.

Comment #30

Table 3-1; The Department has the authority to establish permit requirements necessary to protect human health and the environment. This includes controls on metal emissions and HCl not to exceed health-based levels consistent with EPA "Guidance on Metals and HCl Controls for Hazardous Waste Incinerators", August 1989. SEAD must provide the Department with metal feed rate data (e.g., lb metal/lb munition feed) in order to demonstrate compliance with all NYS hazardous waste and air regulations, State Air Guide-1 (proposed 1991 edition), as well as all applicable state and EPA guidance. Please revise Table C-1 to reflect this change. Keep in mind that determination of compliance with both the metal and HCl standards considers such factors as stack height and other release specifications, as well as the effect of variability in meteorology and terrain (updated USGS map required). Include this information in the appropriate sections of the TBP.

Response #30

It should be noted that the trial burn plan has been completely rewritten. The trial burn plan now reflects the guidance of EPA's Volume IV of the incineration guidance series and NYSDEC's Air Guide-1. Seneca Army Depot performed site specific air modeling and reduced waste feed rates to meet the most stringent State and Federal standards and guidance. SEAD also performed Tier I/II and Tier III analysis. Please see sections 3,4,5, and 6 of the report as well as Appendices J and M. A topographic site map locating the deactivation furnace is located in map pocket 3 of Appendix O. The four 7.5 minute USGS topo maps which depict the area in the vicinity of the

furnace are located in map pocket 4 of Appendix O. Metal feed rates are included in Appendix C-1 and have been summarized in Table 4-5.

Comment #31

Table C-1 in Annex C of the TBP contains a listing of the composition of the various munitions incinerated as SEAD. The data (i.e., munition name, numbers of munition, etc..) presented do not correspond to the data presented in Tables A-1, A-2, and A-3 of Appendix A of the incinerator/storage portion of the application. Please explain and revise accordingly.

Response #31

Appendix A of the incinerator/storage portion of the application and Appendix C of the trial burn will be revised to correlate. Annex C is now Appendix C.

Comment #32

Table 3-4 lists munitions components that SEAD has proposed to occasionally burn. SEAD must provide information on feed rates, ash, chlorine, and metal content for those materials that were not included in Annex C. SEAD must also revise the list to eliminate the use of trade names.

Response #32

Table 3-4 has been deleted. No uncharacterized munitions will be destroyed in the deactivation furnace.

Comment #33

It appears several of the waste streams would be potential producers of high metals, ash, and/or chlorine emissions, and these cases are not necessarily covered by the proposed trial burn. Lead compounds and other metals pose problems, as well as chlorine compounds, such as hexachlorobenzene, polyvinylchloride, chlorates and perchlorates. In addition, sulfur and nitrogen present in the waste pose problems. How will the sulfur dioxide emissions be managed in the case of aluminum or antimony trisulfide, for example, and for sulfur? How will nitrogen dioxide emissions be managed in light of significant amounts of nitrated compounds in the waste? These cases are not adequately covered in the trial burn plan. Please revise.

Response #33

As stated previously, the trial burn has been completely rewritten to address State and Federal requirements. Since the deactivation

furnace has no APC equipment capable of removing SO_x or NO_x , waste feed rates have been reduced to limit emissions to that which is allowable (see Section 4.0). Waste feed rates to the incinerator have been reduced in all cases to meet ambient air quality requirements.

NO, emissions will be measured during each of the test conducted as

Document: SEADTB2

Submittal: Final

part of the trial burn.

4.0 TRIAL BURN WASTE SELECTION

Page 4-1, Section 4.1 should reflect the concerns described in comments 1.0 and 3.0, comments 4 and 7 regarding HCI and metal emissions.

4.2 POHC and Waste Feed Item Selection

Comment #34

SEAD has selected two Principle Organic Hazardous Constituents (POHCs) to be measured during the Trial Burn in the determination of the Destruction and Removal Efficiency (DRE) based solely upon heats of combustion. The two compounds [nitroglycerine (NG) and dinitrotoluene (DNT)] have lower heats of combustion compared to the other available candidates, but relatively high heats of combustion in terms of the Appendix 23 constituents listed in Part 373-1. Based upon experimental data conducted at the University of Dayton Research Institute (UDRI) regarding the development of an appropriate ranking system the selection of just NG and DNT as the most difficult to incinerate based solely on heats of combustion may not be appropriate. The selection of the POHC's should encompass both heat of combustion and low oxygen thermal stability hierarchies. Therefore, SEAD should select a POHC from the thermal stability at low oxygen (TSLoO₂) index presented in EPA "Guidance on Setting Permit Conditions and Reporting Trial Burn Results", January 1989. One of the compounds found in the munitions, hexachlorobenzene, is rated as one of the compounds most difficult to destroy, Class 1. If Seneca Army Depot desires to treat wastes in this class, or any class, then SEAD must demonstrate during the trial burn the incinerator's ability to destroy a constituent contained in that particular class or higher.

Response #34

SEAD utilized both the low heat of combustion method and the Dayton method in selecting POHCs for the trial burn.

Comment #35

Metals emissions must be determined. During the trial burn, the kiln and afterburner must be operated in separate runs at both their minimum and maximum temperatures. A minimum to be established for the organics and a maximum to be established for metals. In addition, the waste feed must contain the maximum amounts of POHCs, metals and maximum organo-metallics.

Response #35

The trial burn protocol has been revised so that metals are included. The deactivation furnace will be tested under worst case conditions (i.e. max temperature for metals and low temperature for organics).

Comment #36

Will any of the munitions contain radioactive materials?

Response #36

No munition that will be treated in the deactivation furnace are radioactive.

Comments #37

Page 4-2: Current EPA guidance concerning metals emissions requires special monitoring of organo-metallic compounds. Organo-metallics will need to be addressed in the trial burn.

Response #37

Trial burn No. 7 (see Table 6-1 of the TBP) tests the ability of the deactivation furnace's APC equipment to remove lead from the exit gas stream. A significant portion of the lead in the waste feed is present as lead styphnate. By monitoring lead emission SEAD will verify the removal of lead in all of its forms.

4.3 Particulate Feed Item Selection

Comments #38

The particulate size distribution of the metals involved should be determined in order to estimate the performance of the cyclone and the Nomex filter media in the air pollution control equipment. The presence of gaseous metallic compounds and their control should also be discussed.

Response #38

SEAD has used conservative methods to estimate particulate removal by the cyclone and the baghouse, taking values primarily from Volume IV of the Incineration Guidance series, and from data provided by other facilities which operate deactivation furnaces. Because the furnace operates at relatively low temperatures gaseous metals will not be a problem. Section 5 discusses the vapor pressure of metals under various conditions. In order to verify that gaseous metals are not a problem, metallic wastes will be burned under worst case conditions (relatively high temperature in the presence of large amounts of chlorine).

Document: SEADTB2

Submittal: Final

4.4 HCL Considerations

Comment #39

See 3.0, Comment 3. In addition, munitions M26 and M81 contain potential chlorine feed rates close to the 4 lb/hr limit. The slightest error in feeding these wishes could put the facility out of compliance.

Response #39

The feed rates of all munitions will be reduced so that the nominal chlorine feed rate does not exceed 3 lb/hr.

5.0 TRIAL BURN PROTOCOL

Comment #40

Section 2.2.7 states that the baghouse has a mechanism to periodically clean the bags using a jet-pulse cleaning system. If this is going to occur while burning hazardous waste, SEAD must include this as a separate test run during the TB. Explain how the baghouse will perform its duty during this process. Will it function properly? If not, hazardous waste can not be fed.

Response #40

In order to demonstrate that the normal in line baghouse cleaning cycle does not result in an exceedance of particulate emissions, the trial burn will be conducted so that a timed baghouse cleaning occurs during the test. The text has been altered to reflect this (see Section 5.3).

Comment #41

Page 5-1: Please discuss why tests 2 and 3 cannot be combined into one test.

Response #41

The trial burn protocol has been revised in its entirety. Where ever possible tests have been combined.

Comment #42

SEAD has proposed to run the three separate trials using three types of munitions at different temperatures. Using this approach will make it difficult to categorize each type of munition to be burned into each specific set of operating conditions. SEAD must explain how this will be done. Is it necessary to run at three different temperatures? Can certain munitions not be run at the higher temperatures? Will the lower temperatures be high enough? A minimum temperature limit must be established for the organics and a maximum for the metals. In addition, what impact will munitions in larger casings have? Please explain.

Response #42

The trial burn protocol has been revised in its entirety. In the revised Sections 5 and 6, the items mentioned above have been discussed in greater detail than was presented in the previous submittal.

Comment #43

Page 5-2, Table 5.2: Please discuss the waste feed rate in greater detail, including the size of individual units to be introduced, and the frequency.

Response #43

The trial burn protocol has been revised in its entirety. In the revised Sections 5 and 6 the items mentioned above have been discussed in greater detail than was presented in the previous submittal.

Comment #44

Table 5-2; The feed rates of each munition to be burned during the trial burn was not included in the operations summary table. Please revise the table to include a listing of each munition and their potential feed rates.

Response #44

The revised table includes the feed rate of all the munitions selected (see Table 6-2).

Comment #45

Annex D - Calculations. Explain why the DNT component feed rate is 19.2 lbs DNT/hr per 240 lbs of munition M1 in Annex D and 28.8 lbs DNT/hr per 240 lbs of munition M1 in Table 3-1. Please revise where appropriate.

Response #45 This calculation has been revised.

Comment #46 Table 5-2; Please state in the "Trial Burn Operations Summary" that for

each test case to be performed, three runs will be held.

Response #46 The revised table includes three runs for each test performed.

6.0 SAMPLING AND ANALYSIS PLAN

6.1 <u>Overview</u>

Comment #47 Page 6-2, Table 6.1: Testing for chlorine, HCl, metals, PICs and

possibly dioxins/furans in emissions and discharges using worst case waste feeds must be added as explained in comments 1.0, 3.0 comments 3 and 6, and 4.2 comment 2. It should also be made clear

that samples from different runs are not composited.

Response #47 Metals, PIC's, and dioxins/furans will be addressed in the trial burn.

Testing for chlorine and HCl is not required since the feed rates are less

than 3 lb/hr.

Comment #48 Page 6-2: NO, must be measured for all tests.

Response #48 NO, will be measured for all tests.

Comment #49 In the TBP, SEAD must provide sampling locations and transverse

points to be approved prior to testing.

Response #49 Sampling locations are be shown in the sampling and analysis plan.

6.2 Sampling Procedures

Comment #50 Page 6-3: The normal procedure for semivolatile POHC sampling (SW-

846, 3rd edition, page 0010-11) requires a minimum 105.9 dscf (3 dscm) for DRE determination. Sample volume calculations are given in

Annex D for collection of only 30 dscf (0.85 dscm). Please submit performance data that shows how the actual detection limits (0.025 ug) were determined in past tests. Include all the details of the data and calculations and all performance audit results. Were the determinations done on each of the five individual sections? How was the spiking done? Please include all the details needed for recalculating the results.

Response #50

A sample volume of only 30 dscf is required due to the high mass of materials when measuring DNT and NG. The calculations in Appendix D in fact show that this sample volume is adequate.

Comment #51

SEAD has proposed waste feed sampling for the M1 and M7 propellants. Please describe what laboratory tests will be performed on these waste streams and what type of lab is capable of handling these types of materials. The Army has emphasized the high degree of quality control maintained in manufacturing munitions and the dangers of analysis related to the waste. Describe how the analysis of these propellants is different from other munitions.

Response #51

Neither M1 or M7 have been selected for the trial burn.

6.3 Sample Recoveries and Analytical Procedures

The Sampling and Analysis Plan has been completely rewritten and addresses comments 52 through 66.

6.4 Quality Assurance

The QA/QC Plan has been completely rewritten and addresses comments 67 through 75.

6.5 Process Monitoring

Comment #76

If the expected CO level in the stack gas exceeds the 100 ppm rolling hourly average corrected to $7\%~O_2$ and dry, total hydrocarbons (THC)

measurement will be required to evaluate the risks from products of incomplete combustion (PICs). To avoid having to perform a repeat of the Trial Burn, SEAD should provide for THC measurements during the proposed burn. Please include details on this parameter in the TBP. Include monitoring methods and frequencies, in addition to the procedures to be followed to ensure no unacceptable risk from PICs.

Response #76

The trial burn plan has been modified to measure PICs for all tests.

7.0 <u>AUTOMATIC WASTE FEED SHUT OFF PROCEDURES</u>

Comment #77 Page 7-1: Change "periodically tested" to "tested weekly".

Response #77 The text has been revised accordingly. Page 7-1 is now page 8-1.

Comment #78 Page 7-2: The stack gas carbon monoxide AWFSO check is not

adequate. It must include the rolling average and must not reset until

the rolling average is below 100 ppm.

Response #78 The text has been revised accordingly.

8.0 TRIAL BURN TEST SCHEDULE

Comment #79 Tentative dates for the Trial Burn should be listed in this section, and

if subject to change, should be revised accordingly.

Response #79 A general schedule for the trial burn is included in Figure 9-1. A daily

schedule is included in the Sampling and Analysis Plan.

Comment #80 Page 8-1, Table 8.1: The schedule may not be allowing enough time

to performance test the field laboratory once set up. Please revise

accordingly.

Response #80 The schedule has been revised. Table 8-1 is now Table 9-1.

Comment #81 Page 8-1: Please provide a schedule showing the necessity for 3 days

for each test condition.

Response #81

Three days have been allotted for each test condition.

Comment #82

Also, holding samples until day 15 before submitting for analysis requires justification. The trial burn plan must contain a summary of sample handling, preservation and holding times for each parameter of analysis. It must comply, at a minimum, with Sections 2.1.7 and Chapter 3 of the above reference.

Response #82

Sampling and analytical procedures will conform to requirements.

MISCELLANEOUS

Comment #83

The demilitarization furnace at Seneca Army Depot (SEAD) must be operated by expert personnel who are trained and knowledgeable in the burning of hazardous waste. Supervision during the operation of the unit must be by technically qualified individuals. SEAD must submit as part of the Part 373 Permit Application, an outline of the training program to familiarize facility personnel with the recent design and operational changes to the Ammunition Peculiar Equipment (APE) 1236 Deactivation Furnace. In addition, SEAD must include a listing of all personnel working in this hazardous waste management area and their qualifications.

Response #83

This information was provided in the Part 373 Permit Application.

TRIAL BURN PLAN FOR THE SENECA ARMY DEPOT

CONTENTS

Section				<u>Page</u>
1.0		Introd	uction	1-1
2.0		Engine	eering Description	2-1
	2.1	Descri	ption of Major Components	2-1
		2.1.1	Fuel and Waste Feed Systems	
		2.1.2	Rotary Kiln (Deactivation Furnace)	
		2.1.3	Afterburner	
		2.1.4	High Temperature Gas Cooler	
		2.1.5	Low Temperature Gas Cooler	
		2.1.6	Cyclone	
		2.1.7	Baghouse	
		2.1.8	Induced Draft Fan	
		2.1.9	Exhaust Stack	
	2.2	Descri	ption of Instrumentation	2-16
		2.2.1	Meausrement Parameters and Methods	
		2.2.2	Panel Instrumentation	
		2.2.3	Automatic Waste Feed Shut Off (AWFSO) System	
	2.3	Operat	ing Procedures	2-20
		2.3.1	Start-up Procedures	
		2.3.2	Operation Procedures	
		2.3.3	Shutdown Procedures	
		2.3.4	Scrap and Residue Handling	
		2.3.5	Baghouse Bypass	

CONTENTS

(Cont.)

Section			<u>Page</u>
3.0		Waste Characterization	3-1
4.0		Establishing Munition Feed Rates	4-1
	4.1	Munition Feed Rates	4-1
	4.2	Identification of Appropriate Standards and Guidance	4-2
	4.3	Calculation of Emission Impact	4-6
	4.4	Calculation of Allowable Emission Rates Based on NYSDEC Guidance	4-8
	4.5	Calculation of Allowable Emission Rates	4-10
		Based on Federal Guidance	
	4.6	Back Calculation of Munition Feed Rates	4-11
5.0		Trial Burn Waste Selection	5-1
	5.1	Permitting Criteria	5-1
	5.2	POHC Waste Feed Item Selection	5-4
	5.3	Particulate Feed Item Selection	5-6
	5.4	HCI Testing Considerations	5-7
	5.5	Metal Waste Feed Items Selection	5-7
	5.6	Dioxin and Furan Waste Feed Items Selection	5-9
	5.7	PEP Waste Feed Item Selection	5-9
6.0		Trial Burn Protocol	6-1
	6.1	Trial Burn Test Series	6-1
	6.2	Mass and Energy Balances	6-6
7.0		Sampling and Analytical Plan	7-1
	7.1	Overview	7-1
	7.2	Sampling, Analysis and Monitoring Procedures	7-6

Trial Burn Plan

Document: SEADTBP2 Submittal: Final

CONTENTS

(Cont.)

<u>Section</u>			<u>Page</u>
		7.2.2 Stack Gas CO ₂ and O ₂ Content	
		7.2.3 Carbon Monoxide Monitor	
		7.2.4 Oxygen Monitor	
		7.2.5 Nitrogen Oxide Emission Measurement	
		7.2.6 Total Hydrocarbon Emission Measurement	
		7.2.7 Particulate Matter Emission Rate	
		7.2.8 Dioxin and Furan Emission Rate	
		7.2.9 Metals Emission Rate	
		7.2.10 Exhaust Gas Flowrate	
		7.2.11 Principle Organic Hazardous Component (POHC)	
		Emission Rate	
		7.2.12 Waste Feed Sampling	
		7.2.13 Waste Feed Rates	
		7.2.14 Waste Comparison	
		7.2.15 Auxiliary Fuel Rate	
		7.2.16 Key Process Data	
		7.2.17 Ash Sampling and Analysis	
		7.2.18 Particulate Fugitive Emission Monitoring	
	7.3	Test Schedule	7-25
	7.4	Trial Burn Report Outline	7-25
8.0		Automatic Waste Feed Shut Off (AWFSO) Test Procedures	8-1
9.0		Trial Burn Test Schedule	9-1

LIST OF APPENDICES

Appendix

Α	List of Drawings
В	Equipment and Instrumentation Information
С	Waste Characterization Tables
D	Calculations
E	Stack Gas Sampling Methods
F	Analytical Procedures
G	Quality Assurance/Quality Control Plan
н	Ammunition Terminology
I	Performance Specification Test
J	Emissions Modeling
К	Toxicological Review of Strontium Compounds
L	Kiln Operational Data
М	EPA Tier I/Tier II Analysis
N	Particulate Fugitive Emissions Monitoring Plan
0	POHC Spiking Procedure
P	Man Pockets

LIST OF TABLES

Table No.		<u>Page</u>
2-1	Kiln Residence Time	2-10
2-2	Functional Chart of Process Conditions	2-21
2-3	Automatic Waste Feed Shut-off (AWFSO) Conditions and Values	2-23
3-1	Waste Feed Component Chemical Compositions	3-2
4-1	NYSDEC Ambient Air Quality Guidelines	4-4
4-2	Reference Air Concentrations	4-6
4-3	NYSDEC Impact Conversion Factors	4-8
4-4	Summary of Allowable Pollutant Emission and Feed Rates	4-12
4-5	Summary of Munition Feed Rates	4-14
5-1	Appendix VIII Chemical Constituents	5-4
5-2	POHC Ranking	5-5
5-3	Relative Volatility of Hazardous Metals	5-7
5-4	Trial Burn Feed Rate Summary	5-9
6-1	Trial Burn Protocol	6-2
6-2	Trial Burn Operating Summary	6-3
6-3	Ultimate Analysis Data	6-7
7-1	Trial Burn Testing Summary	7-5
7-2	SEAD Trial Burn Daily Sampling Schedule	7-27
8-1	Automatic Waste Feed Shut-Off Test Procedures	8-2
9-1	SEAD Trial Burn Plan Overview Schedule	9-2

LIST OF FIGURES

Figure No.		Page
2-1	APE 1236 - Isometric View	2-2
2-2	Input Conveyor Concept	2-4
2-3	Automatic Waste Feed Monitoring System	2-6
2-4	Deactivation Furnace	2-7
2-5	Fugitive Emission Control Concept	2-9
2-6	Baghouse Operation - Cutaway View	2-11
6-1	Mass and Energy Balances - Test 1	6-15
6-2	Mass and Energy Balances - Test 2	6-16
6-3	Mass and Energy Balances - Test 3	6-17
6-4	Mass and Energy Balances - Test 4	6-18
6-5	Mass and Energy Balances - Test 5	6-19
6-6	Mass and Energy Balances - Test 6	6-20
6-7	Mass and Energy Balances - Test 7	6-21
6-8	Mass and Energy Balances - Test 8	6-22
6-9	Mass and Energy Balances - Test 9	6-23
7-1	Stack Sample Port Locations	7-3
7-2	Exhaust Stack Sampling Points	7-4
7-3	Method 3 Sampling Train	7-8
7-4	Method 7E and Method 25A Continuous	7-11
	Emissions Monitoring System	
7-5	Method 5 Sampling Train	7-14
7-6	Method 23 and SW-846 Method 0010	7-16
	Sampling Train	
7-7	AEHA Sampling Train for Energetic Materials	7-22
7-8	Volatile Organic Sampling Train	7-23

ACRONYMS AND ABBREVIATIONS

acfm Actual cubic feet per minute

ACGIH American Conference of Governmental Industrial Hygenists

AG-1 Air Guide - 1

AGC Annual Guideline Concentration

APC Air Pollution Control

APE Ammunition Peculiar Equipment

ASTM American Society of Testing Materials

AWFMS Automatic Waste Feed Monitoring System

AWFSO Automatic Waste Feed Shut-off
BIF Boiler and Industrial Furnace

Btu British thermal unit
CD Calibration Drift

CCRIS Chemical Carciongenesis Research Information Service

CD Calibration Drift

CEM Continuous Emmissions Monitoring

cfm Cubic Feet Minute

CFR Code of Federal Regulations

CO Carbon Monoxide

DART Developmental and Reproductive Toxicology Bibliographical Database

DAS Data Aquisition System

DBP Di Butylphthalate
DF Deactivation Furnace

DNT Dinitrotoluene
DPA Diphenylamine

DRE Destruction and Removal Efficiency

dscf dry standard cubic foot
DP Differential Pressure
EC Calibrator Error

EPA Environmental Protection Agency

ES Engineering-Science FM Factory Mutual

FSG Flame Safeguard Panel
GFC Gas Filter Correlation
HCB Hexachlorobenezene

hp horsepower

HPLC High Performance Liquid Chromatograpy

hr hour

ACRONYMS AND ABBREVIATIONS

(Con't)

HSDB Hazardous Substance Data Base

HT High Temperature
ID Induced Draft

IR Infrared

IRIS Integrated Risk Information Service

ISC Industrial Source Complex

i/o Input/output

LDL Lower Detectable Limit

LD₅₀ Lethal Dose - 50 LT Low Temperature

MEI Most Exposed Individual

NG Nitroglycerin

NDIR Non Dispersive Infrared

NIOSH National Institute of Occupational Safety and Health

PAI Predicted Annual Impact

PCDD Dioxins
PCDF Furans

PCOS Personal Computer Operatives Station

PEP Propellant/explosive/pyrotechnic
PIC Product of Incomplete Combustion
PLC Programmable Logic Controller

POHC Principal Organic Hazardous Constituent

ppm Parts per million
PSM Point Source Method

PST Performance Specification Test

PV Process Variable
PVC Polyvinyl chloride

QAC Quality Assurance Coordinator
QA/QC Quality Assurance/Quality Control

RA Relative Accuracy

RAC Reference Air Concentrators

RCRA Resource Conservation and Recovery Act

REC Recommended Exposure Limit

RFD Reference Dose

RPM Revolutions Per Minute

ACRONYMS AND ABBREVIATIONS (Con't)

RSD Risk Specific Doses
RT Response Time

RTECS Registry of Toxic Effects of Chemical Substances

scfm Standard cubic feet per minute

SEAD Seneca Army Depot

SGC Short Term Guideline Concentration
SOP Standing Operating Procedures

SP Set Point

STEM Sampling Train For Energetic Materials

TB Trial Burn
TBP Trial Burn Plan
TCE Trichloro Ethylene
THC Total Hydrocarbons
TLV Threshold Limit Value

TSLoO₂ Thermal Stability Low Oxygen

TSI Thremal Stability Index
TWA Time Weighted Average

UDRI University of Dayton Research Institute

UHP Ultra High Purity

USATHAMA

USGS United States Geographic Service

Document: SEADTBP2

Final

Submittal:

SECTION 1

INTRODUCTION

A US Army Ammunition Peculiar Equipment (APE) 1236 incineration system, located at Seneca Army Depot (SEAD) will serve the purpose of deactivating obsolete munitions and explosive waste from an Army wide inventory. The obsolete munitions are made harmless through controlled detonation within a heated rotary kiln. Gasses produced during detonation are swept from the rotary kiln and incinerated in an afterburner. Metal components are recovered from the rotary kiln and sold as scrap.

This trial burn plan describes the tests that will be conducted to demonstrate the performance of the APE 1236 incineration system, in accordance with the requirements of 40 CFR 270.62. It also will show that the operation of the APE 1236 systems conforms to RCRA regulations for the incineration of hazardous waste. The following performance requirements will be demonstrated during the trial burn:

- The incinerator will achieve a Destruction and Removal Efficiency (DRE) of 99.99% for each Principle Organic Hazardous Constituent (POHC) selected for the demonstration.
- The incinerator will not emit particulate matter in excess of 0.08 grains per dry standard cubic foot (dscf), corrected to 7% oxygen in the stack gas.
- The incinerator will achieve a 99% removal of hydrochloric acid (HCI) or will not emit more than 4 lb/hr HCI, whichever is greater.
- The carbon monoxide concentration in the stack gas (corrected to 7% oxygen) will be less than 100 ppmv, based on a 1 hour rolling average.
- The incinerator operation will not result in excessive fugitive emissions.
- The incinerator's Automatic Waste Feed Shutoff (AWFSO) system will be fully functional.

In addition to those requirements delineated in 40 CFR 270.62, to insure the public health and welfare, and to comply with Federal and State regulations and the guidance of the EPA and NYSDEC, the following additional performance requirements will be demonstrated during the trial burn:

• Metal Emissions emission standards in accordance with 40 CFR Subpart H, with Volume IV of the hazardous waste incinerator guidance series entitled "Guidance on Metals and Hydrogen Chloride Controls for Hazardous Waste Incinerators" Dated August 1989, and with New York State's Air Guide-1. Specifically it will be demonstrated through emissions monitoring, emissions modeling and a risk assessment if necessary that the exposure to all carcinogenic metals of concern be limited such that the sum of the excess risks attributable to ambient concentrations of these metals not exceed an additional lifetime individual risk to the potential exposed individual (MEI) of 1 x 10⁻⁶.

- Dioxins and Furan Emissions emission standards in accordance with 40 CFR Subpart H with an EPA Publication entitled "Interim Procedures of Estimating Risks Associated with Exposures to Mixtures of Chlorinated D. Benzo-P-Dioxins and D. Benzofurans (CDDs and CDFs) and 1989 Update" (EPA 625/3-89/016) Dated March 1989. Specifically dioxin and furans emissions will be monitored during the trial burn and a risk assessment be performed based on the results, if required.
- Products on incomplete combustion (PICs) emission standards in accordance with Volume V of the hazardous waste incinerator guidance series entitled "Guidance on PIC Controls for Hazardous Waste Incinerators" Dated April 1989. Specifically it will be demonstrated through continuous emissions monitoring (CEM) that the de-minmis CO limit of 100 ppm on an hourly rolling average is not exceeded and the total hydrocarbon (THC) levels do no exceed a good operating practice-based level of 20 ppmv.
- NO, emissions emission standards in accordance with the Clean Air Act.
- SO_x emissions emission standards in accordance with the Clean Air Act.

To present the information in a logical manner, the Trial Burn Plan (TBP) is organized into individual sections. These sections are briefly described below.

Section 2, Engineering Description: Provides a detailed description of the major components and instrumentation used in the deactivation and incineration system. Operating procedures for waste destruction are also included.

Section 3, Waste Characterization: Gives the composition of the waste (munitions) to be destroyed in the deactivation and incineration system.

Document: SEADTBP2

Section 4, Trial Burn Munition Feed Rates: Chemical and physical data for the different waste components are provided. The appropriate ambient air quality standards and guidance are identified. Allowable emission rates and feedrates are calculated.

Section 5, Trial Burn Waste Selection: Provides rationale for the POHCs selected for the DRE demonstration tests and the waste items selected for the particulate, metals and other demonstration tests.

Section 6, Trial Burn Protocol: Gives operating parameters for the different demonstration tests. Heat and mass balance information are included.

Section 7, Sampling and Analytical Plan: Details the sampling and analytical procedures used for the different demonstration tests. The QA/QC procedures for sampling and analysis are covered. This section also lists the process conditions that will be monitored during the demonstration tests and outlines the trial burn report to be submitted to the regulatory agencies.

Section 8, AWFSO Test Procedures: Provides procedures that test and demonstrate the operation of the system which automatically shuts off waste to the deactivation and incineration system when certain process conditions are not met.

Section 9, Trial Burn Schedule: Gives a schedule of events during the trial burn.

SECTION 2

ENGINEERING DESCRIPTION

This section provides a detailed engineering description of the APE 1236 deactivation system, as required by CFR 270.62. The APE 1236 is a rotary kiln incinerator which has been upgraded to include an afterburner and additional instrumentation. The US Army employs the APE 1236 at SEAD to deactivate munitions.

The engineering description section is divided into the following subsections:

- Description of major components
- Description of instrumentation
- Operating procedures

Equipment layout, elevation drawings and a functional control process diagram (SK 88-07) for the incineration system are located in map pockets in Volume 3 of the RCRA Part B Permit Submittal. A list of the drawings, which can be found in the RCRA Part B Submittal, is included as Appendix A to this TBP. (Note that many of the drawings refer to the Tooele Army Depot. The APE 1236 incinerator system at Tooele is identical to the one located at SEAD. In order to avoid duplication of effort, the Tooele drawings are submitted.) An isometric of the incinerator system is shown in Figure 2-1.

2.1 Description of Major Components

2.1.1 Fuel and Waste Feed Systems

No. 2 fuel oil is used to fire the burners in both the kiln and afterburner, and propane is used as pilot fuel for the afterburner burner. The propane storage, fuel oil storage and pumping areas are shown on drawing AC SK-88-55-02 sheet 1 of 3. The propane and fuel oil piping from the storage and pumping area to the incinerator area is installed in a concrete ditch for leak containment.

The propane storage tank is a 1000 gallon horizontal drum mounted on a concrete pad. The appropriate valves, fittings, regulators, and piping are installed for propane pressure reduction and transportation to the afterburner burner pilot train.

Document: SEADTBP2

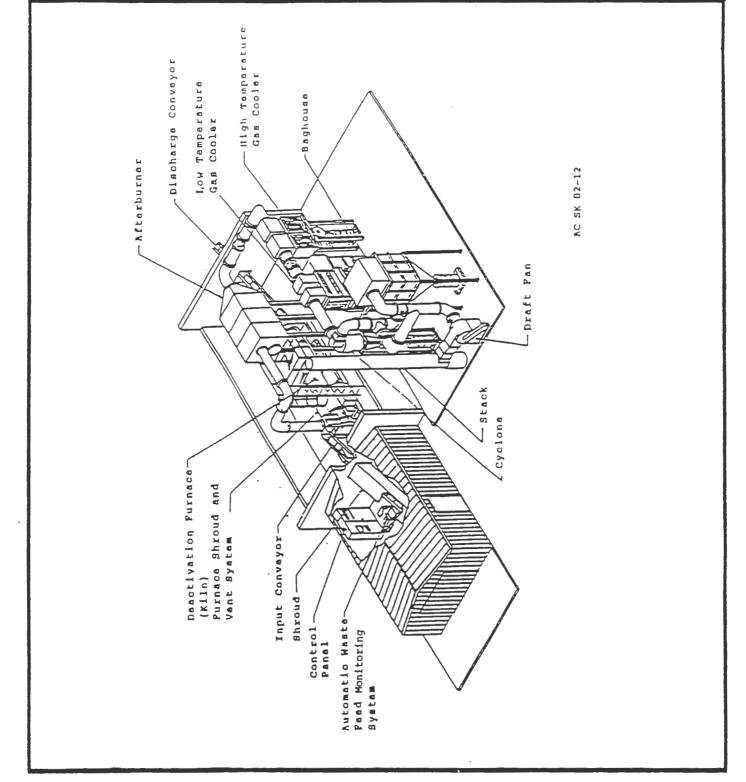


Figure 2-1 APE 1236 - Isometric View

The fuel oil storage tank is a 4000 gallon drum mounted on a 24'-4" by 14'-4" concrete pad. The fuel oil storage tank pad has a 30"- high wall on all sides for secondary containment. A pump, with the

required valves and piping, is used to transport the fuel oil to the incinerator area.

The waste feed system consists of two conveyors, the waste loading conveyor and the kiln feed conveyor. Munitions are loaded onto the waste loading conveyor in the feed room by the automatic waste feed monitoring system (AWFMS). The waste loading conveyor transports the munitions through the concrete kiln barrier wall to the kiln feed conveyor located inside the kiln area. The conveyor arrangement is shown in Figure 2-2.

The waste loading conveyor is 18'-6" long and 8 inches wide with flights spaced 18 inches apart. The conveyor is covered by a shroud. To prevent loading of munitions other than through the weighing system, the conveyor has a positive gear drive which is driven by an electric motor. The Automatic Waste Feed Shut Off (AWFSO) system (described in Section 2.3.3) can disable the waste loading conveyor by terminating power to the drive motor.

The kiln feed conveyor is located within the kiln barrier walls. This conveyor transports munitions from the waste loading conveyor to the kiln feed chute. If the AWFSO system is activated, the waste loading conveyor stops but the kiln feed conveyor continues to run. This safety feature ensures that munitions will be loaded into the kiln once they reach the proximity of the kiln feed chute. Otherwise, the munitions could overheat and explode at the entrance to the kiln feed chute.

The kiln feed conveyor is 6 feet long and 8 inches wide with flights spaced 18 inches apart. The conveyor has a positive gear drive which is driven by an electric motor.

The AWFMS consists of a frame, weigh scale, electrical enclosures, push-off system and connection cables to the control system. The frame is made of carbon steel and is designed to fit over the waste loading conveyor and house the scale, push-off system and one electrical enclosure. The frame protects the electrical components and is part of the system which prevents exceeding the feed rate for a munition. The weigh scale is an explosion proof scale which can weigh accurately to 1/1000 of 1 pound. It weighs the munitions each time before they are loaded on the conveyor and prevents loading excess feed onto the conveyor.

The push-off system is a box mounted over the scale which is powered by an air cylinder. It pushes the munitions off the scale onto the conveyor. It is triggered automatically when the door is shut. It will not move if the munitions on the scale exceed the allowable weight limit for that item. The first electric enclosure houses the sensors, transmitters and power supply for the scale. The sensors and transmitters provide signals to the control systems which are used by the Programmable Logic Controller (PLC) which controls logic decisions and activates feed operations. The second electric

Document: SEADTBP2

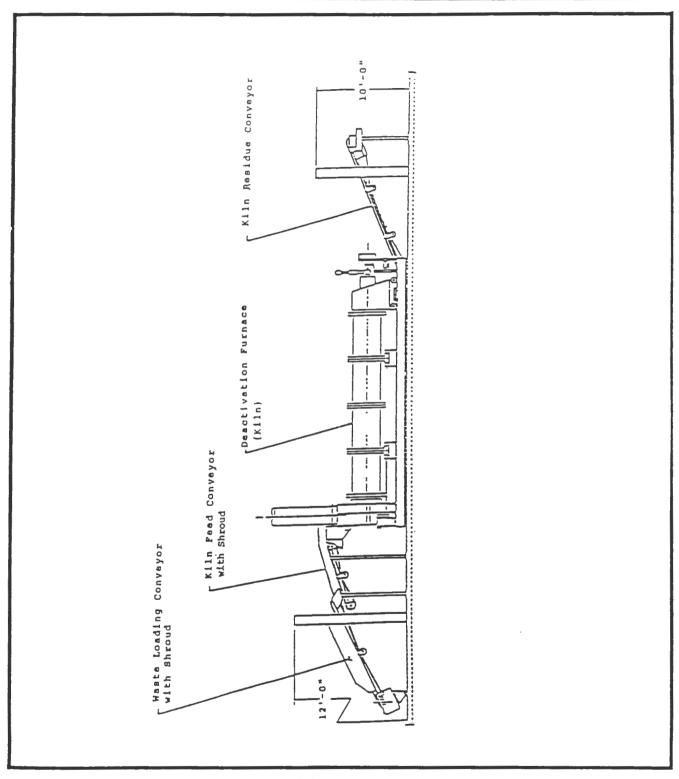


Figure 2-2 Input Conveyor Concept

enclosure houses the air valves which operate the air cylinders that move the push off box and lock the door during each cycle. The cables transmit data to the computer which compares the weight on the scale with the weight which is stored in the memory of the computer. If the weight on the scale is less than the limit allowed, the computer signals the PLC to load to the conveyor. The AWFMS is shown in Figure 2-3 and on SK 89-09-01. (Drawing SK 89-02-2 through SK 89-09-20 are also provided.)

2.1.2 Rotary Kiln (Deactivation Furnace)

The rotary kiln is designed to ignite the munitions and effectively burn out reactive components from the metal shells. The heat to ignite the munitions is initially provided by fuel oil firing countercurrent to the movement of munitions. Combustion gases and entrained ash exit the kiln adjacent to the munitions feed chute. Non-entrained ash and the metal components of the munitions are discharged at the burner end of the kiln. The kiln is shown on Figure 2-4.

The munitions are propelled through the kiln toward the flame at the burner end by means of spiral flights which are an integral part of the kiln casting. As the munitions approach the flame and become heated, they either detonate or burn freely, depending upon the munition configuration and characteristics. High order detonations are contained by the thick cast steel kiln walls. The spiral flights provide physical separation of munitions or groups of munitions, discouraging sympathetic propagation of detonations and containing fragments generated by detonations. Munition feed rates, residence time within the furnace (determined by speed of revolution of the kiln) and operating temperatures have been established for each munition by controlled testing prior to the production operation. Munitions-specific operating conditions are discussed in Section 3.0.

The kiln is 20 feet long with an average internal diameter of 30.5 inches. It is made of four 5 foot long sections that are bolted together. The two center sections have a wall thickness of 3.25 inches and the two end sections have a wall thickness of 2.25 inches. The kiln is constructed of ASTM A217 chromium molybdenum steel for high strength and ductility at elevated temperatures. For additional personnel safety, the kiln is surrounded by barricade walls.

The kiln is equipped with a Hauck 783 proportioning burner installed in the breaching at the residue discharge end of the kiln. This is a distillate oil fired burner with a capacity of 3 million BTU/hr and a nominal turndown ratio of 4:1. Appendix B contains information on the Hauck 783 burner. Both atomizing air and combustion air are provided by a Hauck 5 hp centrifugal blower, the burner and blower assembly is shown on drawing ACT-377-200-12. (See Appendix A).

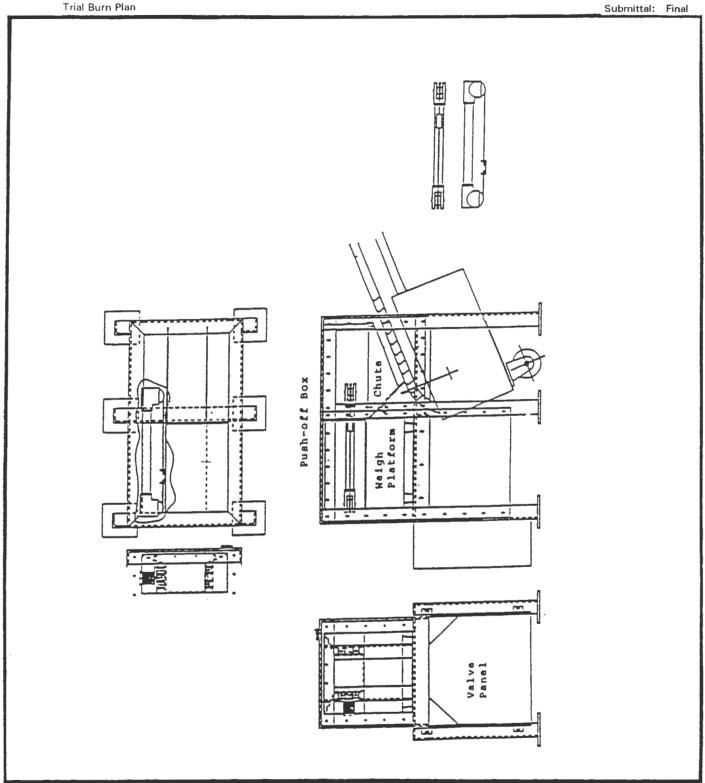


Figure 2-3 Automatic Waste Feed Monitoring System

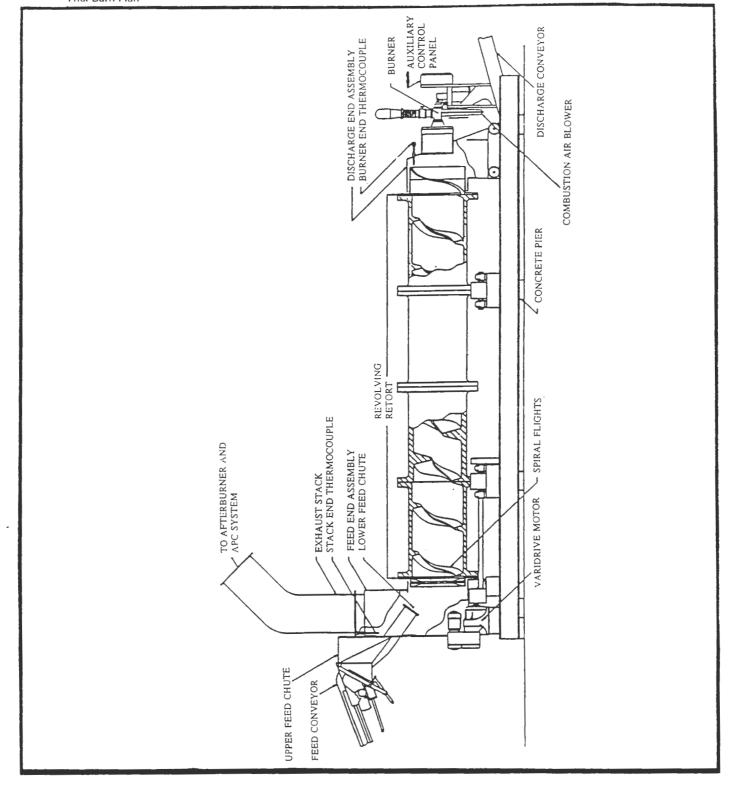


Figure 2-4 Deactivation Furnace

Fuel oil and combustion air are ratioed by links and levers connecting the fuel and air control valves. The control valves are operated by an actuator which receives a signal from the kiln exit temperature controller. The controller set point is determined by the munitions being burned and may range from 250°F to 900°F. The input to the controller is provided by a thermocouple located in the kiln exit duct.

The combustion control supervisory system is a Factory Mutual (FM) approved flame safety system which includes the proper safety shut-off valves, pressure switches, pressure regulators, flame detector, and burner controller. (This is shown as the Flame Safeguard Panel, FSG on the drawing.) The burner must be ignited for waste to be fed to the incinerator.

The kiln is operated under a slight negative pressure (vacuum) to control fugitive emissions. Typically, this pressure is -0.15 to -0.25 in. water column. The vacuum is produced by an Induced Draft (ID) fan located between the baghouse and the exhaust stack. The negative pressure in the kiln is determined by the gas flowrate and pressure drop through the air pollution control system and ID fan. A damper installed in the duct upstream of the ID fan is opened and closed by an electric actuator to control the gas flow rate and maintain the appropriate negative pressure. The kiln vacuum is an input to the AWFSO system. The input to the damper actuator is provided by the kiln pressure controller. The input to the pressure controller is a pressure (draft) transmitter measuring the kiln discharge pressure. This control loop is P-1201 on the Functional Process Control Diagram (SK 88-07). (See Appendix A).

Fugitive emissions from the kiln are controlled by a metal shroud which covers the entire kiln assembly including the feed chute and end plates. Ducts connect the shroud to the inlet of the combustion air blower for the kiln burner. The combustion air blower creates a negative pressure inside the shroud which pulls any fugitive emissions through the blower and discharges them into the kiln via the kiln burner. The shroud is fabricated from 11 gauge, A36 carbon steel. Figure 2-5 on the following page is a concept of the fugitive emissions control system. This shroud does not extend over the discharge end of the kiln and is not required to do so. (Operating experience has shown that fugitive emissions are not a problem for the discharge end.)

The kiln is trunnion driven by an electric motor. The kiln must be turning for the AWFSO interlocks to clear, allowing waste to be fed into the incinerator. The drive system can vary the kiln rotation from 0.5 to 4.5 revolutions per minute (rpm). Varying the kiln's rotational speed changes the amount of time required for material to travel through the kiln (kiln residence time). The required kiln residence time is waste specific. The following table shows kiln speed versus kiln residence time. (This table is based on actual testing conducted at Tooele Army Depot. SEAD's deactivation furnace is identical in every respect to Tooele's.)

Document: SEADTBP2

Document: SEADTBP2

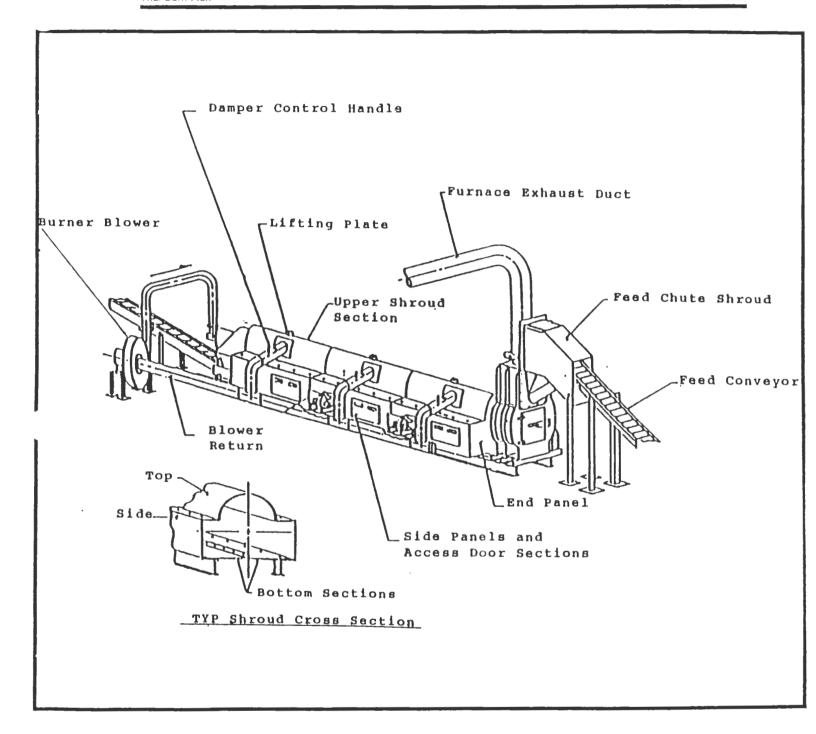


Figure 2-5 Fugitive Emission Control Concept

TABLE 2-1
KILN RESIDENCE TIME

Kiln Speed (rpm)	Inert Material Kiln Residence Time (minutes)
0.5	16.0
1.0	8.0
1.5	5.2
2.0	4.0
2.5	3.2
3.0	2.6
3.5	2.3
4.0	2.0
4.5	1.8

Residue and scrap from the destroyed waste are removed from the kiln by the kiln residue conveyor. The kiln residue conveyor transports the waste from the kiln through the barrier wall to a collection point. The kiln residue conveyor must be operational for the AWFSO interlocks to clear, allowing waste to be incinerated. This will prevent a build-up of munition residues within the kiln.

2.1.3 Afterburner

The kiln combustion gases are transported to the afterburner by a 24-inch-diameter steel duct. Combustion gases enter the afterburner directly above the burner at the upstream end where they are mixed with and heated by gases from fuel oil combustion. The afterburner is designed to heat, 4,000 scfm of combustion gas, from 400-900°F to 1200-1800°F, with a minimum gas residence time of one second. Operational experience has shown that the nominal maximum operating temperature is 1600°F.

The afterburner is rectangular with outer dimensions of 6 feet by 6 feet by 15 feet long with a transition cone at the discharge end. The afterburner is shown on the Southern Technologies drawings 11268-10-1 and 11263-10-3. (See Appendix A).

The afterburner is internally insulated with 8-inch-thick, 12-pound/cubic foot, ceramic fiber modules, individually anchored to the afterburner casing. The ceramic fiber surface is coated with a rigidizer/surface coating which provides surface hardness and erosion resistance. The skin temperature remains below 150°F during normal operation. The inside cross-section of the insulated afterburner is 4'8" X 4'8", with a total internal volume of 390 cubic feet.

Document: SEADTBP2

The afterburner is equipped with a Hauck WRO-164 Wide Range burner. This burner is oil fired with a nominal capacity of 8 million Btu/hr and a 10:1 turndown ratio. Manufacturer's literature for the burner is provided in Appendix B.

Fuel oil and combustion air are ratioed by links and levers connecting the fuel and air control valves. The control valves are operated by an actuator which receives a signal from the afterburner temperature controller. The afterburner temperature controller setpoint ranges from 1200-1800°F. The input to the controller is provided by a thermocouple located in the afterburner exit duct.

The combustion supervisor system is an FM approved flame safety system which includes the proper safety shut-off valves, pressure switches, pressure regulator, flame detector and burner controller. (This is shown as the Flame Safeguard Panel, FSG on the drawing.) The burner must be ignited to enable waste incineration. The air blower is a Cincinnati Fan #HPF-7 capable of providing 1,600 scfm of air for both atomization and combustion.

2.1.4 <u>High Temperature Gas Cooler</u>

High temperature combustion gases exiting the afterburner flow through a 30 inch diameter stainless steel duct to the High Temperature (HT) gas cooler. The HT gas cooler is a gas-to-air, cross-current, forced air heat exchanger that reduces the temperature of the combustion gases to less than 850°F. The HT gas cooler is capable of cooling 4000 scfm of combustion gas from 2200°F to 850°F. If the exit temperature exceeds 850°F, waste to the incinerator is automatically shut off. The HT gas cooler requires 25,400 cfm of 100°F ambient air to cool the combustion gases.

The gas cooler consists of two sections containing 65 plates each. The plates have a height of 39 inches and a width of 20.5 inches. The HT gas cooler is constructed of 310 stainless steel. Combustion gases enter the inlet plenum of the cooler and pass alternately downward and upward through the first and second sections and then exit through the outlet plenum. The heat exchanger plates are spaced so that the combustion gases pass on one side and the ambient cooling air passes on the other. There are a series of plates, a series of exhaust chambers, and a series of cooling chambers. An operating data sheet is located in Appendix B and the mechanical design is shown on **Drawing HTGC-1**. (See Appendix A).

A 40 hp blower forces cooling air through the HT gas cooler. The blower is capable of providing 26,313 cfm at a static pressure of 5.2 inches water column. The amount of air delivered by the blower is determined by the HT gas cooler exit temperature. As the temperature changes, the output signal of the HT gas cooler temperature controller varies the damper on the blower inlet to control air flow. A thermocouple in the exit duct from the gas cooler provides the input to the HT gas cooler

temperature controller. This control loop is T-801 on the functional Process Control Diagram (SK88-07).

The HT gas cooler is equipped with a sonic horn to remove particles from the exchanger plates. The horn emits sound pressure waves with sufficient vibrational energy to shear deposits from the surface of the plates, and it is operated by compressed air. The frequency of the sound waves and the duration of the cleaning cycle are adjustable from a local panel. Adjustments are made based on the temperature differential across the HT gas cooler. The sonic horn is an Envirocare #AH 30.

Particles and residue are removed from the HT gas cooler by a double chamber dumping valve. The valve has two gates that are electric motor driven. Only one gate is open at any time so the vacuum in the HT gas cooler is maintained.

2.1.5 Low Temperature Gas Cooler

Combustion gases exit the HT gas cooler through a 24-inch diameter steel duct and enter the low temperature (LT) gas cooler. The LT gas cooler is a gas-to-air, cross-current, forced air heat exchanger that reduces the combustion gas temperature to less than 350°F. The LT gas cooler is capable of cooling 4000 scfm of combustion gases from 900°F to 250°F. Waste to the incinerator is automatically shut off if the LT gas cooler exit temperature exceeds 350°F. The LT gas cooler requires 16,400 cfm of 100°F ambient air to cool the combustion gases.

The LT gas cooler consists of two sections containing 75 plates each. The plates have a height of 50 inches and a width of 26 inches. The LT gas cooler is constructed of carbon steel. Combustion gases enter the inlet plenum of the cooler and pass alternately downward and upward through the first and second sections and then exit through the outlet plenum. Heat exchanger plates are spaced so that the combustion gases pass on one side and the ambient cooling air passes on the other. There are a series of plates, a series of exhaust chambers, and a series of cooling chambers. An operating data sheet is located in Appendix B and the mechanical design is shown on **Drawing LTGC-1**. (See **Appendix A**).

A 20 hp blower forces cooling air through the LT gas cooler. The blower is capable of providing 17,054 cfm at a static pressure of 3.6 inches water column. The amount of air delivered by the blower is determined by the LT gas cooler exit temperature. As the temperature changes, the output signal of the LT gas cooler temperature controller varies the damper on the blower inlet to control air flow. A thermocouple in the exit duct from the gas cooler provides the input to the LT gas cooler temperature controller. This control loop is T-901 on the Functional Process Control Diagram (SK 88-07).

The LT gas cooler is equipped with a sonic horn to remove particles from the exchanger plates. The horn emits sound pressure waves with sufficient vibrational energy to shear deposits from the surface of the plates, it is operated by compressed air. The frequency of the sound waves and the duration of the cleaning cycle are adjustable from a local panel. Adjustments are made based on the temperature differential across the LT gas cooler. The sonic horn is an Envirocare #AH 30.

Particles and residue are removed from the LT gas cooler by a double chamber dumping valve. The valve has two gates that are electric motor driven. Only one gate is open at any time so the vacuum in the LT gas cooler is maintained.

2.1.6 Cyclone

Combustion gases exit the low temperature gas cooler and enter the cyclone through a 20-inchdiameter steel duct.

The cyclone is a Ducon type VM model 700/150, size 165 with a 20-inch inlet and outlet. The diameter of the cyclone is 43 inches and the inlet area is 1.65 square feet. The cyclone is fabricated from 3/16-inch- thick carbon steel.

Residue is removed from the cyclone collection hopper through an air tight slide gate valve. The slide gate valve is kept closed during operation and manually open for clean-out after shutdown. The gas pressure drop across the cyclone at normal flowrates is 2 to 5 inches water column. Details of the cylcone are shown in Drawing BC86-510-1, which is located in Map Pocket 1 of Appendix O.

2.1.7 Baghouse

Combustion gases leave the cyclone and enter the baghouse by a 20-inch-diameter steel duct. The baghouse is a rectangular enclosure 6 feet by 6 feet wide and 15 feet tall. It contains 100 bags which are 4.5 inches in diameter and 8 feet long. This results in a total filter area of approximately 950 square feet and an air-to-cloth ratio of 5.0. The bag material is Nomex felt and is silicone treated, heat set, and flameproofed.

The dust laden combustion gas stream enters the baghouse near the bottom of a hopper where it is dispersed evenly along the rows of bags (Figure 2-6). The combustion gas flows up through the filter bags and collects in the clean gas plenum, or exhaust manifold. As particles build up on the bags, the porosity of the bags is reduced creating a higher differential pressure between the dirty side and the clean side of the bags. This increased pressure drop across the bags reduces combustion gas flow through the baghouse.

Figure 2-6 Baghouse Operation - Cutaway View

The baghouse pressure drop increase is limited by periodically cleaning the bags. The baghouse has a jet-pulse cleaning system which operates by inducing momentary surges of high pressure air in the reverse direction to normal air flow. This flexes the bags outward and dislodges the dust particles causing them to fall into the hopper below. The bag cleaning is controlled automatically by a timing device which actuates one of a series of valves at a preset interval to clean one row of filter bags at a time.

The discharge temperature of the baghouse is measured by a thermocouple installed in the duct downstream of the baghouse. This temperature is indicated and recorded at the main control panel. Additionally a high temperature thermocouple at the baghouse exit activates an alarm at the main control panel. (This is set at 600°F and indicates a fire situation.)

Differential Pressure (DP) also is monitored across the baghouse with low and high DP alarms set at 2 inches and 6 inches water column, respectively. A DP below 2 inches indicates a ruptured bag, while a DP higher than 6 inches indicates excessive fouling of the bags.

The baghouse is equipped with isolation and bypass valves. The isolation valves are located in the duct immediately upstream and downstream of the baghouse. The bypass valve is located in the baghouse bypass duct. These three valves operate in unison, i.e., when the bypass valve is closed, the isolation valves are open and vise versa. The baghouse is bypassed only under the following conditions: (a) when the exit temperature measurement fails, (b) during high baghouse temperature, and (c) during startup to protect the bags from moisture condensation and corrosion. The bypass is interlocked with the AWFMS so that waste cannot be fed if the baghouse is bypassed. Details of the baghouse are shown in Map Pocket 2 of Appendix O.

2.1.8 Induced Draft Fan

Combustion gases are drafted through the entire incineration system by the Induced Draft (ID) fan located downstream from the baghouse. The baghouse and ID fan are connected by a 20-inch-diameter steel duct. Under normal operating conditions, the total system pressure drop is 25 inches water column at 4000 scfm. The ID fan must be operating for the AWFSO interlocks to clear, allowing waste to be incinerated.

The ID fan is belt driven by a 50 hp, 1750 rpm electric motor. The capacity of the ID fan is 6700 acfm at 30 inches water column. The ID fan is designed to operate at 300°F. The ID fan information with performance curves is given in Appendix B.

A damper is installed in the duct upstream of the ID fan. This damper controls the amount of combustion gas that the fan pulls through the system. The damper is operated by an electric actuator

which receives a signal from the kiln pressure controller. This loop is discussed in paragraph 2.2.2 of this section.

2.1.9 Exhaust Stack

Combustion gas from the ID fan is discharged into the exhaust stack and then to the atmosphere. The stack is 20 inches in diameter and 30 feet high.

The stack has various instrument ports. The ports for continuous gas analyzers and gas velocity are located at approximately 20 feet above grade. The gas analyzer port services the sampling system which supplies the continuous oxygen and carbon monoxide analyzers. These analyzers are used to indicate incinerator performance and are interlocked with the AWFSO. The gas velocity port accommodates probes which measure gas velocity, temperature and pressure in the stack. This information provides an indication of gas residence time in the incinerator and is interlocked with AWFSO.

The stack has other ports at approximately 20 feet above grade. These ports will be used during the trial burn to make measurements and extract stack samples.

2.2 Description of Instrumentation

2.2.1 Measurement Parameters and Methods

The following paragraphs discuss the different incineration process parameters to be measured and the techniques employed to make the measurements.

Temperature is the most common process measurement. Temperatures throughout the incinerator are controlled, recorded, indicated and alarmed. Type K (Chromel-Alumel) thermocouples are used for temperature measurement. Thermocouples are installed in the duct downstream from the major components. The temperature range of the different measurements depend on where in the incinerator the thermocouple is installed.

Pressure and differential pressure (DP) are measured at various locations in the incineration system. The kiln exit pressure measurement is actually a vacuum measurement. The scale is inches of water column and the value represents the number of inches of water column below atmospheric pressure. A pressure transmitter converts the vacuum measurement into an electronic signal that is transmitted to a remote device. DP is also measured in inches of water column. DP measurements are used to indicate the pressure drop across major components in the incineration system. Differential pressure

Submittal: Final

Document: SEADTBP2

is measured with a local pressure gauge or a pressure transmitter which transmits an electronic signal that is proportional to the differential pressure being measured.

The total fuel oil flow to the incinerator is measured by a flowmeter. The flowmeter is located in the fuel oil piping in the incinerator area, and is installed prior to the piping split to the kiln burner and afterburner burner. The flowmeter is a positive displacement type that transmits an electronic signal to the main control panel for recording.

Stack gas velocity is measured by sensors installed in the exhaust stack. The sensors measure gas velocity and temperature. The velocity sensor is a S-type pitot tube positioned to sense the average gas velocity in the stack. The pitot tube measures the differential pressure between stack static pressure and impact pressure created by the gas velocity. A type K thermocouple is used to measure stack gas temperature. Both sensors are connected to transmitters which transmit signals to a signal conditioning device. This device receives the signals, performs various calculations and produces an output which represents the temperature compensated stack gas velocity. These data are recorded at the main control panel. The stack gas velocity measurement system is manufactured by EMRC. Appendix B contains information on this system.

The incinerator is equipped with a Continuous Emissions Monitoring (CEM) package which measures oxygen and Carbon Monoxide (CO) in the stack gas. The CEM package includes a sampling system which continuously pulls a stack gas sample and transports it to the analyzers. The sample extraction point is located in the stack approximately 20 feet above grade. The following components are included in the sampling system:

- Sample extraction probe with continuous opening the length of the probe
- Heat traced sample lines
- Calibration ports
- Refrigerated condenser for water vapor removal
- Sample pump
- Filters
- Flowmeters for each analyzer

The CEM package includes automatic calibration which allows the analyzers to be calibrated periodically without operator intervention. Appendix B contains the system description and drawing.

The analyzer used to continuously measure the concentration of oxygen in the stack gas is located in the analyzer panel in the feed room. It is a Rosemount/Beckman 755 oxygen analyzer which utilizes the paramagnetic measurement technique. Additionally, the analyzer includes a 0-25% total Oxygen scale. Appendix B contains the description and specifications for this analyzer.

The output signal from the analyzer is recorded at the main control panel and is used by the computer system to correct the CO measurement to 7% oxygen content in the stack gas.

The parts per million (ppm) level of CO in the stack gas is continuously monitored by a CO analyzer located in the analyzer panel. The CO analyzer is a Rosemount/Beckman 880 Non-Dispersive Infrared (NDIR) analyzer. The analyzer is a dual range model which includes a 0-200 ppm and a 0-3000 ppm range. Manufacturer's information with specifications is included in Appendix B.

The output signal from the analyzer is corrected to 7% oxygen by the computer system. The corrected CO value is recorded, used for AWFSO interlocking and used to limit feedrate during high CO conditions.

2.2.2 Panel Instrumentation

The panel instrumentation includes the devices located in the main control panel or in local panels throughout the incineration system. Instruments which control, indicate, record and alarm process parameters are considered panel instrumentation. The following paragraphs will describe the equipment employed to perform the various functions listed above.

The incinerator is equipped with process controllers to control process parameters. A process controller receives an analog signal from a transmitter which represents the value of the process parameter or Process Variable (PV) being measured. The process controller compares the PV with the Set Point (SP), which is the desired value of the process variable. If an error between the PV and the SP exists, the process controller generates an output signal which is proportional to the error. The output signal is transmitted to a final control element which adjusts the process by some method to obtain the SP. The final control element may be a control valve, a damper or a variable motor speed drive.

The incinerator uses process controllers to control the kiln temperature (Loop # TIC-601), kiln draft (Loop # PIC-1201), afterburner temperature (Loop # TIC-701), high temperature gas cooler exit (Loop #TIC-801) and low temperature gas cooler exit temperature (Loop #TIC-901). The process controllers also communicate with the computer system which is described later. The control loops which utilize process controllers are shown on the Functional Process Control Diagram (SK 88-07 - See Appendix A). The incinerator uses Honeywell UDC 3000 process controllers which are described in Appendix B.

The incinerator is equipped with burner control systems to monitor and control the kiln and afterburner burners. A burner controller is a sequence controller which supervises the pre-ignition air purge, ignition, main flame operation and post operation air purge. The burner controller monitors pre-ignition

interlocks such as combustion air availability, fuel oil pressure and ID fan status. The flame status is monitored by a flame detector. Burner controller outputs spark the flame ignitor during ignition, open the pilot valve during ignition and open the fuel oil safety shut-off valves during main flame operation. The burner controller systems are FM approved flame safety systems. Honeywell BC 7000 burner controllers are used. Honeywell information concerning the burner controller is included in Appendix B.

A multipoint digital recorder is used to record process parameters. The recorder accepts analog input signals from transmitters which represent the value of the process parameter being measured. The recorder is capable of recording 14 process parameters on an input value versus time scale. The recorder also communicates with the computer system. Information on the recorder, a Honeywell DPR 1500, is included in Appendix B. The following is a list of the process parameters that are recorded:

- Total fuel oil flow, Process Loop FR-101
- Kiln temperature, Process Loop FR-601
- Kiln draft, Process Loop PR-1201
- Afterburner temperature, Process Loop TR-701
- High temperature gas cooler exit temperature, Process Loop TR-801
- Low temperature gas cooler exit temperature, Process Loop TR-901
- Baghouse differential pressure, Process Loop PDR-1001
- Baghouse exit temperature, Process Loop TR-1002
- Stack gas velocity, Process Loop FR-1401
- Stack gas oxygen concentration, Process Loop AR-1301
- Stack gas CO concentration, Process Loop AR-1301

The baghouse status (on-line or standby) is not usually recorded, however, this information is stored internally on the computer system and can be accessed as required. Logic control for the incinerator is performed by a programmable logic controller (PLC). The PLC receives both discrete (on/off) inputs from switches and analog inputs from transmitters. The PLC operates motor starters, the AWFSO and other interlocks, and alarms by employing configurable functions of math, counter, sequence, relay and time. The PLC is a Honeywell IPC 620 system complete with discrete and analog I/O and a data communication link so information can be shared with the computer system. Information on the PLC system is supplied in Appendix B.

The computer system is a Personal Computer Operating Station (PCOS) which provides centralized and integrated data management, process graphics, operator interface and report generation. Through a serial data link, the PCOS communicates with the process controllers, PLC and recorder. All process parameters and information contained in these devices are available to the PCOS. The PCOS generates reports, logs data, develops historical trends, displays process parameters and alarms process parameters based on information gathered from the process controllers, PLC and recorder. One of the

primary functions of the PCOS is to record process data for internal use and regulatory compliance. The PCOS includes the following items: personal computer with keyboard and color graphics monitor, line printer and distributed automation and control software. Information on the PCOS is supplied in **Appendix B**.

Table 2-2 is the functional chart of process conditions which list the functions performed by the panel instrumentation on each process measurement.

2.2.3 Automatic Waste Feed Shut Off (AWFSO) System

Certain process conditions are required before munitions can be fed into the incinerator. The required conditions include minimum and maximum values of some process parameters, status of certain motors, status of burner flames, and operability of certain instruments. If waste is being fed and the incinerator deviates from any of the required conditions, waste is automatically shut off. When waste is automatically shut off, the waste loading conveyor is stopped instantly but the kiln feed conveyor continues to run so that any munitions in the kiln area will be loaded into the kiln. **Table 2-3** on the following page lists the process conditions which automatically shut off waste to the incinerator.

2.3 Operating Procedures

This subsection outlines the procedures used to operate the incineration system. The description presents an overview of the operating procedures and is not intended to be used to operate the incinerator. The incinerator operational manual and the standing operating procedures (SOP) contain more detail and are the official documents used to operate the incinerator.

The different operational items to be performed are listed for each of the various operating procedures. The following procedures are covered:

- Startup
- Operation
- Shutdown
- Scrap and residue handling
- Baghouse bypass

2.3.1 Startup Procedures

Perform operational inspection and complete pre-startup check list.

ı Army Depot, Romulus, New York ırn Plan

TABLE 2-2 FUNCTIONAL CHART OF PROCESS CONDITIONS

Document: SEADT

							1 1 1 1 1 1 1
		Indicated	Recorded	Controlled	High Alarm	Low Alarm	AWFSO
Process Conditions	Loop No.						
Oil Flow	F-101		•				
e Feed Rate	W-501	•	•	•			•
Rotational Speed	S-602	•		•			•
Temperature	T-601	•	•	•	•	•	•
Flame	B-601	•			•		•
Residue Conveyor		•			•		•
Pressure	P-1201	•	•	•	•	•	•
burner Temperature	T-701	•	•	•	•	•	•
burner Flame	B-1002	•			•		•
Temperature Gas Cooler Exit Temperature	T-801	•	•	•	•	•	•
Temperature Gas Cooler Exit Temperature	T-901	•	•	•	•	•	•
ouse Pressure Drop	PD-1001	•	•		•	•	•
ouse Exit Temperature	T-1002	•	•		•	•	•
ouse Bypass		•					•

Page: 2 V:\Envir\Seneca\Trlbrn\2-2

Army Depot, Romulus, New York

TABLE 2-2

Document: SEADTE Submittal: F

FUNCTIONAL CHART OF PROCESS CONDITIONS (Cont'd)

		Indicated	Recorded	Controlled	High Alarm	Low Alarm	AWFSO
Process Conditions	Loop No.						
u		•					•
use Stack Gas Velocity	F-1401	•	•		•		•
ust Stack Temperature	T-1401	•	•				
ust Stack Pressure	P-1401	•	•				
k Oxygen Concentration	AR-1301	•	•		•		
c Carbon Monixide Concentration	AR-1301	•	•		•	•	•

Page: 2 V:\Envir\Seneca\Trlbrn\2-2

TABLE 2-3

AUTOMATIC WASTE FEED SHUT-OFF CONDITIONS AND VALUES

Condition	Minimum Value	Maximum Value
Carbon Monoxide in Exhause Stack	None	Permit Limit
Afterburner Temperature	1200 °F	1800 °F
Kiln Temperature	250°F (Note 2)	1100 °F
Kiln Pressure	None	-0.08 inches WC
Waste Feed Rate	None	Waste Specific
Gas Velocity in Exhaust Stack	None	50 fps
Pressure drop across Baghouse	2 in. wc	6 in. wc
HT Gas Cooler Exit Temperature	None	850 °F
LT Gas Cooler Exit Temperature	None	350 °F

Additional conditions which engage the AWFSO:

- Kiln Flameout
- Afterburner Flameout
- Bypass Baghouse
- Kiln Rotation Stops
- Kiln Residue Conveyor Stops
- ID Fan Stops
- Oxygen Analyzer Failure
- Carbon Monoxide Analyzer Failure
- · Failure of Data Recorder
- Failure of any Temperature Monitoring System
- Failure of the Automatic Waste Feed Monitoring System
- Failure of any Process Controller
- Baghouse Differential Pressure Transmitter Failure

NOTES:

- 1. The Carbon Monoxide measurement is corrected to 7% Oxygen. Waste feed is shut off when the rolling average of the CO corrected for O₂ on a dry basis is above the limit set in the permit. The waste feed can only be restarted when the rolling average drops below the permitted limit.
- 2. Munition specific.

The following procedures will be performed automatically upon automatic start-up but would be conducted in this manner if manual start-up were to be undertaken.

- Bypass the baghouse.
- Start the ID fan with the kiln pressure controller in manual.
- Start the gas cooler blowers with the LT gas cooler motor speed controller in manual.
- Start the air compressor.
- Start the fuel oil pump and open the hand valves to the burners.
- Start the afterburner combustion air blower.
- Place the afterburner temperature controller in manual and slightly open the control valve.
- Ignite the afterburner burner.
- Start the kiln rotation.
- Start the kiln combustion air blower.
- Place the kiln temperature controller in manual and slightly open the control valve.
- Ignite the kiln burner.
- Adjust the set points on the process controllers and place the controls in the automatic mode.
- Date and sign the recorder chart. Verify all recorded conditions are being correctly recorded.
- Enter the type of munitions into the computer system.
- Adjust the rotation speed of kiln for the type of munitions to be fed.
- Adjust the kiln temperature set point for the type of munitions to be fed.
- Start the waste loading, waste feed, and residue conveyors.
- Start the baghouse bag cleaning cycle.
- Open the baghouse block valves and close the baghouse bypass valve.
- Start the gas cooler sonic cleaners.
- Close the kiln barrier walls.
- Feed the munitions at specified feedrate.

Note that no waste is fed to the kiln until the baghouse in on-line.

2.3.2 Operation Procedures

These procedures are to be performed while the incinerator is burning munitions.

- Monitor the main control panel closely to
 - Monitor process conditions
 - Verify that correct recording and data logging are being performed

- Document: SEADTBP2 Submittal: Final
- Verify that control functions are being performed
- Handle alarm conditions as required
- Inspect exhaust stack emissions hourly (minimum).
- Check all local indicators on incinerator for proper values.
- Inspect the operation of rotating equipment outside of kiln barrier walls.

2.3.3 Shutdown Procedures

The following procedures will be performed during automatic shutdown (These procedures can be initiated manually or as an automatic response from the AWFSO system):

- Stop waste feed to kiln.
- Maintain all other operating conditions, including kiln and afterburner temperature, for 15 minutes (minimum) or until kiln residue conveyor is empty, whichever is greater.
- Place process controllers in manual.
- Shut off the kiln burner flame but keep combustion air blower on and combustion air valve open.
- Shut off the afterburner burner flame but keep combustion air blower on and combustion air valve open.
- Shutdown fuel oil pump.
- Open ID fan damper fully.
- After kiln temperature is below 400°F and afterburner temperature is below 600°F, the following equipment is shutdown:
 - Kiln combustion air blower
 - Afterburner combustion air blower
 - ID fan
 - Gas cooler blowers
 - Baghouse residue valve
 - Gas cooler residue valves
 - Kiln rotation drive
 - Kiln residue conveyor

Conditions which would initiate an automatic shutdown are discussed in Section 2.2.3 and are shown on Table 2-3. It is important to note that kiln and afterburner conditions are maintained until all the waste is incinerated. This is for safety and to ensure continued destruction of the hazardous waste.

2.3.4 Scrap and Residue Handling

Scrap and residue will not be handled until cooled and the kiln residue conveyor has been observed running empty. After the scrap and residue has completely cooled, samples from each container will be inspected for complete deactivation. The scrap will be reprocessed, if required. Any scrap accumulated after an emergency shutdown will be reprocessed.

When different munitions are fed, a minimum 15-minute waiting period will be necessary and the kiln residue conveyor must run empty before scrap containers can be changed. Scrap containers must be changed to separate classes of scrap.

2.3.5 Baghouse Bypass

If the baghouse is bypassed for any reason waste feed to the furnace is stopped by the AWFSO System. Bypass of the furance will occur only when there is an exit temperature measurement failure, when the high baghouse temperature alarm sounds during a fire condition, and during startup operations prior to the initiation of waste feed.

The bypass is interlocked with the AWFSO system so that waste cannot be fed if the baghouse is bypassed.

SECTION 3

WASTE CHARACTERIZATION

The munition items and bulk explosives that will be demilitarized at the facility are Class A, B and C explosives. These materials include small arms ammunition, propellants, artillery ammunition, rockets, boosters, impulse cartridges, fuzes and numerous components that are used in the assembly of conventional munitions. Aged or obsolete batches of these materials are periodically shipped to the demilitarization facility. When it has been determined that these munitions are no longer in the munition lifecycle as defined in Army Regulation AR 200-1, paragraph 6-7, the munitions become solid waste as defined in 40 CFR 261.2 and a hazardous waste as described in 40 CFR 261.23.

All of these wastes are bulk solids or end-item munitions. They are all fed to the rotary kiln by the conveyor system described in **Section 2**. No liquid wastes are burned in the deactivation furnace.

Two hundred different munitions have been identified as potential candidates for demilitarization at SEAD. It is important to note that only those munitions identified on Table 4-5 of the following section and completely characterized in Appendix C will be demilitarized. No uncharacterized munitions will be accepted at SEAD for demilitarization. A complete list of the chemical compounds present in feed items is presented in Table 3-1. The complete chemical characterization of each item is included in Appendix C, Table C-2.

Document: SEADTBP2

TABLE 3-1
WASTE FEED COMPONENT CHEMICAL COMPOSITIONS

Constituent	Chemical Formula
Acetylene Black, Carbon Black, Charcoal, Graphite	С
Aluminum	Al
Aluminum Trisulfide	Al_2S_3
Ammonium Nitrate	NH ₄ NO ₃
Antimony Sulfide, Antimony Trisulfide	Sb₂S₃
Asphaltum	High Molecular Weight Hydrocarbons
Barium Carbonate	Ba(CO ₃) ₂
Barium Chromate	BaCrO ₄
Barium Nitrate	Ba(NO ₃) ₂
Barium Peroxide	BaO ₂
Barium Stearate	Ba(C ₁₈ H ₃₅ O ₂) ₂
Boron Powder	В
Black Powder	74% - KNO ₃ , 10.4% - S, 15.6% C
Calcium Carbonate	CaCO ₃
Calcium Resinate	CaC ₄₀ H ₅₈ O ₄
Calcium Silicide	CaSi ₂
Calcium Stearate	Ca(C ₁₈ H ₃₅ O ₂) ₂
Carborundum	SiC & Al ₂ O ₃
DDNP	Unknown
Dibutylphthalate	C ₆ H ₄ (COOC ₄ H ₉) ₂
Diphenylphthalate	C ₆ H ₄ (COOC ₆ H ₅) ₂
Dichromated Aluminum Powder	Al ₂ (CrO ₇) ₃
Dinitrotoluene	C ₆ H ₃ CH ₃ (NO ₂) ₂
Diphenylamine	(C _e H ₅) ₂ NH
Ethyl Centralite	C ₁₇ H ₂₀ N ₂₀
Egyptian Lacquer	Nitrocellulose and solvent
Fuze Powder	Unknown
Gum Arabic	Complex Carbohydrates
нсв	C ₆ CL ₆
нмх	C ₄ H ₈ N ₈ O ₈
Laquer	Nitrocellulose and solvent

TABLE 3-1
WASTE FEED COMPONENT CHEMICAL COMPOSITIONS (Cont.)

Constituent	Chemical Formula	
Lead Azide	PbN ₆	
Lead Dioxide, Lead Peroxide	PbO ₂	
Lead Styphnate	PbC ₆ H ₃ N ₃ O ₆	
Lead Sulfocyanate, Lead Thiocyanate	Pb(SCN) ₂	
Linseed Oil	Glycerides of fatty acids - C ₂₁ H ₃₈ O ₄ (Typical)	
Magnesium, Magnesium Powder	Mg	
Magnesium Aluminum Alloy	Mg ₂ AI	
Nickel Powder	Ni	
Nitrocellulose	$C_6H_7O_5(NO_2)_3$	
Nitroglycerin	C ₃ H ₅ N ₃ O ₉	
Oxamide	NH ₂ COCONH ₂	
Parlon Chlorinated Rubber	Typically 65% CI	
Perchloropentacyclodecane	C ₁₅ H ₁₉ Cl ₁₁	
PETN	C ₆ H ₈ N ₄ O ₁₂	
Polyethylene	(CH ₂) _n	
Poly Vinyl Alcohol	(C ₂ H ₃ OH) _n	
Polyvinyl Chloride	(C ₂ H ₃ CI) _n	
Potassium Chlorate	KCIO ₃	
Potassium Nitrate	KNO ₃	
Potassium Perchlorate	KCIO₄	
Potassium Sulfate	K₂SO₄	
RDX	$C_3H_6N_6O_6$	
Red Phosphorus	Р	
Silicon Carbide	SiC	
Sodium Bicarbonate	NaHCO ₃	
Sodium Sulfate	Na ₂ SO ₄	
Strontium Nitrate	Sr(NO ₃) ₂	
Strontium Oxalate	SrC ₂ O ₄ •H ₂ O	
Strontium Peroxide	SrO ₂	
Sulfur	s	

TABLE 3-1
WASTE FEED COMPONENT CHEMICAL COMPOSITIONS (Cont.)

Constituent	Chemical Formula	
Tetracene	C ₂ H ₈ N ₁₀ O	
Tetryl	C ₇ H ₆ N ₆ O ₈	
Tin Dioxide	SnO ₂	
Trinitroresorcinol	$C_6H(OH)_2(NO_2)_3$	
Trinitrotoluene	C ₆ H ₂ CH ₃ (NO ₂) ₃	
Vinyl Alcohol Acetate Resin	(C ₄ H ₆ O ₂) _n	
Wax	Long chain alkanes - C _n H _{2n+2}	
Yellow Dye	Unknown	
Zinc Stearate	Zn(C ₁₈ H ₃₆ O ₂) ₂	
Zirconium	Zr	

SECTION 4

ESTABLISHING MUNITION FEED RATES

4.1 MUNITION FEED RATES

The purpose of this section is to outline the process used to set munition feed rates for the safe operation of the deactivation furnace. Feed rates were initially set after U.S. Army experimentation. This work established the amount of each munition which could be fed without risk of physical damage to the furnace or its surroundings. SEAD plans to operate the deactivation furnace 40 hours a week, 52 weeks per year or a total of 2080 hours per year. In order to simplify munition accounting it was SEAD's goal to reduce the feed rates initially established by the army, so that any munition could be burned for all 2080 hours the deactivation furnace will operate each year and not exceed any ambient air quality guidance or standard. For this reason SEAD has identified the most stringent standard and guidance limit, enforceable or not for each pollutant to be burned, and back calculated allowable munition feed rates from them.

Establishing allowable munition feed rates was accomplished in the four principal steps described below. Details of the processes and rationale used in following these steps are presented in the following sections.

- 1. Identification of appropriate State and Federal ambient impact and air quality standards and guidelines.
- Calculation of emission impact on ambient air at the point of highest concentration for a generic
 1 lb/hr of pollutant emitted by the deactivation furnace.
- Back calculation of an allowable emission rate which meets all State and Federal standards and guidance for each pollutant.
- Back calculation of the allowable feed rate which corresponds to the allowable emission rate for each munition, taking into account metals partitioning and constituent removal in the deactivation furnace's air pollution control equipment.

Document: SEADTBP2

The appropriateness of the munition feed rates established in **Section 4** will be verified during the trial burn and will be limited by the following criteria:

- 1. The ash yield rate cannot exceed the highest ash yield rate established in the trial burn.
- The chlorine feed rate must be less than 3 lb/hr to ensure that the maximum HCl generation rate is less than 4 lb/hr. (The deactivation furnace system does not include air pollution control equipment which can remove HCl).
- The organic hazardous constituent feed rates cannot exceed the corresponding maximum POHC feed rates established in the trial burn.
- The feed rate established for each metal cannot exceed the corresponding maximum feed rate established during the trial burn.
- 5. The maximum waste Propellant/Explosive/Pyrotechnical (PEP) input cannot exceed the corresponding maximum established in the trial burn.

Appropriate feed rates for the trial burn were developed for all metals, including those of low toxicity. Data generated during the trial burn will become the basis for an air permit. Feed rates were also modified to meet HCl, Particulate (PM-10), SO₂, and NO₂ standards and guidance.

Data generated during the trial burn will become the basis for an air permit. Although it is expected that the air pollution control equipment associated with the deactivation furnace will be found to represent best available control technology (BACT), this analysis is not addressed in the trial burn plan. BACT will be addressed during the permit application process.

Guidance for this work came chiefly from New York State Department of Environmental Conservation's (NYSDEC's) Air Guide-1 (AG-1). Additional guidance was taken from Volume IV of the Incineration Guidance Series, "Guidance on Metals and Hydrogen Chloride Controls for Hazardous Waste Incinerators." Technical papers on metals partitioning as well as trial burn data generated by the U.S. Army for other deactivation furnaces was also used.

4.2 IDENTIFICATION OF APPROPRIATE STANDARDS AND GUIDANCE

NYSDEC's Air Guide-1 is the principal guidance followed by New York State regulators. While it has not been promulgated and exists only in draft form, it represents the State's basis for air permitting decisions. Air Guide-1 incorporates Federal standards and State guidance for acceptable concentrations of pollutants in ambient air. Limits from Air Guide-1 for pollutants which will be emitted

by the deactivation furnace are recorded below in **Table 4-1**. Values are in micrograms per cubic meter. In most instances the State identifies two values, a Short term Guideline Concentration (SGC) and an Annual Guideline Concentration (AGC). SGCs are designed to protect human health and the environment from acute effects, while AGCs are designed to be protective over the long term. A full description of the development and purpose of SGCs and AGCs is located in Appendix C of AG-1.

For pollutants which are less toxic or produced in such small quantity that their risk to public health is thought to be minimal, the State has not yet developed SGC and AGC values. For the cases where values were not published by the State, the State provides methodology for developing "interim values" (see Section IVA of AG-1). Where published occupational exposure limits existed for a pollutant, "interim" values were calculated. It should be noted that these "interim" values are thought to be conservative estimates of the actual safe ambient air concentrations. For this trial burn "interim" values were developed for aluminum and tin. All calculations are located in Appendix D.

For pollutants for which values have not been published by the State and for which occupational exposure data is limited, AG-1 defines the use of a "deminimis" value. The concept of the deminimis value was developed to insure that the permitting process would not stop if a source were to emit a pollutant for which the State had not developed an SGC or AGC. Deminimis values were developed by the State for moderate and low toxicity pollutants.

A toxicological review of strontium in the forms expected to be emitted by the deactivation furnace has been performed in order to establish its deminimis allowable impact. This review of existing data supports the classification of strontium and its associated compounds as low toxicity pollutants. The toxicological review is located in **Appendix K**. The derived impacts for strontium are included in **Table 4-1**.

Federal guidance for ambient air quality and allowable impacts from hazardous waste incinerators is located in Volume IV of the incinerator guidance series. This document is used by Federal regulators and is the basis for their air permitting decisions. The ambient air impact guidelines are risk based and have been proposed by the EPA as amendments to the 40 CFR Part 264 Subpart O, hazardous waste incinerator rules. The EPA believes that metal and hydrogen chloride (HCI) from hazardous waste incinerators can pose unreasonable risk, and need to be regulated more stringently than currently required.

The EPA proposes Reference Air Concentrations (RACs) for noncarcinogenic metals and Risk Specific Doses (RSDs) for carcinogenic metals. The RSDs insure that exposure to all carcinogenic metals are limited such that the sum of the excess risks attributable to ambient concentrations of these metals do not exceed an additional lifetime individual risk to the potential Most Exposed Individual (MEI) of 10^{-6} .

Table 4-1

NYSDEC Ambient Air Quality Guidelines

Pollutant	SGC (Hourly Average in ug/m³)	AGC (Annual Average in ug/m³)
Aluminum	476 (4)	4.76 (4)
Antimony	120	1.2
Barium	120	0.5
Chrome (VI)	0.1	2 x 10 ⁻⁶
HCI	150	7
Lead	NA	1.5 (1)
Nickel	1.5	0.02
NO ₂	NA	100 (3)
Particulate (PM-10)	150 (2)	50 (3)
SO₂	365 (2)	80 (3)
Strontium	10 (5)	1.0 (5)
Tin	476 (4)	4.76 (4)
Zinc	150	50

- 1. NAAQS based on a 3 month average
- 2. NAAQS based on a 24 hour average
- NAAQS based on an annual average
- 4. Interim values calculated for moderately toxic metals
- 5. Deminimis value for a low toxicity metal
- NA Not Available

Note: Actual metal emissions from the deactivation furnace will be as oxides. To be conservative metal emissions were assumed to be as elemental metal, which is generally the more toxic form.

SGC values are hourly averages unless otherwise specified.

AGC values are annual averages unless otherwise specified.

Document: SEADTBP2

The potential MEI risk is the risk at the point where the maximum concentration occurs regardless of the actual population distribution. The EPA is proposing that, using reasonable worst-case assumptions, an incremental lifetime risk to the MEI of less than 10^{-6} (1 cancer case per 100,000 people) is a reasonable acceptable risk. The aggregate risk to the MEI is calculated by predicting the maximum annual average groundlevel concentration for each carcinogenic emission, calculating the estimated risk from that ambient concentration using the unit risk factor, and summing the risk for all carcinogenic compounds. EPA's Carcinogen Assessment Group has estimated carcinogenic potency factors for humans exposed to known and suspected human carcinogens. These factors are the basis for estimating "unit risks" of carcinogens at the low doses associated with typical levels of exposure to airborne carcinogens in the ambient environment (Vol IV-App I-13).

RACs have been developed for HCl and those noncarcinogenic metals listed in Appendix VIII of 40 CFR Part 261 for which the EPA has adequate health effects data. RAC values are based on oral Reference Dose (RfD) data and are designed to represent an estimate of a daily exposure (by ingestion) for the human population that is likely to be without an appreciable risk of deleterious effects even if exposure occurs daily during a lifetime. The RfD for a specific chemical is calculated by dividing the experimentally determined no-observed-adverse-effect-level by the appropriate uncertainty factors (Vol IV-Appendix I).

PEP from munitions fed to the deactivation furnace will contain only one known carcinogenic metal, chromium. In order to be conservative, all chrome fed to the deactivation furnace was assumed to be converted to chrome VI, which is a known carcinogen. Thus, the chromium feed rate was limited so that the RSD is not exceeded and the risk to the MEI is less than 10^{-5} . Using the unit risk factor identified in the Volume IV guidance and the allowable risk to the MEI, the allowable impact for chrome VI was calculated to be $8.3 \times 10^{-4} \text{ ug/m}^3$.

Feed rates for munitions containing noncarcinogenic metals were limited such that each individual RAC will not be exceeded. All RAC values are in micrograms per cubic meter and represent allowable lifetime ambient air impacts. A full explanation of the development of RACs is located in **Appendix I** of Volume IV of the guidance series. RACs for noncarcinogens expected to be emitted by the deactivation furnace are located in **Table 4-2**.

The impacts for carcinogenic and noncarcinogenic metals described above represent air pollutant concentrations, which the MEI can be exposed to over a lifetime without deleterious effects. In order to demonstrate compliance with these guidelines, SEAD has taken a conservative approach by assuming that they are equivalent to annually averaged limits. If annually averaged limits were to be derived from lifetime averaged limits the allowable exposure would be considerably higher. In the preparation of this trial burn plan, SEAD has sought to use conservative assumptions to insure that operation of the deactivation furnace will be protective of human health and the environment.

Document: SEADTBP2

Table 4-2

Reference Air Concentrations

Metal	RAC (ug/m³)
Antimony	0.3
Barium	50
Hydrogen Chloride	150 (3 min.) 7 (annual)
Lead	0.09

Note:

RACs represent impacts which over a lifetime will cause no adverse effects to the MEI. SEAD has opted to use them as allowable annual impacts.

4.3 CALCULATION OF EMISSION IMPACT

Both NYSDEC and EPA have published guidance for estimating the impact of potential sources of air pollutants on ambient air quality. Both provide regulators with methodologies to evaluate the source initially with simplified procedures. If the source complies with impacts predicted by these methods, then there is no need to pursue more rigorous analysis. If the source does not comply, then NYSDEC and EPA provide more rigorous analytical methods. Each level of analysis requires greater and greater understanding of the source, the source site, and the historic meteorology of the site. As these analyses become more and more complex fewer and fewer conservative default values are used and the closer predicted impacts will be to actual impacts. Because of the time and money required to do in-depth analysis, NYSDEC and EPA have sought to provide stepwise approaches which limit the level of effort required to the complexity of the source to be modeled.

The NYSDEC process begins with the simplified, point source method described in Section III A of AG-1 and progresses to site specific modeling; while the EPA process starts with a three tier analysis (Tier I, Tier II and Tier III) which is described in Volume IV of the guidance series. The most in depth evaluation performed in the EPA process is Tier III, site specific modeling, and at this point both NYSDEC and EPA methodologies basically overlap. SEAD performed the simplified methods described by both agencies. The analyses found that predicted impacts were in excess of allowable limits and that site specific modeling was required.

Document: SEADTBP2

Initial estimates for ambient impacts were calculated by using Air Guide-1's Standard Point Source Method (PSM). This method predicts an impact at the point of maximum concentration by taking into account: building downwash effects; stack height and diameter; exit gas temperature and velocity; and the effects of plume rise. SEAD used the air dispersion equations provided by PSM for metal constituents, by assuming annual impacts equal to the State's AGC values, and then back calculating the associated emission rates. The maximum short-term impact was then calculated by the second air dispersion equation defined in the method, and compared with the State's SGC. If the calculated value was less than the SGC, then the feed rate met necessary criteria. If the calculated value exceeded the SGC, then the allowable emission rate was reduced until the requirements were met. As described previously, the predicted impacts were very conservative and the source did not meet requirements as calculated by PSM.

SEAD then utilized EPA's Tier I/Tier II analysis. This method which predicts allowable source impacts relies on simplistic default type information, but reduces the complexities of estimating terrain and dispersion effects. Using EPA's procedure SEAD calculated a simplified effective stack height; the land type was found to be rural based on population and the amount of industry in a 3 Km radius around the deactivation furnace; and the terrain was designated as complex (rolling hills) since the land rises more than the physical stack height in a 5 Km radius.

Once this information was established SEAD referred to tables the EPA has compiled for 20 hazardous waste incinerators operating under worst case conditions (Provided in Tab B of Volume IV) and read off worst case feed rates for metals and HCI. This simplistic analysis gave no credit for metals partitioning to furnace bottoms ash or for the removal of constituents in air pollution control equipment. Tier I analysis is the estimation of predicted allowable feed rates and their comparison to the proposed pollutant feed rates. The predicted feed rates are converted to predicted emission rates in subsequent tables of Tab B. Tier II analysis is the comparison of the predicted emission rates with those proposed, with no credit for partitioning or APC removal. The Tier I/Tier II analysis performed for the deactivation furnace is presented in its entirety in Appendix M.

The impacts calculated with these simplified methods are inherently conservative. Consequently they limited allowable feed rates beyond what was acceptable to the Seneca Army Depot. Meteorologists in the office of the engineer spoke to NYSDEC Air personnel and agreement was reached on a more sophisticated method for estimating impacts which did not require the level of effort necessary to develop a full blown Industrial Source Complex (ISC) dispersion model. Under NYSDEC's guidance EPA's air model SCREEN was used to predict impacts for a 1 lb/hr pollutant source. USEPA SCREEN is described in EPA document 450/4-88-010. This analysis satisfies the definition of site specific model under both NYSDEC guidance and EPA Tier III, and became the basis upon which all pollutant and munition feed rates were set.

In addition to the parameters considered in AG-1's point source method, USEPA SCREEN examines a wide range of wind speed and stability classes. It uses standard methods to calculate plume rise from point sources as well as stack tip downwash, buoyancy induced dispersion and building wake and cavity effects. The model considers various terrains and estimates an impact at one or more receptors.

SCREEN was used to predict the maximum average hourly impact which would result from 1 lb/hr of pollutant being emitted from the deactivation furnace. SCREEN predicted the maximum impact would be 18.55 ug/m³ and would occur at a distance of 3450 feet from the deactivation furnace. The impacts expected from actual pollutant emissions will be directly proportional to this impact, i.e., a pollutant emitted at the rate of 2 lb/hr will produce a maximum hourly impact of 37.1 ug/m³ at 3450 feet, and a pollutant emitted at the rate of 0.5 lb/hr will produce a maximum hourly impact of 9.28 ug/m³. Using this proportional comparison, impacts were estimated for all pollutants which are expected to be generated by the deactivation furnace. The SCREEN analysis and a brief descriptive report are located in **Appendix J**.

For cases where impacts required recalculation to another time averaged basis the conversion factors provided by NYSDEC and summarized in Table 4-3 were used. The factors are conservative estimates for the effect of changing wind direction and dispersion effects which can be expected to occur over the specified duration.

Table 4-3

NYSDEC Impact Conversion Factors

To Convert From	То	Multiply By
1 hour impact	24 hour impact	0.4
1 hour impact	3 month impact	0.2
1 hour impact	1 year impact	0.1

4.4 CALCULATION OF ALLOWABLE EMISSION RATES BASED ON NYSDEC GUIDANCE

After an impact was predicted for a generic source it became possible to predict impacts for the actual source. This was done by taking the ambient air quality standards and guidance for each pollutant and setting them up in a proportion with the generic impact predicted in **Section 4.3**. Hence an emission

rate for each pollutant was calculated. These emission rates represent the rates at which pollutants can be emitted to the air and not exceed allowable ambient air quality standards and guidance.

As described in Air Guide-1 and in Volume IV, the air quality standards and guidance were developed to protect human health and the environment. Hence the state and the EPA have relied on toxicological risk data (i.e., risk assessments) to develop these numbers. By starting with these risk based limits, Seneca Army Depot has affectively incorporated a risk assessment into the calculated pollutant emission rates. Where SGC and AGC values were available or derivable the following equations were used to back calculate acceptable emission rates.

EQ 4.4.1

 $Qs (lb/hr) = SGC (ug/m^3) \times 1 (lb/hr) / 18.55 (ug/m^3)$

In order to establish an allowable emission rate for each pollutant, a value which met the requirements of the SGC, the allowable short term impact averaged on an hourly basis, was first calculated using EQ 4.4.1. The equation which is a simple ratio generates the emission rate Qs. In order to determine whether Qs will meet the annual average ambient requirements the following methodology was used.

1. A conservative yearly impact was predicted for a source which emits a pollutant at a concentration equal to the SGC. NYSDEC recommends that to derive an annual impact from an hourly number multiply it by 0.10. However, as the furnace will be permitted to operate only 2080 hours (40 hours a week, 52 weeks per year) out of the 8760 hour year (24 hours a day, 365 days per year) the actual predicted impact will be less than that, in proportion to the number of hours of operation to the total number of hours in a year. Consequently:

Predicted Annual Impact (PAI) = SGC x $0.10 \times 2080/8760$

- 2. The PAI is then compared to the AGC. If it is less than the AGC, then the emission rate Qs satisfies the hourly and annual guidance and can be used to back calculate a munition feed rate. If the PAI exceeds the AGC, then the emission rate Qs satisfies the hourly guidance but not the annual guidance; thus, the emission rate must be reduced.
- 3. If the emission rate has been shown to exceed the AGC in step 2, then the rate must be reduced by multiplying Ωs by the ratio of the AGC to the PAI. The resulting emission rate, Ωa, will satisfy the hourly and annual guidance and can be used to back calculate a munition feed rate. The equation for Qa is:

 $Qa = Qs \times AGC/PAI$

Algebraically steps 1 through 3 reduce to EQ. 4.4.2. For the purpose of calculating acceptable emission rates under AG-1, the most restrictive value obtained from equations 4.4.1 and 4.4.2 were used.

EQ 4.4.2

 $Qa (lb/hr) = [Qs \times AGC] / [(0.1 \times SGC \times 2080 (hrs)/8760 (hrs)]$

These equations or derivations were used to generate emission rates in all cases. The actual calculations are included in Appendix D. The resulting allowable emission rates meet all Federal standards and State guidance for the emission of the toxic pollutants known to be emitted from the deactivation furnace.

4.5 CALCULATION OF ALLOWABLE EMISSION RATES BASED ON FEDERAL GUIDANCE

As described previously, Volume IV of the incinerator guidance series contains proposed allowable ambient air impacts which are more restrictive than current 40 CFR Part 264 Subpart O limits. The proposed guidance defines a risk based impact called a Reference Air Concentration (RAC). In order to show compliance with this guidance, which in most cases is also more restrictive than NYSDEC guidance, the following equation was used to back calculate allowable emission rates. The equation was derived from methodology similar to that used to derive emission rates from NYSDEC guidance.

The RAC is an acceptable lifetime impact, which SEAD has conservatively used as an annually averaged impact. As described in **Section 4.2** the impact of 1 lb/hr of pollutant from the deactivation furnace is predicted to be 18.55 ug/m³ on an hourly average. For lack of Federal guidance the NYSDEC conversion factor for an hourly averaged impact to an annually averaged impact is used. The resulting predicted annually averaged impact is 1.855 ug/m³. The RAC is simply multiplied by the ratio of 1 lb/hr emission to an impact of 1.855 ug/m³ and by the ratio of the total number of hours in a year of operation to the total number of hours of operation, which were described previously. The resulting allowable emission rates meet the requirements of Federal guidance. The equation 4.5.1 follows:

EQ 4.5.1

 $Qa = [RAC (ug/m^3) \times 1 (lb/hr)]/[(1.855 (ug/m^3) \times 2080 (hrs)/8760 (hrs)]$

Document: SEADTBP2

4.6

BACK CALCULATION OF MUNITION FEED RATES

Two emission rates were derived for each pollutant; one from NYSDEC ambient air quality limits and the other from EPA limits. The lowest of the emission rates established for each pollutant was then selected as its maximum allowable emission rate. This information is summarized in Table 4-4. Feedrates were then calculated by dividing the maximum allowable emission rate for each pollutant, by the fraction expected to partition to the gas phase (the remainder going to kiln bottoms) and then by the fraction which is expected to pass through the baghouse (filter fabric). Volume IV of the incinerator guidance series describes a similar methodology for deriving feed rates in its Tab D, "To establish the interim feed rate limits, the permit writer should back-calculate from an acceptable emission limit using reasonable but conservative assumptions regarding: (1) the removal efficiency of the emission control device and (2) partitioning of metals to bottom ash".

It should be noted that the removal efficiencies are minimum values and actual partitioning and baghouse removal efficiencies are expected to be higher. The baghouse removal efficiencies, metals' partitioning data, and the resulting allowable feed rates are summarized in Table 4-4 for each pollutant. It should also be noted that in the case of HCI emissions are limited to 4.0 lb/hr by 40 CFR 264.343.A.2.b. Seneca Army Depot has conservatively decided to limit chlorine emissions and feed rate in any form to 3.0 lb/hr. Similarly for the calculation of feed rate reductions, all particulate matter was assumed to exist as PM-10. This conservative assumption adds another margin of safety to the calculated allowable feed rates. It should also be noted that the deactivation furnace does not represent a "major stationary source" as it does not belong to the list of 28 source categories, and does not have the potential to emit greater than 250 tons per year of any pollutant subject to regulation under the Clean Air Act (i.e. SO₂, NO₂).

Munition feed rates established by U.S. Army experiments were then reduced where necessary to reflect the maximum allowable feed rates for each pollutant identified in Table 4-4. The munitions generating the highest allowable emissions of each pollutant were chosen as test parameters for the Trial Burns. No emission rate or feed rate for any pollutant will exceed the allowable rates established in the Trial Burns.

The resulting allowable feed rates for the 200 munitions that are proposed to be incinerated are listed in Table 4-5 of this section and on the individual waste characterization sheets located in Appendix C. Kiln temperature and rotation rates for standard operation are recorded where available in Appendix L. In addition, Table 4-5 lists the item feed rate, thermal input rate, ash yield rate, chlorine feed rate, the organic hazardous constituent feed rates, and hazardous metal constituent feed rates for each munition item. This data set provides the basis for selecting trial burn wastes, as described in Section 5.

Document: SEADTBP2

ieca Army Depot, Romulus, New York al Burn Plan

SUMMARY OF ALLOWABLE POLLUTANT EMISSION AND FEED RATES Table 4-4

Pollutant	Federal Standards & NYSDEC Guidance Emission Rate (lb/hr)	EPA Guidance Emission Rate (lb/hr)	Metal Partitioning Removal (%)	Baghouse Removal (%)	Federal Standards & NYSDEC Guidance Feed Rate (lb/hr)	EPA Guidance Feed Rate (lb/hr)	Max. Allowable Feed Rate (lb/hr)
Aluminum	10.81	NA	0 (3)	90 (3)	108	NA	108
Antimony	2.72	0.68	0	95	54	13.6	13.6
Barium	1.14	114	50	95	45	4560	45
Chrome VI	4.5 x 10 ⁻⁶	1.9 × 10 ⁻³	95	99 (3)	0.09	3.8	60.0
HCI	4.0	4.4	0	0	4.0 (4)	4.4	3.0 (5)
Lead	1.7	0.2	0	99 (1)	170	20.4	20.4
Nickel	0.081	NA	0	90 (3)	0.81	NA	0.81
NO ₂	227	NA	NA	NA	4540	NA	4540
Particulate (PM-10)	10.1	NA	0	90 (3)	101	NA	101
SO ₂	49.2	NA	NA	NA	49.2	NA	49.2
Strontium	0.54	NA	89 (2)	95 (3)	98	NA	98
Tin	10.81	NA	0 (3)	90 (3)	108	NA	108
Zinc	8.09	NA	0 (3)	90 (3)	80	NA	80
Trial Burn Re	Frial Burn Report - Lake City Army Ammunition Plant - USAEHA	/ Ammunition Plant - L	JSAEHA				

Trial Burn Report - Lake City Army Ammunition Plant - USAEHA EPA/600/9-89/072 Conservative Estimate 40 CFR 264.343 A.2.b

Self Imposed restriction

te:

Except as specified baghouse removal efficiency and partitioning data from EPA, Volume IV of the Incineration Guidance Series. All metal emission limits are associated with the elemental metal although actual metal emissions will be as oxides which are less toxic. All chrome was assumed to exist as Chrome VI.

The heating value, ash content, chlorine content and organic hazardous constituent data in the tables are derived from the detailed waste characterization data in Appendix C. Table C-1 presents ash yield, chlorine content, and higher heating value data for each chemical compound used in the munition formulations. The ash yields and heating values are based on thermodynamic reaction pathways for the munitions in the incinerator environment. Table C-2 provides chemical compositions for the munition items. These data are based on military specifications for manufacture of the munitions and are thus thought to be quite accurate.

Document: SEADTBP2

TABLE 4-5 SUMMARY OF MUNITION FEED RATES

COMPONENT	RATE to ms/br	PEP QUANT (gr/item)	PEP RATE (lb/hr)	CL CONT (lb/lb)	ASH CONT (lb/lb)	HEAT VALUE (BTU/lb)	CL RATE (lb/hr)	ASH RATE (lb/br)	HEAT VALUE (BTU/hr)	AL RATE F (lb/br) (SB RATE R (Ib/br) (BA RATE R (lb/br) (l	CR LI RATE R. (lb/br) (il	LEAD RATE RA	SR TIN RATE RATE (16/br) (16/br)	N ZINC TE RATE hr) (lb/hr)	(C DBP TE RATE br) (lb/hr)	P DNT TE RATE 11 (lb/hr)	T DPA	1 E R r) (1
HEI - M56A3 (w/double base propellant)	006	769.38	98.92	0.0000	0.1413	5625	0.0049	13.9741	556474	6.81	0.01	60.0	00.00	0.18	0.00	0.00	0.00	4.24 0.	0.24 0.	0.70
HEI – M96	006	638.59	82.10	0.0347	0.2781	4745	2.8454	22,8352	389576	3.61	0.02	0.00	0.00	0.05	0.00	0.36 0	0.00	0.00	0.00	0.48
HEI – M97A2 (w/Single base propellant)	006	676.51	86.98	0.0000	0,1343	5295	0.0000	11.6842	460546	5.40	0.01	60.0	00.00	0.19	0.00	0.51 0	0.00	0.01 6.	6.20 0.8	0.85
HEI - M97A2 (w/Double base propellant)	006	710.45	91.34	0.0000	0.1389	5732	0.0000	12.6840	523610	5.40	0.01	60.0	0.00	0.19	0.00	0.77 0	0.00	6.20 0.	0.65 0.	0.98
HE1 - M210 (w/double base propellant)	006	702.89	90.37	0.0061	0.1624	5773	0.5545	14.6802	521698	5.23	0.04	0.04	00.00	0.16	0.00	0.77 0	0.00	6.17 0.	0.65 0.	0.97
Ball, Long Rifle—M24/Trace, Long Rifle	22500	3.03	9.73	0.0000	0.0903	4870	0.0000	0.8790	47380	0.00	0.07	0.27	0.00	0.20	0.00	0.00	0.00	0.00	0.00	00.00
1/Snort, blank Commercial USBII, Long Kille Ball, Hornet M65	22500	13.71	44.08	0.0000	0.0293	5259	0.0000	1.2929	231843	00:00	0.07	0.27	0.00	0.20	0.00	0.00	0.00	0.00	0.00	00.00
- M1,Tracer w/1276	16000	70.07	160.17	0.0000	0.2219	4531	0.0000	35.5337	725735	0.92	0.15	4.91	0.00	0.22	10.09	0.00	0.01	0.00 10.29		1.60
- M1,Tracr w/1280	20000	66.25	189.29	0.0000	0.1746	4772	0.0000	33.0559	903238	0.11	0.19	0.29	0.00	0.28	10.18	0.00	0.00	0.00 12.	12.86 2.01	01
– MI,HPT	22500	55.80	179.34	0.0000	0.0124	4762	0.0000	2.2234	854075	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	0.00 13.50		2.26
- M1,Ball Carbine	22500	14.90	47.89	0.0000	0.0323	5024	0.0000	1.5477	240589	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	1.93 0.	0.32 0.64	54
– M2,AP (w/4895)	22500	89.00	189.63	0.0000	0.0128	4786	0.0000	2.4304	907592	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	0.00 16.	16.08 2.	2.26
– M2,AP (w/WC852)	22500	62.30	200.25	0.0000	0.0212	5236	0.0000	4.2424	1048465	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	13.18 1.	1.93 2.	2.58
- M2,Bali (w/1MR 4895)	22500	53.69	172.58	0.0000	0.0129	4801	0.0000	2.2214	828575	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	0.00 14.46		2.25
-M2,Ball (w/WC 852)	22500	56.49	181.58	0.0000	0.0184	2625	0.0000	3.3366	960926	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	12.21	1.61 2.	2.57
- M6, Grena de (carbine)	22500	24.39	78.40	0.0000	0.0402	4850	0.0000	3.1547	380261	0.13	0.21	0.32	0.00	0.31	00.00	0.00	0.00	2.89 0.	0.64 0.	96.0
- M3, Grena de	22500	48.49	155.86	0.0000	0.0143	4792	0.0000	2.2214	746945	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	0.00 13.	13.18 1.93	33
- M2,Ball OHF	22500	61.09	196.36	0.0000	0.0207	5247	0.0000	4.0570	1030226	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	13.18 1.	1.61 2.	2.57
– M14,API (w/WC 852)	22500	58.89	189.29	0.0000	0.0610	5256	0.0000	11.5385	994906	1.29	0.21	2.03	0.00	0.31	0.00	0.00	0.00	12.21	1.61 2.	2.57
- M14,API (w/IMR 4895)	22500	55.69	179.00	0.0000	0.0542	4824	0.0000	9.7029	863567	1.29	0.21	2.03	0.00	0.31	0.00	0.00	0.00	0.00		2.25
- M18,HPT (w/WC820,Carbine)	22500	15.67	50.37	0.0000	0.0226	5019	0.0000	1.1367	252782	0.00	0.07	0.27	0.00	0.20	00.00	0.00	0.00	1.93 0.	0.32 0.	0.64
- M22.Frangible	22500	12.08	38.83	0.0000	0.0495	4239	0.0000	1.9207	164583	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	0.00	0.00	0.45
– M25,Tra œr (w/WC852)	22500	63,49	204.08	0.0123	0.0934	5112	2.5027	19.0626	1043281	0.13	0.21	0.32	0.00	0.31	5.19	0.00	0.00	12.21 1.	1.61 2.	2.57
- M25,Tra œr (w/IMR4895)	22500	57.62	185.21	0.0135	0.0713	4947	2.5027	13.2035	916172	0.13	0.21	0.32	0.00	0.31	1.08	0.00	0.00	0.00 14.46		2.25
- M27, Tra œr (w/I-276)	22500	21.40	68.79	0.0000	0.2899	4560	0.0000	19.9439	313660	0.13	0.21	2.51	0.00	0.31	6.01	0.00	0.00	1.93 0.	0.32 0.	0.64
- M27,Traccr (w/1-280)	22500	21.41	68.82	0.0000	0.2857	4613	0.0000	19.6613	317431	0.13	0.21	0.32	0.00	0.31	7.81	0.00	0.00	1.93 0.	0.32 0.	0.64
																			Page: 4-	: 4-

TABLE4-5 SUMMARY OF MUNITION FEED RATES

COMPONENT	TTEM RATE (cms/br	PEP QUANT (gr/item)	PEP RATE (lb/hr)	CL CONT (lb/lb)	ASH CONT (lb/lb)	HEAT VALUE (BTU/lb)	CL RATE (lb/br)	ASH RATE (lb/hr)	HEAT VALUE (BTU/hr)	AL RATE (lb/hr)	SB RATE R (lb/hr) (BA RATE R (lb/br) (l	CR LE RATE RA (lb/hr) (ib	LEAD S RATE R/ (ib/hr) (ib	SR TIN RATE RATE (lb/hr) (lb/hr)			DBP DNT RATE RATE (lb/hr) (lb/hr)	TE RATE	A TE br) (
- M72, Ball - Match	22500	53.69	172.58	00.00	0.01	4801	0.00	2.22	828575	0.13	0.21	0.32	00.00	0.31	0.00	0.00	0.00	0.00	14.46 2	2.25
- M190, Blank (w/WC Blank)	22500	16.03	51.53	0.00	0.15	4226	0.00	7.63	217763	0.13	0.21	0.32	0.00	0.31	5.26 0	0.00	0.00	1.29 0	0.32 0	0.64
- M1909, Blank (w/SR 4990)	22500	17.99	57.83	0.00	0.17	3970	0.00	9.81	229572	0.13	0.21	1.59	0.00	0.31	5.26	0.00	0.00	1.29 0	0.32 0	0.64
Ball, Special – PGU – 12/B	22500	6.31	20.28	0.00	0.04	5310	0.00	0.74	107701	0.00	0.07	0.26	0.00	0.18	0.00	0.00	0.00	0.00	0.00	0.00
Ball, Special - M41 (w/SR 7325)	22500	5.40	17.36	0.00	0.04	4450	0.00	0.74	77247	0.00	0.07	0.26	0.00	0.18	0.00	0.00	0.00	0.00	0.61 0	0.19
Ball, Special – M41 (w/HPC1)	22500	4.84	15.56	0.00	90.0	5335	0.00	0.91	82994	0.00	0.07	0.26	0.00	0.18	0.00	0.00	0.00	0.00	0.61	0.19
Projectik,AP-T-M81	1300	150.17	27.89	0.10	0.23	6710	2.91	6:39	187133	0.00	0.00	00.00	0.00	0.00	5.35	0.00	0.00	0.00	0.00	00.00
Practice Ctg M385	099	69.62	6.56	0.00	0.03	4838	0.00	0.19	31757	0.04	0.00	90.0	0.00	0.01	0.00	0.00	0.00	0.00	0.00	00.00
Practice Ctg M407	099	84.48	7.97	90.0	0.61	875	0.48	4.85	8969	0.04	00.00	0,01	0.00	0.07	0.00	0.00	0.00	0.00	0.00	00.0
liber Ball,HPT-M1(w/HPC18)	22500	8.06	25.91	0.00	90.0	4714	0.00	1.48	122123	00.00	0.09	0.37	0:00	0.27	0.00	0.00	00.00	0.00	0.00	0.00
liber Ball,HPT-M1(w/SR7970)	22500	7.94	25.52	0.00	0.04	4493	0.00	1.05	114672	0.00	0.09	0.37	0.00	0.27	0.00	0.00	0.00	0.00	1.13	0.29
liber Blank M9	22500	11.47	36.87	0.00	0.08	3952	0.00	3.03	145695	0.00	0.09	1.45	0.00	0.27	0.00	0.00	0.00	0.00	0.00	0.42
liber Tracer - M26 (w/SR 7970)	22500	12.38	39.79	0.00	0.44	3761	0.00	17.47	149665	0.00	0.09	5.84	0.00	0.27	3.27	0.00	0.01	0.00	0.96	0.26
liber Tracer - M26 (w/HPC 18)	22500	12.58	40.44	0.00	0.44	3930	0.00	17.90	158896	0.00	0.09	5.84	0.00	0.27	3.27	0.00	0.01	0.00	0.00	00.00
liber Ball – M1911 (w/SR 7970)	22500	5.82	18.71	0.00	90'0	4421	0.00	1.05	82711	0.00	0.09	0.37	0.00	0.27	0.00	0.00	0.00	0.00	0.80	0.23
Scaliber Material WASK /9/0) liber Ball — MISI (W/HPC) Liber II — MISI (W/HPC) Liber II — MISI (W/HPC)	22500	6.00	19.29	0.00	0.07	4685	0.00	1.43	90348	0.00	0.09	0.37	0.00	0.27	0.00	0.00	0.00	0.00	0.00	00.00
Sallost Lite 1 utowing M32(W/tit/Cio)	3500	127.80	63.90	0.00	0.52	4849	0.00	33.18	309857	0.00	0.07	4.00	0.00	0.19	10.35	0.00	0.01	0.00	12.00	1.55
liber Ball,HPT-M1	8000	00.69	78.86	0.00	90.0	8835	00.00	4.76	696713	0.00	0.16	09.0	0.00	0.44	0.00	0.00	0.00	27.43	2.74 4	4.11
liber Incendiary – M1	7600	103.00	111.83	0.00	0.42	7715	0.00	47.48	862802	6.64	0.16	10.35	0.00	0.42	00.00	0.00	0.00	26.06	2.61	3.91
liber Blank - M1	8000	52.40	59.89	0.00	0.04	4764	0.00	2.14	285268	0.00	0.16	09.0	0.00	0.44	00.0	00.00	0.00	1.03	0.57	0.80
liber Blank - MIA1	8000	52.70	60.23	0.00	0.03	4932	0.00	1.69	297039	0.00	0.16	09.0	0.00	0.44	0.00	0.00	0.00	0.00	0.00	0.00
liber Ball,AP-M2(w/WC860)&.50caliber ball-M2	8000	63.50	72.57	0.00	0.07	9101	0.00	4.76	660465	0.00	0.16	09.0	0.00	0.44	0.00	0.00	0.00	26.86	2.74	4.00
liber Ball,AP-M2(w/IMRS010)	8000	80.50	92.00	0.00	0.04	5864	0.00	3.46	539470	0.00	0.16	09.0	0.00	0.44	0.00	0.00	0.00	0.00	26.86	3.54
liber API – M8 (w/WC 860)	8000	78.50	89.71	0.00	0.27	8519	0.31	24.19	764319	3.09	0.16	4.23	0.00	0.44	0.00	0.00	0.00	26.86	2.74 4	4.00
liber API – M8 (w/IMR 5010)	8000	64.45	73.66	0.00	0.30	6710	0.00	22.40	494275	3.09	0.16	4.23	0.00	0.44	00.00	0.00	0.00	0.00	26.86	3.54
liber Tracer – M10	3700	106.75	56.43	0.00	0.53	6130	0.00	29.80	345875	0.00	0.08	0.28	0.00	0.20	10.28	0.00	0.00	0.00	12.69	1.64

TABLE 4-5 SUMMARY OF MUNITION FEED RATES

	RATE items/br	PEP QUANT (gr/item)	PEP RATE (CL CONT (lb/lb)	ASH CONT V	HEAT VALUE H	CL RATE (lb/hr)	ASH RATE (lb/hr)	HEAT RATE (BTU/hr)	AL RATE (lb/hr) (SB RATE I	BA RATE R (lb/hr) (RATE R (lb/hr) (1	RATE R. (1b/hr) (1b	RATE RA (lb/hr) (lb	RATE R. (1b/hr) (1t	RATE R.	RATE RA (lb/hr) (lb/	RATE RA (lb/hr) (lb	DPA RATE I
liber Tracer - M17 (w/1-508)	2700	138.95	53.60	0.04	0.50	3628	2.16	26.99	194431	0.00	90.0	2.92	0.00	0.15	10.47	0.00	00.00	0.00	8.68	1.12
liber Tracer - M17 (w/1-176)	3800	105.92	57.50	0.05	0.51	4986	2.82	29.53	286683	0.00	0.08	4.35	0.00	0.21	7.40	0.00	0.01	0.00	12.21	1.57
liber API-T - M20	0099	73.20	69.02	0.00	0.43	6153	0.25	29.75	424674	2.55	0.14	5.42	0.00	0.36	3.20	0.00	0.00	0.00	21.69	2.83
liber Incendiary - M23(w/IM-28)	6377	143.70	130.91	0.02	0.74	5914	1.97	96.78	774189	14.76	0.13	18.14	0.00	0.35	0.00	0.00	0.00	0.00	20.50	2.82
liber Incendiary - M23(w/IM-11)	6377	143.70	130.91	0.00	0.75	5856	0.00	98.17	766663	14.76	0.13	22.21	0.00	0.35	0.00	0.00	0.00	0.00	20.50	2.82
liber Ball - M33 (w/WC 860)	8000	63.50	72.57	00.00	0.07	9101	0.00	4.76	660465	0.00	0.16	09:0	0.00	0.44	0.00	00.00	0.00	26.86	2.74	4.00
Jiber Ball – M33 (w/IMR 5010)	8000	50.50	57.71	0.00	90.0	6770	0.00	3.46	390738	0.00	0.16	09.0	0.00	0.44	0.00	00.00	0.00	0.00	26.86	3.54
liber Ball, Spotter – Tracer – M48A1	0099	165.72	156.25	00.00	0.35	4959	0.75	54.36	774864	0.00	0.35	10.40	0.00	0.72	2.08	00.00	0.02	4.15 14	14.05	1.04
liber Ball, Spotter - Tracer - M48A2	999	165.86	156.38	0.00	0.35	\$002	0.68	54.51	782275	0.21	0.35	06.6	0.00	0.72	2.13	00.00	0.01	4.15	14.05	1.04
liber API – T49	7439	82.30	87.46	00.00	0.05	8293	0.00	4.60	725336	0.00	0.15	0.56	0.00	0.41	0.00	00.00	0.00	26.78	2.66	4.04
liber Ball, Practice – T249 – E2	8000	120.90	138.17	00.00	0.02	5201	0.00	2.50	718608	0.00	0.16	09.0	0.00	0.44	0.00	00.00	00.00	5.03	17.03	1.26
liber Ball,HPT-T251	8000	52.90	60.46	0.00	0.04	\$632	0.00	2.72	340465	0.00	0.16	09.0	0.00	0.44	0.00	00.00	0.00	0.00	15.43	2.06
nm - M193 (w/WC 844,double base propellant)	22500	27.44	88.20	0.00	0.01	5041	0.00	0,93	444665	0.10	0.14	0.22	0000	0.21	0.00	00.00	00.00	3.38	0.61	0.96
sm - М193 (w/IMR 8208,single basc propellant)	22500	27.44	88.20	0.00	0.02	4447	0.00	1.38	392261	0.10	0.14	0.22	0.00	0.21	0.00	0.00	0.00	0.00	0.00	1.13
nn grenade - M195 (IMR-4475, single base propellant)	22500	29.06	93.41	0.00	0.01	4821	0.00	1.38	450313	0.10	0.14	0.22	0.00	0.21	0.00	00.00	00.00	0.00	8.68	1.13
вш НРТ – М197 (IMR-4475,single base propellant)	22500	18.47	59.37	0.00	0.02	4662	0.00	1.13	276771	0.10	0.14	0.22	0.00	0.21	0.00	00.00	00.00	00.00	3.28	0.71
nm Tracer - M196 (IMR-8208, single base propellant)	22500	30.43	97.81	0.01	0.12	4352	0.78	12.04	425665	0.10	0.14	0.35	0.00	0.35	4.12	0.00	00.00	00.00	00.00	1.09
nm Tracer - M196 (WC-844,doubk base propellant)	22500	30.44	97.85	0.01	0.12	4868	0.78	11.61	476290	0.10	0.14	0.35	0.00	0.35	4.12	00.00	00.00	3.25	0.58	0.93
nm AP – M61 (w/double base propellant)	22500	44.51	143.06	0.00	0.01	5290	0.00	1.55	756788	0.01	0.20	0.32	0.00	0.32	00.00	0.00	00.00	9.22	1.32	1.98
nm Tracer – M62 (w/double base propellant)	22500	48.36	155.46	0.01	0.12	5113	1.84	18.25	794919	2.05	0.18	0.27	0.00	0.27	6.12	00:00	00.00	8.62	1.23	1.85
пт Grenade - M64 (w/single base propellant)	22500	40.51	130.22	0.00	0.03	4609	0.00	3.59	600208	0.12	0.17	0.27	0.00	0.26	0.00	2.04	0.00	0.00	8.75	0.77
пт Blank – M82 (w/single base propellant)	22500	17.63	26.67	0.00	0.03	4943	0.00	1.92	280096	0.14	0.22	0.41	0.00	0.33	0.00	0.00	00.00	0.00	2.42	09.0
றற Blank − M82 (w/double base propellant)	22500	18.84	60.57	0.00	0.04	5244	0.00	2.27	317623	0.14	0.22	0.41	0.00	0.33	0.00	0.40	00.00	0.72	0.48	0.72
p Projectile,HVTP-T-M315A1	099	0.02	0.00	0.00	0.48	2254	00.00	0.00	4	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	00.00
a Projectile, AP – T – M339	330	0.02	0.00	0.00	0.48	2254	0.00	0.00	2	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
ropellant	AN	NA	199.51	0.00	0.00	5312	0.00	0.00	1059830	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.40 2	22.81	0.00

TABLE 4-5 SUMMARY OF MUNITION FEED RATES

COMPONENT	ITEM RATE item/br	PEP QUANT (gr/item)	PEP RATE (lb/lbr)	CL CONT (lb/lb)	ASH CONT (lb/lb)	HEAT VALUE (BTU/lb)	CL RATE (lb/lbr)	ASH RATE (lb/hr)	HEAT RATE (BTU/hr)	AL RATE (lb/hr) (SB RATE R (lb/br) (1	BA RATE R (lb/br) (1	CR LI RATE R. (lb/br) (il	LEAD RATE RATE (Ib/br) (Ib	SR TIN RATE RATE (lb/hr) (lb/hr)		ZINC DBP RATE RATE (16/hr) (16/hr)	DBP DNT RATE RATE (lb/hr) (lb/hr)	T DPA TE RATE II) (lb/hr)	A F)
opellant	A X	ď Z	125.03	0.0200	0.0316	5116	2.4979	3.9533	639587	0.00	0.00	0.00	00:00	00.00	0.00	0.00	0.00	0.00	0.00 0.00	00
Pluager - M1	3126	2.3500	1.0494	0.0000	0.8677	1685	0.0000	0.9106	1768	0.00	0.02	0.12	0.04	0.53	0.00	0.00	0.00	0.00	0.00 0.00	00
.Delay – M9	63338	1.3301	12.0350	0.0000	0.7392	1571	0.0000	8.8963	18901	0.36	0.26	0.38	0.00	6.92	0.00	0.00	0.00	0.00	0.00	0.00
– M2	3978	2.2400	1.2730	0,0000	0.8414	1563	0.0000	1.0711	1990	0.00	0.02	0.12	0.04	0.68	00.00	0.00	0.00	0.00	0.00	0.00
pator – M16A1	958	8.8400	1.2098	0.0142	0.7108	1557	0.0171	0.8600	1883	0.00	0.00	0.10	0.04	0.49	0.00	0.00	0.00	0.00	0.00	0.00
pator - M17	19302	4.7701	13.1533	0,0000	0,5688	2199	0.0000	7.4812	28923	0.00	0.00	00.00	0.00	6.93	00.00	00.00	0.00	0.00	0.00	0.00
1ator - M18	21286	5.1801	15.7521	0.0184	0.5684	2126	0.2903	8.9538	33496	00'0	0.72	00.00	0.00	6.93	00.00	00:00	0.00	0.00	0.00	0.00
pator M23	25882	4.2101	15.5666	0.0179	0.5737	2100	0.2781	8.9312	32696	0.00	69.0	00.00	0.00	6.93	00.00	0.00	0.00	0.00	0.00	0.00
bator - M22	27007	4.1802	16.1276	0.0180	0.5577	2186	0.2902	8.9942	35260	0.00	0.72	0.00	0.00	6.93	00.00	0.00	0.00	0.00	0.00	0.00
sator – M24	21692	3.9001	12.0859	0.0260	0.7499	1119	0.3138	9.0637	13521	0.00	0.78	00.00	0.00	6.93	0.00	00.00	0.00	0.00	0.00	00.00
bator - M35	17386	7.0102	17.4112	0,0000	0.4297	2948	0,0000	7.4810	51326	0.00	0.00	00.00	00.00	6.93	00.00	00.00	0.00	0.00	0.00	0.00
sator – M30A1	37960	2,8001	15.1848	0,0000	0.4927	2203	0.0000	7.4813	33455	0.00	0.00	00.00	0.00	6.93	00.00	00.00	00.00	0.00	0.00	0.00
nator – M36A1	26072	5.4602	20.3369	0.0000	0.3680	2419	0.0000	7.4844	49204	0.00	0.00	0.00	00.00	6.93	0.00	00.00	0.00	0.00	0.00	0.00
bator – M37	18124	6.8301	17.68 42	0.0148	0.4978	2521	0.2622	8.8031	44585	0.00	0.65	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00	00.00
bator - M41	15894	7,1701	16.2803	0.0347	0.5480	2106	0.5649	8.9212	34291	0.00	0.46	00.00	0.00	7.00	00:00	00.00	0.00	0.00	0.00	0.00
bator - M42	15586	8.7002	19.3715	0,0000	0.4611	2975	0.0000	8.9317	57630	0.36	0.26	0.42	0.00	6.93	0.00	0.00	0.00	0.00	0.00	0.00
pator - M44	21971	5.3802	16.8868	0.0172	0.5274	2348	0.2906	8,9062	39649	0.00	0.68	0.00	0.00	6.93	0.00	00.00	0.00	0.00	0.00	0.00
pator - M45	14403	8.0301	16.5226	0.0353	0.5418	1858	0.5834	8.9521	30707	0.00	0.46	0.00	0.00	7.00	0.00	0.00	0.00	0.00	0.00	00.00
sator - M47	39394	2.4301	13.6760	0.0000	0.5792	1799	0.0000	7.9216	24599	0.00	0.20	0.18	00.00	6.93	00.00	0.00	0.00	0.00	0.00	0.00
nator - M48	38387	4.2401	23.2521	0.0000	0.3218	2525	0.0000	7.4814	58714	00.00	0.00	0.00	0.00	6.93	00.00	0.00	0.00	0.00	0.00	0.00
pator - M53	628	3.6100	0.3239	0,0347	0.9192	-252	0.0112	0.2977	-82	0.00	0.00	0.10	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
bator – MSS	76271	1.3101	14.2749	0.0000	0.5662	1819	0.0000	8.0828	25966	0.00	0.24	0.29	0.00	6.93	00.00	0.00	0.00	0.00	0.00	0.00
pator - M57A1/A2	46340	2.2001	14.5649	0,0000	0.5839	1930	0.0000	8.5048	28116	0.00	0.86	0.00	0.00	6.93	0.00	00.00	0.00	0.00	0.00	0.00
bator - M58	85663	2.7102	33.1662	0.0538	0.4347	2158	1.7852	14.4161	71573	0.00	5.02	0.00	00.00	4.17	0.00	0.00	0.00	0.00	0.00	00.00
pator - M59	38048	2,4401	13.2630	0.0000	0.5867	1784	0.0000	7.7813	23663	0.00	0.12	0.14	0.00	6.93	00.00	00.00	00.00	0.00	0.00	0.00
bator – M61	217732	0.7102	22.0905	0.0000	0.5877	1317	0.0000	12.9831	29102	0.00	2.46	2.31	0.00	6.93	0.00	0.00	0.00	0.00	0.00	0.00
																			D	3

TABLE 4-5 SUMMARY OF MUNITION FEED RATES

COMPONENT	TTEM RATE cems/hr	PEP QUANT (gr/itcm)	PEP RATE (lb/hr)	CL CONT (lb/lb)	ASH CONT (Ib/lb)	HEAT VALUE 1	CL RATE (lb/hr)	ASH RATE (lb/br)	HEAT VALUE (BTU/br) (AL RATE F (lb/hr) (SB RATE R (lb/hr) (l	BA (RATE R (Ib/hr) (II	CR LE RATE RA (lb/br) (lb	LEAD S RATE RA (lb/br) (lb,	SR TIN RATE RATE (lb/hr) (lb/hr)	N ZINC FE RATE II) (lb/hr)	C DBA FE RATE II) (lb/lir)	A DNT FERATE or) (16/br)	T DPA E RATE r) (lb/hr)	1) E
3ator – M63	32012	3,3101	15.13 77	0.0000	0.5179	2056	0.000.0	7.8391	31123	0.00	0.16	0.15	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	- 00
bator – M80	20097	5.2001	14.9296	0.0000	0.5011	2170	0.0000	7.4813	32402	0.00	0.00	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
bator - M84	70466	1.9202	19,3296	0.0000	0.3871	2330	0.0000	7.4823	45032	0.00	0.00	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
Dator - MK18 Mod 0	38172	2.1101	11.5066	0.0206	0.7532	1123	0.2366	8.6668	12921	0.00	0.59	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
pator – MK 19 Mod 0	65701	1.7101	16.0510	0.0288	0.6145	1837	0.4616	9.8632	29487	0.00	1.15	0.00	00.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
bator – MK 25 Mod 0	20216	4.0901	11.8122	0.0233	0.7518	1120	0.2757	8.8800	13225	0.00	0.69	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
nator – MK 28 Mod 0	9651	7.5401	10.3956	0.0000	0.7196	1387	0.0000	7.4812	14416	0.00	0.00	0.00	00.0	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
pator – MK 29 Mod 0	27776	2.4601	9.7616	0.0000	0.7664	1135	0.0000	7.4813	11079	0.00	0.00	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
bator – MK33 Mod 0	18467	3.7001	9.7614	0.0000	0.7664	1135	0.0000	7.4811	11079	0.00	0.00	0.00	00.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
bator - MK 37 Mod 0	42705	2.0601	12.5681	0.0000	0.5953	2056	0.0000	7.4814	25844	0.00	0.00	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00	00
pator – MK 43 Mod 0	35588	3.9302	19,9810	0.0199	0,4750	2623	0,3971	9,4913	52420	0.00	0.99	0.00	00.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
nator – MK 44 Mod 0	36153	2.8401	14.6685	0.0234	0.6272	1790	0.3437	9.1997	26253	0.00	0.86	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
pator - MK 44 Mod 1	35568	2.8801	14.6343	0.0000	0.5847	1891	0.0000	8.5564	27668	0.00	0.48	0.46	00.00	6.93	0.00	0.00	0.00	0.00	0.00	00
bator – MK 54 Mod 0	14538	4.7001	9.7614	0.0000	0.7664	1135	0.0000	7.4811	11079	00.00	0.00	00.00	00.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
pator – MK 55 Mod 0	26080	4,2402	15.7976	0.0000	0.4736	2711	0.0000	7,4814	42834	0.00	0.00	00.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00	00
Dator - MK 56 Mod 0	375601	0.3902	20,9360	0.0964	0.7061	1070	2.0189	14.7832	22411	0.00	5.02	0.00	0.00	4.19	0.00	0.00	0.00	0.00 0.0	0.00 0.00	00
pator – MK 59 Mod 0	38172	2.7101	14.7788	0.0000	0.5062	2536	0.0000	7.4813	37475	0.00	0.00	00.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
nator – MK 96 Mod 0	38604	2.7701	15.2769	0.0000	0.4897	2000	0.0000	7.4814	30554	0.00	0.00	00.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
nator - T 83E1	232020	1.6302	54.03.28	0.0000	0.1865	3299	0.0000	10.0761	178240	0.00	1.19	1.05	0.00	6.93	0.00	0.00	0.00	0.00	0.00 0.00	00
nator T 84E1	41359	2.1601	12.7629	0.0000	0.6157	1669	0.0000	7.8580	21300	0.00	0.17	0.16	0.00	6.93	0.00	0.00	0.00	0.00	0.00	00
Point Detonating	099	351.1232	33.1059	0.0001	0.0106	5203	0.0038	0.3525	172246	00.00	0.00	00.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00 0.00	00
Auxiliary Detonates	16030	5.0290	11.5164	0.0000	0.7144	1190	0.0000	8.2271	13707	0.00	0.30	0.34	0.00	6.94	0,00	0.00	0.00	0.00	0.00 0.00	00
Final Inductw/poster) Point Detonating—M48	3163	6.1720	2.7889	0.0159	0.7941	1331	0.0444	2.2145	3711	0.00	0.13	0.12	0.04	1.52	0.00	0.00	0.00	0.00	0.00 0.00	00
Base Detonating – M66A 1/A2	099	107.3870	10,1251	0.0314	0.2662	4721	0.3183	2.6948	47801	0.00	0.00	0.00	00.00	0.23	0.74 0	0.00	0.00	0.00	0.00 0.00	00
Point Detonating	3954	9.7080	5.4836	0.0110	0.7765	1225	0.0605	4.2579	6717	0.00	0.17	0.12	0.04	3.35	0.00	0.00	0.00	0.00	0.00 0.00	00
- M'8A1(w/booster) Grena de - M204A2, M206, M213, M214	579305	0.3845	0.3845 31.8204	0.0000	0.6759	27172	0.0000	21.5068	86468	3.56	2.56	3.77	000	6.97	0.00	0.00	0.00	0.00	0.00 0.00	00

Page: 4-

TABLE 4-5 SUMMARY OF MUNITION FEED RATES

Period Deconsing—Markey Services (Markey Services) 1100 153.59 97.55 0.000 0.001 0.001 0.000 0	COMPONENT	ITEM RATE items/br	PEP QUANT (gr/item)	PEP RATE (lb/hr)	CL CONT (lb/lb)	ASH CONT (lb/lb) (HEAT VALUE (BTU/lb)	CL RATE (lb/hr)	ASH RATE (lb/hr)	HEAT VALUE (BTU/br)	AL RATE (lb/hr)	SB RATE H (lb/hr) (BA RATE R (lb/hr) (i	CR LI RATE R. (1b/br) (II	LEAD RATE R. (Ib/br) (II	SR T RATE RA (1b/hr) (1b	TIN ZI RATE RA (lb/hr) (lb)	ZINC D RATE RA (lb/hr) (lb	DBP D RATE RA (lb/ar) (lb	RATE RA (lb/br) (lb	DPA RATE I (lb/hr) (
1460 153.494 197.55 0.0000 0.0146 5.253 0.0000 0.04647 5.240 0.06641 0.04541 0.04541 0.046	MTSQ-M502	440	_	20.8643	0,0002	0.0162	5171	0.0049	0.3370	107898	0.00	0.01	0.00	0.00	0.28			00.00			0.00
1845 17760 1537 0.0001 0.0041 0.1267 0.0001 0.0041 0.0057 0.0001 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057	Point Detonating-Base Detonating-M509A1	11000	125.3 929	197.05	0.0000	0.0118	5158	0.0000	2.3292	1016355	0.00	0.00	0.00	0.00	2.16			00.00			00.00
1860 17700 1871 1972 1971 1874 1260 1260 1260 1270	Proximity-M513A1(w/booster)	3600	388.3040	199.70	0.0000	0.0043	\$23\$	0,0000	0.8675	1045413	0.00	0.00	00.00	0.00	0.80						00.0
\$500 \$17,199 \$12,287 \$10,000 \$11,000 \$10,000 \$11,000 \$10,000 \$11,000 \$10,000 \$	Point Detonating-M521	13859	7.7620	15.37	0.0175	0.6011	1894	0.2692	9.2372	29101	0.00	0.56	0.00	0.00	96.9			0.00			00.0
440 35.456 4.19 (2014) 4.027 4.04 (2014) 4.027 4.04 (2014) 4.027 4.04 (2014) 4.027 4.04 (2014) 4.04 (2	Point Detonating-M525(w/booster)	2000	270.0119	192.87	0.0003	0.0106	4108	0.0620	2.0438	792382	0.00	0.15	00.00	0.00	1.60			0.00			0.00
1860 1871-74 1863 20034 20092 2009	Point Detonating-M557,M572(w/booster)	440	28.5650	1.80	0.0034	0.2523	11778	0.0062	0.4530	21147	0.00	0.02	0.07	0.01	0.21	00		0.00			00.00
1850 1850	Point Detonating-M564(w/booster)	3800	361.7247	196.36	0.0034	0.0277	4085	0.6664	5.4462	802196	00.00	0.51	0.02	0.00	3.56			0.00			00.00
6600 8.5556 8.07 CADDO	Activator, Anti-tank-M1	13850	47.1999	93.39	0.0082	0.0932	4844	0.7682	8.7058	452371	0.00	0.00	0.00	00.00	7.09			0.00			00.00
3400 321,3019 20,000 0,0004 3216 0,0000 0,0004 3216 0,0000 0,0004 321,3019 0,0004 321,3019 0,0004 321,3019 321,3019 321,3019 0,0000 0,00	on Ctg., Bomb-CCU-1/B	0099	8.5560	8.07	0.0000	0.2019	5188	0.0000	1.6291	41854	0.00	0.00	0.00	0.00	0.00			0.00			00.00
3406 415,8019 201,96 60000 20000 2561 60000 0.0000 1062319 10000 0.00	cr - M21A4	440	321.3019	20.20	0.0000	0.0084	5216	0.0000	0.1701	105336	0.00	0.00	0.00	0.00	0.16			0.00			00.0
3400 11.58 630 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 </td <td>er, Fuze M125A1</td> <td>3600</td> <td>379.4549</td> <td>195.15</td> <td>0.0000</td> <td>0.0043</td> <td>2095</td> <td>0.0000</td> <td>0.8337</td> <td>1093317</td> <td>0.00</td> <td>0.00</td> <td>0.42</td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>00.00</td>	er, Fuze M125A1	3600	379.4549	195.15	0.0000	0.0043	2095	0.0000	0.8337	1093317	0.00	0.00	0.42	0.00	0.00			0.00			00.00
45009 13.94 16 40.0118 110.98 0.0000 0.0250 9.9247 0.00<	er – MK39 Mod 0	3400	415.8030	201.96	0.0000	0.0000	5261	0.0000	0.0000	1062519	0.00	0.00	00.00	0.00	00.00			0.00			00.00
660 13.9700 1.26 0.1141 0.4009 3429 0.1581 65781 4517 0.00	on Ctg M5A2	19416	40.0118	110.98	0.0000	0.0083	5343	0.0000	0.9250	592947	0.00	0.00	00.00	0.00	00.00			0.00			00.0
-M1 2250 10.0032 22.15 0.0000	on Element, Electric-M91(1377-00-007-4880)	099	13.9700	1.32	0.1141	0.4009	3429	0.1503	0.5281	4517	0.00	0.00	0.00	0.00	0.30			0.00			00.00
226.	Plunger, 0.5scc-M1	40006	2.2100	12.66	0.0157	0.6941	1344	0.1989	8.7873	17017	0.00	0.16	0.00	0.00	6.99			0.00			00.0
5 Mod 0 3500 0.2790 0.174 0.0000 0.4379 2224 0.0000 0.7601 3861 0.00 <td>ı</td> <td>22500</td> <td>10.0032</td> <td>32.15</td> <td>0.0000</td> <td>0.0000</td> <td>5261</td> <td>0.0000</td> <td>0.0000</td> <td>169158</td> <td>0.00</td> <td>0.00</td> <td>00.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>00.00</td>	ı	22500	10.0032	32.15	0.0000	0.0000	5261	0.0000	0.0000	169158	0.00	0.00	00.00	0.00	0.00			0.00			00.00
22 cr Mix #5074) 2460 2.2330 0.78 0.0000 0.1950 3819 0.0000 0.1533 188092 0.00 0.01 0.00 0.01 0.0000 0.1538 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	se Ctg MK15 Mod 0	45000	0.2700	1.74	0.0000	0.4379	2224	0.0000	0.7601	3861	0.00	0.00	0.00	0.00	0.34			0.00			0.00
er Mix #5074) 2460 100.2336 35.22 0.000 0.0173 0.0174 0.0173 0.0174 0.0173 0.0174 0.0173 0.0174 0.0173 0.0174 0.0173 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.	r Ctg. – M21,M22	2460	2.2320	0.78	0.0000	0.1950	3819	0.0000	0.1530	2996	0.02	0.03	0.04	0.00	0.04			0.00			00.00
er Mix #5074) 6016 2.2800 1.96 0.0000 0.6428 882 0.0000 1.1028 1.1028 1.1028 1.1028 1.1028 0.010 0.017	ssembly w/primer for an 81mm Mortar	2460	100.2336	35.22	0.0005	0.0106	5340	0.0173	0.3738	188092	0.00	0.01	0.00	0.00	0.04			0.00			0.26
6000 21.8001 62.28 61.0 6.0000 0.5628 882 0.0000 1.1028 1.755 0.000 0.11028 1.1028 0.000 0.11028 0.000 0.11028 0.0000 0.11028	r ~ A216 (Primer Mix 5061)	126515	2.3001	41.57	0.0000	0.6428	1205	0.0000	26.7218	50104	0.00	2.60	9.48	0.00	6.92			0.00			00.00
20000 21.8001 62.29 0.0070 0.0257 9653 0.4381 1.6032 601255 0.00 0.35 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.37 0.00 0.00 0.37 0.00 0.00 0.37 0.00 0.01 0.37 0.00 </td <td>r - A216 (Primer Mix #5074)</td> <td>9109</td> <td>2.2800</td> <td>1.96</td> <td>0.0000</td> <td>0.5628</td> <td>882</td> <td>0.0000</td> <td>1.1028</td> <td>1729</td> <td>0.00</td> <td>0.17</td> <td>0.40</td> <td>0.00</td> <td>0.33</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>00.00</td>	r - A216 (Primer Mix #5074)	9109	2.2800	1.96	0.0000	0.5628	882	0.0000	1.1028	1729	0.00	0.17	0.40	0.00	0.33			0.00			00.00
21000 65.0001 198.00 0.0023 0.4129 2386 0.4600 81.7555 472461 0.00 0.03 0.00 0.03 0.00 0.03 0.000 0.00 0.000 0.000 0.00 0	r – MIBA2	20000	21.8001	62.29	0.0070	0.0257	9653	0.4381	1.6032	601255	0.00	0.35	00.00	0.00	0.51			0.00			00.0
66000 21.0002 19.8.00 0.0073 0.4178 2353 1.4459 82.7235 465993 0.00 1.15 0.00 0.00 1.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	r – M22A3	21000	66.0001	198.00	0.0023	0.4129	2386	0.4600	81.7555	472461	0.00	0.37	00.00	0.00	0.53			0.00			00.00
75000 1.8002 19.2873 0.0330 0.1307 7651 0.5003 9.5215 557439 0.00 0.17 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.0	r – M23A1/A2	00099	21.0002	198.00	0.0073	0.4178	2353	1.4459	82.7235	465993	0.00	1.15	0.00	00.00	1.67						00.00
10000 51.0001 72.8573 0.0030 0.1307 7651 0.2190 9.5215 557439 0.00 0.17 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00	r Stab – M26	75000		19.2875	0.1527	0.6003	1128	2.9447	11.5788	21764	0.00	2.39	00.00	0.00	4.11						0.00
	r - M31	10000	$\overline{}$	72.8573	0.0030	0.1307	7651	0.2190	9.5215	557439	0.00	0.17	0.00	00.00	0.25		i				0.00

TABLE 4-5 SUMMARY OF MUNITION FEED RATES

COMPONENT	RATE (tems/br	PEP QUANT (gr/item)	PEP RATE (lb/br)	CL CONT (lb/lb)	ASH CONT (Ib/Ib) (HEAT VALUE 1	CL RATE (lb/br)	ASH RATE (lb/br)	HEAT RATE (BTU/hr)	AL RATE F (lb/hr) (SB RATE R (lb/hr) (1	BA (RATE R, (lb/hr) (lb	CR LE RATE RA (lb/br) (lb	LEAD S RATE RA (16/hr) (1b,	RATE RA (1b/hr) (1b/	TIN ZINC RATE RATE (lb/hr) (lb/hr)	ZINC DBP RATE RATE (lb/hr) (lb/hr)	P DNT P RATE r) (lb/br)	r DPA E RATE r) (ib/hr)	TE I
r – M31A2/B2	10000	51.0001	72.86	0.0030	0.1307	7651	0.2190	9.5215	557439	0.0000	0.1749 0	0.0000 0.0	0.0000 0.2	0.2536 0.0	0.0000 0.0	0.0000 0.0000	000000	0000.0	000000	000
r – M32	330000	2.0902	98.54	0.0291	0.4423	2222	2.8643	43.5857	218923	0.0000	2.3780 0	0.0000	0.0000 3.3	3.3502 0.0	0.0000 0.0	0.0000 0.0000	000000	0000.0	0000.0	000
r - No.34	500309	0.5901	42.18	0.0000	0.6257	2007	0.0000	26.3911	84666	2.8603	4.6345 7	7.1978 0.	0.0000 6.9	6.9190 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	00000	000
r – FA34	500309	0.5901	42.18	0.0000	0.6257	2007	0.0000	26.3911	84666	2.8603	4.6345 7	7.1978 0,0	0.0000 6.9	6.9190 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	00000	000
r – M28B2	2640	300.9811	113.51	0.0005	0.4112	2398	0.0578	46.6728	272165	0.0000	0.0462	0.0000 0.	0.0000 0.0	0.0669 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	00000	000
r – M34	22500	0.5900	1.90	0.0000	0.6257	2007	0,0000	1.1865	3806	0.1286	0.2083	0.3237 0.	0.0000 0.3	0.3111 0.0	0.0000 0.0	0.0000 0.0000	00000	00 0.0000	000000	000
r – M40A2	1320	271.0157	51.11	900000	0.4112	2398	0.0289	21.0129	122551	0.0000	0.0231	0.0000.0	0.0000 0.0	0.0335 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	0000.000	00000	000
ir – M57	099	56.8740	5.36	0.0027	0.4792	909	0.0145	2.5697	2715	0.0000	0.0115	0.0000 0.	0.0000 0.0	0.0167 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	0.0000	000
r – M71	22500	3.5290	11.34	0.0172	0.4282	2294	0.1953	4.8566	26026	0.0000	0.1620	0.0000 0.	0.0000 0.2	0.2282 0.0	0.0000 0.0	0.0000 0.0000	000000	00 0:0000	00000 00	000
r – M82	22500	0.6314	2.03	0.0043	0.4135	2380	0.0086	0.8392	4831	0.0000	0.0072	0.0000 0.	0.0000 0.0	0.0071 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	00000	000
rr, Percussion – M26	75000	1.8168	19.47	0.1516	0.6015	1134	2.9502	11.7088	22077	0.0000	2.4377	0.0000 0.	0.0000 4.1	4.1763 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	00000	000
rr, Percussion – M47 & M68	4500	301.0099	193.51	0.0005	0.4111	2398	0.0986	79.5537	464075	0.0000	0.0787	0.0000 0.	0.0000 0.1	0.1141 0.0	0.0000 0.0	0,000 0.0000	000 0.0000	00 0.0000	00000	000
rr, Percussion – M79	3700	381.0099	201.39	0.0004	0.4110	2399	0.0810	82.7744	483118	0.0000	0.0647	0.0000 0.	0.0000 0.0	0.0938 0.0	0.0000 0.0	0,0000 0.0000	000 0.0000	00 0.0000	00000	000
tr, Electric -M80A1	1600	872.9780	199.54	0.0004	0.2458	3220	0.0754	49.0375	642534	0.0000	0.0000	0.0000 0.	0.0000 0.1	0.1493 0.0	0.0000 0.0	0.0000 0.0000	0000 0000	00 0.0000	00000	000
ır – M35	355000	0.3702	18.77	0.1563	0.5546	1398	2.9346	10.4117	26240	0.0000	2.1930	0.0000 0.	0.0000 3.2	3.2439 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	00000	000
r – M20/M28A2/M28B1/M28	2460	101.0001	35.49	0.0015	0.1264	7713	0.0539	4.4874	273769	0.0000	0.0430	0.0000 0.	0.0000.0	0.0624 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	0.0000	000
r – M29A1 (NOL 60)	366893	0.5101	26.74	0.0000	0.5141	1389	0,0000	13.7438	37149	0.0000	1.8876	3.6129 0.	0.0000 6.9	6.9189 0.0	0.0000 0.0	0.0000 0.0000	000000	00 0.0000	00000	000
r – M29A1 (#5061)	579305	0.5001	41.39	0.0000	0.6545	1190	0.0000	27.0865	49234	0.0000	2.3852	9.6504 0.	0.0000 6.9	6.9191 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	00000	000
. – MS	49157	1.3901	9.76	0.0000	0.7664	1135	0.0000	7.4814	11080	0.0000	0.0000	0.0000 0.	0.0000.0	6.9309 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	000 0:0000	0.0000	000
- M7	44369	1.5401	9.76	0.0000	0.7664	1135	0.0000	7.4814	11080	0.0000	0.000.0	0.0000	0.0000 6.9	6.9308 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	000000	000
6WX	30641	2.2301	9.76	0.0000	0.7664	1135	0,0000	7.4814	11080 0.0000		0.0000	0.0000 0.	0.0000.0	6.9308 0.0	0.0000 0.0	0.0000 0.0000	000000	00 0.0000	00000	000
rr, Rocket Motor-M20A1	24000	58.1659	199.43	0.0021	0.4106	2419	0.4186	81.8769	482355	0.0000	0.0000	0.0000.0	0.0000 0.6	0.8301 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	000000	000
rr, Rocket Motor-MK117,MK118	2280	30.0090	9.77	0.0000	0.4107	2401	0.0000	4.0143	23468	0.0000	0.0000	0.0000 0.0	0.0000 0.0	0.0000	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0:0000	00000	000
rr, Rocket Motor-MK125-5	0099	10.0090	9.44	0.0000	0.4107	2401	0.0000	3.8758	22658	0.0000	0,0000	0.0000	0.0000 0.0	0.0000 0.0	0.0000 0.0	0.0000 0.0000	000 0.0000	00 0.0000	0.0000	000
et, 3.5 inch – M29A2	347	2578.18	127.80	0.0196	0.0401	5055	2.4996	5.1301	646060 0.0000		0.0000	0.0000	0.0000 0.0	0.0120 0.0	0.0000 0.0	0.0000 0.0000	000000	00 0.0000	00000	000
et Motor, 3.5 inch	240	2520.01	86.40	0.0200	0.0316	5116	1,7246	2.7295	442018 0.0000	0.0000	0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0000	0000 000	0.0 0000	000 0.00	000 000	0.0000 0.0000 0.0000	0.00	000

TABLE 4-5 SUMMARY OF MUNITION FEED RATES

COMPONENT	RATE (cms/br	PEP QUANT (gr/item)	RATE (lb/br)	CL CONT (Ib/Ib)	ASH I	HEAT VALUE (BTU/lb)	CL RATE (lb/br)	ASH RATE (lb/hr)	HEAT VALUE (BTU/br)	AL SB RATE RATE (lb/hr) (lb/hr)	SB SATE (16/hr)	BA RATE F (lb/hr) (CR LEAD RATE RATE (lb/hr) (lb/hr)	LEAD RATE R (lb/hr) (II	AL SB BA CR LEAD SR TIN ZINC RATE RATE RATE RATE RATE RATE RATE (16/hr) (16/hr) (16/hr) (16/hr) (16/hr) (16/hr) (16/hr) (16/hr) (16/hr)	TIN ZINC RATE RATE (lb/hr) (lb/hr)	ZINC D RATE RA (lb/hr) (lb	DBP DNT RATE RATE (lb/hr) (lb/hr)	DNT D RATE RA (16/hr) (16	DPA RATE R (lb/hr) (
, Ground Illuminating(Red)-M158	1600	538.51	123.09	90000	0.5877	2828	0.08	72.33	348122	0.00	0.03	0.00	0.00	0.04	9.84	0.00	0.00	0.00	0.00	0.00
- XC9MK 1 Mod 0	950000	1.47	199.51	0.0039	0.3946	2276	0.79	78.72	454162	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00
r – M5A2B1/B2	8000	35.00	40.00	0.0405	0.8893	4169	1.62	35.57	166754	0.69	0.00	0.00	0.00	0.00	9.18	0.00	0.00	0.00	0.00	0.00
r – M10/XM10	7500	63.00	67.50	0.0000	0.8773	3959	0.00	59.22	267243	0.00	0.00	0.00	0.00	0.00	6.67	0.00	0.00	0.00	0.00	0.00
r - M12	1800	62.90	16.17	0.1700	0.0831	1897	2.75	1.34	30678	0.00	0.00	5.21	0.00	0.00	0.22	00.00	0.00	0.00	0.00	0.00
r – M13	4500	110.90	71.29	0.0351	0.7617	3940	2.50	54.30	280902	0.00	0.00	10.99	0.00	0.00	9.83	00.00	0.00	0.00	0.00	0.00
r - Na 1/No, 2 (75-14-333)	0009	48.90	41.91	0.0394	0.8924	4172	1.65	37.40	174855	0.77	0.00	0.00	00.00	0.00	9.63	0.00	0.00	0.00	0.00	00.00
f HE-T(MK4) (w/single base propellant)	006	722.52	92.90	0.0000	0.0039	4551	0.00	0.36	422780	0.00	0.00	0.00	00.00	0.34	0.00	0.00	00.00	0.00	0.00	0.80
ide Fuze (M215)	1175	0.37	0.06	0.0000	0.6686	2701	0.00	0.04	168	0.01	0.00	0.01	00:00	0.01	0.00	0.00	0.00	0.00	00.00	0.00
Time M65A1	7300	51.99	54.22	0.0000	0.0481	281	0.00	2.61	15249	0.00	0,00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Basc Detonating(M91A1 w/booster)	1900	353.40	95.92	0.0162	0.3369	5137	1.55	32.32	492720	0.85	0.00	0.00	0.00	0.34	8.04	0.00	0.00	0.00	00.00	0.00
Point Detonating(M564 w/booster)	1900	361.71	98.18	0.0034	0.0277	4085	0.33	2.72	401089	0.00	0.26	0.01	0.00	1.78	0.00	0.00	0.00	0.00	0.00	00.00
ator Projectile M74	200	557.84	39.85	0.0000	0.5557	3471	0.00	22.14	138293	3.91	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
m Blank Cartridge (M200)	22500	7.97	25.61	0.0002	0.0431	4845	0.01	1.11	124081	0.09	0.14	0.39	00.00	0.21	0.00	0.00	00.00	0.23 0	0.23	0.34
Cartridge HEI-Single base	006	991.48	127.48	0.0052	0.1585	5278	99.0	20.20	672759	7.62	0.05	0.99	0.00	60.0	0.00	0.27	0.00	0.00	7.94	1.09
Cart API M53	1200	748.75	128.36	0.0056	9660.0	5356	0.72	12.78	687415	1.71	00'0	1.23	00.00	60.0	00.00	0.00	0.00	9.87	1.05	1.56
Cart INC M96	006	635.47	81.70	0.0349	0.2742	4770	2.85	22.40	389730	3.62	0.02	0.00	00.00	0.05	0.00	0.00	0.00	0.00	0.00	0.48
M501	220	1060.00	33.31	0.0125	0.6026	1881	0.42	20.08	62664	0.00	1.22	0.36	00.00	16.07	0.00	0.00	0.00	0.00	0.00	0.00
, Illuminating-AN-M37A2	25971	80.70	299.42	0.0033	0.4206	2424	0.98	125.94	725899	0.00	0.00	0.08	00.00	0.40	2.26	0.00	0.00	0.00	0.00	0.00
, Illuminating-AN-M43A2	32941	63.77	300.008	0.0036	0.4169	2416	1.08	125.12	724957	0.00	0.00	0.10	0.00	0.50	1.43	0.00	0.00	0.00	0.00	0.00
	-																			
																		_		
															_				-	

SECTION 5

TRIAL BURN WASTE SELECTION

5.1 Permitting Criteria

Due to the large number of waste munitions listed in Section 4, SEAD submits that it is impractical to perform a Trial Burn for each. For this reason, it is recommended that incinerator feed rate limitations defined in SEAD's permit be established for a set of worst case munitions. Once the worst case munitions are designated, Trial Burns will be conducted for each at the feed rate designated in Section 4.0. Data from these Trial Burns will then be used to demonstrate the incineration system's ability to safely and efficiently destroy waste munitions while complying with established discharge limitations. Munitions with compositions that are easier to destroy than the worst case set could then be allowed to be incinerated at rates up to those identified in Table 4.5.

SEAD recommends that the set of worst case munitions reviewed during Trial Burns include munitions that represent the greatest potential source of POHC, particulate, HCl and metals emissions. Additionally, SEAD recommends that munitions with a high level of Dioxin and Furan precursor compounds also be incinerated during a Trial Burn to produce data pertinent to the level of these types of emissions.

SEAD recommends that the following set of criteria be used to identify and select the set of worst case munition feed streams.

1. POHC Emissions and Destruction and Removal Efficiency (DRE). The munitions selected to demonstrate the incinerator's DRE should contain the most difficult to incinerate POHCs. Additionally, these munitions should be fed to the incinerator at rates which produce the highest concentrations of the POHC achievable. It is also considered important that the POHC selected not be a product of incomplete combustion from other compounds contained in the munition, nor should it be a known "problem POHC". (Note: Several "problem POHCs" are identified in "Developing a Trial Burn Plan, Seminars for Hazardous Waste Incinerator Permit Writers, Inspectors and Operators," EPA/625/4-87/017).

Two methods have been established to measure a materials incinerability. One method uses a compound's heat of combustion to rank the incinerability of the POHC. Under this method, a compound with a lower heat of combustion is

Document: SEADTBP2

predicted to be more difficult to incinerate than one with a higher value for its heat of combustion.

The second, and perhaps, more reliable ranking method is based on the compound's Thermal Stability at low Oxygen Index (TSLoO₂). This methodology is defined in Appendix D, Volume II of the hazardous waste guidance series (i.e., "Guidance on Setting Permit Conditions and Reporting Trial Burn Results," EPA/625/6-89/019, January 1989). Under this methodology, a compound with a lower TSLoO₂ is predicted to be more difficult to incinerate.

In order to be conservative, SEAD proposes to select worst case POHCs using both methods. Once SEAD demonstrates that the incinerator system is capable of meeting DRE requirements for both worst case waste munitions, one may assume that any POHC with a higher heat of combustion or a higher TSLoO₂ that is fed at a lower feed rate would also meet the DRE requirements.

- 2. Particulate Emissions. The feed item selected for determining compliance with particulate emissions limitations should have the greatest potential to generate particulate matter (i.e., the highest ash yield rate). The demonstration of compliance with having met the particulate emission limits with the waste stream most likely to generate the highest emissions, it should indicate that feeding wastes with a lower ash yield rate will not result in emissions exceeding the applicable limits.
- 3. <u>HCI Emissions</u>. The feed item selected for the demonstration that HCI emissions will not exceed allowable levels should have a chlorine feed rate which would produce the maximum HCI emissions. If the HCI emissions limit of 4 pounds per hour is not exceeded for the waste item having the highest chlorine feed rate (and thus, the highest potential HCI emissions), one may assume that feeding waste with a lower chlorine feed rate would not result in HCI emissions greater than 4 pounds per hour.
- 4. Metal Emissions. The feed items selected for determining metal emissions should have a metal content which would result in the maximum potential metal emissions. Different metals have different partition coefficients and should be tested separately. The presence of chlorides can affect metal emission as some metal chlorides are more volatile than their oxide counterparts. If the metal chloride has a higher volatility than its oxide

counterpart, the waste feed should also have a stoichiometrically significant amount of chlorides present. If metal emissions limits are met with the highest metal feed rates and in the presence of chlorides (if applicable), it may be assumed that feeding waste with lower metal feed rates and lower chloride concentrations (if applicable) would not result in emissions exceeding the application limits.

5. <u>Dioxins and Furans Emissions</u>. The feed item selected for determining Dioxin and Furan emissions should have the maximum precursor to Dioxin and Furans feed rate and a stoichiometrically significant amount of chlorides presents. Having met Dioxin and Furan emission rate limits with the item with the highest precursor feed rate, it can be assumed that items with a lower precursor feed rate would also meet emission rate limits.

Another criteria which will be used as a basis for the selection of trial burn waste feed item is the following:

 Waste (PEP) Mass Feed Rate. The item with the maximum waste Propellant/ Explosive/Pyrotechnic (PEP) mass feed rate will be selected as a waste feed item.

The following emissions are of regulatory concern during the Trial Burn. These species will be assessed during the Trial Burn, but these species will not be used as a basis for waste munition selection:

- Product of Incomplete Combustion (PIC) Emissions. PIC emissions will be characterized as part of the analytical process performed on samples collected during the Trial Burn. PICs will be reported in the final report.
- Oxides of Nitrogen (NO_x) Emissions. NO_x emissions will be monitored during the Trial Burn. Data developed will be reviewed and reported as part of the Trial Burn Report.
- Oxides of Sulfur (SO_x) Emissions. SO_x emissions will be controlled by limiting, on an annual basis, the total mass of sulfur containing compounds which are fed to the deactivation furnace, pursuant to all applicable state and federal regulators.

5.2 POHC Waste Feed Item Selection

Table 5-1 lists compounds that are identified as constituents of the munitions waste feed stream and are also identified as Hazardous Constituents in Title 40 Code of Federal Regulations (CFR) Appendix VIII. As is seen, four organic compounds dibutylphthalate, dinitrotoluene, diphenylamine and nitroglycerine and should be considered as potential POHCs for the Trial Burn series.

Table 5-2 presents heat of combustion and thermal stability index data for each of these candidate POHCs. (Hexachlorobenzene (HCB) and Trichloroethylene (TCE) are also included in this table although neither is a component of waste which will be fed to the deactivation furnace). Ranking these compounds, included in the waste, from lowest to highest (i.e., from hardest to easiest to incinerate) on the heat of combustion scale results in an order of compounds of Nitroglycerin, Dinitrotoluene, Dibutylphthalate and Diphenylamine.

A similar rank ordering based on Thermal Stability Index, again ordered from most difficult to easiest to incinerate, yields a listing of Diphenylamine, Dinitrotoluene, Dibutyl phthalate and Nitroglycerin.

TABLE 5-1

APPENDIX VIII CHEMICAL CONSTITUENTS PRESENT IN THE WASTE FEED

Inorganic Compounds	Organic Compounds	Organo-Metallic Compounds
aluminum dichromate	dibutylphthalate (DBP)	barium stearate
antimony trisulfide	dinitrotoluene (DNT)*	lead styphanate
barium carbonate	diphenylamine (DPA)	
barium chromate	nitroglycerine (NG)	
barium nitrate		
barium peroxide		
lead azide		
lead dioxide		
lead thiocyanate		

Document: SEADTBP2

* 2,4 and 2,6 dinitrotoluene. The only other dinitrotoluene isomer discussed in this document is 3,4 dinitrotoluene (3,4-DNT) which is used as a spike. When this isomer is being discussed it will be referred to as 3,4-DNT. All other references to DNT within this document refer to the isomers 2,4-DNT and 2,6 DNT.

TABLE 5-2
PRINCIPLE ORGANIC HAZARDOUS CONSTITUENT (POHC) RANKING

POHC Compound	Heat of Combustion KCal/Gram	Thermal Stability Index Rank
DBP	7.34	261-265
DNT	4.68	168-173
DPA	9.09	42-44
NG	3.79	281
НСВ	1.74	31-33
TCE	1.79	41

The items that were selected as POHCs from amongst the waste feed constituents were NG and DNT. DBP was not chosen as a POHC because of its relatively high heat of combustion and high TSI ranking. DPA would have been chosen because it is present in a large number of munitions in relatively high concentration, and according to its TSI ranking it is the most difficult compound to incinerate (of compounds present in munitions). However, there are problems associated with the recovery of DPA in the presence of NO_x. These problems are well documented in papers by the AEHA. DPA is also identified as a problem POHC in Volume III of the incineration guidance series. This creates certain problems for the trial burn, since DPA is present in a large number of munitions and cannot practically be removed from the list of munitions to be burned in the furnace. All other components of munitions are Class 4 compounds or lower and therefore are move easily destroyed. For this reason HCB (Class 1) and TCE (Class 2) have been identified as surrogate POHCs for DPA. In order to be conservative DNT was added to the list to insure that even with its expected greater mass flow (see Table 4-5) it would be successfully destroyed. NG was chosen as a POHC based solely upon its low heat of combustion after HCB and TCE (as shown in Table 5-2).

SEAD believes that this combination of POHCs suitably challenges the incinerator on both incinerability scales. These POHCs represent the major portion of the waste feed organic constituents other than materials that are present as PEP components. Nitroglycerin, and Dinitrotoluene and Hexachlorobenzene have also been designated as POHCs at other deactivation furnaces, thus this combination will provide a basis for assessing the capabilities of the SEAD facility relative to others. Finally, these three materials are not known to be PICs of other compounds.

For NG, the preferred item for testing is items 143 (see Table 4-5), which yields 44.4 lb/hr of NG. For DNT the item selected is item 49 with a feed rate of 26.9 lb/hr (see Table 4-5). HCB and TCE will be spiked into item 182 (rocket motors) and fed at a rate of 4.11 lb/hr. The spiking procedure to be used is described in its entirety in Appendix P.

Once the POHCs were selected, it was necessary to verify that the allowable feed rate calculated in **Section 4**. Since the Trial Burn must demonstrate a Destruction and Removal Efficiency (DRE) of 99.99%, it is necessary to show that the stack gas will contain a measurable amount of POHC. These calculations are based on:

- 1. POHC Feed rate.
- 2. Stack gas flowrate,
- 3. Stack gas sampling method,
- 4. Stack gas moisture content,
- 5. Stack gas sample rate,
- 6. The instrument detection limit for the POHC, and
- 7. The desired sample volume

The result of the calculation is the minimum sampling time required to collect an easily measurable amount of POHC from the exiting stack gas. The calculations are located in **Appendix D** and summarized in **Section 7**, the sampling and analysis plan. All POHC feed rates were shown to yield a measurable quantity of material in the exiting stack gas after 99.99% DRE. Item and test feed rates are summarized in **Table 5-4**, which is located after **Section 5-7**.

5.3 PARTICULATE WASTE FEED ITEM SELECTION

The particulate emissions for the Ammunition Peculiar Equipment (APE) incinerators are proportional to the ash feed rate. To select a waste stream that would be representative of worst case particulate emissions, it is necessary to consider the ash yield data presented in **Section 4**. Based on these data, the logical choice for this requirement, is Item 57, with a total ash feed rate of 98.2 lb/hr (see Table 4-5). Item and test feed rates are summarized in Table 5-4. In order to demonstrate that the normal

Document: SEADTRP2

in line baghouse cleaning cycle does not result in a particulate emission excursion, the trial burn will be conducted so that a timed baghouse cleaning occurs during this test.

5.4 HCI TESTING CONSIDERATIONS

A determination of the HCl emission level is required by 40 CFR 270.62 (b)(6)(ii). However, from the data presented in the **Table 4-5**, none of the munition items have the potential to exceed the 4 lb/hr HCl emission rate based on stoichiometric chlorine content (Seneca has decided to limit feed rates of chlorine to the incinerator to less than 3 lb/hr). For this reason, HCl testing is not necessary and is excluded from the trial burn plan.

5.5 METAL WASTE FEED ITEMS SELECTION

Eleven metal hazardous waste constituents, have been identified in the 200 waste feed items and are listed in **Table 5-1**. Waste feed items were selected based on the maximum feed rate of each hazardous metal compound. In addition, chlorides should be present in the waste stream for those metals which exhibit increased volatility in the presence of chlorides. **Table 5-3** shows the relative volatility of the four metals of concern (antimony, barium, chromium, and lead). For these metals, only lead exhibits an increase in volatilizing due to the presence of chlorides. Volatilizing temperature in this table is defined as the temperature at which the effective vapor pressure is 10⁻⁶ atm. Although lead volatility is greatly effected by the presence of chlorides, this still represents a small vapor pressure.

TABLE 5-3

RELATIVE VOLATILITY OF HAZARDOUS METALS(1)

	Vola	tility Temp °F (2)
Metal	Chlorine = 0%	Chlorine = 0.5%
antimony	1220	1220
barium	1560	1680
chromium	2600	2600
lead	1160	5

Document: SEADTBP2

- Document: SEADTBP2 Submittal: Final
- Adapted from Table 3-1, "Analysis of Metals in Trial Burn Tests Case Study
 Amoco Whiting Fluidized Bed Incinerator" by Energy and Environmental Research Corporation, January 5, 1989.
- (2) Temperature at which the effective vapor pressure is 10⁻⁶ atm

Based upon the information presented in Section 4, Table 4-5 the following munitions have been selected for the trial burn. For antimony, the preferred waste feed item for testing is Item 120, with a total antimony feed rate of 5.0 lb/hr.

For barium, item 57 was selected representing a total barium feed rate of 22.2 lb/hr.

For chromium, the preferred waste feed item is Item 127 with a total chromium feed rate of 0.04 lb/hr.

For lead, item 200 was selected representing a total lead feed rate of 16.1 lb/hr. The chlorine feed rate for item 200 is 0.42 lb/hr (1.25% of the total feed on a mass basis). Item and test feed rates are summarized in Table 5-4.

It should be noted that a trial burn will be performed for each metal designated as a hazardous constituent in Appendix VIII of 40 CFR 261, which is proposed to be fed to the deactivation furnace. As described earlier in this section trial burns will be performed for : antimony, barium, chromium, and the lead. These trial burns will verify that the emissions associated with the metal feed rates calculated in Section 4 comply with all applicable standards and guidance. When the test data has adequately demonstrated compliance, it will become the basis for a permit to operate the deactivation furnace.

Trial burns are not necessary and will not be conducted for metals not included in Appendix VIII of 40 CFR 261. These metals are significantly less toxic than those included in Appendix VIII. Feed rate for these metals were reduced as described in Section 4 to comply with all applicable emission standards and guidance.

Metals which are proposed to be fed to the deactivation furnace but are not identified as beings Hazardous in Appendix VIII of 40 CFR 261 are: aluminum, nickel, strontium, tin, and zinc. Of these five metals only nickel and zinc have specific ambient or impact guidance. For these two metals proposed feed rates are less than allowable calculated emission rates.

For alumnimum, strontium, and tin there are no specific Federal or State ambient air quality or impact standards or guidance. Generally if no guidance for a chemical exists, it is because the chemical is regarded as benign, not often encountered in toxic quantity, or both. As described previously NYSDEC

provides methodology for developing conservative allowable "interim" or "deminimis" impacts, which have built in to them a large safety margin. Consequently, the emission limits developed for these three metals of low toxicity are inherently lower than they would be for metals of similar toxicity, for which the state has developed guidance. In any event the maximum proposed feed rate for tin was less than the allowable emission rate calculated from its "interim" value. Feed rate for aluminum and strontium were reduced as described in Section 4 to comply with their respective "interim" and "deminimis" impacts.

In general the five metals discussed here are of low toxicity and do not require the same level of control as those identified in Appendix VIII of 40 CFR 261. SEAD is seeking to operate the deactivation furnace in a way which is protective of human health and the environment; and although no trial burn will be devoted to testing for these metals, SEAD has limited munition feed to meet all applicable guidance.

5.6 DIOXIN AND FURAN WASTE FEED ITEM SELECTION

Polyvinylchloride (PVC) is a documented dioxin and furan precursor. The item which represents the greatest PVC feed rate is item 23 at 3.09 lb/hr (see Appendix C). Item and test feed rates are summarized in Table 5-4.

5.7 WASTE (PEP) FEED ITEM SELECTION

The feed item with the highest PEP mass feed rate is Item 23 with a total PEP feed rate of 204 lb/hr (see Table 4-5). This item was also selected for the dioxin/furan precursor trial burn. Item and test feed rates are summarized in Table 5-4.

TABLE 5-4
TRIAL BURN FEED RATE SUMMARY

TEST	ITEM	ITEM FEED RATE (ITEM/HR)	PARAMETER	PARAMETER FEED RATE (LB/HR)
1.	Spiked 182	NA	НСВ	4.11
2.	Spiked 182	NA	TCE	4.11
3.	143	19,416	NG	44.39

TEST	ITEM	ITEM FEED RATE (ITEM/HR)	PARAMETER	PARAMETER FEED RATE (LB/HR)
4.	49	8,000	DNT	26.86
5.	57	6,377	PARTICULATE BARIUM	98.17 22.21
6.	120	375,601	ANTIMONY	5.02
7.	127	3,163	CHROMIUM	0.04
8.	200	220	LEAD	16.07
9.	23	22,500	DIOXIN/FURAN PRECURSOR MAX WASTE (PEP)	3.09 204

SECTION 6

TRIAL BURN PROTOCOL

6.1 <u>Trial Burn Test Series</u>

The trial burn will consist of a series of nine tests. The objectives of these tests are to set feed rates and operational conditions for the deactivation furnace. Table 6-1 summarizes the nine tests that are proposed for performance and identifies the waste feed parameter to be tested. Operating conditions to be used during the test series are summarized in Table 6-2.

The kiln and afterburner temperatures proposed for use during all the tests are practical minimums for incinerator operation. The 1200°F afterburner setpoint specification is the lowest temperature that would be used during normal operations. To achieve these minimum temperatures while maintaining the highest possible combustion gas flowrate, both the afterburner and kiln burners will be operated at extremely lean air-to-fuel ratios. Air flows to both burners will be maximized with fuel feedrates adjusted by the kiln and afterburner temperature controllers. Thus, these tests will be conducted under the practical worst-case conditions.

For tests 1 and 2, which measure DRE's for Class 1 and 2 compounds respectively, experience has shown that a higher after burner temperature is required (1600°F). Actual trial burns have also shown the requirement for a 1450°F afterburner temperature for munitions which contain NG. Finally all tests with munitions which contain DPA will be conducted at 1600°F.

Finally, it should be realized that the upgraded APE incinerators are virtually new systems with respect to process operation and control. The addition of the afterburner significantly changes the operation of the downstream equipment. Thus, the proposed operating conditions may require some modification following pre-trial burn testing of the system. Thus, the operating conditions identified for use during the nine test series may require some modification. The proposed operating conditions will be evaluated during a limited pre-trial test (mini burn) and necessary modifications will be identified to the EPA and NYSDEC prior to the start of the Trail Burn series.

Document: SEADTBP2

TABLE 6-1
TRIAL BURN PROTOCOL

Test Series	Feed Item	Objective
1.	Item 182 - 3.5" Rocket Motor Spiked w/HCB	Maximum feed rate of HCB, the most difficult POHC to destroy based on TSI ranking
2.	Item 182 - 3.5" Rocket Motor Spike w/TCE	Maximum feedrate of TCE the second most difficult POHC to destroy based on TSI ranking
3.	Item 143 - Ignit. CTG M5A2	Maximum feed rate of NG, the most difficult POHC to destroy based on heats of combustion ranking (after HCB and TCE)
4.	Item 4950 Caliber Ball, AP-M2 (w/IMR5010)	Maximum feed rate of DNT for confirmational testing
5.	Item 5750 Caliber Incendiary - M23 (w/1M-11)	Maximum ash feed rate for particulate (PM-10) testing Maximum feed rate of Inorganic Barium
6.	Item 120 - Detonator -MK56 Mod 0	Maximum feed rate of Antimony
7.	Item 127 - Fuze Point Detonating - M48	Maximum feed rate of Chromium
8.	Item 200 - Fuze M501	Maximum feed rate of Lead with high chlorine
9.	Item 23 - 30 cal-M25 Tracer (w/WC852)	Maximum feed rates of Dioxin and Furan Precusor Maximum Waste (PEP) Feed Rate

TABLE 6-2

TRIAL BURN OPERATIONS SUMMARY

Parameter	Test Series 1 Item 182-3.5" Rocket Motor Spiked w/HCB	Test Series 2 Item 182 3.5" Rocket Motor Spiked w/TCE	Test Series 3 Item 143 Ignition Ctg. -M5A2	Test Series 4 Item 49 .50 Caliber Ball AP-M2 (w/IMR5010)
Number of Runs	3	3	3	3
Kiln Outlet Temperature (°F) Range Expected Setpoint	250-800 450	250-800 450	250-800 400	250-800 450
Afterburner Outlet Temp. (°F) Range Expected Setpoint	1200-1800 1800	1200-1800 1600	1200-1800 1450	1200-1800 1600
Stack Ges Velocity (fps) Renge	40-50	40-50	40-50	40-50
Kiln Pressure (in H ₂ O)	15 to25	15 to25	15 to25	15 to25
Kiln Rotation (rpm)	1.0	1.0	1.5	1.8
PEP Weste Feedrate (lb/hr)	NA	NA	110.98	92.00
Waste Feedrate (items/hr)	NA	NA	19,148	8000
Baghouse Pressure Drop (in	2.5 to 4.5	2.5 to 4.5	2.5 to 4.5	2.5 to 4.5
Cyclone Pressure Drop (in H ₂ O)	2 to 4	2 to 4	2 to 4	2 to 4
Baghouse Outlet Temp. (°F)	150-250	150-250	150-250	150 to 250
CO Level (ppm)	<100	<100	<100	< 100
Fuel Usage (gph) Expected Range	30-50	30-50	30-50	30-60
HTHE Exit Temp. (°F)	<1000°	< 1000°	<1000*	<1000°
LTHE Exit Temp. (°F)	<250°	<250°	<250°	< 250°

TABLE 6-2

TRIAL BURN OPERATIONS SUMMARY

Perameter	Test Series 5 Item 57 .50 Caliber Incendiary -M23 (w/1M-11)	Test Series 6 Item 120 Detonator -MK56 MODO	Test Series 7 Item 127 Fuze Point Detonating-M48
Number of Runs	3	3	3
Kiln Outlet Temperature (°F) Range Expected Setpoint	250-800 450	250-800 400	250-800 400
Afterburner Outlet Temp. (°F) Renge Expected Setpoint	1200-1800 1800	1200-1800 1200	1200-1800 1200
Stack Gas Velocity (fps) Range	40-50	40-50	40-60
Kiln Pressure (in H ₂ O)	15 to25	-,15 to -,25	16 to25
Kiln Rotation (rpm)	1.6	1.2	1.2
PEP Waste Feedrate ((lb/hr)	130.91	20.94	2.79
Waste Feedrate (items/hr)	6377	375,601	3,163
Baghouse Pressure Drop (in H ₂ O)	2.5 to 4.5	2.5 to 4.5	2.5 to 4.5
Cyclone Pressure Drop (in H ₂ O)	2 to 4	2 to 4	2 to 4
Baghouse Outlet Temp. (°F)	150-250	150-250	150-250
CO Level (ppm)	<100	<100	<100
Fuel Usage (gph) Expected Range	30-50	30-60	30-50
HTHE Exit Temp. (°F)	<1000°	<1000°	<1000°
LTHE Exit Temp. (°F)	<250°	<250°	<250°

Document: SEADTBP2 Submittel: Final

TABLE 6-2
TRIAL BURN OPERATIONS SUMMARY

Parameter	Test Series 8 Item 200 Fuze M501	Test Series 9 ftem 23 30 Cel-M25 Tracer (w/WC852)
Number of Runs	3	3
Kiln Outlet Temperature (°F) Renge Expected Setpoint	260-800 400	250-800 350
Afterburner Outlet Temp. (°F) Range Expected Setpoint	1200-1800 1200	1200-1600 1600
Stack Gas Velocity (fps) Range	40-50	40-50
Kiln Pressure (in H ₂ O)	15 to26	15 to25
Kiln Rotation (rpm)	1.7	1.6
PEP Waste Feedrate ((lb/hr)	33.31	204.08
Waste Feedrate (items/hr)	220	22,500
Baghouse Pressure Drop (in H₂O)	2.5 to 4.5	2.5 to 4.5
Cyclone Pressure Drop (in H ₂ O)	2 to 4	2 to 4
Baghouse Outlet Temp. (°F)	150-250	150-250
CO Level (ppm)	<100	<100
Fuel Usage (gph) Expected Range	30-60	30-60
HTHE Exit Temp. (°F)	<1000°	<1000°
LTHE Exit Temp. (°F)	<250°	<250°

6.2 Mass and Energy Balances

Mass and energy balance calculations were performed on each of the nine trial burn test series. The mass and energy balance calculations were performed to model and predict the performance of the APE 1236 incinerator system at the operating conditions stated in this Trial Burn Plan. The mass and energy balance calculations about the incinerator system were based upon the following assumptions:

- No. 2 fuel oil would be used as auxiliary fuel in both the rotary kiln and afterburner.
- Primary and secondary combustion air and cooling air for the gas coolers enter at the annual average ambient temperature and relative humidity of 50°F and 70%, respectively.

For each test series, auxiliary fuel was used to obtain the required heat release rates in the rotary kiln and afterburner. The quantity of excess air was determined based on maintaining the desired operating temperatures required to obtain the destruction and removal efficiencies for each test series.

The waste feed items presented in Section 5.7 were compiled based on their ultimate or elemental analyses (i.e., mass percentages of C, H, O, N, S, Cl, etc.) in order to facilitate input to the mass and energy balance calculations. The ultimate analyses for the waste feed streams associated with the nine test series are presented in Table 6-3.

The results of the mass and energy balance calculations for each test series is summarized on process flow diagrams in Figures 6-1 through 6-9. The actual computer printouts containing the data for the nine test series are presented in Appendix D-4.

Document: SEADTBP2

TABLE 6-3
SENECA ARMY DEPOT
TRIAL BURN PLAN
INCINERATOR WASTE FEED STREAM ULTIMATE ANALYSIS DATA

WASTE FEED	FEEDBATE	PEP FFFDBATE	HEATING VALU	3 VALUE	8	%	8	%	%	8	8	%	8	%	
ITEM DESCRIPTION	(Items/hr)		(Btu/lb)	(Btu/lb)	Comb.	Water	Inerts	ر د د	Ľ	? 0	۲Z	୧ ဟ	੨ਹ	٠	1.74
niked Item 182															
Carbon Black	20	0.086	14,095		100.00	00.00	0.00	100.00	0.00	0.00	0.00	0.00	00.0	0.00	
Ethyl Centralite	20	0.065	15,093		100.00	0.00	0.00	76.12	7.46	5.97	10.45	0.00	0.00	0.00	
Nitrocellulose	20	3.931	4,338		100.00	0.00	0.00	24.24	2.36	59.26	14.14	0.00	0.00	0.00	
Nitroglycerin	20	2.556	6,822		100.00	0.00	0.00	15.87	2.25	63.41	18.50	0.00	000	0.00	
Potassium Perchlorate	20	0.562	264		100.00	0.00	0.00	0.00	0.00	46.19	0.00	0.00	25.59	0.00	
Hexachlorobenzene	Y.Z	4.110	3,566		100.00	0.00	0.00	25.30	0.00	0.00	0.00	0.00	74.70	0.00	
Total/Average ==	20	11.310	4,553	1	100.00	0.00	0.00	22.41	1.36	37.26	9.16	0.00	28.42	00.0	
	ALT THE SALE														
Chiked Hem 182															
Carbon Black	20	0.086	14,095		100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	
Ethyl Centralite	8	0.065	15,093		100,00	0.00	0.00	76.12	7.46	5.97	10.45	0.00	0.00	0.00	
Nitrocellulose	8	3.931	4,338		100.00	0.00	0.00	24.24	2.36	59.26	14.14	0.00	0.00	0.00	
Nitroglycerin	20	2.556	6,822		100.00	0.00	0.00	15.87	2.25	63.41	18.50	0.00	0.00	0.00	
Potassium Perchlorate	20	0.562	564		100.00	0.00	0.00	0.00	0.00	46.19	0.00	0.00	25.59	0.00	
Trichloroethylene	Y.Z	4.110	3,047		100.00	0.00	0.00	18.28	0.77	0.00	0.00	0.00	80.95	0.00	
Total/Average ==	20	11.310	4,364		100.00	0.00	0.00	19,85	1.64	37.26	9,16	0.00	30.69	0.00	
em 143 Ethyl Centralite	19,416		15,093		100.00	0.00	0.00	76.12	7.46	5.97	10.45	0.00	0.00	0.00	
Nitrocellulose	19,416	64.091	4,338		100.00	0.00	0.00	24.24	2.36	59.26	14.14	0.00	0.00	0.00	
Nitroglycerin	19,416		6,822		100.00	0.00	0.00	15.87	2.25	63.41	18.50	0.00	0.00	0.00	
Potassium Nitrate	19,416		(286)		100.00	0.00	0.00	0.00	0.00	47.47	13.86	0.00	0.00	0.00	
Total/Average =	19,416	•	5,343		100.00	0.00	0.00	20.92	2.31	60.34	15.85	0.00	00.0	0.00	
														P	PAG

TABLE 6-3
SENECA ARMY DEPOT
TRIAL BURN PLAN
INCINERATOR WASTE FEED STREAM ULTIMATE ANALYSIS DATA

		mdd				Heavy Metals	ais				Шаа	Total Ash
WASTE FEED ITEM DESCRIPTION	E is	Na, K, B, Ca, Mg	Ppm	ppm Ba	Ed 5	ppm Pb	Ppm Sb	md S S	ppm Sr	ppm Zn	Total Heavy Metals	Formed (lbs/hr)
piked Item 182												
Carbon Black	0		0	0	0	0	0	0	0	0	0	0.000
Ethyl Centralite	0		0	0	0	0	0	0	0	0	0	0.000
Nitrocellulose	0	0	0	0	0	0	0	0	0	0	0	0.000
Nitroglycerin	0		0	0	0	0	0	0	0	0	0	0.000
Potassium Perchlorate	00	282,200	0 0	0 0	0 0	00	0 0	00	0 0	00	0 0	0.227
Total/Average ==	0	14,01	0	0	0	0 0	Ö	0	0	0	O	0.227
niked Item 180												
Carbon Black	0		0	0	0	0	0	0	0	0	0	0.000
Ethyl Centralite	0	0	0	0	0	0	0	0	0	0	0	0.000
Nitrocellulose	0		0	0	0	0	0	0	0	0	0	0.000
Nitroglycerin	0		0	0	0	0	0	0	0	0	0	0.000
Potassium Perchlorate	00	282,200	0 0	0 0	0 0	0 0	0 0	0 0	0 0	00	00	0.227
Total/Average ==	0	14,01	00	0	0	0	0	00	0	00	0	0.227
em 143												
Ethyl Centralite	00	0 0	0 0	0 0	00	0 0	0 0	0 0	0 0	00	0 0	0.000
Nitrocellulose	0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 (0 (0 (0.000
Nitrogrycenn Potassium Nitrate	00	386,70	00	0	00	00	00	00	00	00	00	0.000
Total/Average =	0	5,808	0	0	0	0	0	0	0	0	0	0.925
											PAGE 6-8	

TABLE 6–3
SENECA ARMY DEPOT
TRIAL BURN PLAN
INCINERATOR WASTE FEED STREAM ULTIMATE ANALYSIS DATA

	ITEM	d E D E D	HEATING VALUE	VALUE				-							Т
WASTE	FEEDRATE	H	₹	1	%	%	%	%	%	%	%	%	%	%	
ITEM DESCRIPTION	(Items/hr)		(Btn/lb)	(Btn/lb)	Сошр.	~	Inerts	O	I	0	Z	ഗ	ਹ	u.	
07															
	000	000	0		000	0	0	0	0	0	0	0	0	0	
Antimony Insulfide	000,8	0.229	208,1		00.00	0.0	9 6	9 6	0.0	0.00	0.00	28.32	9 6	0.0	
Barium Nitrate	8,000	151.1	(017)		9.6	0.00	0.0	0.0	0.00	30.73	10.72	0.00	0.00	00.0	
Calcium Silicide	8,000	0.194	6,001		100.00	0.00	0.00	00.0	0.00	0.00	00.00	0.00	0.00	0.00	
Dinitrotoluene	8,000	26.857	8,424		100.00	0.00	0.00	46.15	3.31	35.16	15.38	0.00	0.00	0.00	
Diphenylamine	8,000	3.543	16,376		100.00	0.00	0.00	85.17	6.55	0.00	8.28	00.0	0.00	0.00	
Graphite	8,000	1.029	14,095		100.00	00.00	0.00	100.00	0.00	0.00	0.00	0.00	00.0	0.00	
Gum Arabic	8,000	0.011	6.842		100.00	0.00	00.00	52.00	3.00	30.00	15.00	00.00	00.0	00.00	
Lead Styphnate	8,000	0.994	2,254		100.00	00.00	00.0	15.99	0.23	28.43	9.33	000	000	00.0	
Nitrocellulose	8,000	55.200	4,338		100.00	00.00	00.0	24.24	2.36	59.26	14.14	0.00	0.00	00.0	
Potassium Sulfate	8,000	2.743	(669)		100.00	0.00	0.00	0.00	0.00	36.73	0.00	18.40	0.00	0.00	
Tetracene	8,000	0.069	1,181		100.00	00.0	0.00	94.70	5.30	0.00	0.00	0.0	0.00	0.00	
Total/Average ==	8,000	92.000	5,864		100.00	0.00	0.00	32.66	2.64	47.68	13.53	0.62	00.00	0.00	
Section 19 Company of the contract of the cont			1000		. 1	- 30 W			-						
lem 57 Antimony Trisulfide	6.377	0 182	1 802		100 00	0	0	0	0	0	0	28.32	0	0	
Berium Nitroto	6 377	41 807	716		000				8 6	36.73	10.70	000			
Calcium Cilicida	0,077	4.037	()		9 6	8 6	3 6	3 6	3 6	2 6	2.0	8 8	3 6	9 6	
Calcium Silicide	0,077	. 6	0,0		9 9	9 6	9 6	0. 6	5 6	0. 4	0.0	9 6	9 6	00.0	
Dinfrotoluene	6,377	20.498	8,424		00.00	0.00	0.0	46.15		35.16	15.38	0.00	0.00	00.0	
Diphenylamine	6,377	2.824	16,376		100.00	0.00	0.0	85.17	6.55	0.00	8.28	0.0	0.00	00.0	
Graphite	6,377	0.820	14,095		100.00	00.00	0.0	100.00	0.00	0.00	0.0	0.0	0.00	0.00	
Gum Arabic	6,377	600.0	6,842		100.00	00.00	0.0	25.00	3.00	30.00	15.00	0.0	0.00	0.00	
Lead Styphnate	6,377	0.793	2,254		100.00	0.00	0.00	15.99	0.23	28.43	9.33	0.00	0.00	0.00	
Magnesium/Aluminum Alloy	6,377	40.995	11,602		100.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	
Nitrocellulose	6,377	20.498	4,338		100.00	00.0	0.00	24.24	2.36	59.26	14.14	0.00	0.00	0.00	
Potassium Sulfate	6,377	2.186	(669)		100.00	0.00	0.0	0.00	00.0	36.73	0.00	18.40	0.00	0.00	
Tetracene	6,377	0.055	1,181		100.00	0.00	0.00	94.70	5.30	0.00	0.00	0.00	0.00	0.00	
Total/Average =	6,377	130.911	5,856		100.00	0.00	0.00	13.63	1.03	27.33	8.29	0.35	0.00	0.00	
						3 A A A A									-
tem 120				_		-			-				-		
Antimony Trisuffide	375,601	6.979	1,802		100.00	0.00	0.00	0.00	0.00	0.00	0.00	28.32	0.00	00.0	
Carborundum	375,601	1.074	0		100.00	0.00	0.00	29.97	0.00	0.00	0.00	0.00	0.00	0.00	
Lead Azide	375,601	5.905	1,135		100.00	00.0	0.00	0.00	0.00	0.00	28.86	0.00	0.00	00.0	
Potassium Chlorate	375,601	6.979	449		100.00	0.00	0.00	0.00	0.00	39.16	0.00	0.00	28.93	0.00	
Total/Average ≖	375,601	20.936	1,070		100.00	0.00	0,00	1.54	00.00	13.05	8.14	9,44	9.64	0.00	
100,000														Ĉ	5
														È	FAG

TABLE 6-3
SENECA ARMY DEPOT
TRIAL BURN PLAN
INCINERATOR WASTE FEED STREAM ULTIMATE ANALYSIS DATA

Section Sect			udd				Heavy Metals	tals				mdd	Total Ash
Trisufficie S83,600 416,400 0 525,500 0 0 0 0 0 0 0 0 0	WASTE FEED ITEM DESCRIPTION	mdd Si	Na, K, B, Ca, Mg	ppm Al	ppm Ba	ළූ <u>ඊ</u>	ppm Pb	ppm Sb	mdd Su	mdd S	ppm Zn	Total Heavy Metals	Formed (lbs/hr)
Varietie Seg-600 416,400 Colorate	еш 49												
Variation Sess, condition	Antimony Trisulfide	0	0	0	0	0 (0	716,800	0 0	0 0	0	716,800	0.196
Silicide amine bbic amine bbic bric amine bbic bbic bbic amine bbic bbic bbic amine bbic bbic bbic amine bbic bbic bbic bbic amine bbic	Barium Nitrate	0	0	0 0	525,500	0 0	0	0 0	0 0	0 0	0 0	000,020	0.004
using the property of the pro	Calcium Silicide	583,600	415,400	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0.550
abic physical physica	Dinitrotoluene	0	0	0	0	0	,	0	0	0 (0	0 (0.000
abic phinate Cotal/Average	Diphenylamine	0	0	0	0	0	0	0	0	0	0	0	0.000
bicy bicy bicy bicy bicy bicy bicy bicy	Graphite	0	0	0	0	0	0	0	0	0	0	0	0.000
Publishe	Gum Arabic	0	0	0	0	0	0	0	0	0	0	0	0.000
in Sulfate Mathematical Control of the control	Lead Styphnate	0	0	0	0	0	460,200	0	0	0	0	460,200	0.474
m Sulfate y Trisulficle location w Sulfate y Trisulficle y T	Nitrocellulose	0	0	0	0	0	0	0	0	0	0	0	0000
Total/Average = 1,232 14,257 0 6,463 0 4,974 1,781 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Potassium Sulfate	0	448.700	0	0	0	0	0	0	0	0	0	1.766
Total/Average = 1,232 14,257 0 6,463 0 4,974 1,781 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tetracene	0	0	0	0	0	0	0	0	0	0	0	0.000
y Trisulfide vitrate S83,600 416,400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14	1,232		0	6,463	0	4,974	1,781	0	0	0	13,217	3.456
y Trisulfide 0													
v Trisulfide 0 0 0 0 716,800 0	57 me												
vitratie 0 0 525,500 0	Antimony Trisulfide	0	0	0	0	0	0	716,800	0	0	0	716,800	0.156
Silicide	Barium Nitrate	0	0	0	525,500	0	0	0	0	0	0	525,500	24.581
uene 0	Calcium Silicide	583.600	416,400	0	0	0	0	0	0	0	0	0	0.284
abic cyphrate 0 640,000 360,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dinitrotoluene	0	0	0	0	0	0	0	0	0	0	0	0.000
abic vphnate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Diphenylamine	0	0	0	0	0	0	0	0	0	0	0	0.000
abic high arise	Graphite	0	0	0	0	0	0	0	0	0	0	0	0.000
rphnate 0 0 0 460,200 <	Gum Arabic	0	0	0	0	0	0	0	0	0	0	0	0.000
um/Aluminum Alloy 0 640,000 360,000 0	Lead Styphnate	0	0	0	0	0	460,200	0	0	0	0	460,200	0.378
llose m Sulfate 0 448,700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Magnesium/Aluminum Allov	0	640,000	360,000	0	0	0	0	0	0	0	360,000	71.364
m Sulfate 0 448,700 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nitrocellulose	0	0	0	0	0	0	0	0	0	0	0	0.000
Total/Average = 690 208,404 112,735 168,182 0 2,786 998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Potassium Sulfate	0	448,700	0	0	0	0	0	0	0	0	0	1.408
Total/Average = 690 208,404 112,735 168,182 0 2,786 998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tetracene	0	0	0	0	0	0	0	0	0	0	0	0000
y Trisulfide 0 0 0 0 0 0 716,800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total/Average ==	069	208,404	112,735	168,182	0	2,786	966	0	0	0	284,701	98.171
700,300 0 0 0 0 0 0 716,800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	em 120												
700,300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Antimony Trisulfide	0	0	0	0	0	0	716,800	0	0	0	716,800	5.989
Chlorate 0 319,100 0 0 0 711,400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carborundum	700,300	0	0	0	0	0		0	0	0	0	1.074
age = 35,914 106,367 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lead Azide	0	0	0	0	0	711,400		0	0	0	711,400	4.526
= 35,914 106,367 0 0 0 200,650 238,933 0 0 0	Potassium Chlorate	0	319,100	0	0	0	0	0	0	0	0	0	3.195
	98	35,914	106,367	0	0	0	200,650	238,933	0	0	0	439,583	14.783
		900000000000000000000000000000000000000				State of the state of		S					

TABLE 6-3
SENECA ARMY DEPOT
TRIAL BURN PLAN
INCINERATOR WASTE FEED STREAM ULTIMATE ANALYSIS DATA

PAC															
		- - 25	44	23.74	11.7	0.34	6.54	0.00	00.00	100.00		1,881	33.314	220	Total/Average ==
	0.00	0.00	0.0	9.33	28.43	0.23	15.99	0.0	0.0	100.00	and the same of the same of the same	2,254	1.612	220	Lead Styphnate
	0.00	0.00	0.00	28.86	00.0	0.00	0.00	0.00	0.00	100.00		1,135	21.634	220	Lead Azide
	0.00	0.00	0.00	0.00	0.00	0.00	29.97	0.00	0.00	100.00		0	0.217	220	Carborundum
	0.00	28.93	0.00	0.00	39.16	0.00	0.00	0.00	0.00	100.00		449	1.436	220	Potassium Chlorate
	0.00	0.00	0.00	24.39	44.57	1.76	29.28	0.00	0.00	100.00		5,261	5.910	220	Tetryl
	0.00	0.00	0.00	0.00	0.00	5.30	94.70	0.00	0.00	100.00		1,181	0.133	220	Tetracene
	0.00	0.00	0.00	10.72	36.73	0.00	0.00	0.00	0.00	100.00		(716)	0.673	220	Barium Nitrate
	0.00	0.00	28.32	0.00	0.00	0.00	0.00	0.00	0.00	100.00		1,802	1.699	220	tem 200 Antimony Trisulfide
											BSSSpenson condenses				
	00:00	1.59	1.79	22.13	4.85	0.03	1.00	0000	0.00	100.00		1,005	2.789	3,163	Total/Average =
	0.00	00'0	0.00	0.00	37.17	7.03	55.80	0.00	0.00	100.00		0	0.005	3,163	Vinyl Alcohol Acetate Resin
	0.00	0.00	0.00	0.00	0.00	5.30	94.70	0.00	0.00	100.00		1,181	600.0	3,163	Tetracene
	0.00	0.00	0.00	0.00	0.00	0.00	29.97	0.00	0.00	100.00		0	0.027	3,163	Silicon Carbide
	0.00	28.93	0.00	0.00	39.16	0.00	0.00	0.00	0.00	100.00		449	0.154	3,163	Potassium Chlorate
	0.00	0.00	0.00	9.33	28.43	0.23	15.99	0.00	0.00	100.00		2,254	0.054	3,163	Lead Styphnate
	0.00	0.00	0.00	28.86	0.00	0.00	0.00	0.00	0.00	100.00		1,135	2.111	3,163	Lead Azide
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00		0	0.036	3,163	Boron
	0.00	0.00	0.00	10.72	36.73	0.00	0.00	0.00	0.00	100.00		(716)	0.027	3,163	Barium Nitrate
	0.00	0.00	0.00	0.00	25.26	0.00	0.00	0.00	0.00	100.00		(495)	0.190	3,163	Barium Chromate
Ī	0.00	0.00	28.32	0.00	0.00	0.00	0.00	0,00	0.00	100.00		1,802	0.176	3,163	Antimony Trisulfide
															127 tem 127
	ш	ರ	S	z	0	1	ပ	Inerts	Water	Comb.	(Btu/lb)	(Btn/lb)	(llbs/hr)	(Items/hr)	ITEM DESCRIPTION
	*	ж	*	*	ж	%	%	*	*	38	HAY.	S A	FEEDRATE	Ш	WASTE FEED
0.000		がは、日本の	では ないとな			The state of the s					" VALUE	TEATING	PEP	ASL	

TABLE 6-3
SENECA ARMY DEPOT
TRIAL BURN PLAN
INCINERATOR WASTE FEED STREAM ULTIMATE ANALYSIS DATA

		udd				Heavy Metals	tals			William Commercial Com	mdd	Total Ash
WASTE FEED ITEM DESCRIPTION	E IS	Na, K, B, Ca, Ma	Ppm	pp. Ba	E O	Ppm Pb	mdd gs	mpd Sn	mdd Si	ppm Zn	Total Heavy Metals	Formed (lbs/hr)
lem 127												-
Antimony Trisulfide	0	0	0	0	0		716,800	0	0	0	716,800	0.151
Barium Chromate	0	0	0	542,100	205,300	0	0	0	0	0	747,400	0.190
Barium Nitrate	0	0	0	525,500	0	0	0	0	0	0	525,500	0.016
Boron	0	1,000,000	0	0	0	0	0	0	0	0	0	0.117
Lead Azide	0	0	0	0	0	711,400	0	0	0	0	711,400	1.618
Lead Styphnate	0	0	0	0	0	460,200	0	0	0	0	460,200	0.026
Potassium Chlorate	0	319,100	0	0	0	0	0	0	0	0	0	0.070
Silicon Carbide	700,300	0	0	0	0	0	0	0	0	0	0	0.027
Tetracene	0	0	0	0	0	0	0	0	0	0	0	0.000
Vinyl Alcohol Acetate Resin	0	0	0	0	0	0	0	0	0	0	0	0.000
Total/Average ==	6,808	30,540	0	41,998	13,971	547,454	45,294	0	0	0	648,716	2.215
tem 200												
Antimony Trisulfide	0	0	0	0	0	0	716,800	0	0	0	716,800	1.458
Barium Nitrate	0	0	0	525,500	0	0	0	0	0	0	525,500	0.395
Tetracene	0	0	0	0	0	0	0	0	0	0	0	0.000
Tetryl	0	0	0	0	0	0	0	0	0	0	0	0.000
Potassium Chlorate	0	319,100	0	0	0	0	0	0	0	0	0	0.657
Carborundum	700,300		0	0	0	0	0	0	0	0	0	0.217
Lead Azide	0	0	0	0	0	711,400	0	0	0	0	711,400	16.580
Lead Styphnate	0	0	0	0		460,200	0	0	0	0	460,200	0.769
Total/Average ==	4,552	13,753	0	10,615	0	484,257	36,557	0	0	0	531,429	20.076
		Section is a second of the			000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000					
											PAGE 6-12	

TABLE 6-3
SENECA ARMY DEPOT
TRIAL BURN PLAN
INCINERATOR WASTE FEED STREAM ULTIMATE ANALYSIS DATA

			1.					4		- The St.			Same States	
0.00	1.23	0.15	12.50	51.98	2.52	25.03	0.00	0.00	100.00		5,112	204.076	22,500	Total/Average =
0.00	0.00	0.00	0.00	0.00	5.30	94.70	0.0	0.0	100.00		1,181	0.064	22,500	Tetracene
0.00	0.00	0.00	0.00	26.75	00.00	0.00	0.00	0.00	100.00		(12)	1.479	22,500	Stronfium Peroxide
0.00	0.00	0.00	13.24	45.36	0.00	0.00	0.00	0.00	100.00		(786)	10.029	22,500	Strontium Nitrate
0.00	0.00	22,57	0.00	45.05	0.00	0.00	0.00	0.00	100.00		(705)	0.964	22,500	Sodium Sulfate
0.00	0.00	0.00	13.86	47.47	0.00	0.00	0.00	0.00	100.00		(286)	2.571	22,500	Potassium Nitrate
0.00	56.73	0.00	0.00	0.00	4.84	38.43	0.00	0.00	100.00		8,918	3.086	22,500	Polyvinyl Chloride
0.00	0.00	0.00	17.72	92.09	2.53	18.99	0.00	0.00	100.00		3,527	960.0	22,500	PETN
0.00	65.00	0.00	0.00	0.00	4.12	30.88	0.00	0.00	100.00		4,200	1.157	22,500	Parlon Chlorinated Rubber
0.00	0.00	0.00	18.50	63.41	2.25	15.87	0.00	0.00	100.00		6,822	17.679	22,500	Nitroglycerin
0.00	0.00	0.00	14.14	59.26	2.36	24.24	0.00	0.00	100.00		4,338	141.107	22,500	Nitrocellulose
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00		10,653	5.304	22,500	Magnesium
0.00	0.00	0.00	9.33	28.43	0.23	15.99	0.00	0.00	100.00		2,254	0.707	22,500	Lead Styphnate
0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00	0.00	100.00		14,095	0.643	22,500	Graphite
0.00	0.00	0.00	8.28	0.00	6.55	85.17	0.00	0.00	100.00		16,376	2.571	22,500	Diphenylamine
0.00	0.00	0.00	15.38	35.16	3.31	46.15	0.00	0.00	100.00		8,424	1.607	22,500	Dinitrotoluene
0.00	0.00	0.00	0.00	22.99	7.97	69.04	0.00	0.00	100.00		13,210	12.214	22,500	Dibutylphthalate
0.00	0.00	0.00	0.00	9.50	9.20	78.33	0.00	00.0	100.00		14,854	0.161	22,500	Calcium Resinate
0.00	0.00	0.00	0.00	47.96	0.00	12.00	0.00	0.00	100.00		(787)	1.607	22,500	Calcium Carbonate
0.00	0.00	0.00	10.72	36.73	0.00	0.00	0.00	0.00	100.00		(716)	0.611	22,500	Barium Nitrate
0.00	0.00	28.32	0.00	0.00	0.00	0.00	0.00	0.00	100.00		1,802	0.289	22,500	Antimony Trisulfide
0.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	100.00		13,313	0.129	22,500	Aluminum Powder
		•												lem 23
% ц	% ত	% w	% Z	% O	% I	% O	% Inerts	% Water	Comb.	(Btu/lb)	HHV (Btu/lb)	FEEDRATE (lbs/hr)	(Items/hr)	WASTE FEED ITEM DESCRIPTION
										ш	HEATING VALL	PEP	ITEM	

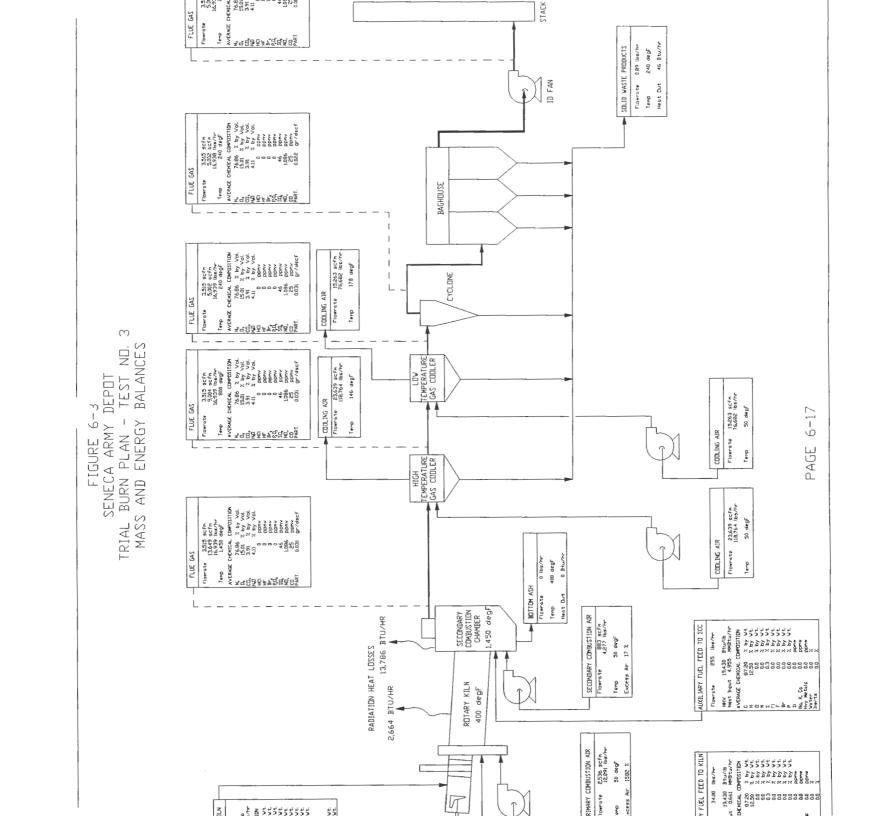
Notes:

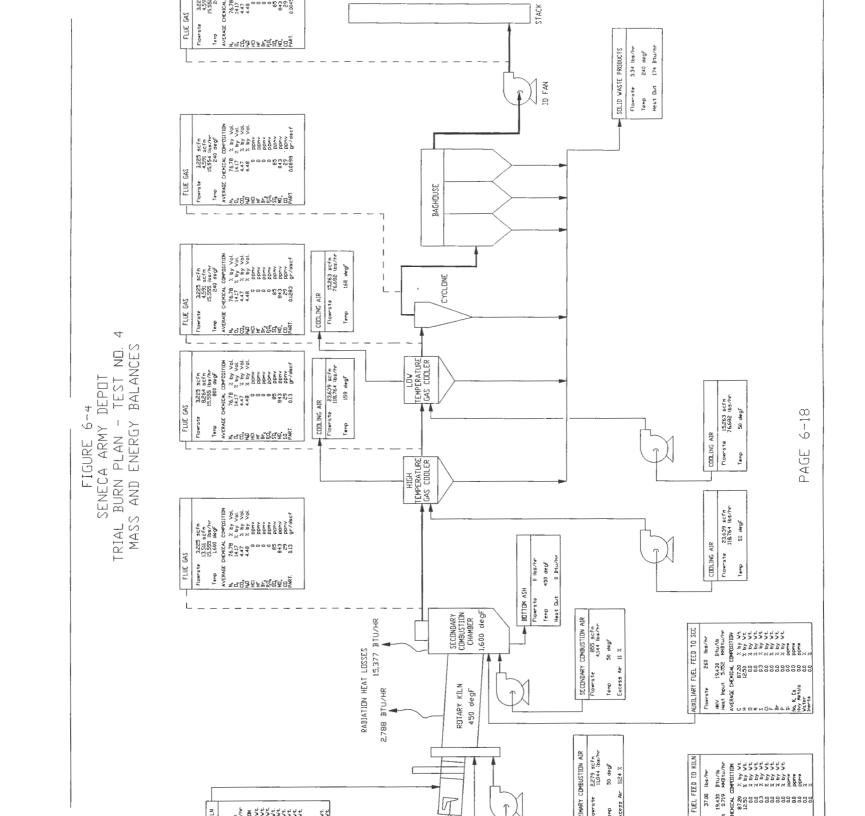
- Hourly rate is based on operation of the incinerator at 100% heat load.
 Heavy metals include: Al, Ba, Cr, Pb, Sb, Sn, Sr, Zn.
 All percentages are based on weight.
 All averages are weighted averages based on material feedrate.

TABLE 6-3
SENECA ARMY DEPOT
TRIAL BURN PLAN
INCINERATOR WASTE FEED STREAM ULTIMATE ANALYSIS DATA

waste feed ppm Na, K, B, Ppm Item Description Si Ce, Mg Al lem 23 Ce, Mg Al Aluminum Powder 0 0 0 Antmony Trisulfide 0 0 0 Barium Nitrate 0 0 0 Calcium Powder 0 0 0 Calcium Pesinate 0 0 0 Dibutylphthalate 0 0 0 Diphenylamine 0 0 0 Graphite 0 0 0 Lead Styphnate 0 0 0 Magnesium 0 1,000,000 Magnesium 0 0	×	muu	mdd	משמע	an an ann	DA DE PRO	men		Total Heavy	Forman
um Powder 0 0 400,40		200	ċ	, d	2	i d	<u> </u>	1	Motole	(he/hr)
um Powder 0 Nitrate 0 Nitrate 0 Nesinate 0 Nitrate		BO	5		2	2	5		Metalo	(111/2011)
fide 6 0 400,40 te 0 29,70 0 0 1,000,00										
te fide	1,000,000	0	0	0	0	0	0	0	1,000,000	0.243
te t	0	0	0	0	716,800	0	0	0	716,800	0.248
te et e	0	525,500	0	0	0	0	0	0	525,500	0.358
Calcium Resinate 0 29,700 0 Dibutylphthalate 0 0 0 Diphenylamine 0 0 0 Graphite 0 0 0 Lead Styphnate 0 0 0 Magnesium 0 1,000,000 0	0	0	0	0	0	0	0	0	0	0.900
Dibutylphthalate	0	0	0	0	0	0	0	0	0	0.014
Dinitrotoluene	0	0	0	0	0	0	0	0	0	0.000
Diphenylamine 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0.000
Graphite 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	0	0.000
Magnesium 01,000,000 0	0	0	0	0	0	0	0	0	0	0.000
Magnesium 0 1,000,000 0	0	0	0	460,200	0	0	0	0	460,200	0.337
C C C C C C C C C C C C C C C C C C C	0	0	0	0	0	0	0	0	0	8.795
Nill Occiliation	0	0	0	0	0	0	0	0	0	0.000
Nitroglycerin 0 0 0 0	0	0	0	0	0	0	0	0	0	0.000
Parlon Chlorinated Rubber 0 0 0	0	0	0	0	0	0	0	0	0	0.000
PETN 0 0 0 0	0	0	0	0	0	0	0	0	0	0.000
Polyvinyl Chloride 0 0 0	0	0	0	0	0	0	0	0	0	0.000
Potassium Nitrate 0 386,700 0	0	0	0	0	0	0	0	0	0	1.427
0	0	0	0	0	0	0	0	0	0	0.543
Strontium Nitrate 0 0 0	0	0	0	0	0	0	414,000	0	414,000	4.910
Strontium Peroxide 0 0 0	0	0	0	0	0	0	732,500	0	732,500	1.286
0		0	0	0	0	0	0	0	0	0.000
ed/A		1,573	0	1,595	1,016	0	25,652	0	30,465	19.063
						Specific .		Control of the Contro		

STACK FLUE GAS Flownste SOLID WASTE PRODUCTS
Flowrate 0.22 lbs/hr
Temp 240 degF
Heat dut 11 Btu/hr ID FAN T 1223 4 26 fr 1223 10 f FLUE GAS BAGHDUSE 2.529 REFP.
2.529 REFP.
2.640 days.
2.640 15,263 scfn 76,682 lbs/hr 168 degf CYCLONE COOLING AJR FIGURE 6-1 SENECA ARMY DEPOT TRIAL BURN PLAN - TEST NO. 1 MASS AND ENERGY BALANCES 2524 6274 2524 6274 2528 6274 800 4647 800 4647 800 4647 147 2 by Vol. 143 2 by Vol. 143 2 by Vol. 143 2 by Vol. 163 pprv 164 pprv 165 pprv 165 pprv 165 pprv 165 pprv 165 pprv 165 pprv 166 pprv 166 pprv 166 pprv 167 pprv 168 LOW TEMPERATURE GAS COOLER 23,639 scfn 118,764 lbs/hr 158 degF COOLING AIR Flowrate 13,263 scfm 76,682 lbs/hr Temp S0 deg? COOLING AIR FLUE GAS 6-15 PAGE HIGH TEMPERATURE GAS COOLER CCCLING AIR
Flowrate 23,639 scfn
Temp 50 degF FLUE GAS 0 lbs/hr 450 deg^F 0 8tu/hr Flowroto 15 Tenp 15 Heat Dut SECONDARY COMBUSTION CHAMBER 1,600 degF SECUNDARY COMBUSTION AIR Flown at 4,159 lea/hr Temp 50 depf Excress Ar 12 % RADIATION HEAT LOSSES
15,377 BTU/HR Flower to 280 learner HeV 19420 Branch H AUXILIARY FUEL FEED TO SCC ROTARY KILN 450 degF 2,788 BTU/HR SIMARY COMBUSTION AIR IONTALE 2273 SCFM 2277 scfn 11038 lb#/hr 30 depF FUEL FEED TO KILM
6200 that/hr
19.430 Bra/fb
19.430 Bra/fb
19.50 X by Ve.
19.50 X 1 \uparrow _ራጅ ፭ ሂደሂደሂደኝ


4.55 15,55 15,55 16,13 14,13 14,13 18,13 1 STACK FLUE GAS SOLID VASTE PRODUCTS
Flowrote 0.22 lbx/hr
Temp 240 degF
Heet Out 11 Btu/hr ID FAN 3223 ss.Fn 15.523 les.fn 240 deg/f 424 chegal 424 chegal 16.23 kb vol. 424 kb vol. 18.2 pow 0 ppw 0 pp GAS BAGHDUSE AVERA AND SECTION SECT 15,263 scfn 76,682 las/hr 168 dengF CYCLONE COOLING AIR Flowrate T d FIGURE 6 C SENECA ARMY DEPOT TRIAL BURN PLAN - TEST NO. 2 MASS AND ENERGY BALANCES 18253 SCFn 18553 GCFn 18553 GCFn 18553 GEFn 18553 GEFn 185 2 by Vol. 435 2 by Vol. 436 2 by Vol. 185 LBV TEMPERATURE GAS COOLER 23,639 scfm 118,764 lbs/hr 15,263 scfn 76,682 lbs/hr COOLING AIR Flowrate 23 FLUE GAS 6-16 COOLING AIR Flowrate PAGE HIGH TEMPERATURE GAS COOLER COOLING AIR Flowrate 23,639 scfm Temp 50 degF 13222 sefa 15223 less-1600 de la contra Con 0 tbs/hr 450 degF 0 Btu/hr BOTTON ASH Flowrate Tenp 45 SECONDARY COMBUSTION CHAMBER 1,600 degF SECONDARY COMBUSTION AIR Flowrate 661 serfn 4,173 lbs/hr-Tenp 50 degF Excess Ar 12 % 15,377 BTU/HR Flower to 260 lbs/hr


HVV 134.20 Rbu/lb

ACRING DiGCIA, CORRESTITA

T 1250 X by VL

12 AUXILIARY FUEL FEED TO SCC RADIATION HEAT LOSSES RDTARY KILN 450 degf 2,788 BTU/HR lowrate 2273 scfn LO19 lbs/hr emp 30 degF SIMARY COMBUSTION AIR 6200 lear/or 13420 Bhu/lo 12420 Bhu/lo 1250 X by Vt. 1250 FUEL FEED TO KILN 4 ند ند

15,4,5 15.4.2

AVCRAGE CHENICA

N. 76.9

N. 76.9

H.D. 4.13

H.D. 4.27

H.D. 4.27 STACK FLUE GAS SOLID WASTE PRODUCTS
Flowrote 9750 lbs/hr
Temp 240 deg/
Heot Dut 5086 Btu/hr ID FAN Floreste 3,250 scfr1709 15,644 scort
1709 24,645 scort
1709 15,644 scort
1709 15,645 scort
1709 16,645 scort
1709 16,6 BAGHDUSE COOLING AIR Flowrate 15,263 scfn 76,682 bs/hr CYCLONE FLUE GAS e T FIGURE 6. 3 SENECA ARMY DEPOT TRIAL BURN PLAN - TEST NO. 5 MASS AND ENERGY BALANCES 15515 18470-15515 LOW TEMPERATURE GAS COOLER COOLING AIR Flowrate 23,639 scfm 118,764 lbs/hr 3.200 scfn 8.248 acfn 15.515 (be/hr 800 deof 159 degf Flowrate 13,263 scfn 76,682 ibs/hr Tenp 50 degf FLUE GAS 6-19 Flowrate CODLING AIR PAGE HIGH TEMPERATURE GAS COOLER COOLING AIR Flowrate 23,639 scfm FLUE GAS 0 lbs/hr 450 degF 0 Btu/hr đ đ BOTTOM ASH Flowrate (Tenp 45 Heat Dut SECONDARY COMBUSTION CHAMBER 1,600 degF SECONDARY CEMBUSTION AIR
Flowrate 668 sefin
4,206 las/hr
Tenp 50 deof
Excess AP 13 x RADIATION HEAT LOSSES
15,377 BTU/HR HAV
NEWAC 194.20 BRUDE
NEWS 196.21 STORE HERILAND
NEWS 196.21 STORE HERILAN AUXILIARY FUEL FEED TO SCC Flowrate 260 lbs/hr RDTARY KILN 450 degF 2,788 BTU/HR RIMARY COMBUSTION AIR Townste 2249 scfn 10,900 lbs/rn-emp 50 deg/ xcess Air 1570 % FUEL FEED TO KILN 19430 BTA/16
CREMICAL CONFIDENCY
19320 X BY V. T.
19320 X ** Ľ.

15,2 77.2 15.8 3.24 3.60 108 125 STACK FLUE GAS AVERA CO. HE HE HE NO. CO. CO. PR. SOLID WASTE PRODUCTS
Flowrate 1428 lbs/hr
Temp 240 deof
Heat Dut 745 8tu/hr ID FAN 12.03 Sch. 12.09 Sch. BAGHDUSE 15,263 scfm 76,682 lbs/hr 166 degF CYCLONE CCOLING AIR Flowrate 1 9 FIGURE 6.0 SENECA ARMY DEPOT TRIAL BURN PLAN - TEST NO.6 MASS AND ENERGY BALANCES LOV TEMPERATURE GAS COOLER 8.279 BCFF 8.270 BCFF 8.270 BCFF 8.270 BCFF 8.270 BCFF 8.270 BCFF 8.270 BCFF 12.47 EV VGF 12.47 EV VGF 12.48 POPTV 12.48 POPTV 12.49 POPTV 12.49 POPTV 12.40 POPT 23,639 scfn 118,764 lbs/hr 103 degF 15,263 scfm 76,682 lbs/mr Flowrate 23/ 6-20 COOLING AIR Flownate PAGE HIGH TEMPERATURE GAS COOLER | Towarte | 13,70 SEP | 13,70 Flowrate 23,639 scfm 118,764 lbs/hr Temp 50 degf COOLING AIR 0 lbs/hr 400 degF 0 Btu/hr BOTTON ASH Flowrate (Tenp 40 SECONDARY COMBUSTION CHAMBER 1,200 degF SECONDARY COMBUSTION AIR
Flowrate 568 sefm
2,553 bas/hr
Teno 50 degf
Excess Air 11 X 11,135 BTU/HR Flowrete 173 lbs//rHVV hour 19430 Bs//rNVENG FRENCA. CD618/1/rAVENG FRENCA. CD618/1/rAVENG FRENCA. CD618/1/rB720 2 by VL
B7 B7 B7 B7 B7 VL
B7 B7 B7 C AUXILIARY FUEL FEED TO SCC RADIATION HEAT LOSSES RDTARY KILN 400 degF 2,664 BTU/HR lowrate 2.531 scfn 12.268 lbs/km emp 30 dopF xcess Ar 1208 % ZIMARY COMBUSTION AIR FUEL FEED TO KILN 6300 lbt/r19430 Btu/lb
19430 Btu/lb
19530 X by Vt
19530 \uparrow

STACK FLUE GAS Flowrate SOLID VASTE PRODUCTS
Flowrete 2.14 lbs/hr
Temp 240 degF
Heat Out 112 Btu/hr ID FAN Î. 1139 acfr 114,45 acfr 115,40 BAGHDUSE 3.139 acfn 13.436 acfn 13.436 acfn 2.0 acfn 2.0 acfn 2.0 acfn 3.2 x y y vol. 3.61 x by 15,263 scfn 76,682 lbs/hr 165 degF CYCLONE COOLING AIR Flowrate 2 TRIAL BURN PLAN - TEST NO. 7 MASS AND ENERGY BALANCES 3139 acfn 18,930 LOV TEMPERATURE GAS COOLER 23,639 scfm 118,764 lbs/hr 103 degF 15,263 scfn 76,682 lbs/hr 50 degf 6-21 COOLING AIR Flownate PAGE HIGH TEMPERATURE GAS COOLER - CODLING AIR Flowrs by 23,539 sc/n 18,564 lbs/nr 50 sleg^c 0 lbs/hr 400 degF 0 Btu/hr BOTTON ASH Flowrate Temp 40 Heat Dut SECONDARY COMBUSTION CHAMBER 1,200 degF SECONDARY COMBUSTION AIR Flowro te 556 stfn 2,694 lbs/hr Tenp 30 degf Excess Air 10 % 11,135 BTU/HR Floreste 238 Ibar/re
HAV 13420 Bru/lo
HAV 13420 Bru/lo
Neth Ibar/re
12530 X by Vt.
12530 X by Vt AUXILIARY FUEL FEED TO SCC RADIATION HEAT LOSSES Excess ROTARY KILN 400 degF 2,664 BTU/HR lowrate 2,532 scfn 12,273 lbs/hr emp 30 degf xcess Air 1222 X NIMARY COMBUSTION AIR 64200 [bar/hr
1.34.200 Bru/lb
1.34.200 Bru/lb
1.35.20 % by vt
1.35.30 % by vt FUEL FEED TO KILN # F B 544444444 \uparrow

FIGURE 6-/ SENECA ARMY DEPOT

3.3 15.6 277. 15.7 3.23 STACK FLUE GAS Flowrote 1939 ibs/hr Temp 240 degf Heet Dut 1011 Btu/hr SOLID VASTE PRODUCTS ID FAN T | Construction | 2169 Seferance | 2169 Seferance | 2249 Seferance | 2249 Seferance | 2249 Seferance | 2249 Seferance | 2259 S FLUE GAS BAGHOUSE COOLING AIR Flowrate 13,263 scfm 76,682 lbs/rr CYCLONE FLUE GAS FIGURE 6-8 SENECA ARMY DEPOT TRIAL BURN PLAN - TEST NO. 8 MASS AND ENERGY BALANCES | Toward | 3169 acfn | 1369 ac LOV TEMPERATURE GAS COOLER COOLING AIR Flowrate 23,639 scfm 118,764 lbs/hr 103 dergF COOLING AIR Flowrate 15,263 scfn 76,682 lbs/hr Tenp 50 degf FLUE GAS 6-22 PAGE HIGH TEMPERATURE GAS COOLER Flowrate 23,639 scFm 118,764 lbs/hr Temp 50 degF Towns to 13169 sech 13169 sech 13169 sech 1317 COOLING ATR FLUE GAS 0 lbs/hr 400 degf 0 Btu/hr BOTTON ASH Flowrate (Tenp 40 Heat Dat SECONDARY COMBUSTION CHAMBER 1,200 degF SECONDARY COMBUSTION AIR Flowrate S65 scfm 2738 lbs/hr-Temp 30 degf 11,135 BTU/HR | Howest | 173 | Harles | 174 | Harles | 174 | Harles | 175 | Harl AUXILIARY FUEL FEED TO SCC RADIATION HEAT LOSSES Temp Excess Air RDTARY KILN 400 degF 2,664 BTU/HR PEIMARY COMBUSTION AIR Flowrate 2,536 softh 12,290 lbs/hr Temp 30 deg/ XCESS AIR 1142 X 11340 PAL/10 11350 PAL/10 1135 PAL/10 113 Y FUEL FEED TO KILN 4 55 골

20119 20119 20119 20119 20119 14.46 14.45 14.43 14.45 14.45 14.43 14.45 STACK FLUE GAS Flowrote 1941 lbs/hr Tenp 240 degF Heat Out 960 Btu/hr SOLID WASTE PRODUCTS ID FAN 4.449 acfn 2.5099 quer 2.809 quer 2.809 quer 2.80 ace 4.48 x by voc 4.48 x by voc 4.48 x by voc 4.48 x by voc 1.80 ppen 0.00 ppen 0. BAGHDUSE 1449 3cfn
2023 18cfn
2023 18cfn
2033 18cfn
2 15,263 scfm 76,682 lbs/hr 202 degF CYCLONE COOLING AIR Teh φ TRIAL BURN PLAN - TEST ND. MASS AND ENERGY BALANCES LOV TEMPERATURE GAS COOLER 23,639 scfn 118,764 lbs/hr FIGURE 6 , SENECA ARMY DEPUT 190 deg 15,263 scfm 76,682 lbs/hr 50 degf CODLING AIR Flowrate 23.4 6-23 Ē CODLING AIR Floerate Temp PAGE HIGH TEMPERATURE GAS COOLER COOLING AIR Flowrate 23,639 scFm 7 mp 50 degF 0 lbs/hr 350 degf 0 Btu/hr BOTTOM ASH Flownate Tenp 35 Heat Dut SECONDARY COMBUSTION CHAMBER 1,600 degF SECONDARY COMBUSTION AIR
Flowro te 1142 sefn
5533 las/lwr
Tomp 50 deof
Excess Air 10 2 15,377 BTU/HR AUXILIARY FUEL FEED TO SCC RADIATION HEAT LOSSES RDTARY KILN 350 degF 2,526 BTU/HR lowrate 2,883 scfn 13,974 lbs/hu-emp 30 degF SIMARY COMBUSTION AIR 1100 lbs//rr
15420 Bsu//br
155420 Bsu//br
15552 X by Vt.
1555 X by Vt.
1 FUEL FEED TO KILN M F 77777777 \uparrow

SECTION 7

SAMPLING AND ANALYSIS PLAN

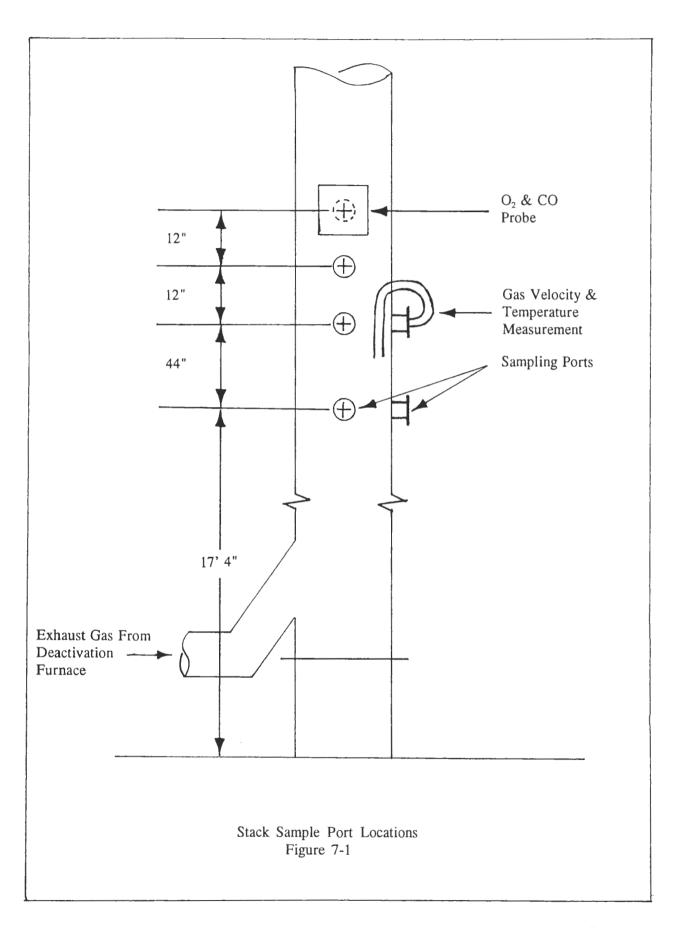
The goal of the Sampling and Analysis Plan presented for the APE 1236 deactivation furnace at the Seneca Army Depot is to ensure collection of valid data which will show compliance with all applicable regulations and standards regarding the operation of an industrial furnace. Federal permit standards for burners are described in 40 CFR Part 266, Subpart H (12). This federal code recognizes the overlap with the overall facility's Part B permit, nonetheless, it is specific in identifying wastes and waste streams that must be sampled and analyzed for a permit to be issued. EPAapproved sampling and analytical methods are also described in these regulations which detail procedures that must be followed for the collection of valid data. Accordingly, the methods specified in this plan will be those described in 40 CFR Part 60 Appendix A; SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 3rd Edition;, and the EPA Methods Manual for Compliance with the BIF Regulations. The exception to this will be the sampling and analytical methods used to sample energetic compounds in stack gas and fly ash. These methods have been established by the United States Army Environmental Hygiene Agency (AEHA) and are presented in Attachment B of the Quality Assurance/Quality Control (QA/QC) Plan (Appendix G). It is believed that the USCOE and AEHA are the best sources for sampling and analytical methods of Propellants, Explosives and Pyrotechnics (PEP).

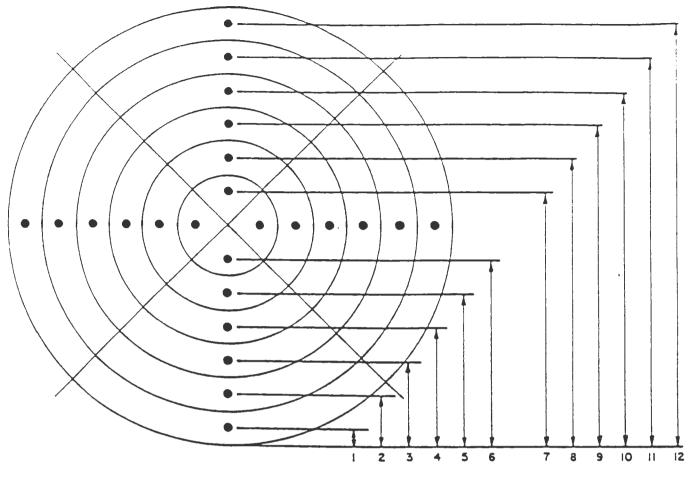
The sampling and analytical program presented here will involve sampling of the following items:

- Residue (fly ash), collected from the ash chute of the two (2) gas coolers, the cyclone and the baghouse,
- Stack gas, leaving downstream of all the Air Pollution Control Devices (APCD), and

Fly ash analytes, including POHCs, the thirteen (13) RCRA metals and Dioxin and Furans, will be sampled from the two gas coolers, the cyclone, and the baghouse. The location of fly ash sampling points are shown in drawing No. SK87-12, which is located in Map Pocket 5 of Appendix P. Samples of the munition waste feed will not be collected due to the hazardous nature of sampling, shipping and analyzing energetic compounds. Instead of actual chemical analysis of the various munitions that will be burned, the military chemical specifications for these wastes will be used as the basis for determining the waste feed characterization. Stack gas will be evaluated continuously with continuous emission monitors (CEM) while grab samples are collected with sampling trains.

Document: SEADTBP2


Submittal: Final


Carbon monoxide (CO), oxygen (O₂), total hydrocarbons (THC), and nitrogen oxides (NO_x) will be measured continuously. Continuous measurements of CO and O₂ will be performed by monitors that are a part of the APE 1236 instrumentation. Carbon dioxide (CO₂), O₂, chlorinated dioxins and furans, antimony (Sb), barium (Ba), chromium (Cr), lead (Pb), particulate matter, hexachlorobenzene (HCB), trichloroethene (TCE), nitroglycerine (NG), and dinitrotoluene (DNT) will be sampled with manual sampling trains.

Each test burn will consist of three valid sampling runs. The duration of each run will vary depending on the required sampling procedure and method detection limit. Runs will be considered invalid and will be repeated if samples are out of control for isokinetic sampling or do not pass post-test leak checks. Operational problems occurring during testing may also cause a run to be rejected. Such rejections will be considered on a case-by-case basis, with concurrence of regulatory observers.

The sampling locations for stack testing are shown in Figure 7-1. The APE 1236 has a 30 foot stack that is 20 inches in diameter (O.D.). Sampling ports for continuous emissions monitoring instruments and for sample trains are located at approximately 20 feet above grade. There are two ports arranged so that perpendicular sampling traverses can be accommodated. Figure 7-2 shows the sampling locations for each traverse. A sampling platform provides safe and easy access to the sample ports. Drawing No. SK87-12 in Map Pocket 5 of Appendix P also illustrates where the fly ash samples will be collected during the trial burn.

Table 7-1 shows that nine test conditions have been identified for the trial burn. A summary of sampling and analytical procedures, monitoring procedures, the test schedule and the final report outline are presented in the following subsections.

Point No.	Percentage of Stack Diameter	Distance From Stack Wall
. 1	2.1	1/2*
2	6.7	1 1/4"
3	11.8	2 1/4*
4	17.7	3 3/8*
5	25.0	4 7/8*
6	35.6	6 7/8*
7	64.4	12 1/2*
8	75.0	14 1/2*
9	82.3	16*
10	88.2	17 1/8*
11	93.3	18 1/8"
12	97.9	18 7/8"

EXHAUST STACK TRAVERSE

Figure 7-2

Document: SEADTBP2 Submittal: Final

		TAB TRIAL BURN TE	LE 7-1 ESTING SUMMA	.RY	
Analysis Parameters	Sampling Method	Collection Frequency	Test Series Number	Sample Preparation	Analytical Method
		STAC	CK GAS		
Particulate Matter	Reference Method 5	3 runs/test series	4	NA(1)	Reference Method 5
Stack Gas Volumetric Flowrate	Reference Method 2	3 runs/test series	all	NA	NA
Temperature	Reference Method 2	3 runs/test series	all	NA	NA
Moisture	Reference Method 4	3 runs/test series	all	NA	NA
CO ₂ , O ₂	Reference Method 3 and CEMs	3 runs/test series and Continuous	all	NA	Reference Method 3 and CEMs
NO _x	Reference Method 7E	Continuous	all	NA '	Reference Methods 7E
СО	СЕМ	Continuous	all	NA	NDIR
ТНС	Reference Method 25A	Continuous	all	NA	Reference Method 25A
POHCs (HCB) (TCE) (NG) ,DNT)	SW-846 Method 0010 SW-846 Method 0030 AEHA STEM Method (2) AEHA STEM Method	3 runs/test series 3 runs/test series 3 runs/test series 3 runs/test series	1 2 3 4	SW-846 Method 0010 SW-846 Method 5040 AEHA STEM Method AEHA STEM Method	SW-846 Method 8120A SW-846 Method 5040(8240 AEHA STEM Method AEHA STEM Method
Barium	BIF Metals Method(3)	3 runs/test series	5	BIF Metals Method	SW-846 Method 6010A
Antimony	BIF Metals Method	3 runs/test series	6	BIF Metals Method	SW-846 Method 6010A
Chromium	BIF Metals Method	3 runs/test series	7	BIF Metals Method	SW-846 Method 6010A
Lead	BIF Metals Method	3 runs/test series	8	BIF Metals Method	SW-846 Method 6010A
Dioxins/Furans	Reference Method 23	3 runs/test series	9	Reference Method 23	Reference Method 23
		FL	Y ASH		
НСВ	Trowel Method (S007)	3 samples/series	1	SW-846 Method 3540	SW-846 Method 8120A
TCE	Trowel Method (S007)	3 samples/series	2	SW-846 Method 5030	SW-846 Method 8010
NG	Trowel Method (S007)	3 samples/series	3	SW-846 Method 3540	AEHA STEM Method
DNT	Trowel Method (S007)	3 samples/series	4	SW-846 Method 3540	AEHA STEM
13 RCRA Metals	Trowel Method (S007)	3 samples/series	All	SW-846 Method 1311 SW-846 Method 3050	SW-846 Method 6010A SW-84 Method 7471
Dioxins/Furans	Trowel Method (S007)	3 samples/series	9	SW-846 Method 8280	SW-846 Method 8280

⁽¹⁾ Not Applicable

⁽²⁾ Army Environmental Hygiene Agency Sampling Train for Energetic Materials

⁽³⁾ Boiler and Industrial Furnace Metals Method
(4) Arthur D. Little, "Sampling and Analysis Methods for Hazardous Waste Combustion" EPA-600/8-84-002, PB84-155845, February 1984

Document: SEADTBP2 Submittel: Finel

7.2 SAMPLING, ANALYSIS AND MONITORING PROCEDURES

7.2.1 Furnace Temperature

The furnace temperature will be measured by type K thermocouples as described in Section 2. Thermocouple locations on the kiln are shown in Figure 2-4. Measurements are recorded on magnetic media at the control panel. Spot measurements will be taken as is necessary.

7.2.2 Stack Gas CO₂ and O₂ Content

The CO₂ and O₂ content of the exhaust gas from the APE 1236 will be measured by the field sampling team using USEPA Reference Method 3 (40 CFR Part 60 Appendix A). Method 3 utilizes an Orsat analyzer to measure the concentration of oxygen and carbon dioxide in a sample of dry stack gas. It is assumed that the balance of the dry stack gas is nitrogen and then the stack gas molecular weight is calculated. The result is accurate if no other compounds (other than carbon monoxide) are present at significant concentration. The presence of carbon monoxide does not introduce errors since its molecular weight is the same as that of molecular nitrogen.

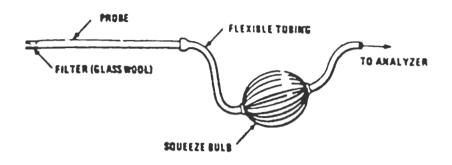
A Method 3 train will be operated simultaneously with each USEPA Reference Method 5 (RM5), RM23, BIF Metals Method, SW-846 Method 0010, SW-846 Method 0030 or AEHA STEM sampling run. An integrated sample will be collected over the same time period that the other train is operating. Stack gas will be collected at about 0.5 liter/minute. The Method 3 train will collect stack gas from the same sampling points in the stack that the other train will be sampling. This will be accomplished by attaching the Method 3 probe to the other train's probe and traversing the same sampling points.

At the conclusion of the sampling period, the collected sample will be analyzed for carbon dioxide and oxygen. A sample of gas is caused to displace 100 cc of slightly acidic water in a burette. This gas is then flushed back and forth through a gas washing bottle that contains a strong caustic solution that absorbs carbon dioxide. The volume of gas remaining is then measured in the burette. The gas is then flushed through a second gas washing bottle that contains alkaline paragallol, an oxygen absorbing solution.

After each absorbing step, the volume of gas remaining is measured and recorded. The gas remaining is assigned a molecular weight of 28 atomic mass units (the molecular weight of both CO and N₂).

Document: SEADTBP2 Submittal: Final

The presence of other gases at typically encountered concentrations (i.e., SO₂, NO_x, argon) does not affect the accuracy of the method significantly.


Stack gas sampling with Method 3 will be performed with the sampling train depicted in Figure 7-3. The sampling train consists of a sampling probe, a gas drying system, a pump, a rate meter and an inert-plastic bag. Several options exist for configuration of the sampling train. A condenser is depicted in Figure 7-3, but often chilled impingers are used for moisture removal. Also, a peristaltic pump can replace the pump and rate meter and the rigid container is often omitted.

Quality assurance and quality control procedures for this method will be applied as described in Method 3 and in the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G).

7.2.3 <u>Carbon Monoxide Monitor</u>

The concentration of carbon monoxide will be measured by a CO analyzer permanently installed in the control room. The analyzer uses non-dispersive infrared (NDIR) technology to continuously measure the amount of CO present in the gas stream. Analysis of CO is based upon the absorption of infrared radiation by the CO molecule. The intensity of the absorption depends on the concentration of CO present. Two infrared light beams are generated, with one part passing through the sample cell, and the other part passing through a reference cell. Inside the reference cell is a non-absorbing gas such as nitrogen. The light that is passed through the cells is then detected by a detector based on the Luft principle. The detector converts the difference in energy between sample and reference cells to a change in capacitance. The capacitance change is equivalent to the amount of CO present. The output signal from the analyzer is sent to a data acquisition system (DAS) that converts the signal to ppm of CO and makes a correction to 7% O₂. This corrected value is recorded.

When the APE 1236 deactivation furnace is operating, stack gas is drawn continuously from a port in the stack at approximately 20 feet above grade and delivered to the analyzer in the control room. The gas is pulled through a heated line (constructed of material that is non-reactive to the gas) at a rate specific to the analyzer. The sample is conditioned prior to analysis since the NDIR analyzer requires a cool and dry sample. Sample gas conditioning involves the removal of particles and moisture from the sample prior to introduction to the analyzer. The sample conditioning system consists of a dual-channel refrigerated condenser and a multiple-stage filtration unit.

METHOD 3 SAMPLING TRAIN

Figure 7-3

The analyzer operating range corresponds to specifications in the BIF regulations. The CO analyzer is a Rosemount/Beckman 880 NDIR; a dual-range model that has a 0-200 ppm range and a 0-3000 ppm range. After the sampling system is ready for use, calibration gases are directly introduced into the instrument for an analyzer calibration error check. When this has been completed, calibration gas is introduced into the sampling system at the probe to provide a sampling system bias check. An automatic calibration is performed daily when the furnace is operating. These procedures are used to validate the analyzers responses during the monitoring period. Further details regarding calibration gases, operating procedures, QA/QC procedures and corrective actions are provided in the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G). Manufacturer's information for the CO analyzer is included in Appendix B.

7.2.4 Oxygen Monitor

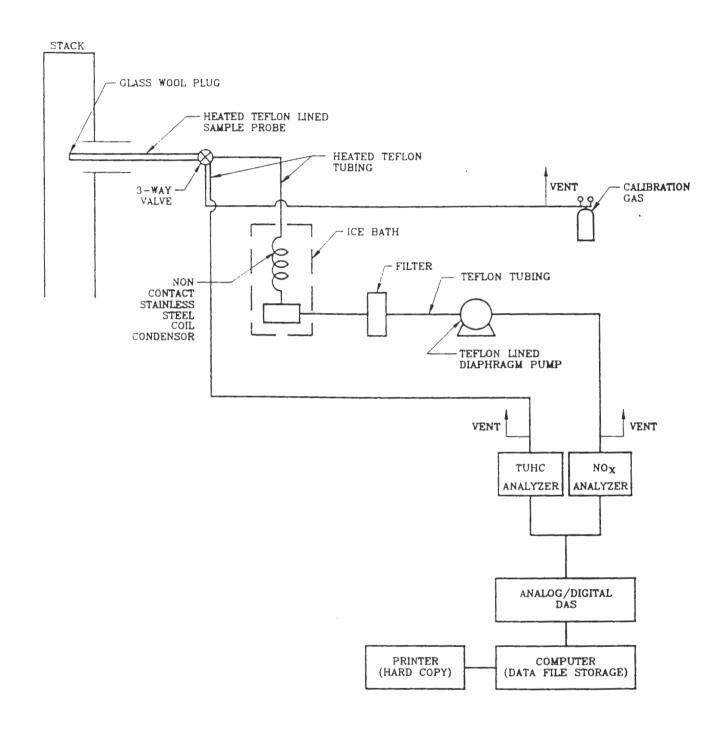
Oxygen concentration in the stack gas will be measured by an O₂ monitor permanently installed in the control room. Oxygen is detected by using Faraday's principle that comparatively measures the magnetic susceptibility of a gas volume by the force acting upon a non-magnetic test body suspended in a disproportionate magnetic field. The test body is mounted on a platinum suspension in a strong, relatively disproportionate magnetic field. Because oxygen is more paramagnetic than the test body, the magnetic force acts to reject the test body from the magnetic field. As oxygen is introduced to the analyzer, a force manifests itself upon the test body and rotates it out of the magnetic field. When this occurs, a diamond-shaped mirror mounted on the platinum suspension also is rotated. This rotation causes the mirror to reflect a pre-focused light source unequally across two photocells. (When the mirror is in a neutral position, the photocells are illuminated equally.) Through an operational amplifier, the photocells apply a feedback current to the test body. The electromagnetic force that is created by the feedback current is opposite and almost equal to the magnetic force applied to the test body. The feedback current is a linear function of the oxygen concentration and an output signal is generated that can be converted and recorded as oxygen concentration in stack gas.

When the APE 1236 deactivation furnace is operating, stack gas is drawn continuously from a port in the stack at approximately 20 feet above grade and delivered to the analyzer in the control room. The gas is pulled through a heated line (constructed of material that is non-reactive to the gas) at a rate specific to the analyzer. The sample is conditioned prior to analysis since the paramagnetic oxygen analyzer requires a cool and dry sample. Sample gas conditioning involves removal of particles

Document: SEADTBP2

Submittal: Final

Document: SEADTBP2 Submittal: Final


and moisture from the sample prior to introduction to the analyzer. The sample conditioning system consists of a dual channel refrigerated condenser and a multiple-stage filtration unit.

The analyzer operating range is chosen based on the BIF regulations. The O_2 analyzer is a Rosemount Analytical 755R Paramagnetic Oxygen Analyzer. The standard full-scale operating ranges for this instrument are 0-5%, 0-10%, 0-25%, 0-50%, and 0-100%. During the trial burn the system will be operating in the 0-25% range. After the sampling system is ready for use, calibration gases are directly introduced into the instrument for an analyzer calibration error check. When this has been completed, calibration gas is introduced into the sampling system at the probe to provide a sampling system bias check. A calibration error check and a sampling system bias check are performed daily. These procedures are used to validate the analyzers responses during the monitoring period. Further details regarding calibration gases, operating procedures, QA/QC procedures and corrective actions are provided in the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G). Manufacturer's information for the Oxygen analyzer is included in Appendix B.

7.2.5 Nitrogen Oxides Emissions Measurements

Nitrogen oxides will be determined using the sampling procedures outlined in EPA Reference Method 7E. Method 7E is based upon the chemiluminescent reaction between nitric oxide (NO) and ozone (O₃). When these two compounds react, a characteristic wavelength of light is emitted. The light is passed through a photomultiplier tube that amplifies the light beam. The intensity of the amplified light beam is measured by a detector that converts the light energy into an electronic signal. The magnitude of the signal is proportional to the amount of NO present in the gas sample. The instrument contains an internal source of ozone and a catalytic reduction chamber where NO₂ in the sample is reduced to NO prior to its introduction into the reaction chamber. The reduction catalyst may be bypassed, allowing for sequential analysis of total NO_x and then NO. The concentration of NO₂ may then be determined by difference.

During each trial burn run, stack gas will be drawn from the stack at a sampling port that is approximately 20 feet above grade. A heated sampling probe will be placed into the sampling port and gas will be drawn down a heated line and delivered to the nitrogen oxide analyzer located in a mobile continuous emission monitoring unit located less than 100 feet away from the stack. Sample gas is conditioned before being introduced to the analyzer. The gas conditioning system consists of a non-contact ice-bath condenser, and a particle filter (Figure 7-4). When stack gas sample is being

METHOD 7E AND METHOD 25A CONTINUOUS EMISSIONS MONITORING SYSTEM

Figure 7-4

analyzed, the instrument output is monitored by a PC-driven data acquisition system. The system records instrument responses at thirty second intervals, calculates the concentrations of target analytes, and prints a record of the results and logs the data to a disk. The disk files are later processed with another suitable software package for data reduction.

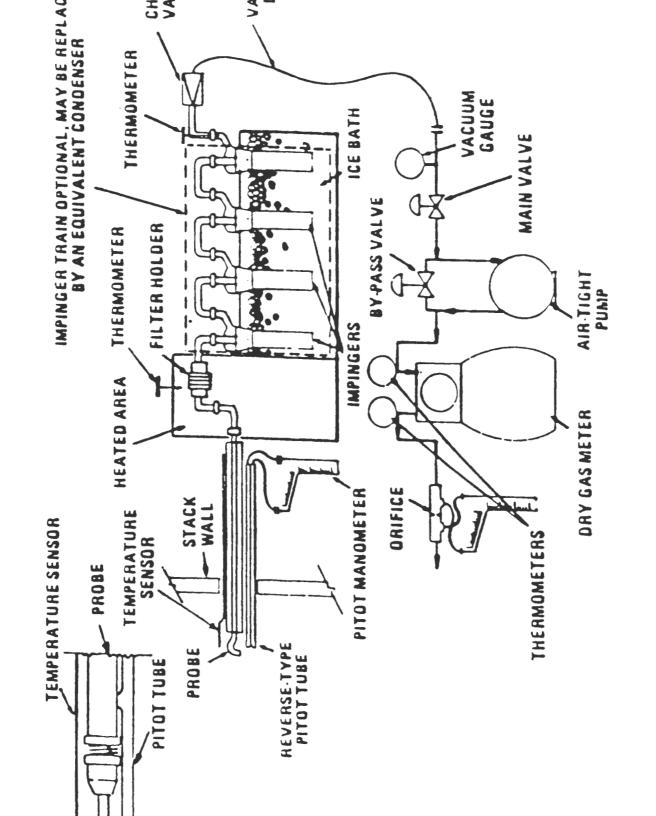
The analyzer operating range is selected such that the pollutant gas concentration equivalent to the emission standard is not less than thirty percent of the span. The NO_x analyzer is a Thermo Environmental Model 10-AR with multiple ranges as follows: 0-2.5 ppm, 0-10 ppm, 0-25 ppm, 0-100 ppm, 0-250 ppm, 0-1000 ppm, 0-2500 ppm, and 0-10000 ppm. After the sampling system is ready for use, calibration gases are directly introduced into the instrument for an analyzer calibration error check. When this has been completed, calibration gas is introduced into the sampling system at the probe to provide a sampling system bias check. A sampling system bias check is performed prior to every run. At the completion of each run, a sampling system bias is again performed. These procedures are used to validate the analyzers responses during the sampling period, for observed calibration errors and drift. Further details regarding calibration gases, operating procedures, QA/QC procedures and corrective actions are provided in the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G).

7.2.6 Total Hydrocarbon Emissions Measurement

Total Hydrocarbons (THC) will be measured by using EPA Reference Method 25A. This method analyzes a gas sample for the concentration of total gaseous organic vapors. A flame ionization analyzer is used to perform the analysis. Specifically, a flame ionization detector will be used to continuously monitor the stack gas for total hydrocarbon concentration. The principle of operation is that the combustion of hydrocarbon in a flame releases a large number of ions that create a current between two electrodes. The strength of the current is measured by an electrometer amplifier and is directly proportional to the hydrocarbon concentration in the flame.

During each trial burn run, stack gas will be drawn from the stack at a sampling port that is approximately 20 feet above grade. A heated sampling probe will be placed into the sampling port and gas will be drawn down a heated line and delivered to the THC analyzer located in a mobile continuous emission monitoring unit located less than 100 feet away from the stack. Sample gas is not conditioned before being introduced to the analyzer; instead it is analyzed hot and wet (Figure 7-4). When stack gas sample is being analyzed, the instrument output is monitored by a PC-driven data acquisition system. The system records instrument responses at thirty second intervals, calculates

Document: SEADTBP2 Submittel: Final


the concentrations of target analytes, and records the results in a written report, as well as on a hard disk drive. The responses are then imported into Lotus 1-2-3 or another suitable software package for data reduction.

The analyzer operating range is selected to be between 1.5 and 2.5 times the applicable emission limit. The THC analyzer is a J.U.M. Engineering Model VE-7 with multiple ranges as follows: 0-10 ppm, 0-100 ppm, 0-1000 ppm, 0-10000 ppm, 0-100000 ppm. After the sampling system is ready for use, calibration gas is introduced into the sampling system at the probe to provide a sampling system calibration error check. A calibration error check is performed within two hours of the start of every run. At the completion of each run, a calibration drift check and a sampling system bias are also performed. These procedures are used to validate the analyzers responses during the sampling period, and to calculate the measurement system error and drift. Further details regarding calibration gases, operating procedures, QA/QC procedures and corrective actions are provided in the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G).

7.2.7 Particulate Matter Emission Rate

Particulate matter is withdrawn isokinetically from the source and collected on a glass fiber filter maintained at a temperature in the range of $120 \pm 14^{\circ}$ C ($248 \pm 25^{\circ}$ F). The particle mass, which includes any material that condenses at or above the filtration temperatures, is determined gravimetrically after removal of uncombined water.

EPA Reference Method 5 will be used to measure the particulate matter emission rate. Three Method 5 sampling runs will be conducted for each trial burn condition where particulate matter is the parameter of concern. The sampling train to be used is shown in Figure 7-5. The sampling train consists of a stainless steel nozzle; a glass probe liner with a heating system capable of maintaining the sample gas temperature at $248 \pm 25^{\circ}$ F; a type-S Pitot tube to determine velocity head in order to calculate stack gas velocity and volumetric flow; a dual inclined manometer for measuring the velocity pressure and orifice differential pressure; a glass filter holder with a glass filter frit support to support the particle filter; a filter heating system capable of maintaining the sample gas temperature at $248 \pm 25^{\circ}$ F; and a temperature gauge capable of measuring the temperature to within 3° F. Also included in the sampling train is a moisture condenser that is necessary to determine the stack gas moisture content. Four impingers are connected in series with leak-free ground glass fittings. The first impinger is a modified Greenburg-Smith impinger that is charged with

METHOD 5 SAMPLING TRAIN

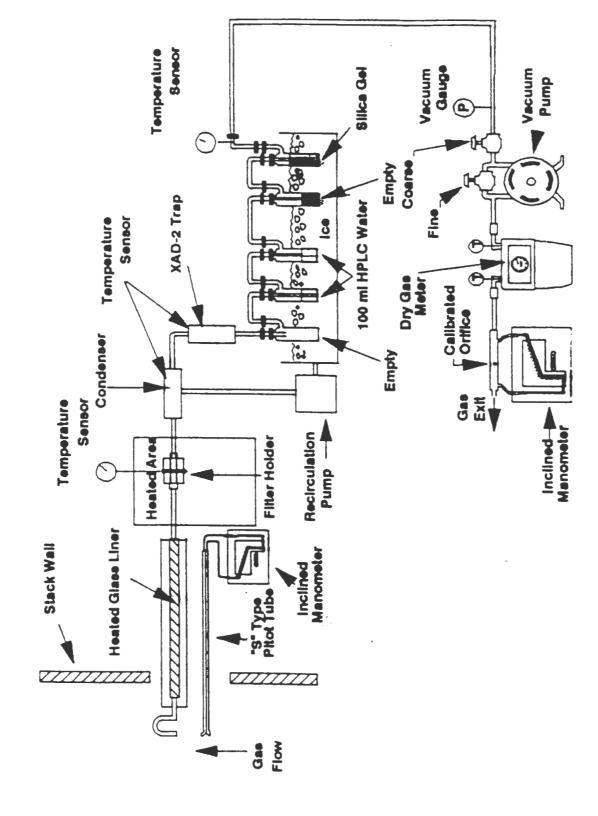
Figure 7-5

100 ml of water, and the second impinger is a standard Greenburg-Smith that is also charged with

Document: SEADTBP2

Submittal: Final

100 ml of water. The third and fourth impingers are modified Greenburg-Smith impingers. The third impinger is empty, and the fourth contains a known mass of silica gel used as a final water trap and to protect the sample pump. The metering system consists of a vacuum gauge, leak free pump, thermometers capable of measuring temperatures to within 5.4° F, and a dry gas meter capable of measuring volume to within 2 percent.


After the sampling location and minimum number of sampling points have been determined (RM 1), the stack pressure and temperature and the range of velocity heads are measured (RM 2), and the moisture content (RM 4) and dry gas molecular weight (RM 3) are determined. A nozzle size is then selected based on the range of velocity heads such that it is not necessary to change nozzles to maintain isokinetic sampling rates, and the differential pressure gauge is checked to ensure that it is capable of measuring the range of velocity heads.

The total sampling time is selected such that the sampling time per point is not less than two minutes, and that the sample volume taken meets or exceeds the minimum required volume. When the sample run is completed, the probe, filter assembly and impingers are removed to the cleanup area for sample recovery. More detailed descriptions of EPA Method 5 sampling and analysis procedures and quality assurance actions are provided in the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G).

7.2.8 Dioxin and Furan Emission Rates

Dioxin and furan sampling and analysis will be accomplished by using EPA Reference Method 23. Stack gas will be drawn isokinetically through a sampling train that incorporates a sorbent trap that can effectively collect dioxins and furans. The adsorbent trap, a glass fiber filter, and appropriate impinger solutions and train rinses will be collected and then extracted for analysis. Dioxins and furans are separated from the sample extract by high resolution gas chromatography and then measured by high resolution mass spectrometry.

Three Method 23 sampling runs will be conducted for each trial burn condition where there is a concern of dioxin and furan emissions. The sampling train to be used is shown in Figure 7-6. The sampling train consists of a glass nozzle; a glass probe liner with a heating system capable of maintaining the sample gas temperature at 248 ± 25° F; a type-S Pitot tube to determine velocity head in order to calculate stack gas velocity and volumetric flow; a dual inclined manometer for

METHOD 23 AND SW-846 METHOD 0010 SAMPLING TRAIN

Figure 7-6

measuring the velocity pressure and orifice differential pressure; a glass filter holder with a glass filter frit support to support the particle filter; a filter heating system capable of maintaining the sample gas temperature at $248 \pm 25^{\circ}$ F; and a temperature gauge capable of measuring the temperature to within 3° F. After the filter section there is a sorbent module assembly. This assembly consists of a coil condenser and a XAD- 2° sorbent module. Following the sorbent module is the impinger train. Five impingers are connected in series with leak-free ground glass fittings. The first impinger is an empty, short-stemmed modified Greenburg-Smith impinger. The second impinger is a modified Greenburg-Smith with 100 ml of water. The third impinger is a standard Greenburg-Smith type charged with 100 ml of water. The fourth and fifth impingers are modified Greenburg-Smith impingers. The fourth impinger is empty, and the fifth contains a known mass of silica gel used as a final water trap and to protect the sample pump. The metering system consists of a vacuum gauge,

leak free pump, thermometers capable of measuring temperatures to within 5.4° F, and a dry gas

After the sampling location and minimum number of sampling points have been determined, the stack pressure and temperature and the range of velocity heads are measured, and the moisture content and dry gas molecular weight are determined. A nozzle size is then selected based on the range of velocity heads such that it is not necessary to change nozzles to maintain isokinetic sampling rates, and the differential pressure gauge is checked to ensure that it is capable of measuring the range of velocity heads.

The total sampling time is selected such that the sampling time per point is not less than two minutes, and that the sample volume taken meets or exceeds the minimum required volume. The probe, filter assembly, sorbent module, and impingers are removed to the cleanup area for sample recovery. More detailed descriptions of EPA Method 23 sampling and analysis procedures and quality assurance actions are provided in the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G).

7.2.9 <u>Metals Emission Rate</u>

meter capable of measuring volume to within 2 percent.

Stack gas is withdrawn isokinetically and particulate and gaseous metals are collected with a Method 5 style sampling train. A heated filter is used to collect particle associated metals and chilled impingers filled with absorbing solution are used to collect vapor-phase metals. Sampling train components are broken into "front-half" and "back-half" fractions and returned to the laboratory for analysis. Each half is digested with acid solutions to dissolve organics and remove organics that might

Document: SEADTBP2

Submittal: Final

create analytical interferences. Digested samples will be analyzed for antimony, barium, chromium, and lead. Atomic absorption spectroscopy (AAS) will be used to perform this analysis.

The Boiler and Industrial Furnace (BIF) Methodology for the Determination of Metals Emissions in Exhaust Gases from Hazardous Waste Incineration and Similar Combustion Processes will be used to measure the metals emission rate. Three BIF Metal Method sampling runs will be conducted for each trial burn condition where metal emission rates must be monitored. The sampling train to be used is shown in Figure 7-5 (same as a Method 5 train). The sampling train consists of a glass nozzle; a glass probe liner with a heating system capable of maintaining the sample gas temperature at 248 + 25° F; a type-S Pitot tube to determine velocity head in order to calculate stack gas velocity and volumetric flow; a dual inclined manometer for measuring the velocity pressure and orifice differential pressure; a glass filter holder with a glass filter frit support to support the particle filter; a filter heating system capable of maintaining the sample gas temperature at 248 ± 25° F; and a temperature gauge capable of measuring the temperature to within 3° F. The back-half of the sampling train consists of four impingers connected in series with leak-free ground glass fittings. The first impinger is an empty modified Greenburg-Smith impinger. The second impinger is a modified Greenburg-Smith that is charged with 100 ml of HNO₃/H₂O₂. The third impinger is a Greenburg-Smith impinger also charged with 100 ml of HNO₃/H₂O₂. The fourth impinger contains a known mass of silica gel used as a final water trap and to protect the sample pump. The metering system consists of a vacuum gauge, leak free pump, thermometers capable of measuring temperatures to within 5.4° F, and a dry gas meter capable of measuring volume to within 2 percent.

After the sampling location and minimum number of sampling points have been determined, the stack pressure and temperature and the range of velocity heads are measured, and the moisture content and dry gas molecular weight are determined. A nozzle size is then selected based on the range of velocity heads such that it is not necessary to change nozzles to maintain isokinetic sampling rates, and the differential pressure gauge is checked to ensure that it is capable of measuring the range of velocity heads.

The total sampling time is selected such that the sampling time per point is not less than two minutes, and that the sample volume taken meets or exceeds the minimum required volume. The probe, filter assembly and impingers are removed to the cleanup area for sample recovery. More detailed descriptions of BIF Metal Method sampling and analysis procedures and quality assurance actions are provided in both Appendix E and the SEAD Trial Burn Quality Assurance and Quality Plan (Appendix G).

7.2.10 Exhaust Gas Flowrate

A Type-S Pitot tube and a Type-K thermocouple have been inserted into the stack at about twenty feet above grade. These instruments are connected to transmitters that send signals to a signal conditioning device. This device then processes the signal and performs calculations to convert the measured velocity heads and temperatures to stack gas velocities. Further detail regarding the continuous gas flow monitoring system and its operation is presented in **Appendix B** and in the SEAD Trial Burn Quality Assurance/Quality Control Plan (**Appendix G**).

Exhaust Gas Flow Rate will also be monitored using EPA Reference Method 2 concurrently with EPA RM 5, EPA RM 23, BIF Metals Method, SW-846 0010 and the AEHA Sampling Train for Energetic Materials (STEM) method. Three velocity traverses using EPA RM 2 will also be conducted for each test condition prior to the start of source testing. More detailed descriptions of EPA RM 2 sampling and analysis procedures and quality assurance actions are provided in the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G).

7.1.11 Principle Organic Hazardous Component (POHC) Emission Rate

Three source testing methods will be used to determine the POHC emission rates. EPA's SW-846 Method 0010 Semi-volatile organic sampling train, SW-846 Method 0030 volatile Organic Sampling Train (VOST), and the AEHA's STEM train are the methods that have been selected to monitor POHC emission rates. The three methods are generally based upon the same sample collection principles. Stack gas will be drawn isokinetically (except for VOST) through a sampling train that incorporates a sorbent module that can effectively collect the organic compounds of concern, POHCs. The sorbent module (containing XAD-2® Resin), a glass fiber filter, and appropriate impinger solutions and train rinses will be collected and then extracted for analysis. Specific POHCs are separated from the sample extract by high resolution gas chromatography and then measured by the appropriate analytical technique (i.e., mass spectrometry, electron capture detection, etc.).

HCB sampling and analysis will be accomplished by using the SW-846 Method 0010 sampling method. Three Method 0010 sampling runs will be conducted for the trial burn condition where HCB is the POHC of concern. Test runs for HCB will be 1 hour in duration. These determinations were based on the need to establish a 99.99 percent DRE for HCB. Calculations that demonstrate that the sampling duration allotted is adequate are presented in **Appendix D-3**.

Page: 7-19

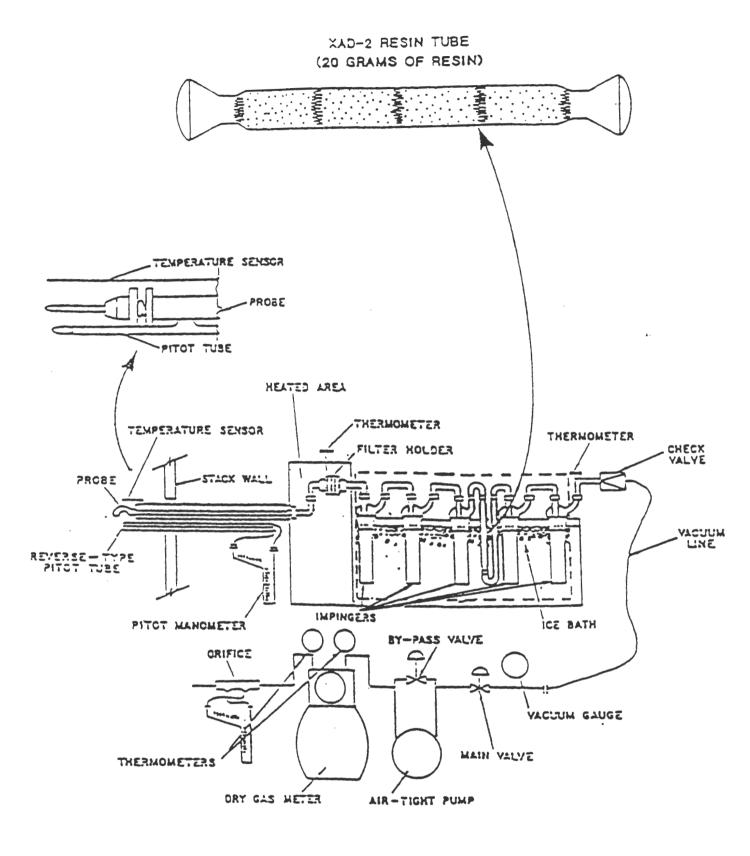
Document: SEADTBP2

Submittal: Final

Document: SEADTBP2 Submittel: Final

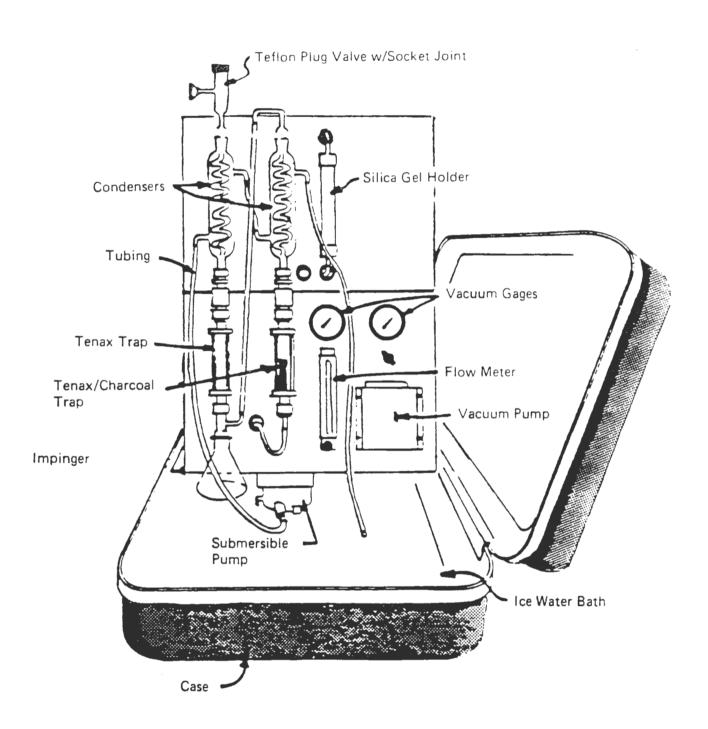
The sampling train to be used for HCB sampling is shown in Figure 7-6. Method 0010 sampling collection procedures are similar to those described for Method 23 in Section 7.2.8. More detailed descriptions of Method 0010 sampling and analysis procedures and quality assurance actions are provided in both Appendix E and the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G). Sample gas will be collected at a rate of 30 dry standard cubic feet per hour (dscf/h).

POHC sampling and analysis for energetic compounds will be accomplished by using the AEHA STEM sampling method. Three STEM sampling runs will be conducted for each trial burn condition where nitroglycerine (NG) or Dinitrotoulene (DNT) is the POHC of concern. A sample period of 1 hour at a rate of 30 dscf/h will generate sufficient POHC to establish a 99.99 percent DRE for NG and DNT. Calculations are presented in **Appendix D-3**.


The sampling train to be used to sample NG and DNT is shown in Figure 7-7. The sampling train consists of a stainless steel nozzle; a glass probe liner with a heating system capable of maintaining the sample gas temperature at $248 \pm 25^{\circ}$ F; a type-S Pitot tube to determine velocity head in order to calculate stack gas velocity and volumetric flow; a dual inclined manometer for measuring the velocity pressure and orifice differential pressure; a glass filter holder with a glass filter frit support to support the particle filter; a filter heating system capable of maintaining the sample gas temperature at $248 \pm 25^{\circ}$ F; and a temperature gauge capable of measuring the temperature to within 3° F.

STEM sampling procedures are similar to those described for Method 23 in Section 7.2.8. The probe, filter assembly, XAD-sorbent module, and impingers are removed to the cleanup area for sample recovery as per the AEHA STEM method. More detailed descriptions of the STEM sampling and analysis procedures and quality assurance actions are provided in both Appendix E and the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G).

TCE sampling and sample preparation for analysis will be accomplished by using SW-846 Method 0030 (VOST). Sample analysis will be accomplished by using analytical method 5040. The Method 0030 sampling runs will be conducted for each trial burn condition where TCE is the POHC of concern. Each sampling run will be of 20 minutes duration. Calculations that demonstrate that the sampling duration allotted is adequate are presented in Appendix D-3. Sample gas will be collected at a rate of 1 liter/minute. Total sample volume will be 20 liters. A VOST sampling train is shown in **Figure 7-8**. More detailed descriptions of Method 0030 sampling and analysis procedures and


Document: SEADTBP2 Submittal: Final

quality assurance actions are provided in the SEAD Trial Burn Quality Assurance and Quality Control Plan (Appendix G).

AEHA SAMPLING TRAIN FOR ENERGETIC MATERIALS

Figure 7-7

Volatile Organic Sampling Train (VOST).

Figure 7-8

7.2.12 Waste Feed Sampling

Due to the explosive danger involved, waste feed sampling and analysis will not be performed during this trial burn.

7.2.13 Waste Feed Rates

Waste feed rates will be automatically monitored by the automatic waste feed system. The system will be calibrated prior to the trial burn. A full description has been provided in Section 2 and in the SEAD Trial Burn Quality Assurance and Quality Control Plan.

7.2.14 Waste Composition

Visual inspection will identify what ordnance are put into the Automatic Waste Feed System. As described in Section 2, the chemical composition of these ordnances will be based on the military specifications.

7.2.15 Auxiliary Fuel Rate

Auxiliary fuel rate will be monitored continuously by a flowmeter located in the fuel oil piping. The flowmeter transmits an electronic signal to the main control panel for recording.

7.2.16 Key Process Data

The key process data described in Section 6 will be recorded continuously at the main control panel, as described in Section 2.2.1.

7.2.17 Ash Sampling and Analysis

Ash samples will be collected from all locations in the system where ash accumulates and is discharged. Ash samples will be collected from the heat exchangers, cyclone, and baghouse. Samples will be collected with a trowel. SW-846 8120A will be used for HCB analysis of the ash. TCE will be analyzed using SW-846 8010. SW-846 methods will be used for metals analysis of the ash and the AEHA STEM method will be used to analyze the ash for energetic compounds. Ash samples will

Document: SEADTBP2

be collected at the end of each run if enough ash is present. If not, samples will be collected at the end of a test series.

7.2.18 Particulate Fugitive Emission Monitoring

During the trial burn ambient particulate concentrations will be measured. The goal of this work will be to demonstrate that no uncontrolled particulate emissions are generated. Sampling stations will be set up at the point where fugitive particulate emissions are most likely to occur, and at an upwind location representative of background. The resulting data will be included in the Trial Burn report. The Particulate Fugitive Emission Monitoring Plan is presented in its entirety in Appendix N.

7.3 TEST SCHEDULE

Table 7-2 presents the detailed source testing schedule for the trial burn. Sampling of fly ash from the incineration process will occur at the conclusion of each sample run, if enough material is available. Process monitoring data will be recorded continuously during the trial burn. Waste feed rate will be set prior to each run of a test condition and then monitored during the run.

The source test schedule has been planned using one hour sampling times for the BIF Metals Method, RM 5, and the AEHA STEM. SW-846 Method 0010 and RM 23 have 3 and 7.5-hour sample periods, respectively. The schedule is designed to simultaneously test for the feed parameter of concern and other parameters such as NO_x, CO, CO₂, O₂, and THC.

7.4 TRIAL BURN REPORT OUTLINE

The following is the proposed outline for the trial burn report:

- Preliminary
- Preface
- Table of Contents/Tables and Figures
- 1.0 Summary of Results
- 2.0 Introduction
- 3.0 Performance Results
- 4.0 Process Operating Conditions
- 5.0 Sampling and Analysis Results

- Appendix A Detailed Sampling and Analysis Results
- Appendix B Raw Data Logs
- Appendix C Sample Traceability Records
- Appendix D QA Results
- Appendix E Sampling and Analysis Methods
- Appendix F Chromatograms

TABLE 7.2 SEAD Trial Burn Daily Sampting Schedule

	Test C.	Test Condition 1 (HCB)	Test Condition 2 (TCE)	Test Condition 3 (NG)	Test Condition 4 (DNT)	adition 4 (T)	Test Condition 5 (TSP, Ba)	dition 5 Ba)	Test Condition 6 (Sb)	Test Condition 7 (Cr)	Test Condition 8 (Pb)		Test Conditi (Dioxin/Fur (Max PE
ıe	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Day 11	Day 12	Day 13
00:	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4	RM 2,3,4
:30													
00:1													
:30	RM 7E, 10,25A	RM 7E,10,25A	RM 7E, 10, 25A	RM 7E, 10,25A	RM 7E, 10,25A	RM 7E, 10,25A	RM 7E, 10,25A	RM 7E, 10,25A	RM 7E,10,25A	RM 7E,10,25A	RM 7E,10,25A	RM 7E, 10,25A	RM 7E, 10,25A
00:	SW846-0010/ RM3 (Run 1)	SW846-0010/ RM3 (Run 3)	SW-846-0030/ RM3 (Run 1)	AEHA STEM/ RM3 (Run 1)	SW846- STEM/RM3 (Run 3)	SW846- STEM/ RM3 (Run 1)	RM 3,5 (Run 1)	RM 3, BIF Metals (Run 1)	RM 3, BIF Metals (Run 1)	RM 3, BIF Metals (Run 1)	RM 3, BIF Metals (Run 1)	RM 23/RM 3 (Run 1)	RM 23/RN (Run 2)
0:30													
00:0							End Run 1	End Run 1	End Run 1	End Run 1	End Run 1		
30			End Run 1	End Run 1			CEM drift/bias check	CEM drift/bias check	CEM drift/bias check	CEM drift/bias check	CEM drift/bias check		
00:1			CEM drift bias	CEM drift/bias check/S007			RM 3,5 (Run 2)	RM 3, BIF Metals (Run 2)	RM 3, BIF Metals (Run 2)	RM 3, BIF Metals (Run 2)	RM 3, BIF Metals (Run 2)		
1:30													
00:3			SW-846-0030/ RM3 (RUN2)	AEHA STEM/ RM3 (Run 2)			End Run 2	End Run 2	End Run 2	End Run 2	End Run 2		
2:30	End Run 1	End Run 3			End Run 1	End Run 3	CEM drift/bias check	CEM drift/bias check	CEM drift/bias check	CEM drift/bias check	CEM drift/bias check		

TABLE 7-2 SEAD Trial Burn Daily Sampling Schedule

	Test C.	Test Condition 1 (HCB)	Test Condition 2 (TCE)	Test Condition 3 (NG)	Test Condition 4 (DNT)	dition 4	Test Condition 5 (TSP, Ba)	dition 5 Ba)	Test Condition 6 (Sb)	Test Condition 7 (Cr)	Test Condition 8 (Pb)		Test Condit (Dioxin/Fu (Max PE
16	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Day 11	Day 12	Day 13
00:1	CEM drift/ bias check/ S007	CEM drift/ bias check/ S007			CEM drift/bias check/S007	CEM drift/bias check/S007							
1:30	SW846- 0010/RM3 (Run 2)		End Run 2	End Run 2	SW846- STEM/ RM3 (Run 2)		RM 3,5 (Run 3)	RM 3, BIF Metals (Run 3)	RM 3, BIF Metals (Run 3)	RM 3, BIF Metals (Run 3)	RM 3, BIF Metals (Run 3)		
00:1			CEM drift/ bias check/ S007	CEM drift/bias check/S007									
1:30							End Run 3	End Run 3	End Run 3	End Run 3	End Run 3		
00:9			SW846-0030/ RM3 (RUN3)	AEHA STEM/ RM3 (Run 3)			CEM drift/bias check	CEM drift/bias check	CEM drift/bias check	CEM drift/bias check	CEM drift/bias check		
5:30													
9:00													
5:30	End Run 2		End Run 3	End Run 3	End Run 2							End Run 1	End Run
2:00	CEM drift/ bias check/ S007		CEM drift/ bias check/ S007	CEM drift bias check/ S007	CEM drift/ bias check/ S007							CEM drift/ bias check	CEM drift/bias check

SECTION 8

AUTOMATIC WASTE FEED SHUT OFF TEST PROCEDURES

Process conditions which indicate how well the incinerator is destroying waste are continuously measured and recorded. These process conditions are also continuously input to the automatic waste feed shut off system (AWFSO). When any of these conditions deviate from acceptable limits which are established during the trial burn, the AWFSO system stops waste feed to the incinerator. The AWFSO conditions and proposed limits are listed in Section 2.3.3 of this document.

The AWFSO system is tested weekly and tested prior to the trial burn tests to ensure proper operation. The test procedures are given in Table 8-1 on the following pages.

These same procedures will be used to test the AWFSO system prior to the trial burn.

Document: SEADTBP2

TABLE 8-1

AUTOMATIC WASTE FEED SHUT-OFF TEST PROCEDURES

Prior to starting these procedures:

- 1. The incinerator is to be operating at full thermal conditions.
- 2. All AWFSO interlocks are to be cleared.
- 3. The waste loading conveyor is to be started but no munitions fed.

Stack gas carbon monoxide (CO):

- 1. Change the 1 hour averaging shutdown parameter in computer system to zero.
- 2. Introduce calibration gas of > 100 PPM into the analyzer sampling system (see Beckman Operation and Maintenance Manual for procedure). When the rolling average of the CO corrected for $\rm O_2$ on a dry basis is above 100 ppm:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 3. Purge the sampling system with nitrogen. When the rolling average of the CO corrected for O₂ on a dry basis drops below 100 ppm:
 - The alarm will clear.
 - b. The waste loading conveyor can be restarted.
- 4. Reset the 1 hour averaging shutdown parameter in the computer system to 1 hour.

Carbon monoxide analyzer failure:

- 1. Turn off power switch on CO analyzer:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.

Document: SEADTBP2

- 2. Turn on CO analyzer power switch:
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Oxygen analyzer failure:

- 1. Turn off power switch on oxygen analyzer:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 2. Turn on oxygen analyzer power switch:
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Baghouse bypass:

- 1. Actuate baghouse bypass:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 2. Return baghouse bypass to normal:
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Afterburner temperature:

- 1. Lower the set point on afterburner temperature controller to 1150 °F. When the afterburner temperature drops below 1200 °F:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 2. Raise the set point on the afterburner temperature controller to the normal value (> 1200 °F). When the temperature reaches 1200 °F:
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Place afterburner temperature controller in manual. Disconnect the afterburner thermocouple.
 Connect a millivolt source to afterburner temperature transmitter (TT-701). Increase millivolt

signal to the control instruments. When the simulated temperature reaches 1800 °F:

- a. An alarm will be indicated.
- b. The waste loading conveyor will stop.
- 4. Disconnect millivolt source and reconnect thermocouple. When temperature drops below 1800 °F.
 - a. The Alarm will clear.
 - b. The waste loading conveyor can be restarted.

Kiln temperature:

- 1. Lower the set point on kiln temperature controller to below the AWFSO interlock value. When the kiln temperature drops below the AWFSO interlock value:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 2. Raise the set point on the kiln temperature controller to the normal value. When the temperature reaches the AWFSO interlock value:
 - The alarm will clear.
 - b. The waste loading conveyor can be restarted.
- 3. Place kiln temperature controller in manual. Disconnect the kiln thermocouple. Connect a millivolt source to the kiln temperature transmitter (TT-601). Increase millivolt signal to the control instruments. When the simulated temperature reaches 1100 °F:
 - a. An alarm will be indicated.
 - The waste loading conveyor will stop.
- Disconnect millivolt source and reconnect thermocouple. When temperature drops below 1100
 °F:
 - a. The Alarm will clear.
 - b. The waste loading conveyor can be restarted.

Document: SEADTBP2

Kiln pressure:

- 1. With an inclined manometer increase pressure on high pressure side of differential pressure transmitter. When the kiln pressure goes positive:
 - a. An alarm will be indicated
 - b. The waste loading conveyor will stop.
- 2. Disconnect manometer. If the kiln pressure returns to vacuum:
 - a. The Alarm will clear
 - b. The waste loading conveyor can be restarted.

Waste feed rate:

Place a weight in the waste feed monitoring system. Weight must be heavier than allowable munitions weight programmed into computer system. Attempt to start waste feed monitoring system. Computer system will not allow the weight to be fed to the conveyor.

Stack gas velocity:

- With an inclined manometer increase pressure on high pressure side of differential pressure transmitter. Stack gas velocity signal will increase. When the simulated velocity reaches 50 feet/second:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 2. Disconnect manometer. When velocity drops below 50 fps:
 - a. The Alarm will clear.
 - b. The waste loading conveyor can be restarted.

High temperature gas cooler exit temperature:

- Disconnect the gas cooler exit thermocouple. Connect a millivolt source to the gas cooler exit temperature transmitter (TT-801). Increase millivolt signal to the control instruments. When the simulated temperature reaches 850 °F:
 - a. An alarm will be indicated.
 - The waste loading conveyor will stop.
- 2. Disconnect millivolt source and reconnect thermocouple. When temperature drops below 850 °F:
 - a. The Alarm will clear.
 - b. The waste loading conveyor can be restarted.

Low temperature gas cooler exit temperature:

- Place low temperature gas cooler temperature controller in manual. Disconnect the gas cooler exit thermocouple. Connect a millivolt source to the gas cooler exit temperature transmitter (TT-901). Increase millivolt signal to the control instruments. When the simulated temperature reaches 350
 °F:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 2. Disconnect millivolt source and reconnect thermocouple. When temperature drops below 350 °F:
 - The Alarm will clear.
 - b. The waste loading conveyor can be restarted.

Kiln burner flameout:

- 1. Close the block valve upstream of the safety shut-off valve on the oil line to the kiln burner. When the flame goes out:
 - a. The safety shut-off valves will close.
 - b. The flame supervisor will start post-purge.
 - c. An alarm will be indicated.
 - The waste loading conveyor will stop.
- 2. Re-ignite the burner.
 - a. The alarm will clear.

Document: SEADTBP2

b. The waste loading conveyor can be restarted.

Afterburner burner flameout:

- Close the block valve upstream of the safety shut-off valve on the oil line to the afterburner burner. When the flame goes out:
 - a. The safety shut-off valves will close.
 - b. The flame supervisor will start post-purge.
 - c. An alarm will be indicated.
 - d. The waste loading conveyor will stop.
- 2. Re-ignite the burner.
 - a. The alarm will clear.
 - The waste loading conveyor can be restarted.

Kiln rotation drive:

- 1. Turn off motor drive which rotates kiln. When kiln stops rotation:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 2. Restart the motor drive. When the kiln starts rotating:
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Kiln residue conveyor:

- 1. Turn off the kiln residue conveyor motor.
 - a. An alarm will be indicated.
 - The waste loading conveyor will stop.
- 2. Restart the kiln residue conveyor motor.
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Document: SEADTBP2 Submittal: Final

ID Fan:

- 1. Turn off the ID fan motor.
 - a. An alarm will be indicated.
 - The waste loading conveyor will stop.
- 2. Restart the ID fan motor.
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Baghouse pressure drop:

- 1. Disconnect differential pressure transmitter wiring in main control panel and connect 4-20 milliamp calibrator. Vary milliamp signal until 2 inches WC is indicated on panel instruments:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 2. Vary milliamp signal until greater than 2 inches WC is located on panel instruments:
 - The alarm will clear.
 - b. The waste loading conveyor can be restarted.
- 3. Restart waste loading conveyor.
- 4. Increase milliamp signal until 6 inches WC is indicated on panel instruments:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 5. Disconnect calibrator and reconnect transmitter wiring. If differential pressure is between 2 and 6 inches of WC:
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Device failure:

- 1. Terminate electrical power to each of the following devices to be tested:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.

- 2. Restore power to each of the devices:
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Devices to be tested:

- Multi-input recorder
- Honeywell process controllers
- Waste weighing system

Signal failure:

- 1. Disconnect signal return wire for the instrument signals to be tested:
 - a. An alarm will be indicated.
 - b. The waste loading conveyor will stop.
- 2. Reconnect signal return wire for the instrument signals to be tested:
 - a. The alarm will clear.
 - b. The waste loading conveyor can be restarted.

Instrument signals to be tested:

- Temperature inputs.
- Baghouse differential pressure transmitter.

Document: SEADTBP2

SECTION 9

TRIAL BURN TEST SCHEDULE

A specific date and schedule for the trial burn test cannot be established until the permit is issued. A proposed event schedule for the trial burn is shown on **Table 9-1**. This schedule assumes that the Trial Burn Plan is approved as described in this document.

Apr 194 Mar '94 Feb Jan 194 Dec - 93 Nov 193 0ct Sep - 93 Aug Jul 193 Jun 193 May 193 Apr 193 Mar 193 Plan Overview Schedule f shakedown and notify waste and nts nts EC

APPENDIX A LIST OF DRAWINGS

APPENDIX A

DRAWINGS

The following is a list of full size drawings which are located in map pockets in Appendix 14 of the RCRA Part B Permit Application.

Pocket	Drawing No. (If Applicable)	Description
01	AC-SK-87-12	Furnace Site (Proposed)
02	AC-SK-88-55-01	Seneca Army Depot Layout
03	AC-SK-88-55-02	SEAD - Furnace Site Layout, Sheet 1 SEAD - Furnace Site Elevation, Sheet 2 SEAD - Furnace Site Elevation, Sheet 3
04	SK-88-55-05	APE 1236 Upgrade - Site Enclosure Layout
05	SK-88-07	Functional Process Control Diagram
06	ACT-377-200-12	Burner and Blower Assembly
07	11268-10-1	Afterburner (Southern Technologies) (3 Sheets)
08		High Temperature Gas Cooler Low Temperature Gas Cooler
09	BC86-510-1	Cyclone*
10	N741382	Baghouse*
11	SK-89-09-00	Data List
12	SK-89-09-01	Waste Feed Rate Monitoring System, General Assembly
13	SK-89-09-02	Outer Frame Assembly, Sheet 1 Outer Frame Details, Sheet 2 Outer Frame Details, Sheet 3 Outer Frame Details, Sheet 4
14	SK-89-09-03	Inner Frame Assembly

Document: SEADTBP2

14	SK-89-09-04	Inner Frame Details
1 5	SK-89-09-05	Transfer Assembly
16	SK-89-09-06	Push Off Box Details
17	SK-89-09-07	TT-B Weight Scale Frame Details
18	SK-89-09-08	Series 1000 Weigh Scale Frame Details
19	SK-89-09-09	Scale Top Assembly
20	SK-89-09-10	Chute Assembly Details, Sheets 1 and 2
21	SK-89-09-11	Swing Door Assembly and Details
22	SK-89-09-12	Sliding Door Assembly
23	SK-89-09-13	Door Lock Assembly
24	SK-89-09-14	Window Details
25	SK-89-09-15	Cover Plate Details
26	SK-89-09-16	Pneumatic Component Layout
27	SK-89-09-17	Pneumatic Schematic
28	SK-89-09-18	Vacant (Elect. Component Layout)
29	SK-89-09-19	Pneumatic Valve Box
30	SK-89-09-20	Control Box
31	11268-10, Rev. 4	Catwalk and Afterburner Elevations
32		High Temperature Gas Cooler Elevation
33		Low Temperature Gas Cooler Elevation

^{*} Denotes drawings which have not been previously submitted and which are located in the Map Pockets of this Trail Burn Plan.

APPENDIX B EQUIPMENT AND INSTRUMENTATION INFORMATION

APPENDIX B

EQUIPMENT AND INSTRUMENTATION INFORMATION

TABLE OF CONTENTS

		Bulletin	
	Title	Number	Date
1.	Kiln Burner, Hauck 783	GB410FF	10/77
2.	Afterburner Burner, Wide Range Burner Unit	GP139FC	4/85
3.	Gas Cooler Specifications	4683-D-1&2	-
4.	ID Fan, Fan Engineering	V-924	8/26/8 8
5.	Stack Gas Velocity Measurement System, EMRC	-	-
6.	Sampling System for Stack Gas Analyzers, Beckman	-	-
7.	Oxygen Analyzer, Rosemont Analytical, Model 755	L71-755	11/90
8.	Carbon Monoxide Analyzer, Rosemont Analytical, Model 880	L71-880	10/90
9.	Process Controllers, Honeywell UDC 3000	51-51-58-04	4/91
10.	Process Controllers, Honeywell UDC 3000	51-51-03-07	10/89
11.	Burner Controllers, Honeywell BC 7000	60-2529-3	1988
12.	Recorder, Honeywell DPR 1500	43-DR-57-01	7/83
13.	Recorder, Honeywell DPR 1500	43-DR-03-02	6/85
14.	Programmable Logic Controller, Honeywell IPC 620	-	-
15.	Programmable Logic Controller, Honeywell IPC 620	620-25/35	9/86
16.	Operating Sequences, Troubleshooting, BC7000, Honeywell	65-0014-3	1987
17.	Gateway Model 500, Honeywell	82-50-03-06	2/88
18.	PCOS, Honeywell	74-21-02-01	6/87
19.	The Fix, Honeywell	74-21-58-01	7/86
20.	Distributed Manufacturing Control System, Honeywell	74-DM-57-01	10/85
21.	Industrial Computer, IBM 7552	-	
22.	Printer, EPSON	CPD-1008	3/90
23.	Quality Components from MikroPul		
24.	Owner's Manual - Mikro Pulsaire Dry Dust Collector	5D379A	

NOTE: This information is included in the 6NYCRR Part 373 Permit Application.

WHAT A THOUGHT WOULD THE STREET AND LIKE A LIKE A STREET, AND LIKE A S

a kontient

APPENDIX C

WASTE CHARACTERIZATION TABLES

TABLE OF CONTENTS

C-2 Chemical Compositions of Munitions

A MARKETON

SOUTH THE PROPERTY OF THE PARTY OF THE PARTY

STREET, ST. CO.

HEATING VALUE, ASH, AND CHLORINE CONTENT FOR MUNITION COMPONENTS

THE THE STATE OF T

APPENDIX C-1

Heating Value, Ash, Metal, and Chlorine Content Data for Munition Components

) (CO)																																													
NG CONTENT (1b/lb)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0		0	0	1	0	0	0	0	0	0	0	0	0	0	0	00
HCB CONTENT (lb/lb)	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0 (0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
DPA CONTENT (lb/lb)	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0 (0	0 (o c		0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
DNT CONTENT (lb/lb)	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
DBP CONTENT (lb/lb)	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0 (0 0	0 0	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
ZINC CONTENT (ib/lb)	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
TIN CONTENT (lb/lb)	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (ô	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
STRONTIUM CONTENT (Ib/lb)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0 1	0	0	0	0	0	0 0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0 0
LEAD (CONTENT (Ib/Ib)	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0.71	0.71	0.44	0.71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
CHROMIUM CONTENT (Ib/lb)	0	0	0	0 (0	0.22	0	0	0	0	0	0	0	0	0	0	0	0 (0	•	0	0	0	0	0	0 (0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0 (0
BARIUM (CONTENT (1b/1b)	0	0	0	0 (0 :	0.54	0.53	0.11	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0 0	0 0	00	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	00
ANTIMONY CONTENT (lb/lb)	0	0	0	0.72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	0 0	0 0	00	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	00
ALUMINUM A CONTENT (0	-	0.36	0	0	0	0	0	0	0	0	0	0	0	0	O	O	0	0	0 (0	0	0	0	0	0	0 (0 0	0 0	0	0.36	0	0	0	0	0	0	0	0	0	0	0	0	0 (00
HEATING AI VALUE ((BTU/lb)	14,095	13,312	5,878	1,802	1/500	-497	(716)	13830	2401	25143	(787)	6,000	16040	14,855	14095	0	13,210	8,424	16,376	15093	14,095	6,840	3222	4,252	0	1,135	7607	2,254	15297	10653	11,602	4,338	6,822	4153	3531	10215	20000	8918	449	-286	264	669-	4,126	0 0	(705)
ASH CONTENT (1b/lb)	0.0000	1.8895	0.6791	0.8582	0	1	0.5867	0.2177	0.4107	3.2201	0.5603	1.8311	0.0924	0.0872	0	-	0.0000	0.0000	0.0000	0	0.0000	0,0000	0	0,0000	0	0.7664	0.6903	0.4766	0.0903	1.6583	1,7408	0.0000	0.0000	0	0	2.2914	0	0	0.4578	0,5549	0,4050	0,6439	0.0000		0.5632
CHLORINE CONTENT (Ib/Ib)	0.0000	0.0000	0.0000	0.0000	0	0	0.0000	0	0	0	0.0000	0.0000	0	0.0000	0	0	0.0000	0.0000	0.0000	0	0.0000	0.0000	0.7469	0.0000	0	0.0000	0	0.0000		00	0.0000	0.0000	0.0000	0	0	0	0	0.5673	0.2893	0	0.2559	0	0.0000	0	0.0000

m Alloy

APPENDIX C-1

Heating Value, Ash, Metal, and Chlorine Content Data for Munition Components

Contract C		CHLORINE	ASH :	HEATING	HEATING ALUMINUM ANTIMONY	ANTIMONY		CHROMIUM	LEAD	7	NIL		DBP	TNO	DPA	HCB	Ö	01
0.4466		CONTENT (lb/lb)	(lb/lb)	VALUE (BTU/lb)	CONTENT (lb/lb)	CONTENT (Ib/lb)	CONTENT (Ib/lb)	CONTENT (1b/lb)	CONTENT (lb/lb)	Ė	(Ib/Ib)	Ę	5		CONTENT (lb/lb)		F	00
10000 0.0000 3.234 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0.4896	-786					0	0.41	0	0	0	0	0	0	0	
10000 10000 3284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	3983					0	0	0	0	0	0	0	0	0	
0.0000 0.0000 3.334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0	1184				0	0	0	0	0	0	0		0	0	
0.0000 0.0000 3.294 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	5261			0	0	0	0	0	0	0	0		0		
00000 03324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0			0	0	0	0	0.79	0	0	0	0	0	0	
0 1000 1000 1000 1000 1000 1000 1000 1		0.0000		3,294			0	0	0	0	0	0	0	0	0	0	0	
0.0000 0.0000 24,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0	6516		0	0	0	0	0	0	0	0	0			0 0	
0,0000			0 0	10245	0	0	0	0	0	0	0	0	0	0	0	0	0	
0.0000 0.1127 15,400 0 0 0.081 0 0 0.010 0.0100 0.0		0.0000			0	0	0	0	0	0	0	0	0	0	0	0	0 0	
0.0000 0.5100 0 0.5100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000			0	0	0	0	0	0	0	0.1	0	0	0		0	
0,0000 0,2000 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000			0	0		0	0	0	0	0	0	0	0	0	0	
15000 0.8700 (13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0,000		0	0	0		0	0	0.16	0	0	0	0	0	0	0	
1,0000 1,0000 4,200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000					0	0	0	0.73	0	0	0	0	0	0	0	
0.0000 1.3500 5,160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lubba	0.6500		4				0	0	0	0	0	0	0	0	0	0	
0,0000 1,0000 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000						0	0	0	0	0	0	0	0	0	0	
0.0000 1.0000 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000								0	0	0	0	0	0	0	0	
0.0000 1.0000 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000		0	0				0	0	0	0	0	0	0		0	
0,0000 1,2700 1,412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000		0	0				0	0	0	0	0	0	0		0	
0,0000 1,2700 1,412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000		0	0					0	0	0	0	0	0		0	
0,00000 1,00000 0 0 0 0 0 0 0 0 0 0 0 0		0.0000								0	0	0	0	0	0		0	
0.0000 1.0000	loy	0.0000		0	9					0	0	0	0	0	0		0	
0,0000 0,0000 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000		0	9					0	0	0	0	0	0		0	
0.0000 0.0000 14,095 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	re Resin	0,000		0	0				0	0	0	0	0	0	0		0	
0,0000 0,0000 14,095 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.000		0	0				0	0	0	0	0	0	0		0	
0,0000 0,7900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0000							0	0	0	0	0	0	0		0	
0,00000 0,00000 0 0 0 0 0 0 0 0 0 0 0 0	num Powder	0.000							0	0	0	0	0	0	0		0	
0,0000 1,0000 5,011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0000		0	0				0	0	0	0	0	0	0		0	
0.6600 0.0000 5,011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.000								0	0	0	0	0	0		C	
0,0000 12,955 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	decane	0.6600								0	0	0	0	0	0	0	0	
0,0000 12,955 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.000								0	0	0	0	0	0	0	0	
0,0000 (46) 0 0 0 0 0 0 0 0 0 0 0		0.0000								0	0	0	0	0	0		0	
		0.0000								0	0	0	0	0	0		0	

CHEMICAL COMPOSITIONS OF MUNITIONS

TABLE C-2

NOTES:

Some munitions have acceptable ranges for some PEP components. The values corresponding to the higher limit have been used for each munition characterization. Therefore, the sum of components may exceed 100%.

<u>::</u>	1 20mm HFI = MSRA3 (w/double	- M56A3 (d eldinop/w	Annual Property	3														
≌	900 H 789.38 g	900 items/hr 789.38 grains/item							ž	METALS FEED RATES	FEED R.	ATES	۵.	OTENTI	AL POH	IC FEED	POTENTIAL POHC FEED RATES		
	COMP	CCMP	ರ	ASH	HEAT	ALUM	1	-	-	- 11	-	⊩	\vdash	⊩	1-	-	-		Ø
	(gr/ftem)	(lb/hr)	(lb/hr)	RATE (lb/hr)	VALU (BTU/hr)	(lb/hr)	RATE (fb/frr)	RATE (RATE (RATE (Ib/hr) (1	RATE (RATE (Ib/hr) (1	RATE (RATE (Ib/hr) (1	RATE (RATE (Ib/hr)	RATE (lb/hr)	RATE (lb/hr)	RATE (lb/hr)
				_		┈		—-III			\dashv					\dashv		=	
*	0.08	0.0103	0.0000	0.0000	145	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	00.0	0.00	0.00
vder	52.496	6.7495	0.0000	12.7532	69,849	6.75	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00
Jifide	0.15	0.0193	0.0000	0.0166	35	0.00	0.01	0.00	0.00	0.00	00.0	0.00	00.0	00.0	0.00	0.00	0.00	0.00	0.00
onate	5.0	0.7766	0.0000	0.4351	(811)		000	000	000	00.0	000	8 8	8 0	8 0	8 0	000	000	000	0.00
•	0.46	0.0591	0.0000	0.1083	355		00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
ate	0.08	0.0103	0.000	6000.0	153	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
to.	33.004	4.2434	0.000	0.0000	56,055	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.24	0.00	0.00	0.00	0.00	0.00
	1.83	0.2353	0.0000	0.0000	1,982	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00
	5.45	0.6969	0.0000	0.0000	11,412	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.70	0.00	0.00	0.00
	2.06	0.2649	0.0000	0.0000	3,733	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.08	0.0103	0.0000	0.0000	20	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00
	5.88	0.7560	0.000	0.0000	3,215	0.0	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1.23	0.1569	0.000	0.1202	178	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	1.3	0.1671	0.0000	0.0797	377	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
uminum Alloy	1.38	0.1774	0.000	0.3089	2,059	90.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	495.616	63.7221	0.0000	0.0000	276,426	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	27.787	7.4272	0.0000	0.0000	20,668	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.43	0.00
chlorate	0.15	0.0193	0.0049	0.0078	S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	99.3212	12.7899	0.0000	0.0000	52,688	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.61	0.0784	0.000	0.0442	(22)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
loi	90.0	0.0103	0.0000	0.0000	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2.98	0.3831	0.0000	0.0000	7,663	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.08	0.0103	0.0000	0.0013	158	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
											_							<u> </u>	
											_	_							
			_																
											-		-						
	769.385	98.9209	0.0049	13.9741	556,474	6.81	0.01	0.09	00.00	0.18	0.00	0.00	0.00	4.24	0.24	0.70	0.00	7.43	0.02
			_	_	_	_	_	-	-	_	_	_	_	-	_	-	_	-	

<u>ë</u>	2 20mm HEI – M96 900 Rems/h 638.59 grains/h	2 nm HEI – M96 900 kems/hr 635.59 grains/kem								METALS FEED RATES	FEED F	MTES		POTENT	POTENTIAL POHC FEED RATES	1C FEET	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (lb/hr)	CL RATE (Pb/hr)	ASH RATE (Pb/hr)	HEAT VALU (BTU/hr)	ALUM RATE (Ib/hr)	ANT RATE (fb/hr)	BA RATE (B/hr)	CR RATE (fb/hr)	LEAD RATE (fb/hr)	SR RATE (Ib/hr)	TIN RATE (Ib/hr)	ZINC RATE (Ib/hr)	DBP RATE (Mb/hr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (b/hr)	S RATE (16/hr)
fide ate uminum Alloy orate chlorate ate	0.26 3.19 3.77 0.51 78.101 459.206 1.09 85.251 3.51 3.51	0.0334 0.4101 0.4847 0.0856 10.0418 59.0408 0.0244 0.1401 10.9808 0.4513	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0287 0.0358 0.0000 0.0453 17.4803 0.0000 0.0000 0.0842 4.4391 0.2906 0.4513	6,093 7,938 116,502 256,119 86 2,894 (315) 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.00	0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000000000000000000000000000000000000	0.00 00 00 00 00 00 00 00 00 00 00 00 00	0.00 0.	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.00	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	636.588	82.1042	2.8454	22.6352	389,576	3.61	0.02	0.00	0.00	0.05	0.00	0.36	0.00	0.00	00.0	0.48	0.00	0.00	0.11

3 20mm HEI – M97A2 (w/Single base propellant) 900 items/hr 676.51 grains/frem

.. ë..

POTENTIAL POHC FEED RATES

	676.51 2	676.51 grains/item																	
	COMP	COMP	ರ	ASH	HEAT	ALUM	ANT	BA	CR	LEAD	SR	TIN Z	ZINC	1 480	DNT	⊢	HCB	⊨	s).
	DUANT	RATE	RATE	RATE			ш	ш	111	RATE	111	RATE		RATER	RATE	RATE	_	RATE	RATE
	(gr/kem)	(Ib/hr)	(lp/hr)	(lb/hr)	_	_					_							(Itp/ftri)	(16/1/1)
×	90.0	0.0077	0.0000	0.0000	109	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
vder	41.965	5.3955	0.0000	10.1948	71,825	5.40	0.00	0.00	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00
ulfide.	0.13	0.0167	0.0000	0.0143	30	0.00	0.01	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1.28	0.1646	0.0000	0.0966	(118)	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.45	0.0579	0.0000	0.1059	347	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
die	90.0	0.0077	0.0000	0.0007	115	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
te	90.0	0.0077	0.0000	0.0000	102	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
	48.216	6.1992	0.0000	0.000	52,222	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.20	0.00	0.00	0.00	0,00
	6.58	0.8460	0.0000	0.000	13,854	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.85	0.00	0.00	0.00
	3.32	0.4269	0.0000	0.0000	6,017	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	90.0	0.0077	0.0000	0.000	53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.88	0.7560	0.000	0.000	3,215	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1.28	0.1646	0.0000	0.1261	187	0.00	0.00	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	1.28	0.1646	0.0000	0.0784	371	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	472.636	60.7875	0.0000	0.000	263,609	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fate	5.05	0.6493	0.0000	0.4181	(454)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13
	80.661	10.3707	0.0000	0.0000	42,790	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.05	0.6493	0.0000	0.6493	0	0.00	0.00	0.00	0.00	0.00	0.00	0.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jor	90.0	0.0077	0.000	0.000	52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2.43	0.3124	0.0000	0.000	6,249	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						4									,,,			-	
	676.508	86.9796	0.0000	0.0000 11.6842	460,546	5.40	0.01	0.09	0.00	0.19	0.00	0.51	0.00	0.01	6.20	0.85	0.00	0.00	0.13
																			- Contract

20mm HEI - M97A2 (w/Double base propellant)

COMP	ij.	710.45	900 Rems/hr 710.45 grains/Rem								METALS	METALS FEED RATES	WTES	-	POTENT	POTENTIAL POHC FEED RATES	1C FEEC	RATES		
## 4.1885 5.3855 0.0000 0.01694 7.125 5.40 0.00 0.00 0.00 0.00 0.00 0.00 0.0		COMP QUANT (gr/ftem)	COMP RATE (lb/hr)	CL RATE (fb/hr)	ASH RATE (Pb/hr)	HEAT VALU (BTU/hr)	ALUM RATE (fb/hr)	ANT RATE (fb/hr)	BA RATE (Ib/hr)			SR RATE (lb/hr)	TIN RATE (Ib/hr)	ZINC RATE (fb/hr)		DNT RATE (fb/hr)	DPA RATE (fb/hr)	1		S RATE (Ib/hr)
1.28 0.1646 0.0000 0.01448 7.182 5.440 0.000 0	¥.	0.08			0.0000	109	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00
1.28	Mole	41.985			10.1948	71,825	5.40	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1,14 1,14		1.28			0.0966	(118)		0.00	0.00	0.00	00.00	0.00	9 0	3 6	9 6	0.00	0.00	0 0	0.00	0.00
0.45 0.0579 0.0000 0.1059 347 0.00 0.000 0.0000 0.1059 0.000	nate	5.04			0.3631	(510)		0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.0	0.00	0.00
48.216 8.1982 0.0000 0.00007 1.15 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000		0.45		0.0000	0.1059	347	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0:00
5.04 0.6480 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	e .	48.216		00000	0.0007	115	0.00	0.00	0.0	0.0	00.0	8 8	0.0	8 6	0.00	000	0.00	0.00	0.0	0.00
7.8 6.04784 0.0000 0.0000 16.002 0.0000 0.0000 18.002 0.00 0.00 0.00 0.00 0.00 0.00 0.00		5.04		0.0000	0.0000	5,459	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.65	0.00	00.0	000	0.00
3.32 0.4258 0.0000 0.0000 8.017 0.00 0.00 0.000 0.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000000	nga P	7.6		0.0000	0.0000	16,002	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	96.0	0.00	0.00	0.00
1.28 0.7560 0.0000 0.0000 3.215 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		3.32		0.0000	0.0000	8,017	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.28 0.1646 0.0000 0.1781 187 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		0.08		0.0000	0.0000	3 2 1 5	0.00	00.0	00.0	0.0	0.00	0.00	0.0	8 8	0.00	0.00	0.0	0.00	0.0	0.00
1.26 0.1646 0.0000 0.0784 371 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		1.26		0.0000	0.1261	187	0.00	0.00	0.0	0.00	0.12	000	8.0	000	000	000	000	0.00	000	0.00
432.016 55.5449 0.0000 0.0000 240,954 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		1.28		0.0000	0.0784	371	0.00	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00
55.617 7.1765 0.0000 0.0000 48.558 0.00 0.00 0.00 0.00 0.00 0.00 0.00		432.016	=7		0.0000	240,954	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.6 0.9771 0.0000 0.5422 (273) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		55.617			0.0000	48,958	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.18	0.00
80.861 10.3707 0.0000 0.0000 42.780 0.00 0.00 0.00 0.00 0.00 0.00 0.00	arto	7.6		0.0000	0.5422	(279)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.55 0.3279 0.0000 0.1646 (231) 0.00		90.08		0.0000	0.0000	42,790	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.8 0.3771 0.0000 0.9771 0.0000 0.000 0.00 0.00 0.00 0.00 0.0		2.55		0.0000	0.1846	(231)	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
2.48 0.3201 0.0000 0.0000 0.000 0.00 0.00 0.00 0	•	7.6		0.0000	0.9771	0	0.00	0.00	0.00	0.00	0.00	0.00	0.77	0.00	0.00	0.00	0.00	0.00	0.00	0.00
91.3442 0.0000 12.6840 523,810 5.40 0.01 0.09 0.00 0.00 0.00 0.00 0.00 0.0	ō	90.0		0.0000	0.0000	52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
91.3442 0.0000 12.6840 523,810 5.40 0.01 0.09 0.00 0.19 0.00 0.77 0.00 6.20 0.65 0.96 0.00 7.18		2.5		0.0000	0.0000	6,403	0.0	0.0	8.	8	8.0	8.0	0.0	0.0	8.6		0.00	0.00	0.00	0.00
		710.454		0.0000	12.6840	523.810	5.40		60.00	000	0.19	000	0.77	000	6.20	0.85	68.0	000	7.18	0.08
														3		3				3.0

Ë

i HEI - M210 (w/double base propellant) 900 items/hr 5 20mm HEI

702.89 grains/item

METALS FEED RATES

POTENTIAL POHC FEED RATES

S RATE (fb/hr) NG RATE (Ib/hr) HCB RATE (Ib/hr) 0.00 DPA RATE (fb/hr) DNT RATE (lb/hr) DBP RATE (lb/hr) ZINC RATE (16/hr) 0.00 TIN RATE (fb/hr) SR RATE (lb/hr) LEAD RATE (fb/hr) CR RATE (16/hr) BA RATE (16/hr) 0.00 ANT RATE (Ib/hr) ALUM RATE (16/hr) 60) (511) (5 HEAT VALU (BTU/hr) 6.5329 0.0497 0.0490 0.3638 0.0000 0.0000 0.0000 0.1212 0.0515 3.4672 0.0515 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ASH RATE (16/hr) CL RATE (B/hr) 4.5159 0.0579 0.0636 0.06493 0.1003 0.1003 0.2493 0.0077 0.1080 1.9917 54.0881 7.1405 0.0167 2.1667 8.7735 0.3253 0.3254 COMP RATE (16/hr) COMP QUANT (gr/ftem) te Iuminum Alloy rchlorate wder uffide onate nate

90.0

0.00

0.97

65

Ö

6.17

8

Ö

0.77

8

Ö

0.16

0.00

0.04

0.0

5.23

521,698

14.6802

0.5545

90.3720

702.893

BTU, CHLORINE, AND ASH FEED RATES

ë	3.03 grains/k	3.03 grains/item																	
	COMP QUANT (gr/ftem)	COMP RATE (B/hr)	CL RATE (Ib/hr)	ASH RATE (fb/hr)	HEAT VALU (BTU/hr)	ALUM RATE (Ib/hr)	ANT RATE (B/hr)	BA RATE (16/hr)	CR RATE (Ib/hr)	LEAD RATE (16/hr)	SR RATE (fb/hr)	RATE (Ib/hr)	ZINC RATE (Ib/hr)	DBP RATE (16/hr)	DNT RATE (Ib/hr)	DPA RATE (fb/hr)	HCB RATE (fb/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
into a series of the series of	0.03 0.16 0.03 0.04 0.01 1.554 1.003 0.05 0.05	0.0964 0.5143 0.0964 0.1286 0.0321 0.4500 4.8950 3.2239 0.1607	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0828 0.3017 0.1766 0.0000 0.2145 0.0000 0.1035 0.0000	174 (365) 579 1,941 453 1,014 21,994 (112) 38	0.00 00	0.00	0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.
	3.027	9.7296	0.0000	0.8790	47,380	0.00	0.07	0.27	00:0	0.20	0.00	0.00	0.00	0.00	0.00	00.0	0.00	3.22	0.00

<u>ພ</u>	7 22cal Ball,Hornet- 22,500 tems/hr 13.71 grains/fk	7 22cal Ball, Hornet – M65 22,500 (tems/hr 13.71 grains/ftem	ko.							METALS FEED RATES	FEED RA	NTES	` ~) TENTIA	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (lb/hr)	CL RATE (lb/hr)	ASH RATE (fb/hr) (HEAT VALU (BTU/ħr)	ALUM RATE (Ib/hr)	ANT RATE (Ib/hr) (BA RATE (16/hr) (CR I	LEAD RATE F	SR RATE F	RATE F	ZINC [RATE R (lb/hr) (R	DBP C RATE R (86/hr) (R	DNT [RATE R (15/fn) (ft	DPA 1 RATE F (fb/fnt) (f	HCB RATE F	NG RATE (16/hr) (S RATE (Ib/hr)
inde	0.03 0.16 0.05 0.14 0.14 7.8125 5.0416 0.05	0.0964 0.5143 0.0964 0.6107 0.4500 25,1116 16,2051 0.0321 0.0321	0000:0 0000:0 0000:0	0.0828 0.3017 0.1766 0.0000 0.0000 0.0000 0.5174 0.0000	174 (368) 579 9,218 2,265 1,014 108,834 110,551 (562) 38	0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	0.0000000000000000000000000000000000000	0.00	0.0000000000000000000000000000000000000	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	00 00 00 00 00 00 00 00 00 00 00 00 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	13.7141	44.0810	0.0000	1.2929	231,843	0.00	0.07	0.27	00.00	0.20	0.00	0.00	0.00	0.00	0.00	00.0	00.0	16.21	0.18

ü	40 000 learned										MEIALS LEED PAILES	2		POTENTIAL POROT LED PATES		וס ו בבר			
	70.07	70.07 grains/item																	
	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (Ib/hr)	HEAT. VALU (BTU/hr)	ALUM RATE (Ib/hr)	ANT RATE (16/hr)	BA RATE (lb/hr)	CR RATE (lb/hr)	LEAD RATE (Ib/hr)	SR RATE (lb/hr)	TIN RATE (lb/hr)	ZINC RATE (15/hr)	DBP RATE (b/hr)	DNT RATE (Ib/hr)	DPA RATE (fb/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
vder	0.09	9	0.0000	1,7319 0.1765 0.2546	371 (311)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8 4	2.526 1.083 4.5014 0.702	2.4754 10.2869 1.6046	0.0000	5.2582 0.2159 0.0000 0.0000	36,772 86,674 26,276	0.00	0.00	8.4.0 0.0 0.0 0.0 0.0	0.00000	0.00	8 8 8 8 8	00.00	0000000	00.00	0.0 0.0 0.0 0.0 0.0 0.0	0.00	0.00	0.00	0.00
	3.9212 3.9212 47.2015 0.03	÷	0.0000	0.2397 14.8629 0.0000	1,133 95,480 468,023	0.00		0.00	0.00		0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fute are idate oxide	0.501 4.3313 0.652 3.4711 0.02 0.03		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.7374 4.8471 0.2981 6.9025 0.0000 0.0088	(909) 0 0 (99) 54 1,056			0.00	0.00		0.00 4.06 0.24 5.79 0.00 0.00	000000000000000000000000000000000000000	00.000000000000000000000000000000000000	00.000000000000000000000000000000000000	0.00 00.00 00.00 00.00 00.00	0.00	0.00	0.00	0.23 0.00 0.00 0.00 0.00
	70.0735	70.0735 160.1660	0.0000	35.5337	725,735	0.92	0.15	4.91	0.00	0.22	10.09	0.00	0.01	0.00	10.29	1.60	0.00	0.00	0.26

cal -- M1,Tracer w/1280 20,000 kema/hr 86.25 grains/item

POTENTIAL POHC FEED RATES

METALS FEED RATES

RATE (fb/hr) 0.320.00 NG RATE (16/hr) HCB PATE (Ib/hr) 0.0 DPA RATE (fb/hr) 2.01 12.86 DNT RATE (16/hr) 0.00 DBP RATE (Ib/hr) 0.00 ZINC RATE (15/hr) TIN PATE (Ib/hr) 8 ö SR RATE (fb/hr) 10.18 LEAD RATE (16/hr) 0.28 0.00 CR RATE (lb/hr) BA RATE (fb/hr) 0.29 ANT RATE (Ib/hr) 0.19 0.11 ALUM RATE (15/hr) 1,521 463 (389) 57,043 106,342 32,846 8,054 1,17 119,350 565,023 (1,001) (9,727) HEAT VALU (BTU/hr) 903,238 0.2159 0.3185 0.3348 0.0000 0.0000 0.2998 16.5788 0.0000 0.0000 0.3728 5.7345 33.0559 ASH RATE (16/hr) 0.0000 CL PATE (16/hr) 0.1143 0.2571 0.5429 3.8400 12.8611 2.0057 0.5714 0.6286 11.2034 134.8615 0.0857 1.8629 6.5914 189.2897 COMP RATE (fb/hr) 0.04 0.09 0.19 1.344 4.5014 0.702 0.22 3.8212 47.2015 0.03 0.501 4.3313 0.652 2.307 66.2514 QUANT (gr/kem) COMP vder fate ate kate oxide 8

¥	10 30 cal – M1,HPT 22,500 tema/hr 55.80 grains/fr	10 al – M1,HPT 22,500 kema/hr 55.80 grains/kem								METALS	METALS FEED RATES	MTES	_	POTENT	POTENTIAL POHC FEED RATES	1C FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (B/hr)	ASH RATE (Ib/hr)	HEAT VALU (BTU/hr)	ALUM RATE (Pb/hr)	ANT RATE (Po/hr)	BA RATE (Ib/hr)	CR RATE (lb/hr)	LEAD RATE (16/hr)	SR RATE (lb/hr)	TIN RATE (fb/hr)	ZINC RATE (Ib/hr)	DBP RATE (Ib/hr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Po/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
Ader Milde	0.04 0.09 0.19 0.702 0.22 48.6016 0.03 0.03	0.1286 0.2893 0.6107 13.5042 2.2564 0.7071 159.4337 0.0864 1.6104 0.0643	0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0 0000.0	0.2429 0.2483 0.2483 0.0000 0.0000 0.0000 1.0399 0.0000	521 (437) 113,758 113,758 36,951 9,061 1,594 691,623 340 (1,126) 76	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.	0.00 0.	000000000000000000000000000000000000000	0.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0.00
	55.7959	55.7959 178.3439	0.0000	2.2234	854,075	0.13	0.21	0.32	0.00	10.31	00.00	0.00	0.00	0.00	13.50	2.26	0.00	0.00	0.37

¥	11 30 cal — M1, Ball Carbine 22,500 kema/hr 14.90 graina/item	11 al - M1,Ball Carbi 2,500 kema/hr 14.90 grains/kem	e						2	METALS FEED RATES	EED RA	VTE8	ā.	OTENTI	AL POH	C FEED	POTENTIAL POHC FEED RATES		
-	COMP QUANT (gr/ftem)	COMP RATE (b/hr)	CL RATE (Po/hr)	ASH RATE (lb/hr)	HEAT VALU (BTU/hr)	ALUM RATE (16/hr)	ANT RATE (Ib/hr)	BA RATE (Ib/hr) (CR L	LEAD RATE F	SR RATE R (lb/hr) (l	TIN Z RATE P (lb/hr) (P	ZINC RATE P	DBP RATE F	DNT RATE (16/fin) (1	DPA RATE (Po/hr) (HCB RATE (Po/hr) (NG RATE (Pb/hr) (S RATE (fb/fnr)
iffider on the state of the sta	0.09 0.09 0.19 0.11 0.17 0.14 0.03 0.03 0.03	0.1286 0.2893 0.6107 0.3214 0.3214 0.3214 0.7071 37.6190 4.5129 0.0964 0.0643	000000000000000000000000000000000000000	0.2429 0.2483 0.2483 0.3583 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,712 521 (437) (253) 25,518 2,708 10,527 4,531 1,584 340 (227) 76	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.2000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	00.00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	14.8987	47.8887	0.0000	1.5477	240,589	0.13	0.21	0.32	0.00	0.31	8.0	0.00	0.00	1.93	0.32	0.64	0.00	4.51	0.12

ë	12 30 cal – M2,AP (w/4895) 22,500 kema/hr 59.00 graina/kem	12 al – M2,AP (w/458 2,500 kema/hr 59.00 graina/kem	ଜୁ						-	METALS FEED RATES	FEED R	MTES	<u>.</u>	OTENTI	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (Ib/hr)	HEAT VALU (BTU/hr)	ALUM RATE (16/hr)	ANT RATE (16/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (Ib/hr)	TIN RATE (Ib/hr)	ZINC RATE (Ib/hr)	DBP RATE (Ib/hr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	RATE (Ib/hr)	RATE (Ib/hr)
der Mide	0.09 0.09 0.10 0.702 0.22 51.8017 0.03 0.03 0.00	0.1286 0.2893 0.6107 18.0788 2.2564 0.0429 0.0964 1.9318 0.0643	0000 0 0000 0	0.2429 0.2483 0.0000 0.0000 0.0000 0.0000 1.2439 0.0000	1,712 821 (437) 135,429 36,951 9,061 1,594 723,695 340 (1,350) 76	0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	00.000000000000000000000000000000000000	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00.000000000000000000000000000000000000	0.00 0.	00.00	000000000000000000000000000000000000000	0.00
	56.9963	58.9963 189.8308	0.0000	2.4304	907,592	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	0.00	16.08	2.26	0.00	0.00	0.43

<u>ii</u>	13 30 cal – M2,AP (w/ 22,500 kema/hr 62.30 grains/ft	13 30 cal – M2,AP (w/WC852) 22,500 kema/hr 62.30 grains/Rem	:852)						2	METALS FEED RATES	FEED R.	ATES	<u>a</u> .	POTENTIAL POHC FEED RATES	AL POH	IC FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (fb/hr)	CL RATE (Ib/hr)	ASH RATE (Po/hr)	HEAT VALU (BTU/hr)	ALUM RATE (Ib/hr)	ANT RATE (Ib/hr)	BA RATE (b/hr)	CR RATE (b/hr) (LEAD RATE (SR RATE ((b/hr) (RATE ((b/hr) (ZINC RATE (DBP. RATE (DNT RATE (Bo/hr) (DPA RATE (Bohr)	HCB RATE (Po/hr)	NG RATE (Ib/hr)	S RATE (fb/hr)
rder Mide	0.09	0.1286	0.0000	0.2429	1,712 521 (437)		0.00	0.00	0.000	0.00	0.00	0.00	0.000	0.00	0 0 0 0	0.000	0.00	0.00	0.00
	4.1013 0.601 0.802 0.802	13.1828 1.9318 2.5779 0.6429	0.0000	0.0000	174,144 16,273 42,215 9,061		00000	0 0 0 0	8 0 0 0 0	8 8 8 8 8 8	8 8 8 8 8	8 8 8 8 8	8 8 8 8 8	81.81 0.00 0.00 0.00	0.00	0.00	0.00	00.00	0.00
	0.22 48.2015 6.1019 0.03	0.7071 154.9335 19.6133 0.0964	0.0000	0.0000	1,594 672,102 133,802 340	0.00	0000	0.00	0.00	0.31	00.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00 19.61 0.00	0.00
o o	0.802 0.3 0.02	2.5778 0.9643 0.0643	0.0000	1.4305 0.5431 0.0000	(737) (680) 76	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00
	82.3007	82.3007 200.2524	0.0000	4.2424	4.2424 1,048,465	0.13	0.21	0.32	00:0	0.31	00:00	0.00	00:00	13.18	1.93	2.58	0.00	19.61	0.28

14 30 cal – M2, Ball (w/IMR 4895) 22 500 ltemathr

<u>ii</u>	53.69	22,500 kems/hr - 53.69 grains/kem								MEIAL	MEIALS FEED KAIES	8		O EN	ML ro		POTENTIAL POHG FEED KATES		
	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (B/hr)	ASH RATE (16/hr)	HEAT VALU (BTU/hr)	ALUM RATE (Ib/hr)	ANT RATE (Ib/hr)	BA RATE (16/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (fb/hr)	TIN RATE (16/hr)	ZINC RATE (16/hr)	DBP RATE (Mb/hr)	DNT RATE (16/hr)	DPA RATE (Nb/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	RATE (MD/hr)
rder Mide fate	0.04 0.09 0.19 4.50001 0.70002 0.22 47.2 0.03 0.50001	0.1286 0.2893 0.8107 14,4643 2.2501 0.6429 0.7071 151.7144 1.6072 0.0964	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.2428 0.2483 0.3583 0.0000 0.0000 0.0000 0.0000 1.0349 0.0000	1,712 521 521 (437) 121,848 36,847 9,061 1,594 658,137 340 (1,123) 76	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 00 00 00 00 00 00 00 00 00 00 00 00	00.0	0.00 00	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	0.00	00.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	1088.63	53.6901 172.5752	0.0000	2.2214	828,575	0.13	0.21	0.32	000	0.31	00.0	0.00	00.0	0.0	14,46	2.25	0.0	0.00	

•••	15 20 cel - Mo Bell (wAVC exp)	OWA Hall	629																
:: ::	22,500 items/hr 56.49 grains/ft	2,500 kems/hr 56.49 grains/kem	(200						3	METALS FEED RATES	EED RA	ITES	ĭ	OTENTI/	POTENTIAL POHC FEED RATES	C FEED	RATES		•
	COMP QUANT	COMP RATE	CL RATE	ASH RATE	HEAT VALU (BTU/hr)	ALUM RATE (BAtt	RATE	BA RATE F	CR L	RATE R	SR RATE R	RATE R	ZINC C RATE R (Ib/hr) (R	DBP C RATE R	DNT [RATE R	DPA I	HCB RATE F	RATE (16/hr)	S RATE (Ib/hr)
					\neg				\neg	-	\neg	\neg		_	\neg				
vder	0.04	0.1286	0.0000	0.2429	1,712	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
epy.	0.09	0.2893	0.0000	0.3583	521	000	0.00	0.00	00.00	00.00	00.00	0 0	0.00	00.00	0.00	0.00	8 00	000	0.00
onate .	0.1	0.3214	0.0000	0.1801	(253)	0.00	0.00	0.00	00.0	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
te	3.80001	12.2143	0.0000	0.000	161,351	0.00	0.00	0.00	0.00	0.00	0.00	0.00		12.21	0.00	0.00	0.00	0.00	0.00
	0.50001	1.6072	0.0000	0.0000	13,539	0.0	00.0	0.0	00.0	0.00	0.00	00.0	00.0	00.0	0.61	0.00	0.0	00.0	00.0
	0.2	0.6429	0.0000	0.000	9,061	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	0.22	0.7071	0.0000	0.3370	1,594	0.00	0.00	0.00	0.00	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	43.9	141.1072	0.0000	0.0000	612,123	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.50002	17.6786	0.0000	0.000	120,604	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.68	0.00
	0.03	0.0964	0.000	0.0000	340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	00.0	0.00
rate	0.80002	2.5715	0.0000	1.4269	(735)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.0	0.00
	0.3	0.9643	0.0000	0.5431	(089)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24
	0.02	0.0643	0.0000	0.0000	92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								-										<u></u>	
				_															
			-																
	56.4901	56.4901 181.5753	0.0000	3.3366	960,926	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	12.21	1.6.1	2.57	0.00	17.68	0.28
	_								_	_	_	_	_	_	_	_	_	-	

16 30 cal – M6, Grenade (carbine) 22,500 kema/hr

	24.39	24.39 grains/Rem																	
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (16/hr)	HEAT VALU (BTU/hr)	ALUM RATE (Ib/hr)	ANT RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Mo/hr)	SR RATE (lb/hr)	TIN RATE (16/hr)	ZINC RATE (Ib/hr)	DBP RATE (Ib/hr)	DNT RATE (Ib/hr)	DPA RATE (Po/hr)	HCB RATE (Ib/hr)	NG RATE (b/hr)	S RATE (Ib/hr)
rder Minde In a ste	0.09 0.19 0.19 0.20 0.2 0.3 0.1 16.8001 2.30007 0.60	0.1286 0.2083 0.0107 0.0429 0.0429 0.0429 0.3214 0.7502 7.3931 0.0964 2.5715 0.03214	000000000000000000000000000000000000000	0.2429 0.2483 0.3583 0.3802 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,712 521 (437) (509) 38,215 5,415 15,791 4,531 1,584 263,536 50,436 50,436 50,436 (735)	61.0 00.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00	0.0000000000000000000000000000000000000	0000 0000 0000 0000 0000 0000 0000 0000 0000	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	24.3902	78.3970	0.000	3.1547	380,261	0.13	0.21	0.32	000	0.31	0.00	00.0	000	2.89	0.04	96.0	00.0	7.39	0.12

17 30 cal -- M3, Grenade 22,500 kema/hr 48.49 graina/kem

ij

ns/hr Ins/fem

POTENTIAL POHC FEED RATES

METALS FEED RATES

RATE (Ib/hr) 98 0.00 NG RATE (16/hr) 0.0 HCB PATE (16/hr) 1.93 DPA RATE (16/hr) 00.00 8±.00.00 00.00 00.00 00.00 00.00 00.00 13.18 DNT RATE (16/hr) 0.0 DBP RATE (Pb/hr) 00.00 0 0.0 ZINC RATE (B/hr) 0.00 0. TIN PATE (16/hr) 0.0 0.00 SR RATE (Ib/hr) LEAD RATE (16/hr) 0.31 0.00 CR RATE (16/hr) BA RATE (lb/hr) 0.32 ANT RATE (Po/hr) 0.21 2.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 ALUM RATE (15/hr) 0.13 1,712 521 (437) 111,017 31,583 9,061 1,594 1,594 (1,123) HEAT VALU (BTU/hr) 746,945 0.2429 0.2483 0.2483 0.0000 0.0000 0.0000 0.0000 1.0349 0.0000 2.2214 ASH RATE (b/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CL RATE (Ib/hr) 0.1286 0.2893 0.6107 13.1786 1.8286 0.6429 0.7071 136.6072 0.0964 155,8609 COMP RATE (16/hr) 0.04 0.09 0.19 4.10001 0.60001 0.22 42.5 0.03 0.50001 0.02 COMP QUANT (gr/kem) 48.4901 vder JRde . .

	18																		
Ë	30 cal - M2, ban OHF 22,500 kems/hr	S, Ban OnF						٠	*	METALS FEED PATES	EED PA	TES	č	POTENTIAL POHC FEED RATES	AL POH	C FEED	RATES		
	81.09	81.09 grains/item																	
	COMP	COMP	ರ	ASH	Г	⊩—	\blacksquare	⊩	⊪—	LEAD	1	\vdash	ZINC	DBP	DNT	₩	HCB	NG	S
	QUANT	PATE	RATE	RATE														4.000	RATE
	(gr/kem)	(lb/hr)	(Ib/hr)	(Jp/Jrd)	(BTU/hr)	(Jo/Jul)	(Jap/Juri)	(Ib/hr)	(Ip/Jri)	(Jayyur)	(Jp/Jrl)	(IP/Jru)	(Jp/Jrd)	(Jayyar)	(IIp/Ju)	(up/qu)	(Je/Jul)	(Japyur)	(fb/fhr)
der	0.04	0.1286	0.0000	0.2429	1,712	0.13	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hide	0.09	0.2893	0.0000	0.2483	521	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	0.19	0.8107	0.0000	0.3583	(437)		0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nate	0.50001	1.6072	0.0000	0.9005	(1,265)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	4.10001	13.1786	0.0000	0.0000	174,089	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.18	0.00	0.00	0.00	0.00	0.00
	0.50001	1.6072	0.0000	0.0000	13,539	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.81	0.00	0.00	0.00	0.00
	0.80002	2.5715	0.0000	0.000	42,111	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.57	0.00	0.00	0.00
	0.5	0.8429	0.0000	0.0000	9,061	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	0.22	0.7071	0.0000	0.3370	1,594	0.00	0.00	0.00	0.00	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	47.4	152.3572	0.0000	0.000	880,928	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.90002	18.9643	0.000	0.000	129,375	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.96	0.00
	0.03	0.0964	0.000	0.0000	340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ate	0.80002	2.5715	0.0000	1.4269	(735)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.3	0.9643	0.0000	0.5431	(089)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24
	0.05	0.0643	0.0000	0.0000	78	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00
	81.0901	61.0901 196.3611	0.0000	4.0570	4.0570 1,030,226	0.13	0.21	0.32	0.00	0.31	0.00	0.00	00:00	13.16	1.81	2.57	0.00	18.96	0.28

<u>ല</u>	19 30 cal — M14,API (w/WC 852) 22,500 (tema/hr 58.89 grains/Rem	19 al – M14,API (w/M 2,500 kema/hr 58.89 grains/kem	/C 852)						2	METALS FEED RATES	FEED R.	ATES	<u>a</u> .	POTENTIAL POHC FEED RATES	AL POH	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (fb/hr)	CL RATE (fb/hr)	ASH RATE (lb/hr)	HEAT VALU (BTU/hr)	ALUM RATE (fb/ftr)	ANT RATE (lb/hr)	BA RATE (Po/hr)	CR RATE (P)	LEAD RATE (16/hr) (0	SR RATE (100/hr) (TIN RATE (Ib/hr) (ZINC RATE (16/hr) (DBP RATE F	DNT RATE (16/fm) (1	DPA RATE I	HCB RATE (16/fhr) (NG RATE (Po/hr)	S RATE (Ib/hr)
iffide nate to the control of the co	0.09 0.09 0.50001 3.80001 0.50001 0.22 1.00003 43.8 5.50002 0.03 0.03	0.12893 3.8251 1.6072 12.2143 1.6072 2.5715 0.7071 3.2144 141.1072 17.8786 0.09643 0.0643	000000	2.248.3 2.2442 0.9005 0.0000 0.0000 0.3370 5.5956 0.0000 0.0000 0.0000 0.5431	221 (2,739) (1,265) (1,265) 161,351 13,539 42,111 9,061 1,594 37,293 612,123 120,604 120,604 1735) (680)	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			000000000000000000000000000000000000000	000000000000000000000000000000000000000				0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00
	58.8902	58.8902 169.2898	0.0000	11.5385	994,906	. 1.29	0.21	2.03	0.00	0.31	0.00	0.00	00.0	12.21	1.61	2.57	0.00	17.68	0.28

ë	20 30 cal – M14,AP! (w/IMR 4895) 22,500 ltems/hr 55.69 grains/item	20 al – M14,API (w/II 22,500 Itema/hr 55.69 grains/Rem	MR 4895)							METALS FEED RATES	FEED R	ATES	ď.	OTENTL	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/Kem)	COMP RATE (Ib/hr)	CL C RATE	ASH RATE (Ib/ht)	HEAT VALU (BTU/hr)	ALUM RATE (Pb/hr)	ANT RATE (fb/hr)	BA RATE (lb/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (Ib/hr)	TIN RATE (Ib/hr)	ZINC RATE (16/hr) (1	DBP RATE (Ib/hr) (1	DNT RATE ((b/hr) (1	DPA RATE ((b/hr) (HCB RATE (No/hrt)	RATE (Ib/hr)	S RATE (fb/hr)
vder Jiffde Luminum Alloy frate	0.04 0.09 1.19003 4.50001 0.70002 0.22 1.00003 47.2 0.03 0.50001 0.002	0.1286 0.2893 3.8251 14.4643 0.7071 0.0771 0.0864 1.8072 0.0643	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.2429 0.2483 2.2442 0.0000 0.0000 0.3370 5.5956 0.0000 1.0349 0.0000	1,712 2,521 (2,739) 121,848 36,847 9,061 1,594 37,293 658,137 340 (1,123) 76	0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00.00 0	00.000000000000000000000000000000000000	0.00	0.00	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	55.6901	55.6901 179.0040	0.000	9.7029	563,567	1.29	0.21	2.03	0.00	0.31	0.00	0.00	0.00	0.00	14.46	2.25	0.00	0.00	0.36

<u>:</u> ≝	21 30 cal – M18,HPT (w/WC820,Carbine) 22,500 kema/hr 15.67 grains/kem	21 al – M18,HPT (w/) 2,500 kema/hr 15.67 grains/kem	WC820,Ca	rbine)	•				3	METALS FEED RATES	EED PA	ITES	ř	OTENTL	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (lb/hr)	ASH RATE (16/hr)	HEAT VALU (BTU/hr)	ALUM RATE (fb/hr)	ANT RATE (lb/hr)	BA RATE (16)/hr) (CR L RATE F	LEAD RATE P (15/ftr) (0	SR RATE R (76/hr) (1	TIN Z PATE R (15/hr) (11	ZINC I RATE R (lb/hr) (R	DBP I	DNT RATE F	DPA RATE (16/hr) (1	HCB RATE (Ib/hr) (NG RATE (No/hr) (S RATE (fb/fhr)
ılfide	0.03	0.0964	0.0000	0.0828	174 (368)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8 8 8	0.00	0.00	00.0	8 8 8	0.00	0.00
onate Se ite	0.03	0.3214	0.0000	0.1801	(253) 579 25,477	0.00	0.00	0.00	0.00	0.00	8 8 8	0.00	8 8 8	0.00	8 8 8	0 0 0	8 0 0	000	0.00
	0.2	0.3214	0.0000	0.0000	2,708	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	00.00	0.00
•	0.14	0.4500	0.0000	0.2145	1,014	0.00	00.0	0.0	0.00	0.00	0.0	00.0	0.00	0.00	0.00	0.00	0.0	0.00	0.00
•	1.50004	4.8216	0.0000	0.0000	32,893		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.82	0.00
	0.01	0.0321	0.0000	0.0000	38		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
											-								
				•															
																		-	
		`									-	-							
	15,6701	50.3681	0.0000	1.1367	252,782	0.00	0.07	0.27	0.00	0.20	0.00	0.00	0.00	1.93	0.32	0.64	0.00	4.82	0.09

ë	22 30 cal – M22.Frangible 22,500 tema/hr 12.08 grains/ftem	22 cal – M22.Frangibl 22,500 kema/hr 12.08 grains/kem								METALS FEED RATES	FEED R	MTES		OTENT	POTENTIAL POHC FEED RATES	10 FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (ID/hr)	CL RATE (lb/hr)	ASH RATE (Po/hr)	HEAT VALU (BTU/hr)	ALUM RATE (fb/hr)	ANT RATE (Po/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (16/hr)	SR RATE (lb/hr)	TIN RATE (Po/hr)	ZINC RATE (Ib/hr)	DBP RATE (Ib/hr)	DNT RATE (Ib/hr)	DPA RATE (ID/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
rder Tate	0.04 0.14 0.14 0.14 0.03 0.03 0.03 0.01 0.02	0.1286 0.500 0.1286 0.7071 35.0358 0.0964 1.2857 0.0321	0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0	0.2428 0.2483 0.3583 0.0000 0.0000 0.0000 0.7135 0.0207	1,712 \$21 (437) (437) 7,369 1,812 1,594 340 (368) (368) (22) 76	0.00	0.00 0.	0.00 0.	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	12.06	38.5287	0.0000	1.9207	164,583	0.13	0.21	0.32	0.00	0.31	00.0	00:0	0.00	0.00	0.00	0.45	0.00	00:0	0.05

 	23	A Table	(C) (C) (C)																
, IE:	22,500 items/frr	22,500 items/hr	W/W C632)						3	METALS FEED RATES	EED PA	TES	ď)TENTI	POTENTIAL POHC FEED RATES	C FEED	RATES		
	63.49	63.49 grains/item																	
	COMP	COMP	ರ	ASH		⊪-	⊩	-	⊩	\vdash	\vdash	\vdash	⊩	┈	-	₩-	-	<u> </u>	S
	QUANT	RATE	RATE	RATE		_				_	_		_		_		_		RATE
	(gr/kem)	(Ib/hr)	(Itp/Jrt)	(Ib/hr)	(BTU/hr)	(Jp/Jri)	(Japyri)	(Jeyur)	(Je/Jus)	(Je/Ju)	(Je/Just)	(Je/Jul)	(Phr)	n (Jayur)	n (up/qu)	(Jeyhri)	(Jeyyru)	(Jeyhri)	(fb/hr)
vder	0.04	0.1286	0.0000	0.2429	1,712	0.13	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
uffide	0.09	0.2893	0.000	0.2483	521	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	0.19	0.6107	0.0000	0.3583	(437)	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
onate	0.50001	1.6072	0.0000	0.9005	(1,265)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00
ate	0.02	0.1607	0.000	0.0140	2,387	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ite	3.80001	12.2143	0.000	0.0000	161,351	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.21	0.00	0.00	0.00	00.0	0.00
	0.50001	1.6072	0.000	0.000	13,539	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.61	0.00	0.00	00.0	0.00
	0.80002	2.5715	0.000	0.0000	42,111	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.57	0.00	00.0	0.00
	0.2	0.6429	0.000	0.0000	9,061	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.0	0.00
•	0.22	0.7071	0.000	0.3370	1,594	0.00	0.00	0.00	0.00	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1.65005	5.3037	0.0000	8.7952	56,501	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	43.9	141.1072	0.0000	0.000	612,123	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.50002	17.6786	0.0000	0.000	120,604	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.68	0.00
nated Rubber	0.36001	1.1572	0.7522	0.000	4,860	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.03	0.0964	0.000	0.0000	340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ride	0.96003	3.0858	1.7506	0.0000	27,519	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
rate	0.80002	2.5715	0.000	1.4269	(735)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	0.3	0.9643	0.0000	0.5431	(680)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24
ate	3.12001	10.0286	0.000	4.9100	(7,882)	0.00	0.00	0.00	0.00	0.00	4:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
oxide	0.46001	1.4786	0.000	1.2864	(18)	0.00	0.00	0.00	0.00	0.00	1.08	0.00	0.00	0.0	0.00	0.0	0.00	0.00	0.00
	0.05	0.0643	0.0000	0.0000	92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
															_				
													_					_	
											_					_			
				-															
	63.4902	63.4902 204.0757	2.5027	19.0626	19.0626 1,043,281	0.13	0.21	0.32	0.00	0.31	5.19	00.00	0.00	12.21	1.61	2.57	0.00	17.68	0.26

<u>i</u> i	30 cal — M25,Tracer (w/IMR4895) 22,500 kema/hr 57.62 grains/Rem	al – M25, Tracer (v 2,500 kems/hr 57.62 grains/kem	w/IMR4895	6						METALS FEED RATES	FEED R	ATES	۵.	OTENT	POTENTIAL POHC FEED RATES	IC FEED	RATES		
	COMP QUANT (gr/ftem)	COMP PATE (fb/hr)	CL RATE (fb/hr)	ASH RATE (Pb/hr)	HEAT VALU (BTU/hr)	ALUM RATE (Ib/hr)	ANT RATE (fb/hr)	BA RATE (lb/hr)	CR RATE (1b/hr)	LEAD RATE (Ib/hr)	SH RATE (Ib/hr)	PATE (16/hr)	ZINC RATE (16/hr) (DBP RATE (16/hr) (DNT RATE (16/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (fb/hr)
rder Mide	0.09	0.2893	0.0000	0.2429	1,712 521 (437)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nate	0.50001 4.50001 0.70002	1.6072	0.0000	0.9005	(1,265) 121,848 36,847			00.00	00.00	00.0	0.00	0.00	0000	0.00	0.00	0.00	0.00	0.00	0.00
	0.22	0.6429	0.0000	0.0000	1,594 56,501	0.00	8 8 8 8	0.00	0.00	0.00	0.00	0.00	0 0 0 0	0000	0.000	8 8 8 8	0.00	0.00	0.00
ated Rubber	0.36001	1.1572	0.7522	0.0000	4,860		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ride Sxide Sxide	0.96003 0.50001 0.46001 0.02	3.0858 1.6072 1.4786 0.0643	0.0000 0.0000 0.0000 0.0000	0.0000 1.0349 1.2864 0.0000	27,519 (1,123) (18) 76	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.000	00.00	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	57.6202	57.6202 185.2077	2.5027	13.2035	916,172	0.13	0.21	0.32	0.00	0.31	1.08	0.00	8.0	0.0	14.46	2.25	0.00	0.00	0.36

	25																		
TE	30 cttl = M2/, integer (W/i=2/5) 22,500 kems/hr	27, Integer () terms/hr	W/I-2/6}						¥	METALS FEED RATES	EED RA	TES	ă	OTENTI	POTENTIAL POHC FEED RATES	C FEED	RATES		
	21.40 {	21.40 grains/item																	
	COMP	COMP	ರ	ASH		⊩-	₩-	-	1	D	1	\vdash	⊩	⊩	⊩	₽-	⊩-		တ
	QUANT	RATE	RATE	RATE			_	_			_	_			_		_		RATE
	(gr/kem)	(IP/IPI)	(Ip/Ip)	(Ip/Ipi)	(BTU/hr)	(Ip/yri)	(Ip/Jul)	i) (Jay)	(Je/Jul)	(10/Jul)	E) (Jay)	(IP/Jrid)	(Jp/Jrd)	(IP/Jul)	(Jayuri)	(Ib/hr)	(Po/hr)	(Jeyuri)	(To/hr)
vder	0.04	0.1286	0.0000	0.2429	1,712	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
uffide	0.09	0.2893	0.0000	0.2483	521	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	0.19	0.6107	0.000	0.3583	(437)	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ep.	0.84002	2.7001	0.0000	2.4571	0	0.00	0.00	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
onate	0.1	0.3214	0.0000	0.1801	(253)	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.0	0.0	0.00	0.0	0.00	0.0	0.00
of Park	0.46001	1.4786	0.0000	0.1289	21,965	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
110	0.60001	1.9286	0.0000	0.0000	25,477	0.0	00.0	00.0	0.00	00.0	00.0	0.00	9 6	1.93	0.00	8 8	0.0	0 0	0.00
	- 6	0.3214	0000	0000	10 527	3 8	3 8	3 8	3 8	3 8	3 8	3 8	3 8	3 8	2 6	3 8	8 8	3 8	3 8
6	0.1	0.3214	0.000	0.0000	4,531	00.0	0.00	00.0	0.00	00.0	00.0	000	0.00	00.0	000	000	000	000	0.00
2	0.22	0.7071	0.0000	0.3370	1,594	00.0	00.0	0.00	0.00	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1.62005	5.2073	0.0000	8.6353	55,473	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	11.7	37.6073	0.0000	0.000	163,140	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1.40004	4.5001	0.0000	0.0000	30,700	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.50	0.00
	0.03	0.0964	0.0000	0.0000	340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	0.1	0.3214	0.0000	0.1810	(227)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
ate	1.83005	5.8823	0.0000	2.8800	(4,623)	0.00	0.00	0.00	0.00	0.00	2.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ilate	0.26	0.9000	0.000	0.1800	0	0.00	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
pxide	1.47004	4.7251	0.0000	4.1109	(23)	0.00	0.00	0.00	0.00	0.00	3.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.02	0.0643	0.0000	0.0000	92	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.01	0.0321	0.0000	0.0041	495	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
																_			
						-											-	-	
										_		-	_						
								_		_			_						
								_	_		_				_				
			_	_													_		
																		ľ	
	21.4003	88.7866	0.0000	19.9439	313,660	0.13	0.21	2.51	0.00	0.31	6.01	0.00	0.00	1.93	0.32	0.64	0.00	4.50	0.12
	_	_	_	_	_	-	-	-	_	_	_	_	_	-	-	_	-	-	

26 30 cal – M27,Tracer (w/l-280) 22,500 kema/hr

0 8 9	000	1																	
	QUANT Qu/kem)	COMP RATE (fb/h1)	CL RATE (fb/hr)	ASH RATE (Ib/hr)	HEAT VALU (BTU/hr)	ALUM RATE (fb/hr)	ANT RATE (Ib/hr)	BA RATE (16/hr)	CR RATE (fb/hr)	LEAD RATE (Ib/hr)	SR RATE (lb/hr)	TIN RATE (b/hr)	ZINC RATE (Ib/hr)	DBP RATE (Ib/hr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
oxide 2	0.04 0.09 0.19 0.10 0.00001 0.1 0.2 1.62005 1.40004 0.03 0.1 1.40004 0.03 0.03	0.1286 0.2683 0.6107 0.3214 1.9286 0.3214 0.3214 0.7071 5.2073 37.6073 4.5001 0.0964 0.3214 5.8823 0.9000 7.2002	0.000.0 0.000.	0.2429 0.2463 0.1851 0.1851 0.1852 0.0000 0.0000 0.0000 0.0000 0.0000 0.1810 0.1800 0.1800 0.0000	1,712 (437) (253) (253) 26,282 25,477 2,708 10,527 4,531 1,594 55,473 163,140 30,700 3	0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.	80.000000000000000000000000000000000000	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000	900000000000000000000000000000000000000	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
2	21.4103	66.8167	0.0000	19.0613	317,431	0.13	0.21	. 0.32	0.00	0.31	7.81	0.00	0.00	1.83	0.32	79:0	0.00	4.50	0.12

R: ATE: 3.	27 30 cal – M72,Balf- 22,500 (tema/hr 53.89 grain/fle	27 30 cal – M72,Ball-Match 22,500 ltems/hr 53.89 grain/flem	itch					3	METALS FEED RATES	EED RA	TES		×	TENTIA	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (fb/hr)	CL RATE (lb/hr)	ASH RATE (lb/hr)	HEAT VALUE (BTU/hr)	AL RATE (lb/hr)	SB RATE (lb/hr) (BA RATE R (16/hr) (1	CR L RATE R (lb/hr) (ft	LEAD RATE R (16/hr) (f)	SR RATE R (lb/hr) (II	TIN Z RATE R (Ib/hr) (R	ZINC [RATE R (Ib/hr) (III	DBP I	DNT RATE R	DPA RATE F	HCB RATE (fb/hr)	NG RATE (lb/hr)	S RATE (Ib/hr)
wder wifide e ite ite	0.04 0.09 0.19 4.50001 0.70002 0.22 47.2 0.03 0.50001 0.02	0.1286 0.2893 0.6107 14.4843 2.2501 0.6429 0.7071 151.7144 0.0964 1.6072 0.0643	000000000000000000000000000000000000000	0.2428 0.2483 0.3583 0.0000 0.0000 0.0000 1.0349 0.0000	1,712 (437) 121,848 36,847 9,061 1,594 658,137 (1,123) 76	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	800 00 00 00 00 00 00 00 00 00 00 00 00	0.0000000000000000000000000000000000000
	53.6901	53.6901 172.5752	0.0000	2.2214	828,575	0.13	0.21	0.32	0.00	0.31	0.00	0.00	0.00	0.00	14.46	2.25	0.00	0.00	0.3

BTU, CHLORINE, AND ASH FEED RATES

l: (TE:	28 30 cal – M 22,500 l	28 30 cal - M190, Blank (w/WC Blank) 22,500 kema/hr 18.03 grain/hem	(w/WC Bla	rak)				<u> </u>	METALS	METALS FEED RATES	MTES			OTENT	POTENTIAL POHC FEED RATES	IC FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (B/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (lb/hr)	TIN RATE (Ib/hr)	ZINC RATE (Ib/hr)	DBP RATE (tb/hr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
onate o oracle o oxide	0.04 0.09 0.19 0.11 0.11 0.22 0.22 0.22 1.40004 0.03 2.24007	0.1286 0.2893 0.8107 0.3214 1.2857 0.7071 35.3573 4.5001 0.09643	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.2429 0.2483 0.3583 0.1801 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,712 521 (453) (253) (653) 16,985 2,706 1,594 153,380 340 (90) 76	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	000000000000000000000000000000000000000	00.000000000000000000000000000000000000	0.00 0.	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	800000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00
	16.0302	51.5255	0.0000	7.6308	217,763	0.13	0.21	0.32	00:0	0.31	5.26	00.0	0.00	1.29	0.32	19.0	00.0	4.50	0.0

BTU, CHLORINE, AND ASH FEED RATES

	23																		
TE:	30 cal – M1909,Blo 22,500 kema/hr	30 cal – M1909,Blank (w/SR 4990) 22,500 kema/hr	(w/SR 495	Q				3	METALS FEED RATES	FEED RA	VTES		æ	OTENTL	POTENTIAL POHC FEED RATES	C FEED	RATES		
••	17.99	17.99 grain/Nem																	
	COMP	COMP	ರ	ASH	HEAT	-	-	1		11	11	11	-	-	-	11	11-		တ
	QUANT	RATE	RATE	RATE	VALUE				_			_		_					RATE
	(gr/ftem)	(lb/hr)	(Ib/hr)	(Ib/hr)	(BTU/hr)	(lb/hr)	(Ip/Jul)	(IP/Jrd)	(Ib/hr)	(Jeyyri)	(IP/Jrd)	(Je/Ju)	(IP/Jri)	(Jayyur)	(Jeyyur)	(Jp/Jri)	(Jap/Juri)	(Jayyur)	(lb/hr)
wder	0.04	0.1286	0.0000	0.2429	1,712	0.13	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
uffide	0.09	0.2893	0.0000	0.2483	521	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
nate	0.1	0.3214	0.000	0.3214	0		0.00	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.80002	2.5715	0.0000	1.5087	(1,841)		0.00	1.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ite	0.40001	1.2857	0.000	0.000	16,985	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00	1.29	0.0	0.0	0.0	0.0	0.00
	0.1	0.3214	0.0000	0.0000	2,708	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.32	0.00	0.00	0.0	0.00
	0.2	0.6429	0.000	0.000	10,527	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.64	0.00	0.00	0.00
	0.02	0.1607	0.0000	0.0000	2,265	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.00	00.0	0.00	0.0	0.0
•	0.22	0.7071	0.000	0.3370	1,594		0.0	0.00	0.0	0.31	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.0
	11.8	37.9287	0.0000	0.0000	164,535		0.0	0.0	0.0	000	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00
	1.40004	4.5001	0.0000	0.0000	30,700	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	4.50	0.00
	0.03	0.0964	0.0000	0.0000	340		0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.0	0.00	0.00
rate	0.50001	1.6072	0.000	0.8918	(460)	_	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00
epixo	2.24007	7.2002	0.000	6.2642	(06)	0.00	0.0	0.00	0.00	0.00	5.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.02	0.0643	0.0000	0.0000	76		0.00	0.00	0.00	0.00	0.0	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00
								-											
	17.9902	57.8256	0.0000	9.8144	229,572	0.13	0.21	1.59	0.00	0.31	5.26	0.00	0.00	1.29	0.32	0.64	0.00	4.50	0.0

E	30 38cal Ball, Special – PGU-12/B 22,500 frema/hr 6.31 grain/frem	30 Ball,Special – PG ,500 ftems/hr 6.31 grain/fem	3U-12/B					-	METALS	METALS FEED RATES	MTES		<u>a.</u>	OTENTI	POTENTIAL POHCFEED RATES	C FEED	RATES		
	COMP QUANT (gr/Rem)	COMP RATE (Ib/hr)	CL RATE (fb/hr)	ASH RATE (Po/hr)	HEAT VALUE (BTU/M)	AL RATE (Pohr)	SB RATE (Ib/hr)	BA RATE (lb/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (Ib/hr)	TIN RATE (b/hr)	ZINC RATE (Ib/hr)	DBP RATE (Ib/hr)	DNT RATE (Phh)	DPA RATE (ID/hr)	HCB RATE (Duhr)	NG RATE (Ib/hr)	S (Ib/hr)
ep .	0.03 0.13 0.03 0.03 0.13 3.44001 2.40007 0.01	0.0964 0.4821 0.0964 0.0964 0.4179 11.0572 7.7145 0.0321	00000 00000 00000 00000 00000 00000 0000	0.0828 0.1829 0.1766 0.0000 0.0000 0.0000 0.0000	174 (345) (345) 579 4,366 1,359 842 47,966 52,626 38	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70.00 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000	0.00 0.	8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0	0.00	0.00
	6.31008	20.2824	0.000	0.7413	107,707	0.00	70.0	0.28	0.00	0.18	0.00	0.00	0.00	0.00	0.00	0.00	00.00	7.77	0.01

3: .: .:	31 38cal Ball.Special – M41 (w/SR 7325) 22,500 tema/hr 5.40 grain/hem	31 Ball,Special – M4 ,500 tema/hr 5.40 grain/læm	1 (w/SR 73	325)				2	METALS FEED RATES	EED PA	TES		¥.)TENTI/	POTENTIAL POHC FEED RATES	CFEED	RATES	,	
	COMP QUANT (gr/ltem)	COMP RATE (%)/hr)	CL RATE (fb/hr)	ASH RATE (15/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (fb/hr)	BA RATE 1	CR L RATE F (fb/hr) (f	LEAD RATE R (15/hr) (11	SR RATE R (lb/hr) (II	TIN Z RATE R (Ib/hr) (III	ZINC RATE R (Ib/hr) (R	DBP RATE F	DNT RATE F	DPA RATE (16/hr) (HCB RATE (16/hr) (NG RATE (fb/hr) (S RATE (Ib/hr)
원 원 원	0.03 0.15 0.06 0.07 0.07 0.07 0.01 0.01	0.0964 0.4821 0.0964 0.01929 0.01423 0.0321 0.0321	000000000000000000000000000000000000000	0.0828 0.1768 0.1768 0.0000 0.0000 0.0000 0.0000	174 (345) (345) (345) (341) (341) (341) (341) (341) (341) (341) (341) (341) (341) (341) (341) (341) (341) (341) (341) (341) (342) (342) (342) (343) (3	0.0000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00.00000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.	8.0.0000000000000000000000000000000000	8.0.0.0.0.0.0.0.0	2 8 8 8 8 8 8
	5.40002	17.3572	0.0000	0.7413	77,247	0.00	0.07	0.28	0.00	0.18	0.0	0.00	0.0	0.00	0.61	0.19	0.00	0.0	0.0

BTU, CHLORINE, AND ASH FEED RATES

32 38cal Ball, Special – M41 (w/HPC1) 22,500 itema/hr

ij	4.84	22,500 items/hr 4.84 grain/item							METALS	METALS FEED RATES	MTES			OTENT	POTENTIAL POHC FEED RATES	CFEEL	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (fb/hr)	CL RATE (Mo/hr)	ASH RATE (10/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (fb/hr)	BA RATE (lb/hr)	CR RATE (lb/hr)	LEAD RATE (Ib/hr)	SR RATE (lb/hr)	TIN RATE (Ib/hr)	ZNC RATE (Rofur)	DBP RATE (Ib/hr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
apijir	0.03	0.0964	0.0000	0.0828	174	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00	0.00	0.00	00.0	0.00	0.00	
2	0.03		0.0000	0.0000	5.145		0.00	0000	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00	0.00	0.00	
	90.0		0.0000	0.0000	3,158		0.0	0.0	0.00	0.0	0.0	0.00	0.00	0.0	0.0	0.19	0.00	0.00	
	0.02		0.0000	0.0000	906	0.00	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.0	0.00	0.00	0.00	9 6	,
2	2.48007	7.9717	0.0000	0.1992	34.581	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	1.60005		0.0000	0.0000	35,086		0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	5.14	
fate	0.00	0.2571	0.0000	0.1656	(180)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
														West of the second					
	4.84012	15.5575	0.0000	0.9069	82,994	0.00	0.07	0.26	0.00	0.18	0.00	0.0	0.00	0.00	0.61	0.19	0.00	5.14	
		- 11				- 1											H		-

7: VTE: I:	33 40mm Projectile,AP-T-M81 1,300 Rems/hr 150.17 grain/Rem	33 nm Projectile,AP-T 1,300 kema/hr 150.17 grain/hem	M81					3	METALS FEED RATES	FEED RV	ITES		ď	POTENTIAL POHC FEED RATES	NL POH(C FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (fb/hr)	CL RATE (lb/hr)	ASH RATE (lb/hr)	HEAT VALUE (BTU/ħr)	AL RATE (Ib/hr)	SB RATE (16/hr) (BA RATE F (fb/hr) (f	CR L RATE P	LEAD RATE P (16/hr) (1	SR RATE P (lb/hr) (i	TIN Z	ZNC PATE F (15/hr) (1	DBP 1 RATE R (fb/fhr) (ft	DNT RATE F	DPA RATE F			S RATE (fb/fhr)
also	14.515 37.8114 27.621 70.2226	2.6956 7.0221 5.1296 13.0413	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.3850	11,195 140,442 45,746 (10,250)	8 8 8 8	8.00 8 8.00 8	00.00 00 00.00 00 00.00 00	8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	8 8 8 8	0.00 0.00 8.8 8.8	8 8 8 8 6 6 6 6	8 8 8 8	8 8 8 8 6 6 6 6	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	00.0 00.0 00.0 00.0 00.0	8.0.0 8.0 8	0 0 0 0 0 0 0 0
	150.17	27.8867	2.9100	6.3850	187,133	00:0	00:0	0.0	0.00	0.00	5.35	0.00	00.0	0.0	0.00	0.00	0.00	0.00	0.0

<u>2</u>	34 40mm Practice Ctg. – M385 660 Rema/hr 69.62 grain/flem	34 m Practice Ctg. – 660 kema/hr 69.62 grain/fem	M385					•	IETALS	METALS FEED RATES	NTES		4	POTENTIAL POHCFEED RATES	AL POH	CFEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (fb/hr)	CL PATE (Pb/hr)	ASH PATE (Pb/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE ((b/hr) (PATE (PATE)	ZINC RATE F	DBP RATE (PM)	DNT RATE (16/hr)	DPA PATE ((b/hr))	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (fb/hr)
vder uffide take	0.39 0.04 1.16 0.05 1.39 0.23 54.635 10.861 0.77 0.02	0.0368 0.0038 0.1094 0.0047 0.1311 0.0189 5.1513 1.0335 0.0726 0.0019	000000000000000000000000000000000000000	0.0693 0.0035 0.0042 0.0000 0.0000 0.0000 0.0403 0.0000	490 (78) 71 71 71 71 71,050 7,050 2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00.00.00.00.00	0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00.00.00.00.00	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0000000000
	91.616	6.5638	0.0000	0.1862	31,757	40.0	0.00	90.0	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	1.03	0.0

BTU, CHLORINE, AND ASH FEED RATES

35 40mm Practice Ctg. – M407 660 fema/hr 64.48 grain/fem

Ë

METALS FEED RATES

	84.48 g	84.48 grain/item																	
	COMP	COMP	7	ASH		-	$\overline{}$	$\overline{}$	-	├ ─		_	-	-	-	$\overline{}$	-	늘	တ
-	QUANT	RATE	RATE	RATE	_	RATE			_			_	RATE	_	RATE		_	RATE	RATE
	(gr/kem)	(lp/hr)	(Ib/hr)	(IIP/Jul)	(BTU/hr)	(Jp/Jrr)	(up/qu)	(up/yu)	(IP/Ju)	(Jp/Jp/)	li) (II)		(IP/PI)	(Julyan)	(IIP/Jul)	(up/qu)	(Mo/hrr)	(Mo/hr)	(lb/hr)
wder	0.39	0.0368	0.0000	0.0695	490	0.04	0.00	0.00	0.00	0.00	0.00	0.00	00:0	0.00	0.00	0.00	0.00	0.00	0.00
uffide	0.07	0.0066	0.0000	0.0057	12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.13	0.0123	0.0000	0.0072	6	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.05	0.0047	0.0000	0.0000	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.05	0.0019	0.0000	0.0000	27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.83	0.0783	0.0000	0.0600	88	0.00	0.00	0.00	0.00	90.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.29	0.0273	0.0000	0.0130	62	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3.01	0.2838	0.0000	0.0000	1,231	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2.1	0.1980	0.0000	0.0000	1,351	0.00	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.20	0.00
lorate	17.751	1.6737	0.4842	0.7662	751	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
rate	0.11	0.0104	0.0000	0.0058	ව	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.29	0.0273	0.0000	0.0000	113	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ponate	20.833	1.9643	0.0000	0.9352	175	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6.94	0.6543	0.000	0.0000	2,606	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.65
	0.03	0.0028	0.000	0.0000	6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	31.635	2.9827	0.0000	2.9827	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
										-									
															-				
													_						
															-	_			
												_							
	84.479	7.9652	0.4842	4.8452	896'9	0.04	0.00	0.01	0.00	0.07	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.66
										_	-		\dashv		-				

BTU, CHLORINE, AND ASH FEED RATES

. ¥.	36 .45 caliber Ball,HPT – M1(w/HPC18) 22,500 kems/hr 8.06 grain/hem	36 Ulber Ball, HPT – h ,500 kems/hr 8.06 grain/flem	M1(w/HPC	(9)					METALS FEED RATES	FEED R	ATES		4	OTENT	POTENTIAL POHCFEED RATES	CFEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SH RATE (Ib/hr)	PATE (Ib/hr)	ZINC RATE (Ib/hr)	DBP RATE (Ib/hr) (DNT RATE (fb/hr) (DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
inte e same e sa	0.04 0.05 0.07 0.07 0.09 1.51004 0.09 0.09	0.1286 0.7071 0.1286 0.1607 0.2250 0.6107 18.1286 4.8537 0.2893 0.4179	00000 00000 00000 00000 00000 00000 0000	0.1103 0.4149 0.2354 0.0000 0.0000 0.0000 0.1605 0.2691 0.0000	232 (506) 771 2,265 3,396 3,171 1,377 78,642 33,112 (83) (292) 38	00.00	800000000000000000000000000000000000000	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
	8.06006	25.9073	0.0000	1.4813	122,123	0.00	60.0	0.37	0.00	0.27	0.0	0.00	0.00	0.0	0.00	0.00	0.00	4.85	0.10

	37 .45 caliber Ball,HP7 22,500 (terns/hr 7.94 grain/fte	37 .45 caliber Ball,HPT-M1 (w/SR7970) 22,500 kema/hr 7.94 grain/fem	11(w/SR79	(02				2	METALS FEED RATES	FEED RA	(TES		¥) TENTI/	POTENTIAL POHCFEED RATES	C FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hi)	AL RATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (Po/hr) (CR L	LEAD RATE P	SA RATE R (lb/hr) (il	TIN Z RATE R (Ib/hr) (R	ZINC RATE R (Ib/hr) (1	DBP 1 RATE R (Pb/hr) (R	DNT I PATE R (16/hr) (1	DPA RATE F	HCB RATE (Rb/hr) (NG RATE (Ib/hr)	S RATE (lb/hr)
e e e e e e e e e e e e e e e e e e e	0.04 0.35001 0.09 0.09 0.03 0.10 0.10 0.01	0.1286 0.7071 0.1286 1.1250 0.2893 0.0964 0.6107 22.4036 0.0321	000000000000000000000000000000000000000	0.1103 0.4149 0.2354 0.0000 0.0000 0.0000 0.0000 0.0000	232 (506) 771 4,737 1,355 1,375 97,187 38	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8	00.00 00	80.000000000000000000000000000000000000	0.00	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	8.0.0.0.0.0.0.0.0	00.000000000000000000000000000000000000	0 0 0 0 0 0 0 0
	7.94003	25.5215	0.0000	1.0517	114,672	0.00	0.09	0.37	0.00	0.27	0.00	0.00	0.0	0.00	1.13	0.29	0.00	0.0	0.03

38 .45 caliber Blank - M9 22.500 itema/hr

uffide nate	QUANT																	7 2 2	
fide ate	(пол/це)	COMP RATE (Po/hr)	CL RATE (lb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Po/hr)	BA RATE (Ib/hr)	CR RATE (lb/hr)	LEAD RATE (Ib/hr)	SR RATE (fb/hr)	TIN RATE (Ib/hr)	ZINC RATE (Ib/hr)	FE	RATE (Po/hr)		RATE (Byhr)	RATE RATE (16/hr) (16/hr)	DNT DPA RATE RATE (1b/hr) (1b/hr)
	0.04	0.1286	0.0000	0.1103	232	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	88		00.0	0.00 0.00	00.0
	0.72002	2.3144	0.0000	1.3578	(1,657)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0		0.00	0.00	0.00 0.00 0.00
	0.13	0.4179	0.0000	0.0000	6,843	0.00	0.00	0.00	0.00	00.0	00.0	00.0	0.00	0.00			00.00	0.00 0.42	0.00 0.42 0.00
	0.19	0.8107	0.0000	0.2911	1,377	0.00	0.0	0.00	0.00	0.27	0.00	0.00	0.00	0.00		0.00		00.0	0.00
ate	0.40001	1.2857	0.0000	0.0000	(368)	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.00		0.00	0.00	0.00	0.00
		Te The																	
	11.4701	36.8681	0.0000	3.0296	145,695	0.00	60.0	1.45	0.00	0.27	0.00	0.00	0.00	0.00		8	0.00 0.42	0.42	

	39	;		į															
ITE:	.45 caliber Tracer - M26 (w/SR 22,500 items/hr	Tracer – M. tems/hr	26 (w/SH)	(0,267.0)				*	METALS FEED RATES	FEED RA	TES		Z.	DTENTL	POTENTIAL POHCFEED RATES	C FEED	RATES		
	12.38 g	12.38 grain/Nem																	
	COMP	COMP	ರ	ASH	HEAT	٧٢	SB	BA	CR	LEAD	SR	TIN 2	ZNC	DBP	DNT	DPA	HCB	NG	တ
	QUANT	RATE	RATE	RATE	VALUE	RATE	_		RATE	RATE	RATE				RATE		_		RATE
	(gr/ftem)	(Ib/hr)	(lp/hr)	(Ip/Jul)	(BTU/hr)	(lp/hr)	(up/pu)	(lp/pr)	(lp/hr)	(Lefter)	(IP/Jul)	(lb/hr)	(tr//q)	(Ip/Jr)	(Ip/pr)	(Jeyyu)	(Itp/pri)	(Ja/Ju)	(fb/hr)
uffide	0.04	0.1286	0.0000	0.1103	232	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
	0.22	0.7071	0.0000	0.4149	(206)	0.00	0.00	0.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-8	2.10008	6.7502	0.0000	6.1427	•	0.00	0.00	5.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ş	0.04	0.1286	0.000	0.2354	171	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ate	0.25	0.8036	0.0000	0.0701	11,937	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.3	0.9643	0.0000	0.0000	8,123	0.00	0.00	00:0	0.00	0.00	0.00	0.00	0.00	0.00	96.0	0.00	0.00	00.0	0.00
	90.0	0.2571	0.0000	0.0000	4,211	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.0	0.0	0.00	0.26	0.00	0.0	0.0
	0.02	0.0643	0.0000	0.0000	906	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.19	0.6107	0.0000	0.2911	1,377	0.00	0.00	0.00	0.00	0.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
owder .	1.18003	3.7930	0.000	6.2899	40,408	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.97002	19.1393	0.000	0.0000	83,243	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nte	1.00003	3.2144	0.000	1.5738	(2,527)	0.00	0.00	0.00	0.00	0.00	1.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
late	0.15	0.4821	0.0000	0.0964	0	0.00	0.00	0.00	0.00	0.00	90.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
epixo	0.80002	2.5715	0.000	2.2372	(32)	0.00	0.00	0.00	0.00	0.00	1.88	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.01	0.0321	0.000	0.0000	38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.03	0.0964	0.0000	0.0124	1,485	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	-		_											· · · · · · · · · · · · · · · · · · ·					
														-					
	12.3802	39.7934	0.0000	17.4741	149,665	0.00	60.0	5.84	0.00	0.27	3.27	0.00	0.01	0.00	96.0	0.26	0.00	0.00	0.0

<u>ii</u>	40 .45 callber Tracer - 22,500 Nema/hr 12.58 grain/Ne	40 .45 callber Tracer – M26 (w/HPC 18) 22,500 ltema/hr 12.58 grain/ltem	26 (w/HPC	18)				-	METALS FEED RATES	FEED R.	ATES		Œ.	OTENT!	POTENTIAL POHCFEED RATES	CFEED	RATES		
	COMP QUANT (gr/Rem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (Po/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE ((b/hr) (RATE (fb/hr) (0	ZNC RATE P	DBP RATE (BATE (16/hr) (1	DPA RATE (Ib/hr) (HCB RATE (Ib/hr) (NG RATE (Ib/hr)	S RATE (Ib/hr)
uffide de de	0.04 0.22 2.10006 0.04	0.1286 0.7071 6.7502 0.1286	0.0000	0.1103 0.4149 6.1427 0.2354	232 (506) 0 0		0.00	0.00 0.37 5.47 0.00	0.00	0.00.00	0.000	0.00	0.00	0.00 00.00	0.00	0.00	0.00	0.0.0.0	0.00
1	0.25 0.06 0.10 0.06	0.8036 0.1929 0.3214 0.1929	0.0000	0.0000 0.0000 0.0000 0.0000	11,937 2,718 4,851 2,718 1,377		8 8 8 8 8	0.00	0.00000	0.00	0 0 0 0 0	0.0000	0.00	0.0000	0.00 0.00	0.0000	0 0 0 0 0	0.0000	0.0000
owder rate frate aite oxide	1.16003 4.64002 1.29004 0.11 1.00003 0.15 0.80002 0.03	3.7930 15.5572 4.1466 0.3536 0.3536 3.2144 0.4821 2.5715 0.0321	00000 00000 00000 00000 00000 00000 0000	0.2899 0.0000 0.1962 0.2277 1.5738 0.0964 2.2372 0.0000 0.0124	40,406 67,487 28,288 (101) (2,527) 0 (32) 38 1,465	0.00	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	00.00	0.00	00.00	00.0	00.00	00.00	0.00	0.0000000000000000000000000000000000000
	12.5802	40.4363	0.0000	17.8980	158,896	0.00	0.08	5.84	0.00	0.27	3.27	0.00	0.01	0.00	0.00	0.00	000	4.15	0.0

}: :TE:	41 .45 caliber Ball — N 22,500 itema/hr 5.82 grain/he	41 .45 caliber Ball – M1911 (w/SR 22,500 kema/hr 5.82 grain/liem	11 (w/SR 7	7970 & .45 caliber Match-M1911(w/SR7970)	caliber Ma	tich – M1	911(w/Si		METALS FEED RATES	EED RV	VTES		Œ	OTENTI	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (16/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (Ib/hr) (BA RATE F	CR L RATE P	LEAD RATE P	SR RATE F (lb/hr) (1	PATE (Ib/hr) (0	ZINC RATE F	DBP RATE F	DNT RATE F	DPA RATE (HCB RATE (fb/hr)	NG RATE (Ib/hr)	S RATE (16/hr)
epige Se	0.04 0.25 0.07 0.07 0.01 0.01 0.01	0.1286 0.7071 0.1286 0.2250 0.0643 0.6107 16.0072 0.0321	000000000000000000000000000000000000000	0.1103 0.4149 0.2354 0.0000 0.0000 0.0000 0.0000 0.0000	232 (506) 771 6,789 3,685 906 1,377 69,439 38	000000000	8.00.00.00.00.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	8 0 0 0 0 0 0 0 0	800000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.	8 8 8 8 8 8 8 8	88888888	0.0000000000000000000000000000000000000
	5.82002	18.7072	0.0000	1.0517	82,711	0.00	0.09	0.37	0.0	0.27	0.00	0.00	0.0	0.00	0.80	0.23	0.00	0.0	0.02

caliber Line Throwing - M32(w/HPC16)
METALS FEED RATES 4.5 4 18 42 i.5 caliber Ball – M1911 (w/HPC 11 22,500 kems/hr 8.00 grain/kem 45

POTENTIAL POHC FEED RATES

ij

S RATE (Ib/hr) NG RATE (16/hr) 00.00 HCB RATE (Ib/hr) DPA RATE (lb/hr) DATE (Ib/hr) DBP RATE (15/hr) ZINC RATE (Ib/hr) PATE (Po/hr) SR RATE (lb/hr) LEAD RATE (15/hr) CR RATE (b/hr) 0.00 0. BA RATE (Ib/hr) SB RATE (Ib/hr) AL RATE (b/hr) 232 (506) 771 2,716 3,881 1,377 1,377 56,193 23,683 (101) (202) HEAT VALUE (BTU/hr) 0.1103 0.4149 0.2354 0.0000 0.0000 0.2911 0.0000 0.1962 0.1863 0.0000 ASH RATE (b/hr) 0.0000 CL PATE (16/hr) 0.1286 0.7071 0.1286 0.1929 0.2571 0.6107 12.9536 3.4715 0.3536 0.3535 COMP RATE (B/hr) 0.04 0.04 0.06 0.05 0.05 0.19 0.19 1.06003 0.11 0.01 COMP QUANT (gr/kem) filde 2 2 . . .

90.0

3.47

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.27

0.00

0.37

0.09

0.00

90,348

1.4342

0.0000

19.2858

8.00004

BTU, CHLORINE, AND ASH FEED RATES

TE:	43 50 caliber 3,500 i	43 .50 caliber Tracer – M1 3,500 kema/hr 127.80 grain/hem	=					2	METALS FEED RATES	FEED RV	(TES		8	TENTLA	POTENTIAL POHC FEED RATES) FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (lb/hr)	CL RATE (lb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (lb/hr)	SB RATE (fb/hr)	BA RATE F	CR L RATE F	LEAD RATE F (15/hr) (1	SR RATE R (lb/hr) (ll	TIN Z RATE R (Ib/hr) (R	ZINC L RATE R (15/hr) (II	DBP L RATE R (Ib/hr) (II	DNT L RATE R (Ib/fn) (R	DPA RATE F (Ib/hr) (1	HCB RATE (Ib/hr) (NG RATE (Ib/hr)	S RATE (lb/hr)
uffide	0.00	0.1000	0.0000	0.0858	180	00.00	0.00	0.00	00.0	00.00	00.00	00.0	00.0	0.00	00.0	00 0	00.0	00.0	0.02
9 0	9.24008	4.6200	0.0000	4.2042	0		0.00	3.74	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00
9 9	5.06004	2.5300	0.0000	0.1556	37,583	0.00	0.0	0.00	0.00	0.0	9 0	0.0	0.00		0.0	8 8	0.00	0.00	0.00
	3.10002	12.0000	0.0000	0.0000	101,088	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00
	- 5	0.5000	0.0000	0.0000	7,048	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	00.0	0.00
	0.87	0.4350	0.0000	0.2073	980	0.0	0.0	0.00	0.00	0.19	8 0	0.0	0.0	0.0	0.0	0.0	8.0	0.00	0.00
owder	17.94	8.9700	0.0000	14.8750	95,558	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00
fate	23	2000	00000	0.0000	(839)	0 0	0 0	0 0	000	000	000	000	000	8 8	000	9 0	9 0	0.00	0.00
ate	20.31	10,1550	0.0000	4.9719	(7,982)		0.00	0.00	0.00	0.00	4.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
late	3.05002	1.5250	0.000	0.3050	0		0.00	0.00	0.00	0.00	0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
epixo	16.29	8.1450	00000	7.0862	(102)	0 0	0 0	00.0	00.0	000	0.85	00.0	0.00	8 6	000	8 8	9 6	0 0	0.00
	0.11	0.0550	0.0000	0.0071	847	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	127.8	63.9001	0.0000	33.1818	309,857	0.00	0.07	4.00	0.00	0.19	10.35	0.00	0.01	0.00	12.00	1.55	0.00	0.00	0.26

TE:	.50 calber Ball, HPT – M 1 8,000 kema/hr 69.00 grain/kem	8,000 Rema/hr 69.00 grain/Rem						-	2013	LEED IN	METALS FEED RATES								
	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (Po/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (16/hr)	LEAD RATE (fb/hr)	SR RATE (16/hr) (TIN RATE (16/hr)	ZINC PATE (16/hr) (DBP RATE (b/hr) (DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (lb/hr)	S RATE (lb/hr)
iffide state of the state of th	0.290001 2.40002 0.17 2.40002 3.60004 1.00001 0.87 4.50002 2.6.4 1.20001 1.20001 0.06	0.2286 1.1314 2.7428 0.1943 27.4286 2.7429 1.1429 0.0114 0.9943 30.1715 1.3714 0.0686	00000 00000 00000 00000 00000 00000 0000	0.1962 0.6638 1.5368 0.0000 0.0000 0.0000 0.0000 0.7724 0.0000	412 (810) (2.159) 1,166 362,332 23,106 67,376 16,109 16,109 22,310 22,310 (967) (967)	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.43 27.43 20.00	0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00
	69.0002	78.8574	0.0000	4.7589	696,713	0.00	0.16	09.0	00.0	0.44	0.00	0.00	0.00	27.43	2.74	4.11	00.00	30.17	0.36

<u>:</u> ::: :::	45 .50 caliber Incendiary – M1 7,600 kema/hr 103.00 grain/hem	45 caliber Incendlary 7,600 itema/hr 103.00 grain/hem	- M1					•	METALS FEED RATES	FEED R	ATES			OTENTI	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (lb/hr)	CL RATE (Ib/hr)	ASH RATE (lb/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr) (LEAD RATE (fb/hr)	SR RATE (lb/hr) (TIN RATE (16/hr) (ZINC RATE (16/hr) (DBP RATE (05/hr) (DNT RATE (16/hr) (DPA RATE (Ib/hr)	HCB RATE (fb/hr)	NG RATE (Ib/hr)	S RATE (fb/hr)
ıfide	17.99	0.2171	0.0000	0.1864	391 (13,985)	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.0 0.00	0 0 0 0 0 0	0.0	0.0 0.0	0.0 0.00	0.03
onate Se	2.40002	2.6057	0.0000	1.4600	(2,051)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00
ţţ.	2.40002	26.0572	0.0000	0.0000	21,951	00.0	0.00	00.0	000	8 8 8	0.00	0.00	0 0 0	8 8 8	0.00	0 0 0	0 0 0	0 0 0	0.00
	1.00001	1.0657	0.0000	0.0000	15,303	8 8 8	8 8 8	8 8 8	8 8 8	8 8 8	8 8 8	8 8 8	8 8 8	8 8 8	8 8 8	000	8 8 8	00.0	0.00
	0.87	0.9446	0.0000	0.4502	2,129	0.00	0.0	0.0	0.00	0.42	0.00	0.0	0.00	0.0	0.0	0.0	0.0	9.6	0.00
uminum Alloy	4.50002	4.8857	0.0000	0.0000	21,194	0.0	0.0	0.0	0.0	8 8	0.0	8 8	8.0	8 8	0.0	8 8	0.0	0.0	0.00
rate	26.4	1.3029	0.0000	0.0000	195,538 (373)	0.0	0.0	0.0	0.00	0.0	0.00	0.0	00.0	0.0	0.00	00.0	0.00	0.00	0.00
	1.20001	1.3029	0.0000	0.7338	(919)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.33
	90.0	0.0651	0.0000	0.0000	£		08.0	0.00	0.0	00.00	0.00	0.0	0.00	0.00	0.00	0.00	08.0	00.0	0.00
	103	103 111.8288	0.0000	47.4809	862,802	6.64	0.16	10.35	0.00	0.42	0.00	0.00	00.0	26.06	2.61	3.91	0.00	28.66	0.36

¥	46 .50 caliber Blank - M1 8,000 kems/hr 52.40 grain/ilem	46 S,000 Kems/hr 52.40 grain/liem						2	METALS FEED RATES	FEED R	NTES		Z.	DTENTIV	POTENTIAL POHCFEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (ID/hr)	CL RATE (fb/hr)	ASH RATE (Pb/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (ID/hr)	LEAD RATE (SR RATE (CD/hr) (1	PATE (16/hr)	ZINC RATE (Ib/hr) (I	DBP RATE (15/hr) (1	BATE (6/hr) (0	DPA RATE (16/hr) (HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
on the control of the	0.99001 0.5 0.17 0.90001 0.5 0.01 0.87 42.0001 5.10001 5.10001 0.05	0.2286 1.1314 0.5714 0.1943 1.0286 0.5714 0.0114 0.9943 48.0001 5.8286 0.2286 0.0686	0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0	0.1962 0.3638 0.3558 0.0000 0.0000 0.4739 0.0000 0.1287 0.0000	412 (810) (450) 1,186 13,588 4,814 13,101 3,222 78 2,241 208,224 39,763 (161) 81	0.00	1.0000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.00 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00.00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00.000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	00.000000000000000000000000000000000000
	52.4001	59.8859	0.0000	2.1385	285,268	00:0	0.18	0.60	0.00	0.44	0.00	0.00	0.00	1.03	0.57	0.80	0.00	5.83	0.0

.: EE:	47 .50 caliber Blank – M1A1 8,000 kema/hr 52.70 grain/lem	47 zaliber Blarık — M1 8,000 kems/hr 52.70 grain/flem	¥.					3	METALS FEED RATES	EED RA	NTES		ĸ)TENTI/	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (fb/hr)	CL RATE (fb/hr)	ASH RATE (16/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (lb/hr)	BA RATE F (Ib/hr) (1	CR L RATE F	LEAD RATE R (16/hr) (1	SA RATE R (lb/hr) (l	TIN 2 RATE R (Ib/hr) (R	ZINC 1 RATE R (fb/hr) (ft	DBP 1 RATE F (fb/hr) (0	DNT RATE F (15/hr) (1	DPA RATE (Ib/hr) (HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (fb/hr)
ep e	0.99001 0.17 0.017 0.87 34.8 34.8 0.06	0.2286 1.1314 0.1943 0.0114 0.9943 39.8858 17.7143 0.0688	0000:0	0.1962 0.0638 0.3558 0.0000 0.0000 0.0000	412 (810) 1,166 78 2,241 173,024 120,847 120,847	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	8.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0	8.00.00.00.00.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0000000
	52.7001	60.2287	0.0000	1.6896	297,039	0.00	0.16	0.60	0.00	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.71	0.03

<u>u</u>	48 .50 caliber Ball AP-M2(w/WC860)&.50caliber ball-M2 8,000 kema/hr 63.50 grain/fem	48 caliber Ball,AP-M: 8,000 kema/hr 63.50 grain/fem	2(w/WC86)	0)&.50calib	er ball-M	8			WETALS	METALS FEED RATES	ATES		а.	OTENTI	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/Rem)	COMP RATE (Ib/hr)	CL RATE (fb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (Ib/hr)	TIN RATE (b/hr)	ZINC RATE (ID/hr)	DBP RATE (b/hr)	DNT RATE (b/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (16/hr)
fif de	0.29001 2.40002 0.17 23.5 23.5 23.5 2.40002 3.50004 0.01 0.01 1.20001 1.20001 0.06	0.2286 1.1314 2.7428 0.1943 26.8572 2.7429 1.0286 0.0114 0.9943 0.2286 29.6000 1.3714 1.3714 0.0686	00000 00000 00000 00000 00000 00000 0000	0.1962 0.6638 1.5368 0.0000 0.0000 0.0000 0.4739 0.0000 0.7724 0.0000	(810) (8110) (81159) (81166) 1,106 (85,505) 14,498 14,498 14,498 (382) (382) (382) (382)	00.00	6.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000	888888888888888888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.000 8 0.000 0.000 0.000	80.000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888888888888888888888888888888888888	888888888888888888888888888888888888888	0.00
	63.5002	72.5717	0.0000	4.7589	660,465	0.00	0.16	0.60	0.00	0.44	0.00	0.00	0.00	26.86	2.74	4.00	0.00	29.60	0.38

49 caliber Ball,AP-M2(w/IMR5010) 8,000 items/hr 정

60.50 grain/Nem

ĪË

METALS FEED RATES

POTENTIAL POHC FEED RATES

S RATE (16/hr) 0.58 0.0 NG RATE (fb/hr) 00.00 0.0 DPA RATE (fb/hr) 3.54 26.86 DNT RATE (Pb/hr) 0.0 DBP RATE (Ib/hr) 0.0 0.00 0.00 SR RATE (fb/hr) 0.44 0.00 0.60 00.00 RATE (lb/hr) 0.16 SB RATE (fb/hr) 0.0 AL PATE (Pb/hr) 412 (810) 1,186 226,245 58,018 14,498 7 2,241 239,458 (1,917) 539,470 VALUE (BTU/hr) HEAT 0.1962 0.6638 0.3558 0.0000 0.0000 0.0000 0.4739 0.0000 0.0000 3.4557 ASH RATE (16/hr) 0.0000 0.0000 CL RATE (Ib/hr) 0.2286 1.1314 0.1943 26.8572 3.5429 1.0286 0.0114 0.9943 55.2000 2.7429 0.0686 92.0001 COMP RATE (fb/hr) 0.29 0.89001 0.17 23.5 3.10003 0.90001 0.91 48.3 2.40002 0.06 80.5001 QUANT (gr/ftem) COMP fate . . .

. <u>u</u> .	50 .50 caliber API – M8 (w/WC 860) 8,000 kema/hr 78.50 grain/lem	50 Saliber API – M8 (v 8,000 Rema/hr 78.50 grain/Nem	w/WC 860)					-	AETALS	METALS FEED RATES	ATES		Œ.	OTENTL	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (fb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Mb/hr)	SR RATE (15/hr)	PATE (16/hr) (1	ZINC PATE (15/hr) (1	DBP RATE (CD/hr) (0	BATE (16/hr)	DPA RATE ((b/hr))	HCB RATE (Ib/hr)	NG RATE (Ib/hit)	S . RATE (Ib/hr)
Mide	0.45 0.45 6.99007 2.40002	0.2286 0.5143 7.9687	0.0000	0.1962 0.0000 4.6869	9,000 (5,720)	0.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00	0.00	00.00	00.000	0.00	0.00	0.00
	2.40002 2.40002 3.50004 0.90001 0.01	26.8572 26.8572 2.7429 4.0000 1.0286 0.0114 0.9943	0.0000	0.3558 0.0000 0.0000 0.0000 0.0000	1,166 354,783 23,106 65,505 14,498 78	•	000000000000000000000000000000000000000	00000000	80000000	90000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8	000000000000000000000000000000000000000	80.000000000000000000000000000000000000	2.74 0.00 0.00 0.00 0.00	000000000000000000000000000000000000000	8 8 8 8 8 8 8	000000000000000000000000000000000000000	0.00
umhum Alloy rate chlorate	7.50008 0.20002 1.20001 1.20001 0.06	8.5715 0.2286 29.6000 1.3714 1.3714 0.0686	0.0000 0.0000 0.0000 0.0000 0.3071 0.0000	14.9213 0.0000 0.7610 0.4860 0.7724 0.0000	99,447 992 201,931 317 (967) 81	3.08 0.00 0.00 0.00 0.00 0.00	00.0	00.0 00.0 00.0 00.0 00.0 00.0	00.00	0 0 0 0 0 0 0	0 0 0 0 0 0 0	00.00	00.00	00.00	00.00	00.00	00.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	78.5004	89.7147	0.3071	24.1903	764,319	3.09	0.18	4.23	0.00	0.44	0.00	0.00	0.00	26.86	2.74	4.00	0.00	29.60	0.38

<u>u</u>	51 .50 caliber API — M8 (w/IMR 50 8,000 items/hr 64.45 grain/item	51 caliber API – M8 (8,000 items/hr 64.45 grain/item	W/IMR 5010	10)				2	IETALS	METALS FEED RATES	VTES			OTENTI	POTENTIAL POHC FEED RATES	CFEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (fb/hr)	CL RATE (fb/hr)	ASH RATE (fb/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (fb/hr)	BA RATE (16/hr) (CR L	LEAD RATE F	SR RATE F	TIN /	ZINC RATE I	DBP RATE (DNT RATE (Rofti) (DPA RATE (Po/hr)	HCB RATE (No/hr)	NG RATE (fb/hr)	S RATE (fb/hr)
ep y	0.45 6.99007 0.17 23.5 3.10003 0.90001 0.01	0.2286 0.5143 7.9887 0.1943 26.8572 3.5429 1.0286 0.0114	0.0000000000000000000000000000000000000	0.1962 0.0000 4.6869 0.3558 0.0000 0.0000 0.0000	412 9,000 (5,720) 1,166 226,245 58,018 14,498 78 2,241		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	000000000000000000000000000000000000000	0.00 0.	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000
uminum Alloy	7.50008 18.3 2.40002 0.06	2.7429 2.7429 0.0686	0.0000	14.9213 0.0000 1.7661 0.0000	99,447 90,726 (1,917)	90.0 00.0 00.0	0.00	0.00	0.00	00.00	000000000000000000000000000000000000000	00.00	00.00	0.00	00.0	0.00	0.00	00.00	0.00 0.00 0.55 0.00
	64.4503	73.6574	0.0000	22.4002	494,275	3.09	0.16	4.23	0.00	0.44	0.00	0.00	0.00	0.00	26.86	3.54	0.00	00.0	0.58

. 2.	52 .50 caliber Tracer – M10 3,700 Rema/hr 106.75 grain/Rem	52 caliber Tracer – M 3,700 kema/hr 106.75 grain/liem	9					-	METALS FEED RATES	FEED R	ATES		۵.	OTENTL	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (fb/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (lb/hr)	TIN RATE (Ib/hr)	ZINC RATE (Ib/m)	DBP RATE (Ib/hr) (DNT RATE (16/hr) (DPA RATE (b/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
iffide with the state of the st	0.2 0.99 6.43006 2.40002 2.40002 2.40002 2.6.64 0.06	0.1057 0.5233 3.3987 12.6857 1.6386 0.5286 0.6539 0.4599 9.5407 12.1572 1.2686 14.0612 0.0317	0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0	0.0907 0.3970 0.2984 0.0000 0.0000 0.0000 0.2192 15.8214 0.0000 0.0000 0.0000	190 (378) (378) 50,488 106,665 26,833 7,450 36 101,637 52,738 (176) (176) 38	0.00	80°0 00°0	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	888888888888888888888888888888888888888	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00.000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888888888888888888888888888888888888	0.00
	108.75	56.4251	0.0000	29.8021	345,875	00:00	0.08	0.28	0.00	0.20	10.28	0.00	0.00	0.00	12.69	28.1	0.00	0.00	0.27

<u>: ë.</u>	53 50 caliber 2,700 i	53 .50 caliber Tracer – M17 (w/l-508) 2,700 kema/hr 138.95 graina/hem	117 (W/I-5((80					3	METALS FEED RATES	EED RV	(TES	<u>a</u>	OTENTI	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP	COMP	CL RATE				1	1	_										S RATE
	(gr/kem)	(lb/hr)	(fb/hr)	(Jp/Jrr)	(BTU/hr)	(hb/hr)	(IIP/III)	(IP/Jr)	(Japyur)	(lp/hr)	(lp/hr)	(lp/hr)	(Itp/tru)	(IIP/III)		(Ib/hr)	(Itp/Jul)	(Itp/fur)	(Nb/hr)
ılfide	0	0.0771	0.0000	0.0662	139		90.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
-	- 0	0.3819	0.0000	0.2240	(273)		0.0	0.20	00.0	0.00	0.00	0.0	00.0	00.0	0.00	0.0	00.0	0.0	0.00
8.2	90	3.3396	0.000	3.05/2	393	9 8	8 8	0.00	9 0	9 0	9 0	9 0	3 0	8 8	9 8	8 8	8 8	9 8	0.00
ete	-	0.4821	0.0000	0.0420	7,162	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	23	8.6786	0.0000	0.0000	73,108	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.68	0.00	00.0	0.00	0.00
	m +	1.1186	0.0000	0.0000	18,318	8 8	8 8	8 8	0.0	0.0	8 6	8 6	00.0	8 6	00.0	1.12	8 8	00.0	0.00
	- 0	0.0039	0.000	0.0000	8	0.0	0.0	000	00.0	00.0	0.00	0.00	00.0	0.00	0.00	0.00	00.0	0.00	0.00
	-	0.3356	0.0000	0.1599	756	0.00	0.00	0.00	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
wder	16	6.1753	0.0000	10.2405	85,785	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6	3.4714	0.0000	0.0000	15,059	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ated Rubber	3	1.1649	0.7572	0.0000	4,892	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ride	6	2.4686	1.4004	0.0000	22,015		0.00	0.00	0.00	0.00	0.0	0.00	0.0	00.0	0.00	0.00	0.00	0.00	0.00
fate	8	0.8872	0.000	0.5712	(620)		0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.00	0.0	0.0	0.00	0.00	0.18
ate	29	22.6800	0.0000	11.1041	(17,826)	0.0	0.0	0.0	0.0	0.0	9.30	0.0	0.0	0.0	0.00	0.0	0.00	0.0	0.00
late	_	0.2893	0.0000	0.0219	0		0.0	0.0	0.0	0.0	0.05	0.00	0.00	0.00	0.0	0.0	0.00	0.0	0.00
oxide	*	1.5467	0.0000	1.3457	(19)		0.00	0.00	0.0	0.0	1.13	0.0	0.0	0.00	0.00	0.0	00.0	0.0	0.00
	0	0.0231	0.000	0.0000	27	0.0	0.0	0.00	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00
	0	0.0386	0.0000	0.0020	294		0.00	0.00	0.00	0.00	0.00	0.0	00.0	0.00	0.00	0.00	0.00	0.0	0.00
											_	_						,	
										_				_					
												-							
			_							_									
			-				_											<u> </u>	
														-					
	139	53.5951	2.1576	26.9939	194,431	0.00	90:0	2.92	0.0	0.15	10.47	0.00	0.0	0.0	8.68	1.12	0.00	0.00	0.19
											_					!			

ü

54 .50 caliber Tracer – M17 (w/l-176) 3,800 (tems/hr 105.92 grains/fem

POTENTIAL POHC FEED RATES

	COMP	COMP	75	ASH	HEAT	A	SB	¥8	S	LEAD	SB	NE	ZNC	OBA	DNT	DPA	HCB	NG	S
	QUANT (gr/ftem)	RATE (Ib/hr)	(lb/hr)	RATE (Ib/hr)	m =	RATE (Ib/hr)	H C	40	W C		RATE (Ib/hr)	111 0	RATE (Ib/hr)	RATE (Ib/hr)	RATE (Ib/hr)	RATE (Ib/hr)	RATE (Ib/hr)	m c	RATE (Ib/hr)
Mide	0.2	0.1086	0.0000	0.0932	196	0.00	90.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	00.0	00.0	0.00	0.02
	0.99	0.5374	0.0000	0.3153	(382)	0.00	000	0.28	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00
	9.24008	5.0160	0.0000	4.5646	0	0.00	0.00	4.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.17	0.0923	0.0000	0.1690	254	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	1.25001	0.6786	0.0000	0.0592	10,080	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	22.5	12.2143	0.000	0.0000	102,893	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.21	0.00	0.00	0.00	0.00
	2.90002	1.5743	0.0000	0.0000	25,781	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	1.57	0.00	0.00	0.00
	0.0	0.0054	0.0000	0.0000	37	8 8	000	8 0	000	8 8	00.0	000	000	000	000	0.00	000	00.0	0.00
	0.87	0.4723	0.0000	0.2251	1,065	0.00	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
wder	16.06	8.7183	0.0000	14.4575	92,876	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OTTO STATE OF THE PARTY OF THE	9.00002	4.8857	0.0000	0.0000	21,194	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sted Rubber	2.40002	1.3029	0.8469	0.0000	5,472	0.00	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00
ep.	6.40008	3.4743	1.9710	0.0000	30,984	0.00	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nte	2.30002	1.2486	0.0000	0.8040	(873)	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25
ite	25.8	14.0057	0.0000	6.8572	(11,008)	0.00	0.00	0.0	0.00	0.0	5.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ate	0.75	0.4071	0.0000	0.0814	0	0.00	0.0	0.00	0.00	0.00	0.07	0.00	0.0	0.00	0.00	0.0	0.00	0.00	0.00
xide	4.01003	2.1769	0.0000	1.8939	(27)	0.00	0.00	0.00	0.00	0.00	1.59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.08	0.0326	0.0000	0.0000	39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.11	0.0597	0.0000	0.0077	920	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
		100								3				3					
	78.601	37.4596	2.61/6	28.5280	296,663	8.0	9	4.30	8	LZ:0	94.7	3	50.0	30.0	12.21	7.57	9.0	8.0	0.27

ü	55 .50 caliber API—T — M20 6,600 Rems/hr 73.20 grains/ltem	55 caliber API-T - M 6,600 kems/hr 73.20 grains/tem	120						3	METALS FEED RATES	EED RA	TES	₹.	POTENTIAL POHC FEED RATES	AL POH	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (No/hr)	CL RATE (lb/hr)	ASH RATE (15/hr)	HEAT VALUE (BTU/hr)	AL RATE (lb/hr)	SB RATE (lb/hr)	BA RATE (lb/hr) (CR L RATE F	LEAD RATE P	SR RATE R (16/hr) (1	TIN 2 RATE FI (Ib/hr) (1	ZINC RATE F (fb/hr) (f	DBA RATE F (No/hr) (DNT RATE (16/hr) (DPA RATE (fb/fhr)	HCB RATE (Ib/hr)	NG RATE (lb/hr)	S RATE (Nb/hr)
de ate ate chlorate fate ate chicate	0.45 0.45 0.45 0.17 0.13 3.00002 0.87 7.50007 3.12002 13.7 1.05 2.30002 3.33003 0.05 0.05 0.05	0.1886 0.4243 6.5906 2.3760 0.1603 0.7826 2.8286 0.8203 7.0715 2.9417 12.9172 0.9900 2.1686 0.4714 0.0566 0.0283	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.1618 0.0000 3.8667 2.1622 0.00682 0.0000 0.0000 0.0000 0.4010 1.3964 1.5372 0.0000 0.0943 2.1902 0.0000 0.0000	340 (4,719) 0 0 11,625 11,625 1182,681 1,849 82,043 31,338 56,033 56,033 (1,516) (2,468) (2,468) (2,468) (3,136) (4,36) (4,36)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.00 0.	800000000000000000000000000000000000000	800000000000000000000000000000000000000	0.00 0.	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	800000000000000000000000000000000000000	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	73.2003	69.0174	0.2533	29.7544	424,674	2.55	0.14	5.42	0.00	0.36	3.20	0.00	0.00	0.00	21.69	2.83	0.00	0.00	0.46

56 .50 caliber incendiary – M23(w/IM-28) 8,377 kema/hr

. <u>ë</u> .	50 caliber 8,377 143.70	50 caliber incendiary – M23(w/ 6,377 kema/hr 143.70 grains/hem	- M23(w/fi	IM -28)						METALS FEED RATES	FEED R	ATES	ď.	OTENTI,	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (fb/hr)	CL RATE (fb/hr)	ASH RATE (16/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (Chr)	TIN RATE (Ib/hr)	ZNC RATE (Ib/hr) (DBA RATE (Co/hr) (PATE (Po/hr) (DPA RATE ((b/hit) (HCB RATE (16/hr)	RATE (Po/hr)	S RATE (Ib/hr)
ffide aminum Alloy chlorate ate	97.56 37.56 0.17 22.5 3.10002 0.01 0.87 45 22.5 8.43007 2.40002 0.06	0.1822 34.2172 0.1549 0.1549 0.0091 0.7926 40.9950 20.4875 2.1864 0.0547	0.000 0.000	0.1584 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	328 (24,500) 172,671 48,248 11,556 1,786 475,624 88,918 2,027 (1,528)	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	£ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 ± 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00 0.	0.0000000000000000000000000000000000000	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.000000000000000000000000000000000000
	143.7	143.7 130.9109	1.9653	96.7752	774,189	14.76	0.13	18.14	0.00	0.35	0.00	0.00	0.00	0.00	20.50	2.82	0.00	0.00	0.46

	SB
	V
	HEAT
	HV
	_
Ē	Č
143.70 grains/Ne	COMP
143.70	COMP

<u>ü</u>	57 50 caliber! 6,377 ii 143.70 g	57 50 caliber Incendiary — M23(w/IM-11) 6,377 kema/hr 143.70 graina/item	- M23(w/II	M-11)					3	METALS FEED RATES	EED PA	TES	Ĭ.) TENTI/	POTENTIAL POHCFEED RATES	C FEED	RATES		
1000	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (lb/hr)	ASH RATE (lb/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (fb/hr) (BA RATE F (Po/hrt) (1	CR L RATE F	LEAD RATE R (lb/hr) (R	SA RATE R (16/fnr) (11	TIN Z RATE R (lb/hr) (R	ZINC PATE F (16/fhr) (1	DBA I	DNT RATE (16/hr) (0	DPA RATE (fb/fnr)	HCB RATE (lb/hr)	NG RATE (Ib/hr)	S RATE (16/hr)
iffide uminum Alkoy kate	0.2 45.99 0.17 0.9 0.01 0.01 0.87 22.5 2.40002 0.06	0.1822 41.8969 0.1549 0.0091 0.0091 0.0547 0.0547	000000000000000000000000000000000000000	0.1564 24.5809 0.2836 0.0000 0.0000 0.0000 0.0000 1.4078 0.0000	328 (29,998) 929 172,671 46,248 11,556 1,786 475,624 88,918 (1,528) (1,528)	0.000000000000000000000000000000000000	21.00.00.00.00.00.00.00.00.00.00.00.00.00	22.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00 00 00 00 00 00 00 00 00 00 00 00 00			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	888888888888888888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.000000000000000000000000000000000000
	143.7	143.7 130.9108	0.0000	98.1706	766,863	14.76	0.13	22.21	0.00	0.35	0.00	0.00	0.00	0.00	20.50	2.82	0.00	0.00	0.46

58 .50 caliber Ball — M33 (w/WC 860) 8.000 lterna/hr

<u>ن</u> ا	63.50	63.50 grains/ltem								METALS	METALS FEED RATES	MTES		OTENT	POTENTIAL POHC FEED RATES	CFEED	RATES		
	COMP QUANT (gr/Rem)	COMP RATE (fb/hr)	CL RATE (Ib/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (lb/hr)	LEAD RATE (Ib/hr)	SR RATE (Ib/hr)	TIN RATE (15/hr)	ZINC RATE (Ib/hr)	DBA RATE (Ib/hr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (b/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
ifide at the state of the state	0.99001 2.40002 0.17 23.5 2.4002 3.5004 0.90001 0.01 0.20002 1.20001 1.20001 0.06	0.2286 1.1314 2.7429 0.1943 2.7429 4.0000 1.0286 0.0114 0.8943 0.2286 29.6000 1.3714 0.0886	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1962 0.6638 1.5368 0.0000 0.0000 0.0000 0.4739 0.0000 0.7724 0.0000	412 (810) (2,159) 1,166 354,783 23,106 65,505 14,498 2,241 992 201,931 (967) 81	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	800000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	29.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	63.5002	72.5717	0.0000	4.7599	660,465	0.00	0.16	0.60	00.00	0.44	0.00	00.00	0.00	26.86	2.74	4.00	0.00	29.60	0.38

59 .50 caliber 1 8,000 ii 50.50 g	59 .50 caliber Ball — M33 (w/IMR 5010) 8,000 kema/hr 50.50 grains/item	(W/IMR 501	<u>(</u> 0					2	ETALS I	METALS FEED RATES	NTES	Œ.	OTENT.	POTENTIAL POHCFEED RATES	CFEED	RATES		
COMP QUANT (gr/kem)	COMP RATE (fb/hr)	CL RATE (fb/hr)	ASH RATE (16/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (lb/hr) (BA RATE F (lb/hr) (1	CR L	LEAD RATE F (lb/hr) (1	SR RATE R (lb/hr) (f	PATE F	ZINC RATE F (Ib/hr) (0	DBA RATE (Ib/hr) (DNT RATE (Ib/hr) (DPA RATE (fb/hr)	HCB RATE (Ib/hr)	NG RATE (16/hr) (S RATE (fb/hr)
0.99001 0.17 0.17 23.5 3.10003 0.90001 0.81 18.3 2.40002 0.06	0.2286 1.1314 0.1943 26.8572 26.8572 1.0286 0.0114 0.9943 2.7429 0.0686	0.0000 0.0	0.1962 0.6638 0.3538 0.0000 0.0000 0.0000 0.4739 0.0000 0.0000	412 (810) 1,186 1,186 15,45 80,78 (1,917) (1,917)	8 8 8 8 8 8 8 8 8 8	9.00.00.00.00.00.00.00.00.00.00.00.00.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	800000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 88 00 00 00 00 00 00 00 00 00 00 00 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00
50.5001	57.7144	0.0000	3.4557	390,738	0.00	0.16	09.0	0.00	0.44	0.00	0.00	0.00	0.00	26.86	3.54	0.00	0.0	0.58

60 caliber Ball,Spotter-Tracer-M48A1 6,600 Nema/hr

	6.600 Nema/hr	seme/hr		M404					_	METALS FEED RATES	FEED R	ATES	4	OTENT	POTENTIAL POHC FEED RATES	IC FEED	RATES		
	165.72	165.72 grains/item																	
	COMP	COMP	22	ASH	HEAT	AL	SB	BA	CR	LEAD	1	-	ZINC	DBA	-		1	NG	S
	DOUANT	RATE	PATE	RATE	VALUE	RATE	RATE	RATE	RATE	_	_	RATE			-	RATE	RATE	RATE	RATE
	(gr/Rem)	(Ib/hr)	(lp/lpri)	(Itp/Itri)	(BTU/hr)	(Jp/Jrr)	(Ab/hr)	(Ib/hr)	(Jp/Jrl)	(lp/Jrr)	(lp/lpr)	_	(Jp/Jri)	(Ja/Jul)	(lp/lpr)			(John)	(Itp/Jul)
Mide	0.51	0.4809	0.0000	0.4127	867	0.00	0.35	0.00	0.00	00.0	00.0	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.07
	16.96	15,9909	0.0000	9.3818	(11,449)	00'0	0.00	8.48	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	2.52002	2.3760	0.0000	2.1622	0	0.00	0.00	1.92	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.17	0.1603	0.0000	0.2935	862	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	00.0	0.00	0.00
	0.33	0.3111	0.0000	0.0271	4,622	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4.40004	4.1486	0.0000	0.0000	54,803	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.15	0.00	0.00	0.00	0.00	0.00
	14.9	14.0486	0.0000	0.0000	118,345	0.00	0.00	0.0	0.00	0.0	9.0	9.0	3 8	3 8	0.41	9.0	9 6	9.0	0.00
	200	0.8600	0.0000	00000	9.303	0.00	0.00	000	0.00	000	000	000	000	0.00	00.0	0.00	0.00	0.00	0.00
	0.01	0.0094	0.0000	0.0000	64	0.00	0.00	000	0.00	00.0	0.00	00.0	0.00	00.0	00.0	0.00	000	00.0	0.00
	0.00	0.0849	0.0000	0.0650	96	00.0	00.0	00.0	0.00	90.0	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00
	0.87	0.8203	0.0000	0.3909	1,849	000	00.0	0.00	0.00	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.45	0.4243	0.0000	0.2929	890	0.00	0.00	0.00	0.00	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
wder	2.56002	2.4137	0.0000	4.0027	25,713	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1007.96	91.1744	0.0000	0.0000	395,514	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ated Rubber	0.24	0.2263	0.1471	0.0000	950	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ide	0.64	0.6034	0.3423	0.0000	5,381		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Orate	0.95	0.8957	0.2591	0.4101	402		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ate	1.10001	1.0372	0.0000	0.6678	(725)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21
87	15.62	14.7274	0.0000	33.7485	150,441		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ite	3.41003	3.2152	0.0000	1.5741	(2,527)		0.00	0.00	0.00	0.00	1.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
late	0.5	0.1886	0.0000	0.0377	0		0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
xide	1.07001	1.0089	0.0000	0.8777	(13)		0.00	0.00	0.00	0.00	0.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	90.0	0.0566	0.0000	0.0000	67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.18	0.1509	0.0000	0.0194	2,323	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
	165.72	165.72 156.2505	0.7485	54.3622	774,864	0.00	0.35	10.40	0.00	0.72	2.08	0.00	0.05	4.15	14.05	1.04	0.00	0.00	0.36
											- Colonia				-				

<u>ü</u>	61 .50 caliber Ball,Spotter—Tracer—M48A2 8,600 kema/hr 165.66 grains/flem	61 caliber Ball,Spotter 8,600 kema/hr 165.66 grains/tem	r-Tracer-	M48A2					*	METALS FEED RATES	EED RA	NTES	ď.	OTENTI	Ď	C FEED	RATES		
	COMP	COMP	CL	ASH	HEAT	AL	SB	II	CR L	LEAD RATE F	SR RATE	TIN Z			-	DPA		RATE	S RATE
	(gr/kem)	(lb/hr)	(lb/hr)	(lp/hr)	_	(lp/hr)		(lp/hr)		_			(Ip/hr)	(Ip/hr)	(IP/Jul)		_		(lb/hr)
Mide	0.51	0.4809	0.0000	0.4127	867	0.00	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07
	15.96	15.0480	0.0000	8.8287	(10,774)	0.00	0.0	7.98	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	2.52002	2.3760	0.0000	2.1622	0	0.00	0.00	1.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	00.0	0.00
. 1	0.17	0.1603	0.0000	0.2935	962 7 984	00.0	0 0	9 0	8 6	000	9 0	9 0	000	000	000	8 0	9 0	000	0.00
i e	4.40004	4.1486	0.0000	0.0000	54,803	0.00	00.0	0.00	0.00	0.00	00.0	0.00	0.00	4.15	0.00	0.00	0.00	0.00	0.00
	14.9	14.0486	0.0000	0.0000	118,345	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.05	0.00	0.00	0.00	0.00
	1.10001	1.0372	0.0000	0.0000	16,984	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	1.04	0.0	0.00	0.00
	9.0	0.5657	0.0000	0.000	7,974	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00
	0.01	0.0094	0.0000	0.0000	\$	0.00	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00
	0.00	0.0849	0.0000	0.0650	96	0.0	00.0	9 6	8 8	0.06	9 6	9 6	8 8	8 8	9 6	8 8	9 6	9 6	9.6
age of	0.45	0.0200	0000	0.2929	890	00.0	000	00.0	000	0.30	00.0	000	00.0	000	0.00	0.00	0.00	00.0	0.08
uminum Allov	0.63	0.5940	0.0000	1.0340	6,892	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
wder	2.64002	2.4892	0.0000	4.1278	26,517	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	96.7001	91.1744	0.0000	0.0000	395,514	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.00	0.00	0.00
ated Rubber	0.24	0.2263	0.1471	0.0000	920	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	00.0	0.00
ride	0.68	0.6411	0.3637	0.0000	5,718	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
chlorate	0.72	0.6789	0.1737	0.2749	179	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fate	1.10001	1.0372	0.0000	0.6678	(725)	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.21
80	14.64	13.8034	0.0000	31.6292	141,002	0.0	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.00	0.00
ıte	3.53003	3.3283	0.0000	1.6295	(2,616)	0.00	0.0	0.0	0.0	0.0	98.	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00
late	0.5	0.1886	0.0000	0.0377	0	0.00	0.00	0.00	0.00	0.0	0.03	0.0	00.0	0.00	0.0	0.00	0.00	00.0	0.00
xide	1.07001	1.0089	0.0000	0.8777	(13)	0.0	0.00	0.00	0.00	0.0	0.74	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00
	90.0	0.0588	0.0000	0.0000	29	0.00	00.0	0.00	0.00	0.0	0.00	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.00
	0.15	0.1414	0.0000	0.0182	2,178	0.0	0.00	0.00	0.00	0.0	0.0	0.0	0.01	0.00	0.00	0.00	0.0	00.0	0.00
rder	1.35001	1.2729	0.0000	1.7184	6,568	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0	0.00
	165.86	165.86 156.3825	0.6845	54.5081	782,275	0.21	0.35	9.90	0.00	0.72	2.13	0.00	0.01	4.15	14.05	1.04	0.00	0.00	0.36
			_				_	_		_						_		_	

62 50 caliber API – T49 7,439 Rema/hr

į	.50 caliber API - T49	caliber API - T49								METALO CECED DATES	0 0000	ATE	-	OT CALL	POTENTIAL BOUCE CERT BATES	2000	DATES		
į	82.30	82.30 grains/flem										3		O EN		ב ב ב ב			
٠	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (fb/hr)	ASH RATE (16/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (fb/hr)	SR RATE (Ib/hr)	TIN RATE (16/hr)	ZINC RATE (Ib/hr)	DBA RATE (b/hr)	DNT RATE (b/hr)	DPA RATE (Ib/hr)	HCB RATE (No/hr)	NG RATE (b/hr)	S RATE (Ib/hr)
Mide	0.2	0.2125	0.0000	0.1824	363	0.00	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.03
nate	2.50002	1.0521	0.0000	1.4886	(753)	0.00	0 0	0.50	0 0	0.00	000	000	0.00	0.00	0.00	0.0	000	00.00	0.00
	0.17	0.1807	0.0000	0.3308	1,084		0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00
0	2.50002	26.7804	0.0000	0.0000	353,770	0.0	0.0	0 0	0 0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3.80004	4.0384	0.0000	0.0000	66,132	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	40.0	0.00	0.00	0.00
	0.01	0.0106	0.0000	0.0000	73	0.0	0.0	0.0	0.0	8 00	8 6	0.0	0.0	0.0	0.0	8 8	0.0	0.0	0.00
•	0.87	0.9246	0.0000	0.4408	2,084	0.00	0.00	0.00	0.00	0.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	14.7	15.6219	0.0000	0.0000	200 821	8.6	8 8	0.00	9 6	8 8	8 8	8 8	8 8	0.00	8 8	0.00	0.00	20.00	0.00
ate	1.30001	1.3815	0.0000	0.7666	(382)		0.00	0.00	0.00	0.00	00.0	0.0	0.00	0.00	00.0	00.0	0.0	0.00	0.00
	1.30001	1.3815	0.0000	0.7781	(974)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.35
	0.00	0.0838	0.0000	0.0000	52		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	82.3002	67.4616	0.0000	4.6044	725,336	0.00	0.15	0.56	0.00	0.41	0.00	0.00	0.00	26.78	2.66	4.04	0.00	29.44	0.38

63 .50 caliber Ball, Practice – T249 – E2 8,000 ltems/hr 120.90 grains/fem

.. <u>ë</u> ..

POTENTIAL POHCFEED RATES

METALS FEED RATES

							- 1	- 1			- 1	ŧ							
	COMP	COMP	ರ	ASH	_	-	$\overline{}$	_	\vdash	-	-	-	-		_	-	_	_	S
	QUANT	RATE	RATE			_			_										RATE
	(gr/kem)	(Ib/hr)	(lb/hr)			(lp/hr)	(lp/yrd)	(lp/hr)	(lp/yrd)	(Ip/Jul)	(lp/lpr)	(IP/VI)	(lp/hr)	(Itp/tut)	(Jp/Jpr)	(Ip/Jul)	(Ip/Jul)	(lp/hr)	(lb/hr)
ıffide	0.2	0.2286	0.0000	0.1962	412	0.00	0.16	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
	0.99001	1.1314	0.0000	0.6638	(810)	0.00	0.00	09.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	0.17	0.1943	0.0000	0.3558	1,186	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	4.40005	5.0286	0.0000	0.0000	66,428	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.03	0.00	0.00	0.00	0.00	0.00
	14.9	17.0286	0.0000	0.0000	143,449	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.03	0.00	0.00	0.00	0.00
	1.10001	1.2572	0.0000	0.0000	20,587	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.28	0.00	0.00	0.00
	4.0	0.4571	0.0000	0.0000	6,443	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.01	0.0114	0.0000	0.0000	78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
•	0.87	0.9943	0.0000	0.4739	2,241	0.00	0.00	0.00	0.00	0.44	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00
		110.5143	0.0000	0.0000	479,411	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fate		1.2572	0.0000	0.8095	(879)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.25
	90.0	0.0686	0.0000	0.0000	8	0.00	0:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
								_											
																		<u></u>	
									_				_					•	
													_						
										<u> </u>									
																_	_		

0.29

0.00

0.00

1.26

17.03

5.03

0.00

0.00

0.00

0.44

0.00

09.0

0.16

0.00

718,608

2.4991

0.0000

120.9 138.1716

. ¥.	50 callber 8,000 i	64 50 callber Ball, HPT – T251 8,000 ltems/fir 52.90 grains/fiem	T251						•	METALS FEED RATES	FEED A	ATES	<u>a.</u>	OTENT	POTENTIAL POHCFEED RATES	CFEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (fb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (lb/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SA RATE (Ib/hr)	TIN RATE (Ib/hr)	ZINC RATE (Ib/hr)	DBA RATE (ID/hr) (1	DAT RATE (PAN)	DPA RATE (b/hr)	HCB RATE (Ib/hr)	NG RATE (b/hr)	S RATE (Ib/hr)
e lift of the state of the stat	0.29001 0.17 13.5 1.80002 0.01 0.87 33.3 1.40001 0.06	0.2286 1.1314 0.1943 15.4286 2.0572 0.0655 0.0114 0.9943 38.0572 1.6000 0.0686	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.1962 0.6638 0.3558 0.0000 0.0000 0.0000 1.0302 0.0000	412 (810) 1,166 129,970 33,686 9,665 78 2,241 165,092 (1,118)	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	80.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00
	52.9001	52.8001 60.4572	0.0000	2.7189	340,485	0.00	0.16	0.60	0.00	0.44	0.00	0.00	0.00	0.00	15.43	5.06	0.00	0.00	0.35

<u>ii</u>	65 5.56mm – M193 (w/WC 844,double base propellant) 22,500 kems/hr 27.44 grains/flem	65 mm – M193 (w/W/ 2,500 kems/hr 27.44 grains/fem	C 844, dou	ble base p	ropellant)				2	METALS FEED RATES	FEED RV			OTENTI.	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (fb/hr)	CL RATE (fb/hr)	ASH RATE (Pb/hr)	HEAT VALUE (BTU/hr)	AL RATE (lb/hr)	SB RATE (16/hr)	BA RATE (CR RATE (16/hr)	LEAD RATE (SR RATE (16/hr) (0	PATE (16/hr) (0	ZINC PATE I	DBA RATE (DNT RATE (fb/hr)	DPA RATE (fb/hr)	HCB RATE (fb/hr)	NG RATE (fb/hr)	S RATE (Ib/hr)
rder mate e	0.03 0.06 0.13 0.03 1.05003 0.13 0.001 2.75008 0.02 0.02	0.0964 0.1929 0.04179 0.0964 3.3751 0.6107 0.9643 0.0643 0.06643	000000000000000000000000000000000000000	0.1822 0.1855 0.0540 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,284 (299) (76) (44,585 5,145 15,791 1,087 316,241 60,303 76	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00 00 00 00 00 00 00 00 00 00 00 00 00	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00
								-											
- -	27.4412	88.2038	0.0000	0.9310	444,665	0.10	0.14	0.22	0.00	0.21	0.00	00.0	0.00	3.38	0.61	96.0	0.00	8.84	0.05

¥	96 5.56mm — M193 (w/IMR 9208,single base propellant) 22,500 tems/hr 27.44 grains/hem	86 mm – M193 (w/lN 22,500 (tema/hr 27.44 grains/flem	4R 8206,sk	gesed elge	ropellant)					METALS FEED RATES	FEED A	WTES	-	OTENTI	POTENTIAL POHCFEED RATES	IC FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (lb/hr)	TIN RATE (Ib/hr)	ZINC RATE (Ib/hr)	DBA RATE (Ib/hr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
rifide fate	0.03 0.06 0.13 0.35001 0.11 26.3001 0.02 0.02	0.0964 0.1929 0.4179 1.1250 0.0032 0.4621 84.5360 0.0643 0.0643	0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0 0.000.0	0.1822 0.1655 0.2452 0.0000 0.0000 0.0000 0.588 0.0000	1,284 348 18,424 4,964 4,965 1,087 (607) 78	0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	800000000000000000000000000000000000000	0.00 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	800000000000	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	27.4411	88.2035	0.0000	1.3815	392,261	0.10	91.0	0.22	00:00	0.21	00.00	0.00	0.00	0.00	0.00	1.13	0.00	0.00	0.2

Ē

5.56mm grenade – M195 (IMR-4475, single 22,500 (tema/hr 29.06 grains/fem 67

POTENTIAL POHC FEED RATES

METALS FEED RATES

RATE (Ib/hr) 8.0 0.00 NG RATE (Ib/hr) 0.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 0 1.13 DPA RATE (fb/hr) 00.00 8 00.00 DNT RATE (Po/hr) 8.68 0.00 DBA RATE (Ib/hr) 0.0 0.00 SR RATE (lb/hr) 0.0 LEAD RATE (15/hr) 0.21 00:00 0 0.0 0.00 0. 0.22 RATE (lb/hr) 0.14 SB RATE (fb/hr) 0.10 1,284 348 (299) 73,110 18,424 4,984 1,087 351,858 727 (607) HEAT VALUE (BTU/hr) 450,313 0.1822 0.1655 0.2452 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.05588 0.0000 1.3815 ASH RATE (15/hr) 0.0000 CL RATE (Ib/hr) 0.0964 0.1929 0.4179 8.6788 1.1250 0.032 0.032 0.0643 0.0643 93.4109 COMP RATE (fb/hr) 0.06 0.06 0.13 2.70008 0.35001 0.01 0.05 0.05 0.02 0.02 0.02 QUANT (gr/ftem) 29.0612 COMP . .

BTU, CHLORINE, AND ASH FEED RATES

	5.56mm HF 22,500 I	66 5.56mm HPT — M197 (IMR-4475,single base propellant) 22,500 (tems/hr 18.47 grains/flem	(MR-447	5, single ba	nse propeli	ant)			_	WETALS	METALS FEED RATES	MTES	2	OTENTI	POTENTIAL POHCFEED RATES	CFEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (b/hr)	CL RATE (B/hr)	ASH RATE (Po/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (Ib/hr)	TIN RATE (lb/hr)	ZINC RATE (Ib/hr)	DBA RATE (Ib/hr)	DNT RATE (b/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
Ader Infide	0.03 0.06 0.06 0.09 0.09 0.001 0.15 0.02 0.02 0.02 0.02	0.0964 0.1928 0.4179 0.7071 0.0032 0.0043 0.0643 0.0643	00000 00000 00000 00000 00000 00000 0000	0.1822 0.1855 0.2452 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,284 348 (239) 27,619 11,580 4,077 230,906 227 230,908 (156) 76	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	888888888888888888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.00.00.00.00.00.00	8.00.00.00.00.00.00.00	80.00.00.00.00.00.00.00.00.00.00.00.00.0	888878888888888888888888888888888888888	888888888888	88888888888	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	18.4711	59.3713	0.0000	1.1259	276,771	0.10	0.14	0.22	0.00	0.21	0.00	0.00	0.0	8.0	3.28	0.71	0.00	0.00	0.03

	69 5.56mm Tn	69 5.56mm Tracer – M196 (IMR-8208,single base propellant)	16 (IMR-82	206, single t	sase prope	(lant)													
/TE: :	22,500 kema/hr 30.43 grains/h	2,500 kema/hr 30.43 grains/hem							2	METALS FEED RATES	EED RA	VTE8	ď	OTENTI,	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP	COMP	ಶ	ASH	HEAT		1	⊪—	II	-	⊪—	I	-	-	-	-			S
	QUANT	RATE	RATE		VALUE								-						RATE
	(gr/Rem)	(Ib/hr)	(Jay/hri)		(BTU/hr)	(lp/yri)	(Japyara)	(In/on)	(Ju/qu)	D (Jul/qu)	(Ip/Jul)	(15/hr) (1	(IIP/Jul)	(Jayara)	(ID/Int)		_	_	(ID/In)
wder	0.03	0.0964	0.0000	0.1822	1,284	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ulfide	90.0	0.1929	0.0000	0.1655	348	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	0.13	0.4179	0.0000	0.2452	(583)	0.00	0.00	0.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ide	0.02	0.1607	0.0000	0.1463	0	0.00	0.00	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
natio	0.09	0.2893	0.0000	0.0252	4,297	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
•	0.34001	1.0929	0.000	0.0000	17,897	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.09	0.00	0.00	0.0
	0.1	0.3214	0.000	0.0000	4,531	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	0.001	0.0032	0.0000	0.0000	22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0
	0.05	0.1807	0.0000	0.1607	0	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0
ţ	0.15	0.4821	0.000	0.2298	1,087	0.00	0.00	0.0	0.0	0.21	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.0	0.0
owder	1.02003	3.2787	0.0000	5.4370	34,928	0.00	0.00	0:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	25.3201	81.3860	0.0000	0.0000	353,052	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	0.02	0.0643	0.0000	0.0000	227	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
oride	0.43001	1.3822	0.7841	0.0000	12,326	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Wate	0.26	0.8357	0.0000	0.5381	(584)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1
ate	1.38004	4.4358	0.0000	2.1718	(3,487)	0.00	0.00	0.00	0.00	0.00	1.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
oxide	0.98003	3.1501	0.0000	2.7406	(39)	0.00	0.00	0.00	0.00	0.00	2.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	0.02	0.0643	0.0000	0.0000	78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
								_								-			
												1							
		1)	7702.0	3	200 204	9	1	36.0	8	90	5	8	8	8	8		8	8	6
	30.4312	97.8146	0.7841	12.0424	425,665	0.10	0.14	0.35	0.00	0.35	4.12	0.00	00.0	0.00	0.00	5	00.0	00.0	0.2

¥	70 5.56mm Tracer – M196 (WC-844,double base propellant) 22,500 ltema/hr 30.44 grains/ltem	70 2,500 kema/hr 30.44 grains/kem	16 (WC-84	4, double b	Asse prope	ilant)			-	METALS FEED RATES	FEED R.	ATES	K.	OTENTI	POTENTIAL POHC FEED RATES	CFEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (fb/hr)	CL RATE (fb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (16/hr)	BA RATE (Ib/hr)	CR RATE (lb/hr)	LEAD RATE (tb/hr)	SR RATE (Ib/hr) (PATE (B/hr)	ZNC PATE (Ib/hr) (I	DBA RATE (16/hr) (1	PATE (16/hr)	DPA RATE (Mo/hr)	HCB RATE ((b/hr))	RATE (MD/hr)	S RATE (Ib/hr)
rder de ornate sale te ver cide ete atte	0.03 0.05 0.13 0.05 0.03 1.01003 0.001 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.0964 0.1929 0.4179 0.2883 3.2465 0.9321 0.0032 0.1807 0.4821 3.2767 70.2002 8.5181 0.0643 1.3822 0.0964 4.4358 3.1501 0.09643	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0.1822 0.1855 0.2455 0.1463 0.0540 0.0550 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,284 384 (299) (76) 4,297 4,287 15,265 15,265 15,265 10,00 1,00 1,00 1,00 1,00 1,00 1,00 1,	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.00	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.
	30.4413	30.4413 97.8470	0.7841	11.6126	476,290	0.10	0.14	0.35	0.00	0.35	4.12	0.00	0.00	3.25	0.58	0.93	0.00	8.52	0.0

	71 7.62 mm AP – M61 (w/double base propellant) 22,500 ftems/hr 44.51 grains/hem	71 mm AP – M61 (w 2,500 kems/hr 44.51 grains/fem	//double ba	ase propell	ant)				2	METALS FEED RATES	FEED RV			POTENTIAL POHC FEED RATES	IL POHC) FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (lb/hr)	ASH RATE (lb/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (Ib/hr)	BA RATE (16/hr) (0	CR L	LEAD RATE F	SA RATE (16/hr) (1	TIN Z	ZINC 1 RATE F (Ib/hr) (P	DBA L RATE R (Ib/hr) (II	DNT 1 RATE R (Pb/hr) (R	DPA RATE P	HCB RATE (NG RATE (16/hr) (S RATE (fb/hr)
vder vder te te te	0.0031 0.0871 0.1867 0.1244 2.86849 0.41071 0.0031 0.024 35.2178 4.50801 0.028 0.0249	0.0100 0.2800 0.3999 9.2201 1.3201 1.3201 14.4900 0.0900 0.0900 0.0800	000000000000000000000000000000000000000	0.0188 0.2403 0.2240 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	133 504 (430) (430) (430) 11,728 11,728 11,623 491,062 98,851 (465) 95 95	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000 0.000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	44.5076	44.5076 143.0603	0.0000	1.5500	756,788	0.01	0.20	0.32	0.00	0.32	0.00	0.00	0.00	9.22	1.32	86:1	0.00	14.49	0.21

. 일.	72 7.62 mm Tracer – M62 (w/double base propellant) 22,500 kems/hr 48.38 grains/liem	72 mm Tracer – M6: 2,500 kema/hr 48.36 grains/lem	2 (w/doubl	e base pro	pellant)					METALS FEED RATES	FEED R	ATES	ď	POTENTIAL POHCFEED RATES	AL POH	CFEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (lb/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB · RATE (fb/hr)	BA RATE (Ib/hr)	CR (Ib/hr)	LEAD RATE (lb/hr)	SR RATE (lb/hr)	PATE (15/hr) (ZINC PATE (DBA RATE (DNT RATE (DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (fb/hr)
rder Mide	0.0373	0.1189	0.0000	0.2265 0.2146 0.2993 0.2073	1,596 451 (365)	0.00	0.00	0.00	0.000	0.00	00.00	0.00	0.00	0.000	0.00	0.000	0.000	00.00	0.00
	0.06 2.68168 0.38271 0.57561	8.6203 1.2301 1.8502	0.0000	0.0000	3,820 113,875 10,363 30,298		8 8 8 8 8	0000	0 0 0 0	00000	0000	00000	0.000	0.000	0.00	0.00	00000	0000	0.00
uminum Alloy ride site oxide	0.0031 0.1929 1.66765 32.6876 4.21241 0.0218 1.01113 0.1929 3.27291 0.77162	0.0100 0.0200 5.3603 105.7102 13.5399 0.0701 2.4802 0.0701	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.2955 9.2955 9.2312 0.0000 0.0000 0.3482 5.1506 2.1578 0.0000	1,396 62,130 458,571 92,369 247 28,884 (437) (8,269) 83		80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000
	48.3649	48.3649 155.4567	1.8438	18.2545	794,919	2.05	0.18	0.27	0.00	0.27	6.12	0.00	0.00	8.62	1.23	1.85	0.00	13.54	0.18

3: 	73 7.62 mm Grenade – M64 (w/single base propellant) 22,500 tems/hr 40.51 grains/fem	73 mm Grenade – M 2,500 kema/hr 40.51 grains/Nem	164 (w/sing	nd ese en	opellant)				3	METALS FEED RATES	EED RA	VTES	ď.	OTENT.	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (lb/hr)	CL RATE (Ib/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (lb/hr)	SB RATE (16)/hr) (BA RATE F (lb/hr) (1	CR L RATE P	LEAD RATE R (Ib/hr) (R	SR RATE F (fb/fn/) (f	TIN RATE (B/hr) (0	ZINC RATE (16/hr) (1	DBA RATE (DNT RATE (16/hr) (DPA RATE (16/hr)	HCB RATE (fb/hr)	NG RATE (fb/hr)	S RATE (lb/hr)
wider uffides	0.0373 0.0716 0.0716 0.1587 0.1818 0.0031 0.1867 36.0827 0.0218 0.0218	0.1199 0.2301 0.5101 0.5201 0.5201 0.0100 0.6001 115.8801 0.0800 0.0701 2.5802	000000000000000000000000000000000000000	0.2265 0.1975 0.2893 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,596 415 415 73,712 12,612 7,330 1,353 503,122 83 83 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	0.00 0.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.00 00 00 00 00 00 00 00 00 00 00 00 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888888888888888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	40.5132 130.2210	130.2210	0.0000	3.5895	800,208	0.12	0.17	0.27	0.0	0.26	0.0	2.04	0.0	0.0	8.75	0.77	0.0	0.0	0.03

(w/single base

Ë

POTENTIAL POHC FEED RATES

METALS FEED RATES

7.62 mm Blank – M62 (v 22,500 kema/hr 17.63 grains/ltem

RATE (95/hr) NG RATE (Ib/hr) HCB RATE (Ib/hr) DPA RATE (Ib/hr) DNT RATE (Ib/hr) DBA RATE (Ib/hr) ZINC RATE (15/hr) TIN RATE (fb/hr) SR RATE (Ib/hr) LEAD RATE (BAn) CR PATE (16/hr) RATE (fb/hr) SB RATE (fb/hr) PATE (PD/hr) 1,866 540 (559) (378) 20,387 9,827 36,376 2,118 1,713 208,085 353 95 HEAT VALUE (BTU/hy) 0.2548 0.2548 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ASH RATE (Ib/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CL (B/hr) 0.1401 0.2888 0.7801 2.4201 0.6001 0.1501 0.1509 0.1000 0.4789 0.0800 COMP RATE (B/hr) 0.0436 0.0933 0.2427 0.1493 0.75282 0.74982 0.0467 0.0467 0.0314 0.0314 0.0314 QUANT (gr/kem) COMP Affice on the fate

0.1

0.00

0.00

0.00

2.42

0.00

0.00

0.00

0.00

0.33

0.00

0.41

0.22

0.14

280,096

1.9199

0.0000

56.6704

17.6308

8: 7 VTE: 1:	75 7.62 mm Blank — 22,500 kems/hi 18.84 grains/N	75 7.62 mm Blank — M62 (w/double base propellant) 22,500 kema/hr 18.84 grains/flem	ejqnop/w)	base prop	ellant)				2	S.	EED R)TENTI/	픙	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (lb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Pb/hr) (BA RATE (16/hr) (0	CR L RATE R (lb/hr) (0	LEAD RATE R (Pb/hr) (1	SR RATE R (lb/hr) (r	TIN Z RATE R (Ib/hr) (II	ZNC 1 RATE R (B/hr) (R	DBA I RATE R (Pb/hr) (R	DNT PATE R	DPA RATE (16/hr) ((HCB RATE (NG RATE (Ib/hr)	S RATE (fb/hr)
wider uffide on atte the fee fee fee fee fee fee fee fee fee f	0.0436 0.0933 0.2427 0.1493 0.224 0.1493 0.224 0.74982 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591 0.0591	0.1401 0.2998 0.7801 0.4799 0.7200 0.4799 0.7200 0.1900 0.1900 0.1900 0.1900 0.0501 0.0800 0.0800 0.0800	00000 0 00000 0 00000 0 00000 0 00000 0	0.2648 0.2574 0.4577 0.2689 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,866 540 (559) (378) 9,511 4,043 11,791 15,698 59,080 59,080 59,080 59,080 59,080 95	+ 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00 00 00 00 00 00 00 00 00 00 00 00 00	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	800000000000000000000000000000000000000	800000000000000000000000000000000000000	
	18.8441	60.5705	0.0000	2.2741	317,623	. 0.14	0.22	0.41	0.00	0.33	0.00	0.40	0.00	0.72	0.48	0.72	0.00	8.66	0.1

ή: ::	76 76mm Projectile,HVTP—T—M31 660 itemafhr 0.02 grains/fem	76 n Projectile,HVTP 680 ltemafhr 0.02 grains/flem	-T-M315	15A1					_	METALS	METALS FEED RATES	MTES	_	OTENT	POTENTIAL POHC FEED RATES	IC FEET) RATES		
	COMP QUANT (gr/Rem)	COMP RATE (Ib/hr)	CL RATE (fb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (15/hr)	CR RATE (Ib/hr)	LEAD RATE (16/hr)	SR RATE (fb/hr)	PATE (Po/hr)	ZINC RATE (fb/hr)	DBA RATE (fb/hr)	DNT RATE (bhr)	DPA RATE (Ib/hr)	HCB . RATE (Bo/hr)	NG RATE (Ib/hr)	S RATE (fb/fhr)
	0.02	0.0010	00000	60000		00.0	00'0	000	000	00.0	00.0	00'	00.0	00.00	00.0	00'0	0.0	00.0	0.00
	0.02	0.0019	0.0000	6000.0		00:0	0.0	00'0	000	000	000	0.0	00.00	0.0	000	00'0	00:0	0.00	0.0

77 76mm Projectile,AP—T—M339 330 Rems/hr 0.02 grains/flem

Ë -:-

METALS FEED RATES

POTENTIAL POHCFEED RATES

S RATE (16/hr) 0.0 0.0 NG RATE (Ib/hr) 0.00 0.00 HCB RATE (fb/hr) 0.00 0.00 0.00 DPA RATE (Ib/hr) 0.00 DNT RATE (fb/hr) 0.00 0.00 DBA RATE (16/hr) 0.00 0.00 ZINC RATE (Ib/hr) 0.00 0.00 0.00 0.00 TIN RATE (fb/hr) SR RATE (fb/hr) 0.00 0.00 0.00 0.00 LEAD RATE (15/hr) CR RATE (Ib/hr) 0.00 0.00 BA RATE (fb/hr) 0.00 0.00 SB RATE (fb/hr) 0.00 0.00 AL RATE (15/hr) 0.00 0.00 HEAT VALUE (BTU/hr) 2 0.0004 0.0004 ASH RATE (16/hr) 0.0000 0.0000 CL RATE (Ib/hr) 0.0009 600000 COMP RATE (fb/hr) COMP QUANT (gr/ftem) 0.02 0.02

	E RATE	0.00 0.	0.00
2	TE RATE	0.00	0.00
CEUR	DPA HCB RATE RATE (ID/hr) (ID/hr)	0.000	0.00
2	DATE RATE	0.00	18.23
TOTENIAL PORO FEED PALES	DBA D RATE RV (Ib/hr) (Ib	0.00 0.00 2	11.40
2	ZINC L RATE R (Ib/hr) (III	00.00	0.00
2	RATE (ID/hr)	0.00	0.00
MEIALS FEED RAIES	SR RATE (Ib/hr)	0000	0.00
MEIAL	LEAD RATE (Ib/hr)	0.00	0.00
	CR RATE (Ib/hr)	0.00	0.00
	BA RATE (fb/hr)	0.0.0	0.00
	SB RATE (Ib/hr)	0.00	00.00
	AL RATE (Ib/hr)	0.00	00.0
	HEAT VALUE (BTU/hr)	150,629 192,112 717,089	0.0000 1,059,830
	ASH RATE (Po/hr)	000000000000000000000000000000000000000	0.0000
	CL RATE (lb/hr)	0.0000	0.0000
	COMP RATE (Ib/hr)	11.4027 22.8053 165.3040	105.006 199.5119
	COMP QUANT (%)	6.0014 12.0028 87.0021	105.006

ATES	ше	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 44.38
POTENTIAL POHC FEED RATES	压马克	8 8 8 8 8	0.00
PQ.	₽ 52 E	8.0.0.0.0 8.0.0.0.0 8.0.0.0.0	0.00
POTEN	DBA PATE (Pb/hr)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00
	ZINC PATE (Ps/hr)	8.0.0.0.0	00.00
PATES	L 5 5	8 8 8 8 8	0.00
METALS FEED RATES	SR PATE (lb/hr)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00.00
METAL	PATE (Ib/hr)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00
	256	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00.00
	25	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00.00
	. 5 E	00000	0.00
	_ 5 S	8.0.0.0	0
		21,143 16,998 296,105 302,764 2,577	639,587
	12.0	0.0000 0.0000 0.0000 3.9533	3.9533
	CL (Bohn)	0.0000 0.0000 0.0000 2.44779	2.4979
ent 5/hr	COMP PATE (Ps/hr)	1.1263 88.2585 44.3905 9.7613	100.021 125.0265
79 M7 Propellant 125 lb/hr	COMP QUANT	1.20001 0.301 35.5044 7.808	100.021
ii ii		rchlorate	

: E:	80 Delay Plunger – M1 3,126 Hema/hr 2.35 grains/fle	80 y Plunger – M1 3,126 hems/hr 2.35 grains/hem							_	WETALS	METALS FEED PATES	MIES		POTENTIAL POHC FEED PATES	NAL PO	HOFE	D PATE	ග
	COMP QUANT (gr/flem)	COMP PATE (Ib/hr)	PATE (Pohn)	ASH PATE (Pu/hr)	HEAT VALUE (BTU/hr)	PATE (16/hr)	PATE (Ib/hr)	BA RATE (fb/hr)	RATE (Ib/hr)	LEAD PATE (Po/hr)	SA PATE (Po/hr)	PATE (PATE	ZINC PATE (ID/hr)	DBA RATE (Bohn)	PATE (PATE)	PATE (Bohr)	HCB PATE (b/hr)	RATE (fo/hr)
atter and a second a second and	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0223 0.1876 0.0257 0.7145 0.0536 0.0089	0.000.0 0.000.0 0.000.0 0.000.0 0.000.0	0.0192 0.1157 0.1150 0.5476 0.0000	(19) (19) (19) (19) (19) (19) (19) (19)	888888	20000000	8.0.0.0.0.0 0.0.0.0.0.0 0.0.0.0.0 0.0.0.0.0	8.9.9.9.9.9	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000	8888888	8888888	0.00.00.00.00.00.00.00.00.00.00.00.00.0	888888	80.00.00.00	000000000000000000000000000000000000000	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	0000000
	2.35	1.0494	0.000	0.9106	1,788	0	9.0	21.0	90.0	0.53	0.0	0.00	0.00	0.00	0.00	000	08.0	00.00

# <u># #</u>	81 Non-Delay - M9 63,338 fems/hr 1.33 grains/fb	81 Delay – M9 ,338 items/hr 1.33 grains/item							2	ETALS	METALS FEED RATES	NTES	<u>n</u>	OTENT	ĭAL PO+	POTENTIAL POHC FEED RATES	PATES	
	COMP CUANT (gr/ftem)	COMP PATE (Po/hr)	CL RATE (lb/hr)	ASH PATE (fb/hr)	HEAT VALUE (BTU/hr)	PATE (Ib/hr)	SB PATE F	BA PATE R (Po/hr) (P	CR PATE R	LEAD PATE F	SA PATE F	PATE (lb/hr) (ZINC PATE (PATE)	DBA RATE (Ib/hr)	DATE (Po/hr)	DPA PATE (Po/hr)	HCB (Po/hr)	NG RATE (fb/hr)
uffide uffide	0.08 0.08 0.09 0.09 0.00 0.00 0.00	0.3619 0.3619 0.7239 8.6871 1.7193 0.1810	000000000000000000000000000000000000000	0.6839 0.3106 0.4247 0.0000 0.0000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88888	8 % 8 8 8 8	8.6.0.0.0 8.8.0.0.0.0 8.0.0.0.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.00 0.77 0.00 0.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88888	88888	888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88888	88888 66666
	1.33009	12.0350	0.0000	8.8963	18,901	0	0.26	0.38	0.00	6.92	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00

	3,978 in 2.24 g	y – M2 3,978 itema/hr 2.24 grains/item							2	ETALS	METALS FEED RATES	MTES		POTEN	TAL PO	HC FEE	POTENTIAL POHC FEED PATES	(A)
	COMP QUANT (gr/flem)	COMP PATE (Ib/hr)	PATE (Bohn)	ASH (PATE (Pohr)	HEAT VALUE (BTU/hr)	PATE (Portr)	SB RATE (lb/hr)	BA RATE (fb/hr)	CR PATE (Borhr) (RATE (Ib/hr)	SR RATE (Ib/hr)	PATE (Ib/hr)	ZINC PATE (Po/hr)	DBA RATE (fo/hr)	PATE (Pohr)	DPA PATE (Po/hr)	HCB PATE (Ib/hr)	RATE (Ib/hr)
uffice	0.0.0 0.06 0.06 0.07 0.07 0.07	0.0284 0.1875 0.0341 0.9083 0.0682 0.0114	0.0000000000000000000000000000000000000	0.0244 0.1875 0.0200 0.0209 0.0325 0.0000	18 (8) (18 (18 (18 (18 (18 (18 (18 (18 (18 (18	8688888	888888	0.0.0.0.0 0.0.0.0.0 0.0.0.0.0 0.0.0.0.0	84888888	888888	8888888	8888888	80000000	00.000000000000000000000000000000000000	0.0000000000000000000000000000000000000	80.0000	0.0.0.0.0.0	0.0.0.0.0.0
	2.24	1.2730	00000	1.071	1,980	٥	20:0	21.0	20.0	89.0	0.00	8.6	0.0	0.0	. 80	80.0	0.0	00:0

8

Detonator – M16A1 958 tems/hr 8.84 grains/flem

Ë

METALS FEED PATES

POTENTIAL POHC FEED RATES

0.00 NG PATE (Po/hr) 0.00 0.0 DPA PATE (B/hr) 888888888888888 0.00 PATE (Part) 0.00 DBA PATE (b/hr) 0.00 ZINC PATE (PAhr) 8888888888888 0.00 PATE (lb/hr) 0.00 SR PATE (lb/hr) 0.49 LEAD PATE (lb/hr) PATE (Pahr) 9.0 0.10 BA PATE (Pohr) 0.00 SB PATE (Po/hr) PATE (Ib/hr) 0 8 2082205852 HEAT VALUE (BTU/hr) 1,883 0.1875 0.0032 0.0055 0.0142 0.0574 0.0034 0.0000 0.0000 0.8600 ASH PATE (Po/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0171 A PA Ra E (한) 0.1875 0.0055 0.0055 0.0205 0.0452 0.0438 0.1683 0.0027 2098 COMP PATE (16/hr) COMP QUANT (gr/ftem) 8.84 lorate rchlorate

: <u>j</u>	84 Detonetor – M17 19,302 fems/hr 4.77 greins/h	84 letor – M17 1,302 items/hr 4.77 greins/flem							•	METALS	METALS FEED RATES	MTES		POTENTIAL POHC FEED PATES	TAL POI	HO FEE	ORATES	
	COMP QUANT (gr/ftem)	COMP PATE (PAhr)	(PATE (PAN)	ASH (PATE (PAN)	HEAT VALUE (BTU/hr)	PATE (ID/hr)	SB PATE (Ib/hr)	BA RATE (ID/hr)	CA (Ib/hr)	RATE (IB/hr)	SA RATE (Ib/hr)	PATE (Ib/hr)	ZINC PATE (Ib/hr)	DBA PATE (Bo/hr)	PATE (BAhr)	DPA RATE (b/hr)	HCB PATE (Pohr)	PATE (PATE)
·	3.54008	9.7615 3.3917	0.0000	0.0000	71,079	88	0.00	0.00	0000	8.90 00.00	00.0	8 000 .	8.00	0.0 0.0 0.0	0.0	00.0	0.00	000
	4.77012	13.1533	0.0000	7.4812	28,923	0	0.00	0.00	0.00	6.93	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00

: د:	85 Detonator – M18 21,286 hems/hr 5.18 grains/fu	85 lettor – M18 ,286 hems/hr 5.18 greins/ftem							2	METALS FEED RATES	FEED PA	NTES	ā.	OTEN	POH	POTENTIAL POHC FEED RATES	PATES	
	COMP QUANT (gr/ftem)	COMP PATE (Pb/hr)	RATE (Byhr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (PS/hr)	SB PATE F (Pb/hr) (BA PATE F (15/hr) (1	CR CR (BATE F	LEAD PATE F	SR BATE F (lb/hr) (PATE (IS/hr)	ZINC PATE (Po/hr)	DBA PATE (Po/hr)	PATE (Po/hr)		PATE (b/hr)	NG PATE (Po/hr)
uffide	0.33001 0.05 3.21009 0.33001	1.0035 0.1520 9.7614 1.0035	0.0000	0.8612 0.1520 7.4812 0.4594	1,808	88888	0.00 0.00	88888	00000	00.00	88888	88888	88888	00000	88888	00000	8 8 8 8 8	00000
								3	3		3							
	5.18014	15.7521	0.2903	8.9538	33,496	0	0.72	00.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Betonetor - M23 25.882 terms/hr

ij.	4.21	25,882 Items/hr 4.21 grains/item							2	METALS	METALS FEED RATES	ATES		POTENTAL POHC FEED RATES	W. PO	C FEE	RATES	
	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	PATE (Ib/hr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (Pohn)	SB (PATE (D/hr)	RATE (Bohr)	PATE (PATE)	PATE (Pohr)	PATE (Ib/hr)	PATE (Pohn)	ZINC PATE (Po/hr)	PATE (PATE)	PATE (Bohr)	DPA PATE (Po/hr)	PATE (PATE)	NG (PATE (PATE)
orete .	0.26 2.64009 0.26 1.00003	0.9613 9.7615 0.9613 3.6975	0.0000 0.0000 0.2781 0.0000	0.8250 0.1849 7.4812 0.0000	11,732 11,079 432 19,453	88888	88888	88888	00000	0.00 & 0.00 0.00 & 0.00 0.00 & 0.00	88888	88888	88888	88888	88888	88888	86666	88888
	4.21012	15.3666	0.2781	8.9312	32,686	0	0.69	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00	00:00	0.00	0.00

87 Detonator – M22 27,007 hems/hr 4.18 grains/ftem

≝ ہے

METALS FEED PATES

POTENTIAL POHC FEED PATES

00000 0.00 88888 0.00 HCB PATE (Pb/hr) 88888 0.00 DPA PATE (Po/hr) 0.0 00000 PATE (Pohr) 8888 0.00 DBA PATE (Ib/hr) 8 8 8 8 8 0.00 ZINC PATE (B/hr) 88888 0.00 PATE (16/hr) 88888 0.00 SR PATE (15/hr) 0.00 6.93 LEAD PATE (Ib/hr) 00000 000 PATE (Patr) 88888 0.0 BA PATE (15/hr) 0.72 0.00 SB PATE (lb/hr) 8 8 8 8 8 0 PATE (PA) 1,808 0 11,079 450 21,922 35,260 HEAT VALUE (BTU/hr) 0.8609 0.1929 7.4812 0.4592 0.0000 8.9942 ASH PATE (16/hr) 0.0000 0.2902 0.0000 0.2902 PATE (Part) 1.0032 0.1929 9.7614 1.0032 4.1669 16.1276 COMP PATE (Ib/hr) 0.26001 0.05 2.53009 0.26001 1.08004 4.18015 COMP QUANT (gr/ftem) lorate

₽ ₽	88 Detonator – M24 21,692 Itema/ 3.90 grains/	88 tonator – M24 21,692 tiema/hr 3.90 greins/ftem							~	AETALS	METALS FEED RATES	WTES		POTEN	NAL PO	35	POTENTIAL POHC FEED RATES	(n
	COMP QUANT (gr/hem)	COMP PATE (PATI)	PATE (PATE)	ASH PATE (Pohr)	HEAT VALUE (BTU/ht)	PATE (Pohn)	SB RATE (lo/hr)	RATE (Pohr)	PATE (PATE)	LEAD (Pohr)	SR RATE (fb/hr)	PATE (16/hr)	ZINC PATE (Ib/hr)	DBA RATE (B/hr)	PATE (PATE)	PATE (PAN)	PATE (PATE)	PATE (PATE)
orate to the second sec	0.35001 0.05 0.35001 0.35001	1.0846 0.1549 1.0846 1.0846	0.0000	0.9308 0.1549 7.4814 0.4965	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8888	0 0 0 0 0 0 0 0 0 0 0 0	8888	8888	8888	8 8 8 8 8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.0.0.0	8.0.0.0	8.0.0 8.0.0 8.0.0 8.0.0	8 8 8 8 8	8.0.0.0	8.0.0 8.0.0 8.0.0
	3.90011	12.0859	0.3138	9.0637	13,201	0	0.78	0.00	8.0	88.	0.00	00:00	00.0	00.0	00.0	00.0	00.0	000

	NG PATE (Po/hr)	8.8	0.00
) PATES	도요된	8.6 8.6	0.00
AC FEET	DPA PATE (Po/hr)	8.0	00:00
ZAL PO		80.0 80.0	00.0
POTENTIAL POHC FEED RATES	DBA PATE (Po/hr)	80.0 80.0	00:0
	ZINC PATE (B/hr)	8.0 8.0 8.0	00:0
PATES	PATE (Ib/hr)	0.00 00.00	0.00
METALS FEED RATES	SA RATE (Ps/hr)	0.0 0.0	0.00
METALS	LEAD PATE (Po/hr)	0.00	6.93
	2 E	0.0 00.0	0.00
	BA RATE (Ib/hr)	80.0 00.0	0.00
	SB RATE (lb/hr)	0.0 0.0	0.00
	PATE (PS/hr)	80.0 80.0	0
	HEAT VALUE (BTU/hr)	40,247	51,326
	ASH PATE (Ib/hr)	0.0000	7.4810
	PATE (PAN)	0.0000	0.0000
89 nator — M35 ',386 items/hr 7.01 greins/item	COMP PATE (Ib/hr)	9.7612 7.6500	17.4112
89 Detonator — M35 17,386 ftems/fr 7.01 grains/fb	COMP QUANT (gr/ftem)	3.08007	7.01016
#: ∏E:			
# # ::			1

90 Defonator – M30A1

ij	37,960 H 2.80g	37,960 Items/hr 2.80 grains/Item							2	AETALS	METALS FEED PATES	ATES		OTEN	ML PO	IC FEET	POTENTIAL POHC FEED PATES	
	COMP QUANT (gr/flem)	COMP RATE (Rohn)	PATE (Pohn)	PATE (Pohr)	HEAT VALUE (BTU/hr)	PATE (Mohin)	PATE (Ib/hr)	BATE (ID/hr)	RATE (ID/hr)	PATE (IDAN)	RATE (ID/hr)	PATE (Pohn)	ZINC RATE (Ib/hr)	DBA RATE (Ib/hr)	PATE (PATE)	DPA PATE (fb/hr)	HCB (Ib/hr)	NG PATE (Po/hr)
	1.80009	9.7616 5.4231	0.0000	0.0000	22,376	88.	88.	8.8	8.8	8.0	8.6.	8.0	8.6	8.0	0.00	0.00	8.0	0.00
	2.80014	15.1848	0.0000	7.4813	33,465	0	0.00	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

91 Detonator – M36A1 26,072 ltems/hr 5.46 greins/fte	91 hetor — M36A1 5072 fems/hr 5.46 greins/fem								ഗു	FEED R		-	OTENT	ML PO	+C FEEI	92	40
11	COMP RATE (fb/hr)	CL PATE (Ib/hr)	ASH RATE (fo/hr)	HEAT VALUE (BTU/hr)	AL. PATE (fb/hr)	SB RATE (fb/hr) (BA RATE (SR RATE (Ib/hr) (DBA RATE (Ib/hr)	DNT RATE (Bo/hr)	DPA PATE (Po/hr)	HCB PATE (Po/hr)	NG PATE (lb/hr)
2.00003 1.00003 2.46009	3.7247 9.1628	0.0000	5.7082 1.7752 0.0000	87.5% 28.5% 24.5%	8 8 8 6 6 6	8 8 8 6 6 6	8.00 8.00 8.00	8.8.8	87. 2 . 8.	8.00 8.00 8.00 8.00	8.0.0 8.0.0	8 8 8 6 0 0	8 8 8 6 6 6	8 8 8 6 6 6	8 8 8 6 6 6	8.8.8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
5.46019	20.3369	0.0000	7.4844	49,204	0	8.0	0.00	0.00	6.93	0.0	0.0	0.0	0.00	00.00	00.00	0.00	00.00

92 Detonator – M37 18,124 Hema/hr

ii ::	6.83	18,124 fema/hr 6.83 grains/fem								METALS	METALS FEED PATES	*ATES	_	POTENTIAL POHC FEED RATES	<u>M</u>	원 원	D PATE	10
	COMP QUANT (gr/ftem)	COMP PATE (fb/hr)	PATE (Ib/hr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (PATE	SB PATE (PAN)	BA (PATE (Pohn)	PATE (BAhr)	LEAD PATE (PATE	SR PATE (Po/hr)	PATE (PATE	ZINC PATE (Po/hr)	PATE (PATE	PATE (PATE)	DPA RATE (Pohr)	HCB PATE (Pohr)	NG PATE (Pohr)
uffide forate	0.35 3.77009 0.35 2.31005	0.9082 0.1235 9.7613 0.9082 5.9610	0.0000 0.0000 0.2822 0.0000	0.1235 7.4811 0.4149 0.0000	1,638 11,079 407 31,466	86.6.9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88888	0000 0000 0000 0000	0.00 0.00 0.00 0.00 0.00	800000000000000000000000000000000000000	88888	888888	800000	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00	0.0000000000000000000000000000000000000	8000000
								·										
	6.83014	17.6842	0.2622	8.8031	44,585	0	0.65	0.00	0.00	6.93	00.00	0.00	0.00	0.00	00.00	00.00	0.00	0.00

л: ЛТЕ: 1:	93 Detonator – M41 15,894 flems/hr 7.17 grains/fl	93 netor – M41 894 ftems/hr 7.17 grains/ftem							2	METALS FEED RATES	FEED R	ATES	<u>.</u>	OTENT	.M. Po⊦	AC FEET	POTENTIAL POHC FEED RATES	
	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	PATE (Po/hr)	ASH PATE (16/hr)	HEAT VALUE (BTU/hr)	AL PATE (Po/hr)	SB PATE (Po/hr)	BA PATE F	CR L	LEAD PATE F	SR PATE (Po/hr) (PATE (Ib/hr)	ZINC PATE (15/hr)	DBA PATE (Po/hr)		DPA PATE (Po/hr)	HCB (Po/hr)	NG PATE (15/hr)
uffide	3.93008	0.6358 8.9235 0.9309	0.0000	0.5456 6.8390 0.6426	1,146 10,128 1,962	0000	0.00 0.00 0.00	8888	8 8 8 8	0.0 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	8 8 8 8	8 8 8 8	8888	8888	0000	8000	8888	0.00
	1.69003	3.8373	0.000	0.0000	20,188		8.0	8 8	8.6	88	8.6	8.6	8.0	86.0	88	88	88	8 8
										-								_
							- 11 - 11											· ·
			, , , ,	•									***					
	7.17012	16.2803	0.5649	8.9212	34,231	0	0.46	00:00	00.00	7.00	00:00	0.00	0.00	0.00	0.00	00:00	0.00	00.00

∷ ≝∵	94 Detonator – M42 15,586 Nema/hr 8.70 grains/fu	94 ,596 Nema/hr 8.70 grains/ftem							_	WETALS	METALS FEED RATES	₩ TES		POTEN	POTENTIAL POHC FEED RATES	F F	DRATE	(0
	COMP QUANT (gr/ftem)	COMP PATE. (b/hr)	PATE (PAN)	PATE (Pohn)	HEAT VALUE (BTU/hr)	PATE (Ib/hr)	SB PATE (fo/hr)	RATE (Po/hr)	PATE (PAN)	LEAD (Pohr)	SA PATE (Po/hr)	PATE (PATE	ZINC PATE (Pohr)	DBA PATE (Pohn)	PATE (PATE)	PATE (PATE)	PATE (PATE)	RATE (PAhr)
uffide uffide	0.16 0.16 0.36508 0.86501 3.31007	0.3563 0.3563 0.8016 8.5725 1.9149 7.3701	0.000.0 0.000.0 0.000.0 0.000.0 0.000.0	0.5731 0.3057 0.4703 6.5699 0.0000 0.0000	97.7 87.30 97.30 8,316 8,316 8,716	8.00.00 8.00.00 8.00.00 8.00.00 8.00.00 8.00.00 8.00.00 8.00.00	8,8,8,8,8	8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	8888888	S S S S S S S S S S S S S S S S S S S	888888	888888	0.0000	0.00000	0.0000000000000000000000000000000000000	88888	80.0000	888888
	8.70016	19.3715	0.0000	8.9317	57,630	0	0.26	0.42	0.00	6.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

(0	NG PATE (Po/hr)	80.000	0.00
D PATE	HCB PATE (Po/hr)	8.0.0.0.0	0.00
も語	DPA PATE (fb/hr)	8 8 8 8 8	0.00
M PO	525	8.0.0.0.0	0.00
POTENTIAL POHC FEED RATES	L C E	800000 000000	0.00
	⊿55	8.0.0.0.0	0.00
RATES	PATE (PS/hr)	8 8 8 8 8	0.00
METALS FEED RATES	SA (Ib/hr)	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	0.00
METALS	LEAD RATE (PS/hr)	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	6.93
	~ 5 E	8.0.0.0.0	0.00
	m 5 5	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	0.00
	SB RATE (Pb/hr)	89.0 0.0 0.0 0.0 0.0 0.0	0.68
	PATE (16/hr)	8 8 8 8 8	0
	HEAT VALUE (BTU/hr)	1,687 0 11,080 45.1 26,421	39,649
	ASH RATE (15/hr)	0.8081 0.1569 0.4598 0.0000	8.9062
	PATE (Po/hr)	0.000 0.000	0.2906
95 Jator – M44 J971 Rema/hr 5.38 grains/fem	COMP RATE (fb/hr)	0.9416 0.1569 9.7617 1.0004 5.0221	16.8868
95 Detonator – M44 21,971 Rems/hr 5.38 grains/h	COMP QUANT (gr/ftem)	0.3 0.05 3.11009 0.32001 1.60005	5.38015
<i>∷</i> ⊭			

<u> ji</u>	96 Detonator – M45 14,403 frems/hr 8.03 grains/fr	96 sator – M45 ,403 thems/frr 8.03 grains/ftem							-	AETALS	METALS FEED RATES	MIES		POTENT	W. Pol	R FE	POTENTIAL POHC FEED RATES	
	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	(Byhr)	ASH (Ib/hr)	HEAT VALUE (BTU/hr)	PATE (Ib/hr)	SB RATE (Ib/hr)	BA (lb/hr)	CR (Ib/hr)	(Ib/hr)	SR RATE (Ib/hr)	PATE (16/hr)	ZINC PATE (Ib/hr)	DBA PATE (16/hr)	PATE (PATE)	DPA RATE (Po/hr)	HCB RATE (Po/hr)	NG PATE (b/hr)
Jiffde Orman	0.31 6.33008 0.98002 1.95004	0.6378 6.9094 0.9465 2.0165 4.0123	0.0000 0.0000 0.5834 0.0000	0.5474 6.8282 0.6534 0.0000	1,148 10,112 1,985 905 16,555	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8888	88888	0.00 0.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	80000	80000000000000000000000000000000000000	0.00 0.00 0.00 0.00	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	80.000	8.0.0 8.0 8
	8.03014	16.5228	0.5834	1298.8	707,08	0	97.0	00:00	00.0	7.00	00.0	00.0	00.0	00.0	80.6	00:0	000	0.00

:: :::::::::::::::::::::::::::::::::::	97 Detonator – M47 39,394 fema/fr 2.43 grains/fb	97 letor – M47 ,394 hems/hr 2.43 grains/ftem							2	ETALS	METALS FEED RATES	NTES	a .	OTENTI	W. POH	IC FEEL	POTENTIAL: POHC FEED RATES	
	COMP QUANT (gr/ftem)	COMP PATE (Po/hr)	C. PATE (Po/hr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (Po/hr)	SB RATE F	BA PATE (Po/hr) (R	CR CR (PATE R	RATE P	SR PATE (Po/hr)		ZINC PATE (Po/hr)				HCB (Ib/hr)	NG PATE (lb/hr)
• Pull of the control	0.08 1.68009 0.52002 0.02 0.02	0.2814 0.3377 0.6753 0.6753 0.1126	000000000000000000000000000000000000000	0.2415 0.1981 0.3219 0.0000 0.0000	787 7.00 7.00 7.00 8.00 8.00 8.00 8.00 8	88888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	81.0 81.0 80.0 80.0 80.0 80.0 80.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888	8 8 8 8 8 8	8 9 8 8 8	88888	88888	888888	88888	800000
	2.43011	13.6760	0.0000	7.9216	24,599	0	0.20	0.18	8.0	6.98	0.00	0.0	0.0	0.00	0.0	0.00	0.00	0.00

<u>ii</u>	96 Detonator – M48 38,387 fems/hr 4,24 grains/h	98 nator – M48 ,387 frems/hr 4.24 grains/frem							Σ	ETALS	METALS FEED RATES	ATES		OTENT	M PO	POTENTIAL POHC FEED RATES	D PATE	. (0
	COMP QUANT (gr/flem)	COMP RATE (fb/hr)	PATE (Pohr)	ASH PATE (Pohr)	HEAT VALUE (BTU/hr)	PATE (Pohn)	SB PATE (b/hr)	BA PATE P (Bohn) (1	PATE P	PATE (16/hr) (SA RATE (Ib/hr) (RATE (Ib/hr)	ZINC PATE (Pohr)	DBA RATE (ID/hr)	PATE (PATE	DPA RATE (Byhy)	HCB PATE (Pohn)	PATE (PATE)
	2.48001	9.761 8. 4094.	0.0000	0.0000	1.080 1.080	0 0 0 0 0 0	8.8	8 8 6 6	88	8.83	80.0	8.6	0.00	8.6	80.0	00.0	0.00	00.00
	4.2401	23.2521	0.0000	7.4814	58,714	0	00.0	0.0	0.0	6.93	0.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00

99 Detonator – M53 628 hems/hr 3.61 grains/frem

0 0 0 0.0 NG RATE (b/hr) POTENTIAL POHC FEED RATES 000 HCB PATE (Po/hr) 0.00 888 0.00 DPA RATE (Pohr) 0000 0.00 DNT PATE (Pohr) DBA RATE (fb/hr) 8 8 8 0.00 8 8 8 0.00 ZINC PATE (Po/hr) PATE (PATE) 0000 0.0 METALS FEED PATES SR PATE (Pb/hr) 8 8 8 0.00 8 8 8 LEAD RATE (Ib/hr) 0.00 SB BA CR RATE RATE (IC)Ahi) 2000 0.04 0.00 0.10 0 0 0 0.00 HEAT AL VALUE RATE (BTU/hr) (Ib/hr) (0 0 0 0 0 12 8 0.1875 0.0178 0.0924 0.2977 ASH PATE (Ib/hr) 0.0000 0.0112 PATE (Part) 0.1875 0.3239 COMP PATE (fb/hr) 2.0 8.0 8.0 8.0 COMP QUANT (gr/ftem) 3.61 nate rchlorate kel Alloy Ë ::

# E	100 Detonator – MS5 76,271 frems/hr 1.31 grains/fr	100 ator – M55 ,271 thems/hr 1.31 grains/ftem							2	ETALS	METALS FEED RATES	MTES		POTENT	POTENTIAL POHC FEED RATES	HO FEE	PATES	-
	COMP QUANT (gr/ftem)	COMP (PATE (Phr)	CA. (lb/hr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (Ib/hr)	SA RATE (Pohr)	BA RATE (Ib/hr)	CA (Ib/hr)	LEAD (Ib/hr)	SR . RATE (lb/hr)	PATE (PATE	ZINC PATE (Ib/hr)	DBA RATE (Ib/hr)	PATE (Ib/hr)	DPA RATE (B/hr)	HCB PATE (Po/hr)	RATE (Ib/hr)
9 947	0.03 0.04 0.04 0.05 0.05 0.01	0.3289 0.5448 0.9806 3.1601 0.1080	000000000000000000000000000000000000000	0.2805 0.3196 0.4674 0.0000 0.0000	589 10,389 13,039 129 129	88888	2.0.0.0.0 2.0.0.0.0 2.0.0.0.0 2.0.0.0.0 2.0.0.0.0	88888	88.888	0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0	888888	888888	888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00000	8.6.0.0.0.0	8888888	888888
	1.31012	14.2749	0.0000	8.0828	25,986	0	0.24	0.29	0.00	6.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

;; ;;;	101 Detonator – M57A1/A2 46,340 fems/hr 2.20 greins/ftem	101 nator – M57A1/A2 3,340 fema/hr 2.20 greins/ftem	Cl.							METALS FEED RATES	EED PA	NES	•	POTENTIAL POHC FEED RATES	W. POF	to FEET	PATES	
	COMP QUANT (gr/ftem)	COMP PATE (Po/hr)	RATE (Pohr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (Pohr)	SB PATE P	BA PATE R (PS/hr) (II	CR PATE R	LEAD PATE R (Po/hr) (I	SR PATE (15/hr) (1	PATE (lb/hr)	ZINC PATE (Po/hr)		DATE (PATE	DPA PATE (Po/hr)		PATE (Po/hr)
e puin	0.18001 1.40009 0.12 0.50003	3.3102 3.3102	000000000000000000000000000000000000000	1.0227 7.1035 0.3786 0.0000	7,147 10,520 1,791 13,688	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8	8888	8888	88.8.0 88.00 88.00	8 8 8 8	8 8 8 8	8 8 8 8 6 0 0 0	8 8 8 8 6 6 6 6	8888	8888	8 8 8 8 6 0 0 0	8 8 8 8 6 6 6 6
	2.20013	14.5649	0.0000	8.5048	28,116	0	0.86	0.0	0.00	6.93	0.0	0.00	0.0	0.0	0.00	0.00	0.00	0.00

ë	102 Detonator – M58 85,863 ftems/hr 2.71 greins/ft	102 netor – M58 ,863 flems/fir 2.71 grains/flem							. 2	ETALS	METALS FEED PATES	ATES		POTEN	POTENTIAL POHC FEED PATES	HO FEE	D PATE	"
	COMP QUANT (gr/ftem)	COMP (Ib/hr)	PATE (Pohr)	ASH (Bohr)	HEAT VALUE (BTU/hr)	PATE (Pohr)	SB RATE (lo/hr)	BA PATE (lb/hr)	PATE (Byhr)	LEAD PATE (b/hr)	SR RATE (lb/hr)	PATE (Ib/hr)	ZINC PATE (Pohr)	DBA PATE (Pohr)	PATE (PATE	DPA RATE (Pohr)	HCB RATE (Po/hr)	RATE (PATE
ufficie rchlorate	0.57006 0.09001 0.48005 0.57006 1.00001	6.9761 1.1015 5.8746 6.9761 12.2377	0.000 0.000 0.000 1.7862 0.000	5,9869 1,1015 4,5023 0,0000 0,0000	12,57 6,688 7,1,842 50,483	88888	8888	8888	88888	0.0.4.0.0	8 8 8 8 8	88888	88888	8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88.00.00	8 8 8 8 8 8	0.000
	2.71019	33.1662	1.7862	14.4161	71,573	0	88	000	0.00	4.17	00.0	000	0000	00:0	0.0	000	00:0	00:00

: E:	103 Detonetor – M59 38,048 Nema/hr 2.44 greins/N	103 nator – M59 1,048 Nems/hr 2.44 greins/item							2	ETALS	METALS FEED RATES	NTES	ā.	POTENTIAL POHC FEED RATES	M. Po-	IC FEEL	PATES	
	COMP QUANT (gr/ftem)	COMP PATE (Po/hr)	PATE (Pohi)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (Po/hr)	SB PATE (Po/hr)	BA PATE (Po/hr)	CR CR (PATE R	LEAD PATE (IS/hr) (1		PATE (Po/hr) (ZINC PATE (Po/hr)	н		ш		NG RATE (Po/hr)
eg eg	0.03 1.74009 0.52002 0.03 0.01	0.1631 0.2718 0.4892 0.0544 0.0544	000000000000000000000000000000000000000	0.1384 0.1584 7.2487 0.0000 0.0000	28.7.0. 1.7.88.1.1. 28.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	888888	0.00 0.00 0.00 0.00 0.00	8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	888888	0.0000000000000000000000000000000000000	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	8 8 8 8 8 8	88888	888888	888888	88888	888888
	2.44011	13.2630	0.0000	7.7813	23,863	0	0.12	0.14	0.0	6.93	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00

# <u>#</u> ::	104 Detonator – M61 217,732 Hema/hr 0.71 grains/fil	104 ;732 items/hr · 0.71 grains/ftem							_	AETALS	METALS FEED RATES	ATES		POTENTIAL POHC FEED RATES	W. Pol	유 표) PATES	
	COMP QUANT (gr/ftem)	COMP PATE (b/hr)	PATE (Pohr)	RATE (PA)	HEAT VALUE (BTU/hr)	PATE (Ib/hr)	SB RATE (Ib/hr)	BA RATE (Po/hr)	PATE (Ib/hr)	RATE (IGAN)	SR RATE (lo/hr)	PATE (PATE)	ZINC PATE (Ib/hr)	DBA RATE (lb/hr)	PATE (BAhr)	DPA PATE (Pohr)	HCB PATE (Bo/hr)	NG PATE (15/hr)
e di di	0.11004	3.4224 4.3569 4.3569 8.7118	00000	2.5566 2.5566 3.3383 4.1520 0.0000	6.16 (9.119) 4.9-4 7.4-1 7.4-1	88888	% 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 % 0 0 0 6 8 8 8 8	88888	000000	88888	88888	80888	80.000	8.0.0.0.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.0.0.0.0	8 8 8 8 6 6 6 6 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	0.7102	22.0905	0.0000	12.9831	29,162	0	2.48	2.31	000	6.93	0.0	00.0	00.0	00.0	00.0	00:0	00.0	00.00

R: ATE: 3:	105 Detonator – M63 32,012 flems/fr 3.31 grains/ft	105 nator – M63 ,012 thems/hr 3.31 grains/ftem							ž	METALS FEED RATES	FEED PA	ATES	<u> </u>	POTENTIAL POHC FEED RATES	M. POH	O FEED	PATES	
_	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	CL (Pohr)	ASH PATE (16/hr)	HEAT VALUE (BTU/hr)	PATE (fb/hr)	SB PATE F	BA PATE F	CR L PATE F	LEAD PATE F	SR RATE (PATE (PATE)	ZINC PATE (PAhr)	DBA RATE (lb/hr)	DNT RATE (Ib/hr)	DPA RATE (fb/hr)	HCB RATE (Po/hr)	NG RATE (lb/hr)
e e e e e e e e e e e e e e e e e e e	0.08 2.0609 1.0004 0.02 0.02	0.2287 0.2744 0.5488 0.0915 0.0915	000000000000000000000000000000000000000	0.1962 0.1610 0.0000 0.0000 0.0000	(196) 10,693 1,237 18,670 108	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000 0.0000 0.0000	8.0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.00000	88888	0 0 0 0 0 0	88888	88888	88888	88888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	3.31013	15.1377	0.0000	7.8391	31,123	0.00	0.16	0.15	0.00	6.93	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00

<u></u> 2	106 Detonator – M80 20,097 tems/hr 5.20 grains/h	106 nator – M80 1,097 flems/hr 5.20 grains/flem							2	METALS FEED PATES	FEED R	NTES	<u>a</u>	OTEN	M. PO	C FEE	POTENTIAL POHC FEED RATES	
	COMP QUANT (gr/ftem)	COMP (fb/hr)	PATE (Phy)	ASH PATE (Pohrt)	HEAT VALUE (BTU/hr)	PATE (Pohr)	SB PATE (b/hr) (BA PATE F	PATE (PAM)	RATE (PA)	SA (Ib/hr)	PATE (PATE)	ZINC RATE (Ib/hr)	DBA RATE (Ib/hr)	PATE (Pohr)	DPA RATE (Ib/hr)	HCB (b/hr)	NG RATE (Ib/hr)
	1.80008	5.1679 5.1679	0.0000	0.0000	29.59 28.50	0.00	0000	8.8	8.8	00.00	8.60	8.80	8 8 6 6	8 8 8 8	0.00	8.8	8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8.80
	5.20014	14.9296	0.0000	7.4813	32,402	0.00	0.00	0.0	0.00	6.93	0.00	0.00	0.00	0.00	0.00	00:0	0.00	0.00

R: ATE:	107 Detonator – M84 70,466 fems/hr 1.92 greins/ft	107 lettor – M84 1,466 thems/hr 1.92 greins/ftem							Σ	METALS FEED RATES	FEED PA	NTES	<u>a</u> .	OTENT	POTENTIAL POHC FEED RATES	ic FEET	PATES	
	COMP QUANT (gr/ftem)	COMP PATE (lb/hr)	CL PATE (lb/hr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (Ib/hr) (SB PATE P (15/hr) (1	BA PATE P (15/hr) (1	CR PATE P	LEAD PATE F	SR PATE P	PATE (Ib/hr) (ZINC PATE (PATE)	DBA PATE (lb/hr)	DNT PATE (Po/hr)	DPA PATE (Po/hr)	HCB PATE (Po/hr)	NG PATE (Ib/hr)
	80.0 80.0 80.0 80.0 80.0	9.2822	000000000000000000000000000000000000000	7.0983 0.3838 0.0000	10,513 22,735 72,735	888	888	8 8 8 8 8 8	8.8.8	83.50 80.00 80.00	8.8.8	8 8 8 8 8 8	888	888	8 8 8 6 8 8	8.8.8	888	8.0 8.0 8.0 8.0 8.0
	1.92018	19.3296	0.000	7.4823	45,032	0.0	0.00	0.0	0.0	6.93	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.00

ii ii

108 Detonator -- MK18 Mod 0 38,172 hems/hr

METALS FEED RATES POTENTIAL POHC FEED RATES

COMP (gr/flew) Gr/flew (gr/flew) <		2.11	2.11 grains/item																
0.15 0.5160 0.0000 0.7020 1.474 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00		COMP QUANT (gr/lem)	COMP PATE (Po/hr)	PATE (Pohr)		HEAT VALUE (BTU/hr)		1				-	1		DBA RATE (Pohir)	PATE (PATE)	DPA PATE (Po/hr)	HCB PATE (Po/hr)	NG RATE (lb/hr)
11.5086 0.2386 8.6668 12,921 0.00 0.59 0.00 0.00 6.33 0.00 0.00 0.00 0.00 0.00	lor rede	0.15 0.02 0.15 0.15		0.0000	0.7020 0.1091 7.4813 0.3745	1,479 11,079 357	8888	8888	8888	8888	6 6 8 8 8 8 8 8	8888	6 8 8 8 6 8 8 8	8888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				0.00
		5.11009	11.5086	0.2368	8888	12,82	0.00	8.0	0.0	8.0	89	000	9.0	000	0.0				

	METALS FEED RATES	POTENTIAL POHC FEED RATES
_		

Ή: ΑπΕ: 3:	109 Defonator - 65,701 h	109 Detonator – MK 19 Mod 0 65,701 fems/hr 1.71 grains/fem	0 Po						2	METALS FEED RATES	FEED A	ATES	u.	POTENTIAL POHC FEED RATES	ML POF	to FEED	PATES	
	COMP QUANT (gr/ftem)	COMP PATE (tb/hr)	CL (PATE (PATE	ASH PATE (Ib/hr)	HEAT VALUE (BTU/hr)	PATE (Po/hr)	SB PATE (Ib/hr)	BA PATE F	CR 1 PATE 1	LEAD PATE (Ib/hr) (SR PATE (lb/hr)	PATE (Po/hr)	ZINC PATE (Po/hr)	DBA PATE (Ib/hr)	DATE (Po/hr)	DPA RATE (Ib/hr)	HCB PATE (lb/hr)	NG PATE (lb/hr)
horate	0.17001 0.03 0.17001 0.30002	1.5967 0.2816 9.7621 1.5967 2.8159	0.000 0.000 0.000 0.000 0.000 0.000	1.3694 0.2816 7.4817 0.0000 0.0000	2,875 011,080 17,815 14,815	8 8 8 8 8 6 6 6 6 6	1.0.0.0.0 0.00.0 0.00.0	8 8 8 8 8	88888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8888	8888	8888	88888	8888	8888	8888	8888
	1.71013	16.0510	0.4616	9.8632	29,487	0.00	1.15	0.0	0.0	6.93	0.00	0.0	0.00	0.00	00.0	0.00	0.00	0.00

: E ::	110 Debonator – MK25 Mod 0 20,216 Items/hr 4.09 grains/frem	tonetor – MK 25 Mk 20,216 thems/hr 4.09 grains/ftem	0 9						~	METALS FEED RATES	FEED F	WTES	_	POTENT	74 PO	5	POTENTIAL POHC FEED RATES	
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	PATE (Byhr)	ASH (Ib/hr)	HEAT VALUE (BTU/hr)	PATE (Portin)	SB PATE (Bohn)	PATE (Pohr)	PATE (Bohn)	LEAD (b/hr)	SA RATE (BAhr)	PATE (16/hr)	ZINC PATE (16/hr)	DBA PATE (Po/hr)	DATE (PATE (PATE)	DPA RATE (Po/hr)	HCB RATE (Rohr)	NG PATE (Po/hr)
uffide lorate	0.33 0.05 0.05 0.33	0.9530 0.1444 9.7617 0.9530	0.0000	0.8179 0.1444 7.4814 0.4363	1,717 0 11,080 428	8888	8888	8888	8888	0 0 0 0 0	8000	8888	0 0 0 0	888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000	0.0.00	00.00
	4.0800	1.872	757.20	0088	13,225	8.0	80	0.00	0.0	8	000	0.0	9:0	0.0	0.00	0:00	0.0	0.0

R: ATE: B:	111 Detonator – MK 28 Mod 0 '9,651 hems/hr 7.54 grains/ftem	111 conetor – MK 28 M 9,651 (bema/hr 7,54 grains/ftem	0						2	METALS FEED RATES	EED PA	NTES		POTENTIAL POHC FEED RATES	M. POH	to FEED	PATES	
	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	CL PATE (Pohn)	ASH PATE (16/hr)	HEAT VALUE (BTU/hr)			1									HCB PATE (Po/hr)	NG PATE (Po/hr)
	0.46	9.761	0000°C	0.0000	3,337 3,337	8.8	8.8 6.0	8.6.0 8.0.0	8.6 6.0	8.00 00.00	80.0 80.0	8 8 6 0	8.8 6.0	88	8 8 c c	8.8 6.0	8 8 6 0	8 8 8 8
	7.54009	10.3956	0.0000	7.4812	14,416	0.00	00:00	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

<u></u> <u>2</u>	112 Detonator – MK 29 Mod 0 27,776 fems/frr 2.46 grains/fem	112 nator – MK 29 Mo 776 hems/hr 2.46 grains/ftem	0						Σ	METALS FEED RATES	EED PA	NES	Δ.	OTENH	M. POF	C FEE	POTENTIAL POHC FEED RATES	
	COMP QUANT (gr/flem)	COMP RATE (Ib/hr)	PATE (Pohr)	PASH (Ib/hr)	HEAT VALUE (BTU/hr)	PATE (PATE)	SB RATE R (Ib/hr) (1	RATE (Ib/hr) (P	CR RATE (CA)	RATE (ID/hr)	SR (b/h)	PATE (Ib/hr)	ZINC. RATE (Ib/hr)	DBA RATE (Ib/hr)	PATE (B/hr)	DPA RATE (fo/hr)	HCB (b/hr)	NG RATE (Ib/hr)
	2.46008	9.7616	00000	7.4813	.1. 670,	000	8. 6.	8:	8.	86 66	8.6	80.0	00:0	00.0	800	800	00 00	00:00
	2.46009	9.7616	0.0000	7.4813	11,079	0.00	0.00	0.00	0.00	6.93	0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00

Я: АТЕ: -	113 Detonetor – MK33 Mod 0 18,467 Items/hr 3.70 grains/ftem	113 hetor – MK33 Mo 1,467 frems/hr 3.70 greins/frem	0 7						Σ	METALS FEED RATES	FEED R	ATES	_	OTENT	M. Pot	IC FEED	POTENTIAL POHC FEED RATES	
	COMP QUANT (gr/flem)	COMP PATE (lb/hr)	CL PATE (Ib/hr)	ASH PATE (fb/hr)	HEAT VALUE (BTU/hr)	AL PATE F	SB PATE P (15/hr) (1	BA PATE P (lb/hr) (1	CR CR (15/hr) (1	LEAD PATE F	SR PATE (PS/hr) (PATE (16/hr)	ZINC PATE (Po/hr)	DBA PATE (Pb/hr)	PATE (fb/hr)		HCB PATE (Po/hr)	NG PATE (fb/hr)
	3.7000	4)761	0000000	7.4811	11,079	8.	8 6	8; 6;	8 6	8 6	8:	8	8. 8.	8 6	80°	8. 6	8. °	8. 8.
	3.70009	9.7614	0.0000	7.4811	11,079	0.00	0.00	0.00	0.00	6.93	8.0	0.00	0.0	0.00	0.00	0.00	0.00	00.0

<u>ii</u>	114 Detonator - 42,705	114 Detonator – MK 37 Mod 0 42,705 Nems/fir 2.06 greins/Nem	9						-	METALS	METALS FEED RATES	MTES		OTENT	W. Pot	POTENTIAL POHC FEED RATES	PATES	
	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	(PATE (PATE	ASH (PATE (Pohr)	HEAT VALUE (BTU/hr)	PATE (15/hr)	SA RATE (Ib/hr)	RATE (Mo/hr)	CA (Po/hr)	LEAD (lo/hr)	SR (Ib/hr)	PATE (PATE	ZINC RATE (Po/hr)	DBA RATE (fo/hr)	PATE (Softer)	DPA RATE (Ib/hr)	HCB (fo/hr)	RATE (Po/hr)
	0.46002	2.8085	0.0000	0.0000	11,080	000	88	88	8 8 6 0	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 6 6	0 0 0 0	0 0 0 0	0 0 0 0	8.00	8.6.0	000	000
	2.08011	12.5681	0000'0	7.4814	44,65	00:00	00:0	00.0	00.0	69.	00:00	00.0	00.0	000	00.0	000	00.0	0.00
										-		-		-	2000		-	

АТЕ: В:	Detonator – MK 43 Mod 0 35,588 ftems/hr 3.83 grains/ftem	nator – MK 43 Mo 5,588 hems/hr 3.93 grains/hem	0						2	METALS FEED PATES	FEED R	ATES	u.	OTENT	W. Pot	POTENTIAL POHC FEED RATES	PATES	
· ·	COMP QUANT (gr/ftem)	COMP RATE (Po/hr)	PATE (PATE	ASH PATE (Ib/hr)	HEAT VALUE (BTU/hr)	PATE (Po/hr)	SB PATE P	BA RATE (Po/hr) (1	CR PATE F	LEAD PATE F	SR RATE (Ib/hr)	PATE (Ib/hr)	ZINC PATE (Po/hr)	DBA RATE (Bo/hr)	DNT PATE (Po/hr)	DPA PATE (Ib/hr)	HCB (Po/hr)	NG PATE (Po/hr)
Normale Normale	0.27001 1.92009 0.27001 1.43007	1.3727 0.2034 9.7617 1.3727 7.2705	0.0000 0.0000 0.3971 0.0000	0.2034 7.5814 0.6284 0.0000	2,474 0 11,080 11,080 38,250	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.0000	800000	000000	0.00.00	8 8 8 8 8	88888	88888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	3.83018	0186:01	0.3971	9.4913	52,420	900	8.0	0.0	0:0	8.9	8.0	0.0	80	0.0	0:00	0.00	00:0	0:00

# # #	116 Detonator - 36,153 (116 Detonator – MK 44 Mod 0 36,153 Nems/hr 2.84 grains/flem	0 98						-	WETALS	METALS FEED PATES	ATES	_	POTENTIAL POHC FEED RATES	JAL PO	+C FEE	PATES	
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Po/hr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (PATE)	SB PATE (flo/hr)	BA RATE (Po/hr)	PATE (PATE	LEAD (Ib/hr)	SA RATE (Ib/hr)	PATE (16/hr)	ZINC PATE (Ib/hr)	PATE (Ib/hr)	PATE (John)	DPA PATE (Bohr)	HCB RATE (Ib/hr)	NG PATE (Po/hr)
office forms	0.23001 0.03 1.89009 0.23001 0.46002	1.1879 9.7618 1.1879 2.3759	0.0000 0.0000 0.3437 0.0000	1.0195 0.1549 7.4814 0.5438 0.0000	2,141 0 11,080 533 12,489	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 6 6 6 6 6	0 0 6 0 0	0.00000	8 8 8 8 8 8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	8 8 8 8 8	8 0 0 0 0 0	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	2.84013	14.6885	0.3437	9.1997	26,283	00.00	98:0	00.0	00.00	6.93	00.0	00.0	00.0	000	00.0	00.0	00.0	00.0

R:	117 Defonator - 35,568 i 2.88g	117 Detonator – MK 44 Mod 1 35,568 items/hr 2.88 grains/item	8						2	METALS FEED RATES	FEED PA	NTES	a.	OTENT	W. Po-	POTENTIAL POHC FEED RATES	PATES	
_	COMP QUANT (gr/ftem)	COMP PATE (fb/hr)	CA. (Pohrt)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (Pohr)	SB PATE (b/hr)	BA PATE R (Po/hr) (R	CR L PATE F	LEAD PATE (PM) (1	SR PATE (PATE (fb/hr)	ZINC PATE (B/hr)	DBA RATE (fb/hr)	DATE (PATE	DPA RATE (Ib/hr)	HCB PATE (fb/hr)	NG RATE (fb/hr)
apylin ap	0.13 0.17 1.71008 0.34001 0.04 0.49002	0.6605 0.8638 1.7276 0.2032 2.4899	000000000000000000000000000000000000000	0.000 0.000 0.000 0.000 0.000 0.000	1,190 (618) 9,862 3,894 2,41 13,089	88888	\$ 0.0.0.0.0 0.0.0.0.0 0.0.0.0.0 0.0.0.0.0	8 4 8 8 8 8 8	808888	0.00 0.00 0.00 0.00 0.00	8 8 8 8 8 8	888888	888888	88888	888888	888888	88888	888888
	2.88011	14.6343	0.0000	8.5564	27,668	0.00	0.48	0.46	0.00	6.93	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

.: Ë.:	116 Detonator – MK 54 Mod 0 14,538 Nems/hr 4.70 grains/Nem	116 lonetor – MK 54 M 14,538 hems/hr 4.70 grains/hem	0 po						-	METALS FEED RATES	FEEDR	ATES	_	OTEN	TAL POP	POTENTIAL POHC FEED PATES	DPATE	**
	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	RATE (Pohn)	ASH (Po/hr)	HEAT VALUE (BTU/hr)	PATE (ID/hr)	RATE (PA)	PATE (Pohn)	PATE (PATE)	PATE (PATE)	SA RATE (Po/hr)	PATE (Bohr)	ZINC PATE (Po/hr)	DBA PATE (Po/hr)	DATE (PATE (PATE)	DPA PATE (Po/hr)	HCB (PATE (PATE)	NG PATE (Ib/hr)
	4.70009	9.7614	0,0000	7.4811	11,079	8	000	000	000	8	00.0	8.0	000	800	9.0	0.00	0.00	00.0
	4.70009	9.7614	00000	7.4811	11,079	000	8.	8:	80	8	8.0	8.	000	0.0	000	00.0	000	0.00

ë

119
Detonator – MK 55 Mod 0
26,080 fterns/hr
4.24 grains/ftern

POTENTIAL POHC FEED PATES

METALS FEED RATES

0.00 0.00 NG PATE (Ib/hr) HCB PATE (PATE) 0.0 0.00 0.00 DPA PATE (Po/hr) PATE (16/hr) 0.00 DBA RATE (Ib/hr) 0.00 ZINC PATE (Po/hr) 0.00 PATE (b/hr) 0.0 SR PATE (Ib/hr) 0 0 BA CR LEAD RATE PATE PATE (ID/hr) (ID/hr) (6.93 6.93 0.00 0.00 0.00 SB PATE (fb/hr) 0.00 PATE (Ib/hr) 0.00 0.00 HEAT VALUE (BTU/hr) 11,080 31,755 42,834 7.4814 7.4814 ASH PATE (Po/hr) 0.0000 A F (마) 9.7617 15.7976 COMP PATE (Ib/hr) 2.62009 4.24015 COMP QUANT (gr/ftem) Ä.

0.00

0.00

0.00

0.00

0.00

000

0.0

0.00

0.0000

<u>.</u>	120 Detonator – MK 56 375,601 itema/hr 0.39 grains/fa	120 Detonator – MK 56 Mod 0 · 375,601 itema/hr 0.39 grains/item	0 P0							METALS	METALS FEED RATES	MTES	-	POTENT	TAL PO	POTENTIAL POHC FEED RATES) PATES	
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	PATE (PATE	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (Po/hr)	SB RATE (Po/hr)	RATE (D/hr)	RATE (PAN)	PATE (PAN)	SA RATE (PA)	PATE (Ib/hr)	ZINC PATE (Po/hr)	DBA PATE (b/hr)	PATE (Bohr)	DPA RATE (Bohr)	HCB PATE (Bohr)	RATE (PATE
or sales	0.13006 0.02001 0.11005 0.13006	6.9787 1.0737 5.9050 6.9787	0.0000 0.0000 2.0189	5.9891 1.0737 4.5256 3.1948	12,576 6,702 3,133	8 8 8 8 8 6 6 6 6	8888	8888	8888	0 0 4 0 0 0 0 0 0	8888	8888	8888	8888	6.0.0.0 6.0.0.0	0.00.00	60.00 00.00 00.00	8888
	810820	20.8360	2.0188	14.7832	14,2	8.0	8	000	0.00	6.4	00:0	00:0	00:0	00.0	0.00	00.0	00:00	00.0

ä

POTENTIAL POHC FEED RATES

METALS FEED PATES

121 Detonator – MK 59 Mod 0 38,172 frems/hr 2.71 grains/ftem

HCB NG PATE PATE (fb/hr) (fb/hr) 0.0 0.00 0.0 0.00 PATE (Porti) 0.00 0.00 DBA DNT PATE PATE (Po/hr) (Po/hr) 0 0 0.00 0 0 0.00 ZINC PATE (Pa/hr) 0.00 0.00 PATE (lb/hr) 0.0 0.00 SR PATE (Ib/hr) 0.0 0.00 6.93 6.93 AL SB BA CR LEAD PATE RATE RATE RATE (B/hr) (Ib/hr) (Ib/hr) (Ib/hr) 0.00 0.00 0.0 0.00 0.0 0.00 0.0 0.0 HEAT VALUE (BTU/hr) 11,079 37,475 7.4813 7.4813 ASH PATE (Po/hr) 0.0000 0.0000 PATE (Patr) 9.7616 5.0172 14.7788 COMP PATE (Ib/hr) 1.79009 2.71014 COMP QUANT (gr/ftem) .: A

	2.77 grains/item							2	METALS FEED PATES	רבבט ח	}	•			POTENTIAL POHC FEED RATES	NA IE	6 0
COMP CUANT (gr/ftem)	COMP PATE (Ps/hr)	PAR G	PATE (Pohit)	HEAT VALUE (BTU/hr)	PATE (Pohn)	SB PATE (Po/hr)	BA PATE (Po/hr)	PATE (PAM)	LEAD PATE (SR RATE (lb/hr)	PATE (Ib/hr)	ZINC RATE (Ib/hr)	DBA RATE (Po/hr)	PATE (John)	PATE (Bohr)	PATE (BAhr)	RATE (Ib/hr)
1.00005 1.00005	9.767.83. 12.13.13.13.13.13.13.13.13.13.13.13.13.13.	00000	0.0000	11,080 19,474	8 8 6 6	88 co	88	8.8	8.60	8.8	8 8 8 8	8.8 6.6	8 8 8 8	0.00 0.00	0.00 0.00	0.00 0.00	8 8 8 8
2.77014	15.2788	00000	7.4814	88. 88.	000	000	0.00	00:00	88.3	00.00	0.00	0.00	8:0	0.00	00.0	00.0	0.00

Я: ATE: В:	123 Detonator – T 83E1 232,020 thems/hr 1.63 grains/fte	123 18for – T 83E1 1020 freme/hr 1.63 greins/frem							Σ	METALS FEED RATES	FEED R	ATES	ı.	OTENT	ĭ⁄. Po	POTENTIAL POHC FEED PATES	RATES	
	COMP QUANT (gr/ftem)	COMP PATE (Po/hr)	PATE (BO/hr)	ASH PATE (fb/hr)	HEAT VALUE (BTU/hr)	PATE (Ib/hr)	SB PATE F (fb/fn/) (1	BA PATE P (16/hr) (1	CR PATE (Po/hr)	LEAD PATE P	SR RATE (Po/hr) (PATE (16/hr)	ZINC PATE (Po/hr)	DBA PATE (Po/hr)	PATE (Po/hr)	DPA PATE (Po/hr)	HCB (PATE (Po/hr)	NG PATE (Po/hr)
epulla e	0.05001 0.05001 0.12003 1.16004 0.02	1.6576 1.9891 7.2944 3.9785 38.4503 0.6629	000000000000000000000000000000000000000	1.4226 1.1670 1.8951 0.0000 0.0000	2,987 (1,424) 158,646 785	888888	1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	8.50.00.00 8.00.00 8.00.00	8 8 8 8 8 8 8	0.00 0.00 0.00 0.00 0.00	88888	888888	88888	88888	888888	888888	88888	88888
	1.63016	54.0328	0.0000	10.0761	178,240	0.00	1.19	8.	0.00	6.93	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.00

# E.	124 Detonetor – T 84E! 41,359 items/hr 2.16 grains/lte	124 letor – T 84E1 ,359 tema/hr 2.16 grains/tem							-	AETALS	METALS FEED RATES	MTES		POTENTIAL POHC FEED PATES	W PO	- FEE	PATES	
	COMP CUANT (gr/fem)	COMP (PATE (Pohn)	(PATE (PATE	ASH (BAhr)	HEAT VALUE (BTU/hr)	PATE (PATE)	RATE (IDAn)	BATE (Ib/hr)	RATE (Bohn)	RATE (Pohr)	SR PATE (Po/hr)	PATE (Ib/hr)	ZINC PATE (Ib/hr)	DBA PATE (Ib/hr)	PATE (PATE	DPA RATE (Ib/hr)	HCB PATE (Po/hr)	PATE (PATE
• • • • • • • • • • • • • • • • • • •	0.04 1.58009 0.10 0.01 0.01	0.2363 9.3949 0.5968 0.0596 0.0591	000000000000000000000000000000000000000	0.2028 0.1733 7.2003 0.0000 0.0000	25.4.0 20.0 00.0 00 00 00	888888	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 8 ± 8 8 8 8	88888	98888	888888	880888	8.60.00.00	88888	888888	888888	888888	88888
•	2.16011	12.7829	0.0000	7.8580	21,300	00.00	0.17	0.18	0.00	6.93	00.00	0.00	0.00	00.00	00.00	0.00	0.00	0.00

: :: :::::::::::::::::::::::::::::::::	125 Fuze Point Detonating – MK27 660 items/fur 351.12 grains/ftem	125 p.Point Detonating: 660 fems/hr 351.12 grains/ftem		(w/booster)					Σ	ETALS	METALS FEED RATES	NTES	<u>a.</u>	OTENT	IAL POF	POTENTIAL POHC FEED PATES	PATES	-
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (lb/hr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (Ib/hr)	SB PATE F (lb/hr) (BA PATE P	CR PATE (16/hr)	LEAD PATE F	SR PATE P	PATE (lb/hr) (ZINC PATE (Po/hr)	DBA RATE (fb/hr)	DNT PATE (Po/hr)	DPA PATE (fb/hr)	HCB PATE (Po/hr)	NG PATE (Ib/hr)
uffde	4.75	0.0038	0.0000	0.0032	208	0.0.0	8 8 8	8 8 8	8 8 8	0.0 8.8.8	0 0 0	0 0 0 0 0 0 0	888	888	8 8 8	888	888	888
	346.193	32.6411	0.0000	0.0000	171,725	800	8 8	8 8	8.0	8.0	8 6 6	8 8	88	8 8	8 8	800	8 8	8 8
																-		
							, ,											
											-							
	351.123	33.1059	0.0038	0.3525	172,246	0.0	0.00	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

126 Fuze, Audillary Detonating—MK31 Mod2 (w/booster) 16,030 hems/hr

METALS FEED PATES POTENTIAL POHC FEED PATES

a	5.03	16,030 frems/hr 5.03 grains/frem							2	AETALS	MEIALS FEED FAIES	N ES		POIENIM PORCYEED MAIES	Z Z	Creen	¥ ES	
	COMP QUANT (gr/flem)	COMP (Po/hr)	PATE (Poly)	ASH RATE (Rohn)	HEAT VALUE (BTU/hr)	PATE (Pohit)	SB RATE (ID/hr)	RATE (Pohn)	PATE (Pohr)	LEAD (Pohrt)	SA RATE (IG/hr)	PATE (Ib/hr)	ZINC RATE (Ib/hr)	DBA RATE (Ib/hr)	PATE (Ib/hr)	DPA RATE (ID/hr)	PATE (PATE)	NG RATE (Ib/hr)
Piliton and the state of the st	0.18 3.898 0.607 0.07	0.4122 0.6412 8.8254 1.3763 0.1603	0.0000000000000000000000000000000000000	0.3538 0.3762 0.6559 0.0000	854) 161,01 181,00 181	88888	8.8.8.8.8	8,600.0	88888	0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0 0.0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	88888	88888	88888	88888	888888	88888	88888	88888
	800	11,5164	0.0000	8.2271	13,707	0.00	0.30	0.34	0.00	3 6.8	0.00	0.00	0.00	0.00	00.0	0:00	0.00	0.00

H: H: H: H	127 Fuze Point Detonating – M48 3,163 items/hr 6.17 grains/frem	127 Point Detonating 3,163 items/hr 6.17 grains/ftem	-M48		·				2	METALS FEED RATES	FEED R	ATES	<u>.</u>	POTENTIAL POHC FEED PATES	W. Pot	to FEEC	PATES	
	COMP QUANT (gr/flem)	COMP PATE (Po/hr)	CL PATE (Ps/hr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	AL PATE (Po/hr)	SB PATE 1	BA PATE F	CR RATE (ID/hr)	LEAD PATE (SR PATE (15/hr) (PATE (PATE)	ZINC PATE (PATE)	DBA PATE (Ib/hr)	DATE (Po/hr)	DPA PATE (Po/hr)	HCB PATE (Po/hr)	NG PATE (fb/hr)
wuffide mete e ilorate se se se	0.38 0.06 0.08 0.12 0.03 0.00 0.00	0.1762 0.1898 0.0361 0.0361 0.0542 0.1536 0.0090 0.0090	0.000 0.000	0.1512 0.1838 0.0159 0.0158 0.0703 0.0703 0.0000	8.5 2.3 8.5 2.3 8.0 0 0 1 1 0	8000000000	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	828888888888888888888888888888888888888	0.0000000000000000000000000000000000000	800000000000000000000000000000000000000	888888888888888888888888888888888888888	888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888888	888888888888888888888888888888888888888	888888888	888888888
	6.172	2.7889	0.0444	2.2145	3,711	0.00	0.13	0.12	0.04	1.52	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00

# E:	128 Fuze Base Detonating – M68A1/A2 660 fems/hr 107.39 grains/ftem	128 see Detonating 660 thems/fir 107.39 grains/flem	-M66A1/A	81						WETALS	METALS FEED PATES	MTES		POTENTIAL POHC FEED PATES	P. Po	HC FEE	PATES	-
	COMP QUANT (gr/ftem)	COMP (PATE (Bohr)	(PATE (PATE	ASH (PATE (Po/hr)	HEAT VALUE (STU/hr)	PATE (Ib/hr)	SA RATE (Ib/hr)	BA PATE (Po/hr)	PATE (Byhr)	LEAD PATE (Po/hr)	SA PATE (Po/hr)	PATE (Ib/hr)	ZINC PATE (Bohr)	DBA PATE (Bo/hr)	PATE (Pohr)	DPA PATE (Pohr)	HCB PATE (Bohn)	PATE (PATE)
owder vide site	9.7.9 9.7.9 5.95 19.251 68.306	0.0566 0.3291 0.9231 1.8151 6.4403	0.0000 0.0000 0.3183 0.0000 0.0000	0.0252 0.2522 1.5307 0.0000 0.0000 0.0000	136 373 9,833 5,003 33,882 33,882	8888888	888888	888888	8.60.00.00	8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00 0.00 0.00 0.00 0.00 0.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	107.387	10.1251	. 0.3183	2.6948	47,801	0.00	0.00	0.00	0:00	87.0	0.74	0.00	0.00	0.00	0.00	00:0	0.00	0.00

: EE:	129 Fuze Point Detonating – M78A1 (w/booster) 3,954 frema/hr 9.71 grains/frem	129 Point Detonating- 3,954 fema/hr 9.71 grains/fem	-M78A1 (w	/booster)						<u> </u>	FEED RA			OTENT	W. Pot	to FEET	POTENTIAL POHC FEED RATES	
	COMP QUANT: (gr/flem)	COMP RATE (fb/hr)	PATE (lb/hr)	ASH RATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (fb/hr)	SB RATE ((b)/hr) (CR PATE ((Bo/hr) (LEAD PATE F (lb/hr) (1	SR RATE F	H	1	DBA RATE (b/hr)				NG RATE (lb/hr)
uffide nete to forethe Acetate Pesin	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.2316 0.0339 0.0339 0.0339 0.0678 0.0678 0.0013	000000000000000000000000000000000000000	0.1988 0.1094 0.1094 0.0338 3.5819 0.0957 0.0000 0.0000	714 (88 52) (87 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8888888888	- 888888888888888888888888888888888888	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	848888888	888888888888888888888888888888888888888	888888888888888888888888888888888888888	888888888	888888888	888888888	8888888888	8888888888	888888888	8888888888
	9.708	5.4836	0.0805	4.2579	6,717	0.00	0.17	0.12	0.0	3.35	0.0	0.0	0.00	0.00	0.0	0.00	0.00	0.00

. H.	130 Fuze, Grenade – W2 579,305 feme/fr 0.38 greins/fr	Grenade – M204, ,305 items/hr 0.38 greins/item	130 Fuze, Grenade – M204A2, M208, M213, M214 578, 305 Hems/hr 0.38 greins/hem	213,M214					· ·	WETALS	METALS FEED RATES	WIES		POTENI	TAL POI	HO FEE	POTENTIAL POHC FEED RATES	
	COMP QUANT (gr/fem)	COMP RATE (Ib/hi)	(PATE)	ASH PATE (Pohn)	HEAT VALUE (BTU/hy)	PATE (Ib/hr)	SB PATE (Po/hr)	BA (Ib/hr)	CH (PATE	PATE (Pohn)	SR RATE (fb/hr)	PATE (Po/hr)	ZINC PATE (b/hr)	DBA RATE (bhr)	PATE (Bohn)	DPA PATE (Bohn)	HCB PATE (Po/hr)	NG PATE (Po/hr)
ilifide in Middle	0.043 0.086 0.1915 0.027	3.5586 3.5586 7.1172 15.8481 1.7379	0.0000	6.7240 3.0540 4.1756 7.5532 0.0000	7.37. (5,086) (2,772 2,088	8 8 8 8 8 8 8 8 8 8	8 % 8 8 8 8 6 % 8 8 8 8 8	88.788	88888	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88888	80000	8 8 8 8 8 8	8 8 8 8 8	0.00 0.00 0.00 0.00	0.00.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	80000
	0.3845	31.8204	0.000	21.5068	88,48	3.56	2.58	7.8	000	76.9	00:0	000	00:0	0000	00.0	0000	00.0	00.0

Я: ТЕ:	131 Fuze,MTSQ-M502 440 Ibems/hr 331.93 greins/fte	131 A40 fems/hr 331.93 greins/fem							2	METALS FEED RATES	FEED R	ATES	u.	OTENT	IAL POF	POTENTIAL POHC FEED RATES	PATES	
	COMP QUANT (gr/ftem)	COMP PATE (Po/hr)	PATE (Po/hr)	ASH PATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL PATE (fb/hr)	SB PATE (Po/hr)	BA PATE (16/hr) (CR II	LEAD PATE (SR PATE (Ib/hr) (PATE (Ib/hr)	ZINC PATE (Po/hr)	DBA PATE (Po/hr)	DATE (%)(h)	DPA PATE (Po/hr)	HCB PATE I	NG PATE (fb/hr)
uffice to to to to	0.33 0.13 0.27 0.27 0.03 324.702	0.0207 0.0082 0.0019 0.0170 0.0170 0.0019 20.4088	00000 00000 00000 00000 00000 00000 0000	0.0178 0.0048 0.0078 0.0078 0.0000 0.0000	37 438 438 43 107,376	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20000000	8888888	88888888	0.00.00.00 0.00.00.00 0.00.00.00 0.00.00	88888888	88888888	8888888	88888888	88888888	8888888	8888888	8888888
	331.932	20.8643	0.0049	0.3370	107,898	0.00	0.01	0.00	0.0	0.28	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00

BTU, CHLORINE, AND ASH FEED RATES

132 Fuze Point Detoneting – Base Detonating – M509A1 11,000 fems/hr 125.39 grains/flem

Ë

METALS FEED PATES

POTENTIAL POHC FEED RATES

0 0 0 0.00 RATE (PA) PATE (PATE) 8 8 8 0.00 PATE (PATE) 888 0.00 ZINC DBA DNT RATE RATE RATE I (Bohn) (Bohn) (Bohn) 888 000 0000 0.00 000 0.00 PATE (PATE) 0000 0.00 000 0.00 SA RATE HEAT AL SB BA CR LEAD VALUE RATE RATE RATE RATE (BTU/ht) (fb/ht) (fb/ht) (fb/ht) (fb/ht) 0.00 0.00 0.00 2.16 0.00 0.0 888 0.00 888 0.00 0.00 0.00 3,440 15,847 997,059 2.3292 1,016,355 2.3232 0.0000 PATE (Pohr) 0.0000 0.0000 PAR (PAR) 1.834 3.0391 2.856 4.4880 120.603 189.5188 125.393 197.0460 PATE (16/hr) COMP QUANT (gr/flem)

BTU, CHLORINE, AND ASH FEED PATES

R: ATE: 3:	133 Fuze Proxin 3,600 H 388.30 g	133 9-Proximity—M513. 3,600 fems/hr 388.30 grains/fem	133 Fuze Proximity—M513A1 (w/booster) 3,600 items/hr 388.30 greins/item	(Jag					≥	METALS FEED RATES	FEED R	ATES		<u>.</u>	OTENT	ĭ¥. Po	POTENTIAL POHC FEED PATES	PATES
<u></u>	COMP CUANT (gr/ftem)	COMP PATE (Ib/hr)	C. BATE (Pohr)	ASH PATE (fb/hr)	HEAT VALUE (BTU/hr)	PATE (Ib/hr)	SB PATE (lb/hr) (1	BA RATE (Ib/hr) (I	CR PATE (B/hr) (0	RATE (Ib/hr) (SR RATE (Ib/hr) (TIN PATE (lb/hr)	ZINC PATE (fb/hr)	DBA PATE (lb/hr)	DATE (Po/hr)	DPA PATE (Po/hr)	HCB PATE (lb/hr)	NG PATE (fb/hr)
	385.503 385.503	0.3086 0.3086 196.2587	0000 0000 0000 0000	0.0000	0.8675 0.0000 0.0000 0.0000 1,043,039	8.8.8	8.0° 0 00.0°	8.8.8	8.6.0 8.0.0 8.0.0	8.0.0 8.0.0 8.0.0	8.8.8 6.0.0	8 8 8 8 8 8	8 8 8 6 6 6	8 8 8 6 6 6	8.8.8 6.6.6	8.8.8 6.6.6	8 8 8	8000
	388.304	388.304 199.6992	0.000	0.8675	0.8675 1,045,413	0.00	0.00	8.0	0.0	0.80	00.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00

COMP QUIANT (gr/ftern) uffice 0.39 0.05 0.06 0.06 0.06 0.07		THE PROPERTY.						2	MEIALS FEED HAIES							1	POIENTIAL PORC FEED PATES
	PATE (PATE)	(PATE (PATE	ASH (PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (PATE	SB RATE (Ib/hr)	BA PATE (b/hr)	PATE (PATE)	RATE (Phr)	SR PATE (Ib/hr)	PATE (Po/hr)	ZINC PATE (b/hr)	DBA RATE (Pohr)	PATE (PATE)	DPA RATE (Bohn)	PATE (PAME)	RATE (PATE)
	0.7721 1.2889 1.2889 0.1188 0.1188 0.0198 1.00198	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0523 0.1188 0.1188 7.4184 0.0820 0.0000 0.0000	1,387 3,086 0 10,986 2,48 129 129	88888888	8888888	8888888	88888888	0.00.00.00.00.00.00.00.00.00.00.00.00.0	88888888	88888888	88888888					
297.7	15.3677	0.2882	9.2372	28,101	0.00	999	8.0	0.0	8.9	000	000	8.0	8.0	00.0	8.0	80.0	00.0

BTU, CHLOPINE, AND ASH FEED PATES

•

135 Fuze Point Detonating – M525 (w/booster) 5,000 frems/hr 270.01 greins/frem

POTENTIAL POHC FEED RATES

METALS FEED RATES

000000 0.0 NG PATE (Pb/hr) 8 8 8 8 8 8 0.00 HCB PATE (Po/hr) 8 8 8 8 8 8 0.00 DPA PATE (Po/hr) 8 8 8 8 8 8 0.0 PATE (Po/hr) 888888 0.0 DBA PATE (Pb/hr) 888888 0.0 ZINC PATE (BAhr) 888888 000 PATE (b/hr) 888888 0.00 SR PATE (fb/hr) 8 8 8 8 8 8 9. PATE (PATE) 888888 0.00 CR (PATE (Pahr) 888888 0.00 BA PATE (Po/hr) 0.00 0.00 0.00 0.00 0.00 SB PATE (Po/hr) 0.15 0 0 0 0 0 0 8 8 8 8 8 8 0.00 PATE (Pohr) 386 2,556 96 767,150 0 HEAT VALUE (BTU/hr) 792,382 0.1839 0.0981 0.0367 0.0357 0.0357 2.0438 ASH PATE (Po/hr) 0.0000 0.0000 0.0000 0.0000 0.0620 A F T 0.2143 2.2521 0.2143 185,9306 0.0357 4.2186 192,8656 PATE (16/hr) 3.153 0.3 260.303 0.05 5.906 270.012 COMP QUANT (gr/ftem) orate uffide

136 Fuze Point Detonating – MS57, MS72 (w/booster) 440 items/hr 28.57 grains/item

岜

METALS FEED PATES

POTENTIAL POHC FEED RATES

0.00 PATE (PATE) 0.00 PATE (PATE) 0.00 PATE (PATE) 0.00 PATE (Mohr) 0.00 PATE (PATE) 0.00 PATE (BAhr) 0.00 PATE (PATE) 0.00 SA PATE (Porty) 0.21 PATE (PATE) 0.01 PATE (PATE) 0.07 PATE (Ib/hr) 0.02 PATE (Poly) 0.00 PATE (PATE) 21,147 HEAT VALUE (BTU/ht) 0.4530 0.0250 0.0028 0.0162 0.0162 0.0036 0.0036 0.0038 0.0038 0.0038 PATE (PATE) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0062 PATE (Mark) 0.0245 0.0036 0.0036 0.4677 0.2335 0.0075 0.0038 0.0003 1.7965 PATE (PATE) 0.38 0.06 0.06 0.08 0.08 0.03 0.03 0.00 0.00 28.585 COMP QUANT (gr/fem) Lostate Resin a de la companya de l

7: 1:	137 Fuze Point Detonating – M564 (w/booster) · 3,800 flems/hr 361.72 grains/ftem	137 Pe Point Detonating 3,800 flema/hr 361.72 grains/flem	-M564(w/k	ooster)		٠.			Σ	ETALS	METALS FEED RATES	ATES			OTENT	ĭA Po⊦	POTENTIAL POHC FEED RATES	PATES
	COMP QUANT (gr/ftem)	COMP PATE (fb/hr)	PATE (Pohr)	ASH PATE (Ib/hr)	HEAT VALUE (BTU/hr)	PATE (16/hr)	SB PATE (Ib/hr)	BA PATE P (Po/hr) (1	CR L	LEAD PATE (16/hr) (SR PATE (16/hr) (PATE (Ib/hr)	ZINC PATE (Byhr) (DBA RATE (fb/hr)	DATE (Pohr)	DPA RATE (fb/hr)	HCB (fb/hr)	RATE (Po/hr)
uffide to nate horate	1.31 0.06 7.165 0.12 2.001 4.243 320,402 0.02 26.4021	0.717 0.0326 3.8896 0.0651 1.0853 2.3033 173.9328 0.0109	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.6108 0.0191 0.7488 1.0545 0.0000 0.0000	2,278 1,44 1,034 1,034 717,634 717,647 7,5,404	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	200000000 2000000000000000000000000000	8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.	888888888	888888888	88888888	88888888	888888888	88888888	88888888	888888888
	361.725	361,725 196,3648	0.6864	5.4462	802,196	0.00	0.51	0.02	0.00	3.56	00:00	0.00	00:00	0.00	0.00	0.00	0.00	0.00

138

Mine Activator, Arti – tank – M1 13,650 hems/hr 47.20 greins/hem

ü ---

METALS FEED PATES

POTENTIAL POHO FEED RATES

88888 PATE (Port) 80000 PATE PATE 88888 PATE (Pohr) 000000 PATE (PATE) PATE (PATE 00000 88888 PATE (PATE) 88888 PATE (Ib/hr) 00000 SA RATE PATE (PATE) PATE (PATE 88888 00000 RATE (PA) SB PATE (Ib/hr) 88888 88888 PATE (PATE) HEAT VALUE (BTU/hr) 20,665 8,864 4,572 1,192 417,071 0.0000 5.9851 1.5051 1.2156 0.0000 RATE (PATE) 0.0000 0.0000 0.7682 0.0000 PATE (PATE) 1.4661 7.8094 2.1804 2.6552 79.2772 COMP RATE (B/hr) 0.741 3.947 1.102 1.342 40.0679 QUANT QUANT (gr/flem) or at a

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

7.09

0.00

000

0.00

0.00

452,371

8.7058

0.7682

93.3884

47.1999

BTU, CHLORINE, AND ASH FEED PATES

R: ATE:	139 Ejection Ctg., Bomb—CCU—1/B 6,600 Items/frr 8.56 grains/frem	139 on Cig., Bomb ,800 flema/hr 8.56 grains/flem	00U-1/B						2	METALS FEED RATES	FEED R	ATES		<u></u>	OTENT	W. Po	POTENTIAL POHC FEED RATES	PATES
·	COMP CUANT (gr/ftem)	COMP PATE (Ib/hr)	CA. (b/hr)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (lb/hr)	SB RATE (Ib/hr)	BA PATE (Pyhr)	CR PATE (Ib/hr)	LEAD PATE (SR RATE (Ib/hr)	PATE (Ib/hr)	ZINC PATE (Po/hr)	DBA PATE (Po/hr)	DATE (PATE (Po/hr)	DPA PATE (Ib/hr)	PATE (Po/hr)	NG PATE (Ib/hr)
2	0.03 4.914 1.281		0.0000	0.0000.0	427 20,099 8,240	0 0 0 0 8 8	0 0 0 0 0 0 0 0	8.8.8	0 0 0	0.0.0	0.0.0	8 8 8 8 8 8	888	8 8 8	8 8 8	0 0 0 8 8 8	888	0.00 0.01 12.1
ulfate orus	0.05 1.541 0.74	0.0471 1.4529 0.6977	0.0000	0.0304	(33) 5,995 7,127		0.0.0	0 0 0	0 0 0	0000	8 8 8	8 8 8	888	0000	000	000	0 0 0	0 0 0
	8.556	8.0671	0.0000	1.6291	41,864	00:00	0.00	0.00	0.00	0.0	0.0	0.00	0.00	00.00	0.00	00:00	0.00	1.21

...

140 Booster - M21A4 440 Nema/hr 321.30 graina/Nem

Ë

METALS FEED RATES

POTENTIAL POHC FEED RATES

0.00 0.00 NG PATE (Po/hr) 000 PATE (PATE) 0.00 0.00 PATE (PATE 0.00 DBA DNT PATE RATE F (Ib/hr) (Ib/hr) (000 0.0 0.00 0.00 0.00 PATE (BAhr) 0.00 BATE PATE (Po/hr) (15/hr) 0.0 0.0 0.0 0.00 0.16 0.00 HEAT AL SB BA CR LEAD VALUE RATE PATE PATE (BTU/hi) (fb/hi) (fb/hi) (fb/hi) (fb/hi) (fb/hi) (fb/hi) 0.00 0.00 0.0 0.00 0.00 90.0 0.00 0.00 105,336 105,064 0.0000 0.1701 PATE (PATE 0.0000 0,0000 PATE (PATE) 0.2219 20.1961 PATE (PATE) 321.302 3.53 COMP QUANT (gr/flem)

141 Booster, Fuze – M125A1 3,600 tems/hr 379.45 grains/tem

POTENTIAL POHC FEED PATES 0.00 0.00 PATE (PATE) 0 0 0 0.00 HCB PATE (Jo/hr) 0.00 0.00 DPA PATE (Pb/hr) PATE (PATE) 0.00 0.00 DBA PATE (Po/hr) 888 0.00 000 ZINC PATE (16/hr) 0.00 0000 0.00 PATE (fa/fa) METALS FEED PATES SA PATE (Po/hr) 0.00 0.00 PATE (PATE 0.00 0.0 PATE (Po/hr) 0 0 0 0 0 0 0 0 0.00 SB BA PATE PATE (Ib/hr) (0.00 0.00 0.00 0.42 8 8 8 0.00 PATE (Po/hr) 0000 0.00 52,960 53,975 986,382 HEAT VALUE (BTU/hr) 0.8337 1,093,317 0.0000 ASH PATE (lo/hr) 0.0000 0.000 PATE (Phr) 3.8294 3.8294 187.4895 195.1482 COMP PATE (Pb/hr) 7.446 7.446 364.563 379.455 COMP QUANT (gr/ftem) 벁..

<u>.</u> 월	142 Booster – 1 3,400 j 415.80 g	142 Booster – MK39 Mod 0 3,400 Items/hr 415,80 grains/Item							2	ETALS	METALS FEED RATES	ATES		_	OTEN	PO PO	POTENTIAL POHC FEED RATES	D PATE
	COMP QUANT (gr/flem)	COMP (PATE (PAN)	PATE (PAN)	ASH PATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (POPH)	PATE (Pohn)	BA RATE (Porty)	CR L	LEAD RATE (Pohn)	SA RATE (Pohr)	PATE (Pohr)	ZINC PATE (Ib/hr)	DBA RATE (ID/hr)	PATE (Poly)	DPA PATE (Po/hr)	HCB RATE (ID/hr)	NG RATE (Po/hr)
	415.803	415,863 201.9615	0.0000	0.0000	0.0000 1,082,519	86	8.	8.6	8	8	8.	8.0	0.00	000	000	000	86.0	0.00
	415.803	415,803 201,9615	0.0000	00000	0.0000 1,062,519	000	8.0	80.0	0.0	8.	0.0	8.0	000	000	000	00:0	000	0.00

ä

143 Ignition Ctg. – M5A2 19,416 hema/hr 40.01 grains/hem

POTENTIAL POHC FEED PATES 0.0.4.0 0.0.8.0 4.3 NG PATE (Po/hr) 0 0 0 0 0.0 HCB (PATE (Pahr) 8 8 8 8 0.0 DPA PATE (Pohr) 8 8 8 8 0.0 PATE (PATE) DBA RATE (Po/hr) 0 0 0 0 0.0 0000 0.0 ZINC PATE (Po/hr) 0.000 0.0 PATE (fb/hr) METALS FEED PATES 0 0 0 0 0.0 SR PATE (Ib/hr) 0 0 0 0 0.0 LEAD PATE (Po/hr) 8 8 8 8 0.00 CR PATE (Po/hr) 0 0 0 0 0.0 BA PATE (Po/hr) SB PATE (Po/hr) 0.000 000 8 8 8 8 0.0 PATE (Jb/hr) 12,569 278,025 302,840 (477) 592,947 HEAT VALUE (BTU/hr) 0.0000 0.9250 ASH PATE (Po/hr) 0.0000 0.0000 PATE (Jehr) 0.8321 64.0906 44.3916 1.6670 110,9613 COMP PATE (Po/hr) 40.0118 23.1064 16.0044 0.601 COMP QUANT (gr/ftem) Ë

144 Ignition Element, Electric-M91 (1377-00-007-4880) 660 Items/fir 13.97 grains/firem

POTENTIAL POHC FEED PATES

METALS FEED RATES

8888 0.00 RATE (POPr) PATE (MA) 8888 0.00 8888 0.00 PATE (PATE) 8888 0.00 PATE (PATE) PATE (PATE) 0000 0.00 ZINC PATE (Ib/hr) 8888 0.00 8888 PATE (Ib/hr) 0.00 0000 0.00 SA PATE PATE (Pohr) 00000 0.30 PATE (PATE) 8888 0.00 BA PATE (Po/hr) 0000 0.00 SB RATE (Bohn) 8888 0.00 PATE (Pohr) 00000 0.00 HEAT VALUE (BTU/hr) 88 54 50 58 55 50 50 55 4,517 0.0000 0.0000 0.2903 0.2378 0.5281 ASH (PATE (PATE) 0.0000 0.0000 0.0000 0.1503 0.1503 PAR PAR 0.2414 0.1358 0.4205 0.5195 1.3172 PATE (PATE) 2.56 1.44 5.51 COMP QUANT (gr/ftem) 13.97 2 4 5 ij...

R: ATE: 3:	145 Delay Plunger, 0.5eec-M1 40,099 thems/hr 2.21 grains/ftem	145 Plunger, 0.5eec- ,099 thems/hr 2.21 greins/ftem	M						2	METALS FEED RATES	FEED R	ATES		<u>.</u>	POTENTIAL POHC FEED RATES	M. Po	C FEED	PATES
	COMP CUANT (gr/ftem)	COMP PATE (Ib/hr)	CA. (Po/hr)	ASH PATE (Ib/hr)	HEAT VALUE (BTU/hr)	PATE (Po/hr)	SB FATE (Po/hr) (BA PATE F	CR PATE (LEAD PATE (SR PATE (Ib/hr) (PATE (PA)	ZINC PATE (Byhr)	DBA PATE (Po/hr)	PATE (Pohr)	DPA PATE (Pb/hr)		NG RATE (Ib/hr)
rinde Norde	0.00 0.00 0.12 0.12	1.8388 9.5035 0.3437 0.6874 0.0573	0.0000	0.7552 7.2835 0.2373 0.3147 0.0000	4,415 10,786 10,786 309 373	800000	00000	888888	800000	0.00 0.024 0.00 0.00	800000	800000	000000	888888	888888	8000000	888888	800000
	2.21	12.6598	0.1989	8.7873	17,017	0.00	0.16	0.00	00.0	6.39	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00

Ë ...

POTENTAL POHC FEED PATES

METALS FEED PATES

146 Detert 22,500 Nema/hr 10.00 greins/Nem

0.00 PATE (PATE) 0.00 RATE (PA) 000 DPA PATE (Pohr) 0.00 PATE (Bohr) PATE (PATE 0.00 PATE (PATE) 000 PATE (BAhr) 0.00 SA PATE (Po/hr) 0.00 LEAD PATE (Bohr) 0.00 PATE (PATE) 0.00 SB BA RATE PATE (Ib/hr) (Ib/hr) 0.00 0.00 PATE (Phy) 000 169,158 HEAT VALUE (BTU/hr) 0.0000 PATE (PATE 0.0000 OF F 32.1531 32.1531 PATE (PATE) 10.0032 10.0032 COMP QUANT (gr/ftem)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

9.0

0.0

800

0.00

0.00

169,158

0.0000

0.000

Ë.; ë

147 Impulse Ctg. – MK15 Mod 0 45,000 fems/hr 0.27 greins/ltem

POTENTIAL POHC FEED PATES

METALS FEED RATES

8888 0000 HCB PATE (Ib/hr) 0 0 0 0 0 0 0 0 0 0 0 0 DPA PATE (Ps/hr) 8 8 8 8 DANT PATE (15/hr) 8 8 8 8 DBA PATE (Ib/hr) 8 8 8 8 ZINC PATE (Ib/hr) 0000 PATE (16/hr) 8 8 8 8 SA PATE (16/hr) 0.000 LEAD PATE (b/hr) 8 8 8 8 PATE (Pahr) 0000 BA PATE (Po/hr) SB PATE (Ib/hr) 0 0 0 0 0 0 0 0 PATE (PATE) 1,812 1,739 (202) 512 HEAT VALUE (BTU/hr) 0.0000 0.3677 0.3924 0.0000 ASH PATE (Po/hr) 0.0000 A F (1) 0.1286 0.7714 0.7071 0.1286 PATE (fb/hr) 0.02 0.12 0.02 0.02 COMP QUANT (gr/flem) 2 8

0.00

0.00

0.0

0.00

0.0

0.0

0.0

0.00

0.34

0.00

0.00

0.0

0.0

3,861

0.7801

0.0000

1.7367

0.27

148 Cutter Ctg. – M21,M22 2,480 hems/hr

Ë ::

METALS FEED PATES

POTENTIAL POHC FEED RATES

	2.23	2.23 grains/Item																
	COMP QUANT (gr/ftem)	COMP PATE (B/hr)	(PATE (PATE	ASH PATE (Pohr)	HEAT VALUE (BTU/hr)	PATE (Bohr)	SB PATE (lb/hr)	RATE (Ib/hr)	PATE (PATE)	RATE (Pohr)	SA RATE	PATE (Ib/hr)	ZINC RATE (Po/hr)	PATE (Pohr)	PATE (PATE)	DPA RATE (Ib/hr)	HCB (b/hr)	RATE (Ib/hr)
wder	0.05	0.0351	0.0000	0.0332	23 8 8	0.00	0 0 0	0.00	000	888	888	888	888				0.00	800
Oneste e fe	2000 1000 1000 1000 1000 1000 1000 1000		000000	0.0000	8 8 5 7 S		888888	800000	800000	800000	888888	88888	388888	800000	800000	800000		800000
	0.00		0.0000	0.0000	8 <u>6</u> 7		8000	0000	0000	0000	0000	0000	888					
		300																
-	2.232	0.7844	0.0000	0.1530	2,996	0.02	0.03	0.04	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.05
		The state of the state of																

BTU, CHLOPINE, AND ASH FEED PATES

\$

Fin Assembly w/primer for an 81mm Mortar 2,460 flems/hr 100.23 grains/ftem

Ë

METALS FEED PATES

POTENTIAL POHC FEED RATES

0.0000.04 0.0000.000 0.0000.000 **14**.0 0.00 PATE (Po/hr) 88888888888 0.26 PATE (Byhr) 0.0 PATE (Party) 8 8 8 8 8 8 8 8 8 8 0.0 DBA PATE (Pohr) 0.00 PATE (Bohr) 0.00 PATE THE GATE 888888888888 000 SR PATE (Pohr) 0.0 LEAD PATE (Po/hr) 8 8 8 8 8 8 8 8 8 8 8 8 8 0,0 PATE (PATE) 0.0 PATE (Porty) 28888888888 0.0 SB PATE (Po/hr) 0.00 PATE (IPOPhr) 32 50 4,316 118 87,753 86,580 27 (151) 14 188,092 HEAT VALUE (BTU/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3738 ASH PATE (Po/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0173 0.0176 0.0035 0.2636 0.0562 20.2530 14.0120 0.0597 0.0035 35.2250 COMP PATE (fb/hr) 0.05 0.01 0.01 0.75 57.5621 39.8715 0.17 1.5 100,234 COMP QUANT (gr/flem) lorete trete 9 6

Primer — A216 (Primer Mix 5081) 128,515 hems/hr 2.30 grains/frem

Ë

METALS FEED RATES

POTENTIAL POHC FEED RATES

8000000 0.00 PATE (PATE 0.00 000000 PATE (PATE) 0.00 888888 PATE (Pohr) 0.00 888888 PATE (PATE) 000 888888 PATE (Mo/hr) 0.00 800000 PATE (PATE) 8000000 0.00 PATE (PATE) 0.00 888888 SA PATE (16/hr) 6.92 PATE (BATE) 000 888888 PATE (B/hr) 84.00.00 84.00.00 84.00.00 9.48 PATE (Ib/hr) PATE (My) 2.60 888888 888888 0.00 PATE (PAN) 6,515 (12,811) 18,438 1,236 35,443 1,284 50,104 HEAT VALUE (BTU/hr) 26.7218 3.1026 10.4979 5.6271 0.0000 7.4942 0.0000 PATE (John) 0.0000 0.0000 PATE (PATE) 3.6153 17.8931 3.0730 0.1807 15.7243 1.0846 41.5711 COMP RATE (B/hr) 0.20003 0.99002 0.17003 0.01 0.87002 2.3001 COMP QUANT (gr/flem) uffide - 8

ä

151 Primer – A216 (Primer Mbx #5074) 6,016 hems/hr 2.28 grains/hem

METALS FEED RATES

POTENTIAL POHC FEED RATES

000000 0.00 0 0 0 0 0 0.00 HCB PATE (Po/hr) 800000 0.0 DPA PATE (lb/hr) 888888 0.00 PATE (PAh) 8 8 8 8 8 8 0.00 DBA RATE (lb/hr) 000000 0.00 ZINC PATE (Pohr) 8 8 8 8 8 8 0.0 PATE (Ib/hr) 0.00 0.33 LEAD PATE (PS/hr) 0.00000 0.0 PATE (Pahr) 0.40 0.17 0.00 0.00 0.00 0.00 SB PATE (Ib/hr) 0.17 888888 0.00 PATE (Phr) 418 (533) 0 1,686 102 HEAT VALUE (BTU/hr) 1,728 0.1991 0.4387 0.0000 0.3564 0.0000 1.1028 ASH PATE (Po/hr) 0.000 PATE (Part) 0.2320 0.7477 0.1375 0.0086 0.7477 0.0869 1.9595 COMP PATE (fb/hr) 0.27 0.87 0.16 0.01 0.87 2.28 COMP QUANT (gr/ftem) Auminum Powder uffide .: A 8

HE. ë

152 Primer – M1BA2 20,000 Nema/hr

METALS FEED PATES

POTENTAL POHC FEED RATES

	21.80	21.80 grains/ltem																
	COMP COUNT (gr/flem)	(Rohr)	PATE (Pohr)	ASH RATE (Po/hr)	HEAT VALUE (BTU/hr)	PATE (fb/hr)	SB RATE (ID/hr)	BA RATE (Pohr)	RATE (IO/hr)	LEAD (Ib/hr)	SATE (PATE	PATE (Ib/hr)	ZINC PATE (fb/hr)	DBA RATE (fb/hr)	PATE (fo/hr)	DPA RATE (Po/hr)	HOB (Po/hr)	NG PATE (b/hr)
uffide nate ilorate	0.17 12.4801 0.25 0.53001 8.32003 0.05	0.4857 35.6573 0.7143 1.5143 23.7715 0.1429	0.0000 0.0000 0.4381 0.0000 0.0000	0.4168 0.0000 0.4931 0.0000 0.0000	502,589 1,498 894,682 94,682	000000	8699999	888888	888888	000000	888888	888888	000000	0000000	888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888	800000
	21.8001	62.2860	0.4381	1.6032	601,255	0.0	0.35	0.00	0.00	0.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00:00

# H ::	153 Primer M22A3 21,000 liems/hr 66.00 grains/fu	153 er – M22A3 11,000 (sems/hr 66.00 grains/ftem							Σ	ETALS	METALS FEED RATES	IES		ā.	OTENT	POTENTIAL POHC FEED PATES	C FEED	RATES
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Byhr)	ASH PATE (16/hr)	HEAT VALUE (BTU/hr)	PATE (Po/hr) (SB RATE R (Po/hr) (il	BA RATE R (fb/hr) (ft	CR PATE R	LEAD PATE R	SR RATE P (Po/hr) (1	PATE (16/hr)	ZINC PATE (B/hr)	DBA RATE (lb/hr)	DATE (PATE	DPA RATE (fb/hr)	HCB PATE (Po/hr)	NG PATE (Ib/hr)
Uffice forester	0.17 10.1401 0.25001 0.53002 48.1 6.76003 0.05	0.5100 0.7500 1.5901 144.3001 20.2801 0.1500	0.00.00 0.00.00 0.0000 0.0000 0.0000 0.0000	0.4377 0.0000 0.5177 0.0000 0.0000	919 428,772 1,573 80,776 977	888888	£ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8888888	8888888	888888	888888888888888888888888888888888888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888	888888	888888	888888	888888	8888888
	66.0001	66.0001 198.0004	0.4600	81.7555	472,461	0.00	0.37	0.0	0.00	0.53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

154 Primer — M23A1/A2 68,000 (seme/hr 21.00 grains/frem

METALS FEED PATES

POTENTIAL POHC FEED PATES

0000000 0.00 PATE (PATE) 0.00 8888888 PATE PATE 0.00 8888888 DPA PATE (Ib/hr) 0.00 8888888 PATE (PATE) 0.00 8888888 DBA PATE (bhr) 0.00 8888888 PATE (PATE) 0.00 PATE (PATE) 0.00 SA RATE (16/hr) 1.67 LEAD PATE (Bohn) 0.00 0.00 0.00 0.00 0.00 0.00 8888888 PATE (BAhr) 0.00 8888888 PATE (Pohn) 1.15 PATE (15/hr) 0.00 8888888 PATE (PATE) HEAT VALUE (BTU/hr) 2,889 414,640 4,944 2,244 (39,909) 78,113 3,072 465,993 1.3757 0.0000 1.6273 2.2880 77.4324 0.0000 82.7235 PATE (PATE) 1.4459 0.0000 0.0000 0.0000 0.0000 0.0000 PATE (PATE) 1.6030 29.4176 2.3574 4.9978 139.5430 19.6117 0.4714 198,0020 PATE (PATE) 0.17002 3.12004 0.25003 0.53007 14.8 2.08003 0.05 21,0002 COMP QUANT (gr/ftem) 100 Mide 逆..

ä

155 Primer Stab – M26 75,000 isema/hr 1.80 grains/ftem

METALS FEED PATES

POTENTIAL POHO FEED RATES 8888 0.00 8888 0.00 HCB PATE (Po/hr) 8 8 8 8 0.00 DPA PATE (fb/hr) 8 8 8 8 0.0 PATE (John) DBA PATE (b/hr) 0.000 0.0 8 8 8 8 ZINC PATE (BAhr) 0.00 8 8 8 8 0.0 PATE (fb/hr) 8 8 8 8 800 SA PATE (fb/hr) 0.00 3.42 0.00 1.1 LEAD PATE (Pahr) 8 8 8 8 0.0 CR PATE (PS/hr) 0 0 0 0 0.0 BA PATE (16/hr) SB PATE (Po/hr) 8 8 8 8 8 8 8 8 2.39 0.0.0 0.0 PATE (PATE) 5,986 1,095 10,112 4,570 21,764 HEAT VALUE (BTU/hr) 2.8510 0.7391 3.3288 4.6598 11.5788 ASH PATE (Po/hr) 0.0000 0.0000 2.9447 2.9447 PATE (Part) 3.3221 0.9644 4.8223 10.1788 19.2875 COMP PATE (fb/hr) 0.31006 0.09001 0.45008 0.95002 1.80017 COMP QUANT (gr/flem) nate ilorate ij.;

ë

Primer – M31 10,000 ltems/hr 51.00 grains/flem

METALS FEED RATES

POTENTIAL POHC FEED PATES

8888888 0.00 PATE (Po/hr) 8888888 0.00 PATE (PATE) 0.00 0.0000000 PATE (Pohr) 0.00 8888888 PATE (PATE) 0.00 8888888 PATE (Mohr) 0.00 8888888 PATE (PATE) 0.00 8666666 PATE (PATE) 0.00 SA (PATE (Po/hr) 86.000000 0.25 PATE (PATE) 0.00 88888888 PATE (Byhr) 8888888 0.00 BA PATE (b/hr) 0.17 7.00.00.00 SB PATE (b/hr) 0.00 8888888 PATE (PATE) 438 74,174 74,04 340 88,764 564 557,439 HEAT VALUE (BTU/hr) 0.2084 0.2080 0.2465 0.3466 0.0000 0.0000 9.5215 ASH PATE (Bohr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.2190 0.2429 33.4286 0.3571 0.7572 15.7143 22.2858 72.8673 COMP PATE (B/hr) 0.17 23.4001 0.25 0.53001 11 15.6 51,0001 QUANT (gr/flem) apylin ... <u>F</u>

:R: ATE: 3:	157 Primer – M31A2/B2 10,000 ltems/hr 51.00 greims/ltei	157 ner – M31A2/B2 10,000 (bems/hr 51.00 greins/fbem							2	METALS FEED RATES	FEED R	ATES	<u>a</u>	POTENTIAL POHC FEED RATES	A POH	to FEED	PATES	
L	COMP QUANT (gr/ftem)	COMP PATE (15/hr)	CL (Po/hr)	ASH PATE (Po/hr)	HEAT PATE (BTU/hr)	PATE (Ib/hr)	SB PATE (Po/hr) (BA PATE (Po/hr) (1	CR L RATE F	LEAD PATE F	SR RATE (fb/hr)	PATE (Po/hr)	ZINC PATE (Po/hr)	DBA PATE (lb/hr)	DANT PATE (Po/hr)	DPA RATE (Bohr)	HCB PATE (Po/hr)	NG RATE (fb/hr)
eufficie Frontas Tradas	0.17 0.53001 11.6 0.05 0.05	0.2429 33.4286 0.3571 15.7143 22.2858 0.0714	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.2084 0.0000 0.2465 0.3466 0.0000 0.0000	438 749.7 749.7 88.74 65.74 65.74	888888	71.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	888888	888888	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	888888	888888	888888	888888	888888	888888	888888	000000
	51.0001	72.8673	0.2190	9.5215	557,439	0.00	0.17	0.0	0.0	0.25	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00

158 Primer – M32 330,000 Neme/hr

COMP COMP	: E	Primer – M32 330,000 hems/hr 2.09 grains/h	r - M32 ,000 hems/hr 2.09 grains/ftem							~	METALS FEED RATES	FEED P	WIES	-	POTENTIAL POHC FEED PATES	TAL PO	#C FE	DRATE	Ø
0.07006 53.3028 0.0000 2.8345 5.932 0.00 2.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0		COMP CAUANT (gr/flem)	COMP (PATE (PATE)	PATE (Ib/hr)	ASH PATE (Po/hr)	HEAT PATE (BTU/hr)	-								DBA PATE (Po/hr)	PATE (PATE)	PATE (PATE)	PATE (PATE)	PATE (Byhr)
98.5396 2.8643 43.5857 218,923 0.00 2.38 0.00 0.00 3.35 0.00 0.00 0.00 0.00	ulfide name formate rate	0.07006 0.27003 0.10009 1.28001 0.16002 0.02001		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2.8345 0.0000 3.2572 4.527 32.9614 0.0000 0.0000			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888	888888	88 88 88 88	888888	8888888	8888888	8888888		8888888	888888	8888888
		2.08023	98.5396	2.8643	43.5857	218,923	0.00	2.38	0.00	0.00	38.	0.00	0.00	0.00			0.00	0.00	0.00

R: ATE: 3:	159 Primer – No.34 500,309 liems/frt 0.59 grains/fb	159 nr – No.34),309 items/hr 0.59 grains/item							2	METALS FEED RATES	FED R	ATES	<u>a.</u>	POTENTIAL POHC FEED RATES	M. POH	to FEEC	PATES	
<u> </u>	COMP QUANT (gr/flem)	COMP RATE (fb/hr)	PATE (Pohr)	ASH PATE (Po/hr)	HEAT PATE (BTU/hr)	AL PATE (Po/hr)	SB PATE (Po/hr) (1	BA PATE R (Po/hr) (ii	CR PATE (B/hr)	LEAD PATE R (16/hr) (1	SR PATE P	PATE (fb/hr)	ZINC PATE (Po/hr)	DBA RATE (Po/hr)	DATE (Pohr)	DPA RATE (Po/hr)	HCB RATE (Po/hr)	NG PATE (Po/hr)
wder Liffde the	0.04000 0.05000 0.15001 0.05002 0.05001 0.05001	2.8903 6.4368 13.5807 15.7251 1.4302	000000000000000000000000000000000000000	5.4046 7.9678 7.4946 0.0000 0.0000	78,037 (9,72,4) 7,576 1,683 1,683	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8.8.8.8.8 8.8.8.8 8.8.8.8	888888	888888	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8	88888	88888	88888	888888	88888	88888
	0.59014	42.1788	0.0000	26.3911	84,866	2.86	4.63	7.20	0.00	6.92	0.0	0.00	0.0	0.0	0.0	0.00	0.00	0.00

: E ::	160 Primer – FA34 500,309 flema/hr 0.59 grains/fle	160 ,r - FA34 ,309 fema/hr 0.59 grains/flem								METALS FEED RATES	FEED	MTES		POTEN	PO PO	POTENTIAL POHC FEED RATES	DRATES	
	COMP QUANT (gr/flem)	COMP PATE (fb/hr)	(Byhr)	ASH (PATE (Pohn)	HEAT PATE (BTU/hr)	PATE (Pohr)	SB RATE (Ib/hr)	BA PATE (16/hr)	PATE (PATE	LEAD (PATE	SR RATE (Ib/hr)	PATE (BAn)	ZINC PATE (Ib/hr)	DBA RATE (Ib/hr)	DATE (Pohr)	DPA RATE (Rohr)	HCB PATE (Bohr)	RATE (Pohn)
uffice uffice be	0.04002 0.09006 0.02002 0.03002 0.02001	2,8603 6,43807 15,7251 2,1456 1,4302	000000	5.4046 5.5241 7.9678 7.4946 0.0000 0.0000	38,077 (9,724) 35,444 3,576 1,576	8888888	8 8 8 8 8 8	888888	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.000000	888888	888888	888888	8 8 8 8 8 8 8	0.0000	0.0000000000000000000000000000000000000	8.8.6.6.6.6	8.80.00.00
	0.59014	42.1788	0.0000	118:391	88,18	2.86	8.	7.20	0.00	8.9	00.0	0.00	0.00	0.00	0.00	0.00	0.80	0.00

۶: ۱: ۱:	161 Primer – M2882 2,640 (tems, 300.98 greine	161 ner – M2882 2,640 fema/hr 300.96 greins/ftem							2	METALS FEED RATES	FEED R	ATES	<u>a.</u>	POTENTIAL POHC FEED RATES	POH	IC FEED	RATES	
	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	PATE (Pb/hr)	ASH PATE (fb/hr)	HEAT PATE (BTU/hr)	PATE (Po/hr)	SB PATE (Bo/hr) (BA PATE F (lb/hr) (1	CR RATE (Bo/hr) (LEAD PATE F	SR RATE F	PATE (Ib/hr)	ZINC PATE (Byhr)	DBA PATE (Po/hr) (DATE (Po/hr)	DPA RATE (Po/hr)	HCB PATE 1	NG PATE (Po/hr)
uffice nate horate rate	0.17 46.8017 0.25 0.53 31.2011 0.02	0.0641 17.6509 0.0943 0.1989 83.7288 11.7673 0.0075	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000	0.0000 0.0000 0.0000 0.0000 0.0000	116 198 198 (23,946) 46,883 48,889	888888	888888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888	886.00000	888888	888888	888888	888888	888888	888888	888888	888888
	300.961	300.961 113.5129	0.0578	46.6728	272,165	0.00	0.05	0.0	0.0	0.07	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.00

# #: :: <u>::</u>	162 Primer M34 22,500 fteme/frr 0.59 greine/fix	162 rr — M34 ,500 llems/hr 0.59 grains/item							~	METALS	METALS FEED RATES	MTES		POTENTAL POHC FEED RATES	Z PO	HO FEE) PATE	60
	COMP QUANT (gr/ftem)	COMP (PATE (PATE)	(PATE (PATE	ASH PATE (Po/hr)	HEAT RATE (BTU/hr)	PATE (PATE	RATE (PAN)	RATE (Pohr)	PATE (PAN)	PATE (ID/hr)	SR RATE (lb/hr)	PATE (Ib/hr)	ZINC PATE (Pa/hr)	PATE (Ib/hr)	PATE (BAhr)	DPA PATE (bhr)	HCB PATE (B/hr)	PATE (PATE)
wder uffide	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.1286 0.2893 0.6107 0.7071 0.0964	0000.0 0000.0 0000.0 0000.0	0.2429 0.2483 0.3563 0.0000 0.0000	25.7.7. 15.8.4. 24.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	828888	88888	88888	0.0.0.0.0 0.0.0.0.0 0.0.0.0.0 0.0.0.0.0	888888	888888	888888	0.00000	0.0000000000000000000000000000000000000	8888888	0.000000	800000
	65.0	1.8964	0,000	1.1865	3,806	0.13	0.21	0.32	9.0	0.31	8.0	. 8	0.00	0.00	0.00	00.0	000	0.00

.н.: Ате: 3:	163 Primer – M40A2 1,320 ltema/ 271.02 grains	163 ner – M40A2 1,320 flema/hr 271.02 greins/flem							2	METALS FEED RATES	FEED R	ATES		POTENTIAL POHC FEED PATES	M. POH	to FEEC	PATES	
L	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	CL RATE (Pb/hr)	ASH PATE (Pohrt)	HEAT RATE (BTU/hr)	PATE (Ib/hr)	SB PATE (Po/hr) (BA RATE F	CR RATE (18)	LEAD PATE (SR RATE (lb/hr) (PATE (Bohn) (ZINC PATE (Po/hr)	DBA RATE (Ro/hr)	DATE (Po/hr)	DPA PATE (fb/hr)	HCB PATE (Po/hr)	NG PATE (fb/hr)
euffide en arte hiorate trate	0.17 42.127 0.23 199.804 28.085 0.05	0.0321 7.9439 0.0471 0.0999 37.6773 5.2960 0.0094	0.000 0.000	0.0275 0.0325 0.0458 0.0458 0.0000 0.0000	111,970 99 45 (10,776) 21,084 61	8888888	888888	8888888	888888	8888888	888888	888888	888888	888888	888888	8888888	888888	888888
	271.016	51.1058	0.0289	21.0129	122,551	0.00	80.0	8.0	0.00	0.03	0.0	8.0	0.00	00:00	0.0	0.0	0.00	0.00

164 Primer – M57 660 ltems/hr

ä

COMP QUANT QUANT (gr/ftern) 1.01 nate 0.52 iterate 0.52 trate 6.70	-																	
*	(men)	COMP RATE (Ib/hr)	PATE (PATE)	ASH PATE (Pohr)	HEAT PATE (BTU/hr)	PATE (Pohn)	SB PATE (Ib/hr)	BA . RATE (Ib/hr)	PATE (BAhr)	RATE (Bohr)	SH RATE (Ib/hr)	PATE (Ib/hr)	ZINC PATE (Pohr)	DBA RATE (Po/hr)	PATE (MA)	DPA RATE (Pohr)	HCB (PATE)	RATE (PA)
	0.17 1.01 1.01 0.05 0.05 0.05 0.05 0.05	0.0160 0.0952 0.0236 0.0500 4.5355 0.6374 0.0047	0.000 0.000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.00229 0.00229 0.0000 0.0000	2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	8888888	500000000000000000000000000000000000000	8888888	8888888	8888888	8888888	0.0000000000000000000000000000000000000	90.0 90.0 90.0 90.0 90.0	888888	80.000000000000000000000000000000000000	80.000000000000000000000000000000000000	88888888	0.00 0.00 0.00 0.00 0.00 0.00
36	26.874	5.3824	0.0145	2.5697	2,715	0.00	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0000	000	0.00	00:00	0.00

R: ATE:	165 Primer – M71 22,500 lter 3.53 gre	165 mer – M71 22,500 tema/hr 3,53 greins/ftem							2	METALS FEED RATES	FEED R	ATES		POTENTAL POHC FEED RATES	¥. Po	10 FEET	RATES	
L	COMP CUANT (gr/flem)	COMP PATE (fb/hr)	CL PATE (Ps/hr)	ASH PATE (Ib/hr)	HEAT RATE (BTU/hr)	PATE (Po/hr)	SB PATE (Po/hr)	BA PATE (Po/hr) (CR (lb/hr)	LEAD PATE (Ib/hr) (SR RATE (Ro/hr)	PATE (Ib/hr)	ZINC PATE (Po/hr)	DBA PATE (Po/hr)	PATE (Po/hr)	DPA PATE (Po/hr)		NG RATE (Pb/hr)
uffide	0.491	0.2250	0.0000	0.0000	405 22,245 674	0 0 0 0 0 0 0 0	0 0 0 0 0 0	888	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0.00
no radio tradio	2.317	0.6750	0.0000	0.3090	(2,130)		8 8 8	8 8 8	888	0 0 0	888	888	000	888	888	888	888	000
	800	0.0643	00000	0000	4 0	8.00	28	80.	28	000	800	88	8	800	800	000	8	00:00
	3.529	11.3432	0.1963	4.8566	26,026	0.00	0.16	0.0	0.0	0.23	0.0	8.0	0.0	0.0	0.0	0.00	0.00	0.00

Primer – M82 22,500 items/hr 0.63 grains/frem

Ä

-:

METALS FEED PATES

POTENTIAL POHC FEED RATES

0.00 PATE (PATE) 0.00 0000000 HCB PATE (PATE) 0.00 PATE (Porty) 0.00 PATE (PATE) 0.00 0000000 PATE (PATE) 0.00 8888888 PATE (BATE) 000 PATE (PATE) 0.00 8 8 8 8 8 8 8 8 RATE (Ib/hr) 0.000000 0.01 PATE (PATE 0.00 888888 PATE (PATE 0.00 BATE (BATE) SB PATE (Ib/hr) 0.01 0.00 8888888 PATE (Pohr) 4,367 21 21 33 33 33 HEAT PATE (BTU/hr) 4,831 0.0086 0.0089 0.0089 0.0137 0.8101 0.0000 0.8392 PATE (PATE) 00000 0.0086 PATE (PATE) 0.0100 0.0309 0.0100 0.0239 1.4600 0.1999 2.0295 PATE (Ib/hr) 0.0031 0.0031 0.0031 0.45421 0.0622 0.0031 0.63141 COMP QUANT (gr/flem) 101 uffide 2

R: ATE:	167 Primer, Percussion-M26 75,000 hems/hr 1.82 grains/fem	167 rr, Percussion—M 1,000 flems/hr 1.82 greins/flem	8						2	ETALS	METALS FEED RATES	ATES	u.	POTENTIAL POHC FEED RATES	M. POH	IC FEED	PATES	
	COMP QUANT (gr/ftem)	OOMP PATE (15/hr)	PATE (Ib/hr)	ASH RATE (Ro/hr)	HEAT PATE (BTU/hr)	PATE (Po/hr)	SB PATE F	BA PATE F (lb/hr) (1	CR L	LEAD PATE (SR PATE (Pb/hr)	PATE (lb/hr)	ZINC PATE (Po/hr)	DBA PATE (Po/hr)	PATE (PATE	DPA RATE (Ro/hr)	HCB PATE (Po/hr)	NG PATE (Po/hr)
ulfide	0.316 0.091	3.3857	0.0000	2.9056	6,101	00.0	0.00	0.00	0 0	0.00	0.0	0.0	0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0.00
riette	0.458	4.9071	0.0000	3.3674	10,290		8.8	0.0	0.00	3.48 0.00	0.0	0.00	0.0	000	0.0	0.0	0 0	0.00
	1.8168	19.4657	2.9502	11.7088	22,077	0.00	2.44	00:00	0.00	4.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

# ₩	168 Primer, Per 4,500 i	168 Primer, Percussion-M47 & M68 4,500 fems/hr 301.01 grains/flem	47 & M68						•	AETALS	. METALS FEED RATES	WIES		POTENTIAL POHC FEED RATES	M. PO	5 EE	PATES	
	COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	PATE (Pohr)	ASH PATE (Pohr)	HEAT PATE (BTU/hr)	PATE (PATE)	SB RATE (D/hr)	PATE (Pohr)	PATE (PATE)	PATE (b/hr)	SA (PATE	PATE (Porty)	ZINC PATE (Pohr)	DBA PATE (Po/hr)	DAY PATE (Po/hr)	DPA PATE (Po/hr)	PATE (PATE	NG PATE (Po/hr)
office forms of the	0.17 46.8046 0.25 0.53 31.2031 0.05	0.1083 30.0887 0.1607 142.7157 20.0591 0.0321	00000 00000 00000 00000 00000 00000 0000	0.0938 0.1109 0.1160 0.0000 0.0000 0.0000	791 197 337 153 153 (40,817) 79,886 209	888888	8888888	888888	888888	88 = 8888	8888888	8888888	888888	8000000	888888	8888888	8888888	8888888
	301.01	301.01 192.5064	9860.0	79.5637	464,075	0.0	90.0	9.0	8.0	11.0	0.00	0.00	0.00	00.00	08.0	0.0	0.00	0.00

169 Primer, Percussion-M79 3,700 items/hr

:: :: 	3,700 381.01	3,700 flems/hr 381.01 grains/flem				⊩		ľ	II.	METALS FEED FATES	FEEDR	⊩	н	E ⊩	4	C FEEL	PATES	
	QUANT (gr/ftem)	PATE (fb/hr)	PATE (PATE)	ASH RATE (Ib/hr)	HEAT PATE (BTU/hr)	PATE (Pohr)	PATE (PAM)	PATE (PATE)	BATE (Bohr)	(BATE	PATE (Pohn)	PATE (fb/hr)	PATE (Bohn)	PATE (PATE)	PATE (PATE	PATE (Po/hr)	PATE (PATE)	PATE (B/hr)
office	0.17 RO 2046	0.0899	0.0000	H	162	0.0	90.0	000	0.0	0 0	0 0	0.0	8 8	0.00	0.0	0.00	0.00	0.00
natio				0.0912		8 8	8 8	8 8	8 0	8 6	800	8 0	8 8	8 8	800	000	000	0
lorate	0.53	0.2801				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0
rate	281.202			-		0.0	0.0	0 0	000	000	8 8	000	0.0	0.0	8 8	0.0	8.8	0 0
•	0.05	0.0264		0.000	172	88	88	8 8	8 8	88	8 8	0.0	9 6	8 8	80	900	9 6	90
										18								
	381.01	381.01 201.3909	0.0810	82.7744	483,118	0.00	90.0	0.00	0.0	0.09	0.0	0.0	0.00	0.0	0.0	0.00	0.00	0.00

<i>∷</i> ⊭	170 Primer, Ele 1,600 i 872.98 g	170 Primer, Electric—M80A1 1,600 frems/hr 872.98 grains/frem							2	METALS	METALS FEED RATES	MTES	-	POTENI	POTENTIAL POHC FEED RATES	HO FEE	DRATE	(0)
	COMP QUANT (gr/flem)	COMP PATE (ID/hr)	C.C. (fo/hr)	ASH PATE (Po/hr)	HEAT PATE (BTU/hr)	PATE (Bohn)	RATE (PATE	BA (Ib/hr)	RATE (Ib/hr)	PATE (PATE	SR RATE (lb/hr)	PATE (Ib/hr)	ZINC PATE (Ib/hr)	PATE (Bohr)	PATE (PATE)	DPA RATE (fo/hr)	HCB RATE (Portr)	RATE (Pohn)
o craite	80.0427 4.351 0.04 3.48.001 1.14 384.541 53.9418	18.2955 0.3945 0.0091 0.2103 79.5431 12.3296 12.3296	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 0.0000 0.1462 0.0000 0.0000 0.0000	257,875 15,010 6,010 345,058 117 (25,138) 49,109	88888888	8888888	8888888	8888888	8882888	88888888	88888888	8888888	8888888	8888888	888888888888888888888888888888888888888	8888888	800000000000000000000000000000000000000
	872.978	872.978 199.5378	0.0754	49.0375	642,534	0.00	8.	0.0	0.0	21.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

A.T.E.:	171 Primer – M35 355,000 flema/frr 0.37 greins/ftr	171 rr – M35 3,000 flerna/hr 0.37 graina/flern							2	METALS FEED RATES	EED PA	NTES	ā.	OTENTI	M POH	POTENTIAL POHC FEED RATES	PATES	
	COMP QUANT (gr/flem)	COMP PATE (Po/hr)	PATE (Pohr)	ASH PATE (Pohr)	HEAT RATE (BTU/hr)	PATE (B/hr)	SB PATE P (Po/hr) (1	BA PATE R (15/hr) (R	CR PATE R	LEAD PATE R (16/hr) (11	SR PATE (Ib/hr)	PATE (15/hr)	ZINC PATE (16/hr)	DBA PATE (Po/hr)	DNT PATE (Po/hr)	DPA PATE (fb/hr)	HCB (PATE (Po/hr)	NG PATE (Po/hr)
uffide nate lorate	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	3.0459 4.5689 10.1439 1.0153	0.0000 0.0000 0.0000	2.6140 3.1539 4.6439 0.0000	8,48 9,534 16,63 16,63 16,43 1	8 8 8 8	6.00.00 0.00 0.00	8888	8 8 8 8 6 6 6 6	0 4 0 0 4 0 0	8888	8888	8888	8888	8888	8 8 8 8	8888	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	0.37019	18.7739	2.9346	10.4117	26,240	0.00	2.19	0.00	0.0	3.24	0.00	0.0	0.00	0.0	0.0	0.0	0.00	0.0

ë	172 Primer – M28/M28A2/M28B1/M28 2,460 lteme/fir 101.00 grains/ftem	172 ner – M28/M28A2/ 2,460 ltema/hr 101.00 grains/ltem	M28B1/M2	ga .					•	WETALS	METALS FEED PATES	WIES		POTENTIAL POHC FEED PATES	M PO	HOFEE	DRATE	
	COMP COUNT (gr/flem)	COMP PATE (Ib/hr)	PATE (Pohr)	PATE (Bohn)	HEAT PATE (BTU/hr)	PATE (Pohr)	SB RATE (Ib/hr)	BATE (PATE	PATE (BATE)	LEAD (PATE (PATE	SR RATE (Ib/hr)	PATE (Ib/ht)	ZINC PATE (Bohir)	PATE (Byhr)	DANT PATE (Bohn)	DPA PATE (Po/hr)	HCB PATE (Pohr)	RATE (PA'I)
Liftide formation rate of	8.84 8.00.022 3.12 0.05 50.0	0.0597 16.4469 0.0878 0.1863 7.7315 10.9646 0.0176	0.0000.00000.000000.0000000000000000000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	231,819 184 184 43,672 114	8888888	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888	8888888	000000000000000000000000000000000000000	8 8 8 8 8 8 8	8888888	8888888	80.00 80 80.00 80.00 80.00 80.00 80 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8	0.00.00	80.0000	0.00	0.00 00.00 00.00 00.00 00.00
	101	35.4943	0.0539	4.4874	273,769	0.00	0.04	8.0	0.00	80.0	0.00	0.0	0.00	0.00	0.00	0.0	00.00	0.00

A: ATE:	173 Primer – M29A1 (NOL 60) 366,893 items/hr 0.51 grains/item	173 pr – M29A1 (NOL 3,893 llema/hr 0.51 grains/flem	(09						Σ	METALS FEED RATES	EED PA	(TES	<u>a</u> .	OTENTI	POTENTIAL POHC FEED RATES	Ć FEE	PATES	
	COMP QUANT (gr/flem)	COMP PATE (Po/hr)	CL (Pohr)	ASH PATE (Po/hr)	HEAT PATE (BTU/hr)	PATE (Po/hr)	SB PATE P (Po/hr) (P	BA RATE R	CR PATE R	LEAD PATE R (IS/hr) (I	SR PATE (Po/hr)	PATE (16/hr) (1	ZINC PATE (DBA RATE (Ib/hr)	DATE (PATE	DPA RATE (Ro/hr)	HCB PATE (PA/ht) (NG RATE (Po/hr)
epuna epuna	0.08902 0.13006 0.03001 0.03001	2.6217 6.8163 1.57248 1.5729	000000000000000000000000000000000000000	2.2500 3.9995 7.4944 0.0000	4, 4, 8, 8, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	8888		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8888 6000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8888 6666	8 8 8 8	8 8 8 8	8888	8888	8 8 8 8 6 6 6 6	8888	8.00.00 8.00.00 8.00.00
	0.51011	26.7363	0.0000	13.7438	37,149	8.0	88.	3.61	0.0	6.92	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.00

3: 1:	174 Primer – M29A1 (#5061) 579,305 Hema/hr 0.50 graina/item	174 r – M29A1 (#50 ,305 llema/hr 0.50 grains/flem	. (19	.•					~	METALS	METALS FEED RATES	MTES	-	POTEN	TAL PO	POTENTIAL POHC FEED RATES	DRATE	
	COMP CUANT (gr/tem)	COMP (b/hr)	PATE (Bohn)	ASH (PATE (PAN)	HEAT PATE (BTU/hr)	PATE (Pohr)	SB RATE (Ib/hr)	RATE (ID/hr)	PATE (Byhr)	PATE (PATE)	SR RATE (fb/hr)	PATE (Ib/hr)	ZINC PATE (BAhr)	DBA RATE (Ib/hr)	PATE (PATE)	DPA PATE (Po/hr)	HCB RATE (Pohn)	NG RATE (Po/hr)
op o	0.04002 0.22002 0.04003 0.19002 0.01	3.3128 18.2082 3.3128 15.7252 0.8276	0.0000	2.8430 10.8828 6.0661 7.4946 0.0000	5,970 (13,037) 19,877 35,445 980	88888	% 8 8 8 8 % 8 8 8 8	0 % 8 8 8 8 % 8 8 8	88888	88888	88888	6 0 0 0 0 0 0 0 0 0 0	8.0.0 8.0 8	8 8 8 8 8	8 8 8 8 8	80.000	8.00.00	800000
	0.50009	14.3866	0.000	27.0865	48.64	00:0	238	86	000	69	00.0	80.0	90.0	000	000	0000	0.00	00:0

175 Relay — M5 49,157 tems/hr 1.39 greins/ft	175 . – M5 ,157 fems/hr 1.39 greins/ftem							Σ	METALS FEED RATES	EED PA	ITES	<u>a</u> .	OTENT	M. Po	+C FEE	POTENTIAL POHC FEED PATES	
COMP QUANT (gr/ftem)	COMP PATE (Ib/hr)	PATE (PATE	IC	HEAT PATE (BTU/hr)	PATE (Pohr)		BA PATE R (Ib/hr) (R		LEAD PATE R (15/hr) (18	SR PATE R (Ib/hr) (I	PATE (b/h)		DBA RATE (Po/hr)	PATE (Po/hr)	DPA PATE (Po/hr)	PATE (Po/hr)	NG PATE (Po/hr)
	9.76 8	0000 0000	1.481	11,080	8 6	8 6	8. 6.	8 6	86	8 6	8 6	8 6	8 6	800	80°6	80°C	8 6
1.39009	9.7618	0.0000	7.4814	11,080	0.0	0.0	0.0	00:0	6.93	00.0	0.0	0.0	0.0	0.00	00.0	0.00	0.00

<u>∺</u>	176 Relay – M7 44,389 lb	176 ay - M7 44,389 (tema/hr 1.54 grains/fem							2	METALS FEED PATES	FEED R	ATES	ŭ.	OTEN	POTENTIAL POHC FEED RATES	5 E) PATES	**
	COMP QUANT (gr/ftem)	COMP RATE (Its/hr)	C. PATE (Byhr)	ASH RATE (Bohn)	HEAT RATE (BTU/hr)	PATE (Bohn)	PATE (Bohr)	RATE (Pohn)	PATE (BAh)	PATE (Pohr)	SA (Pohr)	PATE (Porhr)	ZINC PATE (Po/hr)	DBA (Po/hr)	PATE (Po/hr)	DPA PATE (Pohr)	PATE (PATE)	PATE (PATE)
	.54008	9.7618	0,000	7.4814	11,080	00.0	86	0.00	00.0	86.	0.00	00:0	8.0	800	80.0	0.00	0.00	0.0
	1.54009	9.7618	0.000	7.4814	080,11	9.0	000	0.0	0.0	88.	0.0	0.0	8.6	0.0	00.0	00.0		00.0

R: ATE: Э:	177 Pelay – XM9 30,641 feme/hr 2.23 greins/fk	177 XM9 ,641 ltems/hr 2.23 greins/ftem							Σ	METALS FEED RATES	EED P4	ITES .	ď.	OTENIL	A POH	POTENTIAL POHC FEED RATES	PATES	
	COMP QUANT (gr/flem)	COMP PATE (Po/hr)	PATE (PS/hr)	ASH RATE (Po/hr)	HEAT PATE (BTU/hr)	PATE F	SB PATE R (Po/hr) (R	BA (Mo/hr) (R	CR (PATE R	LEAD PATE R (Po/hr) (R	SR RATE R (Pa/hr)	PATE R	ZINC PATE F	DBA RATE F	DNT PATE (Pohr)	DPA RATE (Po/hr)	HCB RATE (Po/hr)	NG PATE (PS/hr)
	55300	7,61,7	00000 0000 0000 0000	4.814	11,080	8 °	8:	8 6	8 6	8 6	8 6	80 60	8 6	8.0	8 6	8 6	8 6	80.6
	2.23009	9.7617	0.0000	7.4814	11,080	0.00	0.0	0.00	0.0	6.93	0.0	0.0	0.0	0.00	0.0	0.00	0.00	0.00

A:	178 Ignitier, Roc 24,000 58.17	178 Ignitier, Rocket Motor-M20A1 24,000 Items/fir 58.17 grains/ftem	-MZ0A1						2	METALS FEED RATES	FEED R	WIES		POTENTIAL POHC FEED RATES	TAL PO	2	DRATES	40
	COMP QUANT (gr/flem)	COMP RATE (Ib/hr)	PATE (Pohr)	ASH PATE (lo/hr)	HEAT PATE (BTU/hr)	PATE (Pahr)	SB PATE (Bohr)	RATE (Bohn)	PATE (PATE)	PATE (PATE)	SA RATE (Mo/hr)	PATE (Pohn)	ZINC PATE (Po/hr)	DBA PATE (Po/hr)	PATE (Pohr)	DPA RATE (Po/hr)	HCB PATE (Po/hr)	PATE (Pohr)
quer nade lorade	57.1028 0.19 0.11 0.341 0.422	195.7815 0.6514 0.3771 1.1691 1.4469	0.000 0.000 0.000 0.000 0.000 0.4186	80.4075 0.0000 0.0001 0.8071 0.6624	9,170,071 9,170 0 650 650	88888	88888	88888	88888	88888	88888	88888	88888	0.0000	0.0000	0.00 00 00 00 00 00 00 00 00 00 00 00 00	0.0000	0.0000000000000000000000000000000000000
	58.1659	58.1659 199.4261	98170	81.8789	482,355	8.0	8.0	0.0	8.0	88.0	8.0	80.0	000	8.0	00.0	00.0	0.00	00:0

R: ATE: 3∶	179 Igniter, Rocket Motor-MK117,MK118 2,280 Items/frr 30.01 grains/ftem	179 er, Rocket Motor- 2,280 tema/hr 30.01 greins/ftem	-MK117,MK	318					Ĭ	METALS FEED RATES	EED PA	TES	Z.	POTENTIAL POHC FEED RATES	AL POH	IC FEED	PATES	
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	PATE (Pohn)	ASH PATE (fb/hr)	HEAT PATE (BTU/hr)	PATE (Pohr)	SB PATE P (Ib/hr) (I	BA (BATE R (BATE)	CR RATE R (16/hr)	LEAD S	SR PATE R (lb/hr) (il	PATE R	ZINC I	DBA PATE F	PATE (Po/hr)	DPA RATE (Po/hr)	HCB PATE (Po/hr)	NG PATE (PS/hr)
	30.00	477.74 4	000 000 000	£ 141	छ्	8.	8:	8 6	8 6	8 6	8 6	8 6	80 60	8:	8. 8.	8 6	8 8	8.0
	30.009	9.7744	0.0000	4.0143	23,468	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.00	0.0	0.0	0.00	0.0	0.00

# ## ## ## ## ## ## ## ## ## ## ## ## #	180 Igniter, Roc 6,800 I	180 er, Rocket Motor- 6,800 liems/hr 10.01 grains/item	180 igniter, Rocket Motor-MK125-5 6,600 Nems/hr 10.01 grains/frem	LANG					2	METALS FEED PATES	FEED R	ATES	_	POTENT	W. PO	+C FEE	POTENTIAL POHC FEED PATES	45
	QUANT (gr/flem)	COMP PATE (Po/hr)	(PATE (PAN)	ASH PATE (Pohr)	HEAT PATE (BTU/hr)	PATE (Pohr)	PATE (fo/hr)	PATE (Bohr)	PATE (PATE)	PATE (PATE)	PATE (Bohr)	PATE (Pohr)	ZINC PATE (Pohrt)	PATE (Porty)	PATE (Pohr)	DPA PATE (Pohr)	PATE (PATE)	RATE (PATE)
	10.00	1754-5	0.000	3.875	22,68	98.6	0.00	00.00	00:00	00:0	00.0	0.0	000	80.0	8.0	00.0	00.0	0.00
	10.00	1.751-6	00000	3.9758	88.	80.0	0.0	000	000	800	00.0	00:0	0.00	0.0	8.0	0.0	8.6	0.00

R: ATE: 3:	181 Rocket, 3.5 inch-M29A2 347 items/hr 2578.18 grains/fem	181 ocket, 3.5 inch-M29 347 items/hr 2578.18 grains/item) 4 2							AETALS	METALS FEED RATES	ATES		OTENT	M. Po	POTENTIAL POHC FEED RATES	RATES	
	COMP QUANT (gr/ftem)	COMP PATE (Pb/hr)	PATE (PS/hr)	ASH PATE (Po/hr)	HEAT RATE (BTU/hr)	AL PATE (Ps/hr)	SB (PATE (PAhr)	BA RATE (CR RATE (Bohr)	LEAD PATE (SR RATE (lb/hr)	PATE (Ib/hr)	ZINC RATE (Ib/hr)	DBA RATE (Po/hr)	DATE (Po/hr)	DPA PATE (Ib/hr)	HCB PATE (Po/hr)	NG PATE (Ib/hr)
quer pre- pre- pre-pre- pre-pre- pre-pre- pre-pre- pre-pre- pre-pre- pre-pre- pre-pre- pre-pre- pre-pre- pre-	57.102 30.241 0.19 22.081 13.75.93 13.75.93 196.569	2.8306 1.4991 0.0094 0.0169 0.0169 0.0208 9.7442	0.000 0.000	1.182 0.000	8,736 133 133 143 15,970 16,970 2,572 2,572	888888888888888888888888888888888888888	888888888	888888888	888888888	000000000	888888888	8888888888	888888888	888888888	8888888888	888888888888888888888888888888888888888	888888888	80000004:00 8000000000000000000000000000
	2578.18	2578.18 127.8043	2.4996	5.1301	646,060	0.00	9.0	0.0	0.00	0.01	9.0	0.0	0.00	0.00	0.00	0.00	0.00	4.35

<i>;</i> ; ≝ ;;	182 Rocket Motor, 3.5 Inch 240 Items/hr 2520.01 grains/flem	ocket Motor, 3.5 Inch 240 Items/hr 2520.01 grains/flem	E						-	METALS FEED RATES	FEED R	MTES	_	POTENTIAL POHC FEED PATES	TAL POI	HC FEE	D PATE	•
	COMP QUANT (gr/flem)	COMP PATE (Ib/hr)	PATE (PATE)	ASH RATE (Po/hr)	HEAT RATE (BTU/hr)	PATE (Pohr)	RATE (PATE	RATE (ID/hr)	PATE (PATE)	RATE (Bohn)	SR (PATE	PATE (PATE)	ZINC PATE (Ib/hr)	PATE (Po/hr)	PATE (Pohr)	DPA RATE (Bohr)	PATE (BAhr)	RATE (BAhr)
rohitorate	30.24 13.75.93 13.75.93 196.566	1.0368 0.7776 47.1746 30.6721 6.7394	0.0000 0.0000 0.0000 1.7246	0.0000 0.0000 0.0000 2.7285	14,614 11,736 209,245 1,779	88888	88888	88888	88888	88888	88888	88888	86866	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00.00	0.00 00 00 00 00 00 00 00 00 00 00 00 00	0.00 0.00 0.00 0.00	0.0.0 0.00 0.00 0.00 0.00
	. 2520.01	98.4005	1.7246	2.7285	442,018	00:0	00:0	0.0	00'0	00:0	00:0	000	000	8.0	00:0	000	00.0	30.67

3: .:	183 Signal, Ground Illuminating(Red) – M158 1,600 kema/hr 538.512 grains/fem	183 gnal, Ground Illumin 1,600 kema/hr 538.512 graina/lem	lating(Red)	-M158					2	METALS FEED RATES	FEED RV	VTES	X.) TENT!/	POTENTIAL POHCFEED RATES	C FEED	RATES		
Service Andrews	COMP QUANT (gr/ftem)	COMP RATE (%/hr)	CL RATE (95/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (lb/hr)	BA RATE (Ib/hr)	CR RATE (fb/hr) (LEAD RATE (SR RATE F (lb/hr) (1	RATE (PA)	ZINC RATE (B/hr) (0	DBA I	DNT PATE F (Po/hr) (1	DPA RATE (16/hr) (HCB RATE (fb/hr)	NG RATE (Ib/hr)	S RATE (Nb/hr)
uffide nate nate forate sate atte	0.17 0.04 47.6425 3.511 46.8024 0.25 72.2037 0.33 0.53 222.001 105.028 31.2016 0.05 8.754	0.0389 0.0091 10.8897 0.8025 10.6877 0.0571 0.057431 50.7431 24.0058 7.1318 7.1318	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0333 0.0054 4.4724 0.0000 0.0000 0.0555 28.1574 11.7533 0.0000 0.0000 0.0000	70 26,146 (632) 150,784 175,814 175,814 (14,513) (18,869) 28,406 74	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888888888888888888888888888888888888888	0.00 0.
	538.512	538.512 123.0884	0.0778	72.3344	348,122	0.00	0.03	00.00	0.00	0.04	9.84	0.00	00.0	0.00	0.0	0.00	0.00	0.00	8.24

ij..

..

184 Squib - XC9/MK 1 Mod 0 850,000 Rema/hr 1.47008 grains/hem

POTENTIAL POHC FEED RATES

METALS FEED RATES

S RATE (Ib/hr) 0.00 0.00 NG RATE (fb/hr) 0.00 HCB RATE (fb/hr) DPA RATE (fb/hr) 0.00 0.00 DATE (Ib/hr) 0.00 DBA RATE (Ib/hr) 0.00 ZINC RATE (fb/hr) 0.00 TIN RATE (Ib/hr) 0.00 SR RATE (Ib/hr) 0.00 LEAD RATE (16/hr) 0 0 0 CR RATE (fb/hr) BA RATE (16/hr) 0.00 SB RATE (tb/hr) 0.00 0.00 AL RATE (16/hr) 452,941 HEAT VALUE (BTU/hr) 0.0000 ASH RATE (Ib/hr) 0.0000 CL RATE (Ib/hr) 188.6467 6.1445 2.7197 COMP RATE (Ib/hr) 1.39003 0.06001 0.02004 COMP QUANT (gr/fbem) lorate

18.8

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

454,162

78.7223

0.7868

1.47008 199.5109

1: TE:	185 Tracer – M5A2B1/B2 8,000 kema/hr 35,0002 grains/frem	185 acer – M5A2B1/B2 8,000 kema/hr 35.0002 grains/fem							3	METALS FEED RATES	FEED RA	ATES	<u>-</u>	POTENTIAL POHC FEED RATES	AL POH	C FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (Ib/hr)	CL RATE (lb/hr)	ASH RATE (lb/hr)	HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Po/hr) (BA RATE (16)(16)(10)	CR L RATE F	LEAD RATE F (16/hr) (1	SR RATE F (Ib/hr) (1	RATE (Po/hr) (ZINC RATE (B) (DBA RATE I	DNT RATE (16) (16)	DPA RATE (Pb/hr) (HCB RATE (Ib/hr)	NG RATE (lb/hr)	S RATE (15/hr)
wder	0.60002	0.6857	0.0000	1.2957	9,129	0.00	0.00	0.00	0.00	0.00	0.0	0.00	00.0	0.00	0.00	0.0	0.0	0.0 0.0	0.0
ride ate	19.6001	22.4001	1.6209	0.0000	25,480		0.0	0.0	0.0	0.0	9.18	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0
	35.0002	40.0002	1.6209	35.5738	166,754	0.69	0.00	0.00	0.00	0.00	9.18	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00

<u>T</u>	186 Tracer – M10/XM10 7,500 kems/hr 63.0003 grains/fei	186 7,500 kems/hr 63.0003 grains/tem							3	ETALS	METALS FEED RATES	ITES	K	TENTA	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE. (fb/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (Ib/hr)	BA RATE R	CR L	LEAD RATE R	SA RATE R (Ib/hr) (1	RATE R	RATE R	DBA L	DNT RATE R	DPA RATE (HCB RATE ((b/hr) (NG RATE (Ib/hr)	S RATE (16/hr)
atte fatte xide	5.70002 17.0001 20.8001 3.10008 18.4001	6.1072 16.2143 22.2858 3.3215 17.5715	000000000000000000000000000000000000000	0.5325 30.2048 10.9111 0.0000 17.5715	90,722 194,037 (17,517) 0	000000000000000000000000000000000000000	000000	0.00 0 00 00 00 00 00 00 00 00 00 00 00	0.00 0.	0.00 0.	0.00 9.14 0.00 0.53 0.00	00.00.00	00 00 00 00 00 00 00 00 00 00 00 00 00	000000	00.00 00.00	0.00.00	0.00.00.00	0.00 00 00 00 00 00 00 00 00 00 00 00 00	00000
	63.0003	67.5003	0.0000	59.2200	267,243	0.00	0.00	0.00	0.00	0.00	9.67	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.0

:: TE:	187 Tracer – M12 1,800 iten 62,9002 grai	187 acer – M12 1,800 kems/hr 62.9002 grains/hem							₹	ETALS F	METALS FEED RATES	TES	8	TENTIA	POTENTIAL POHC FEED RATES	; FEED I	RATES		
	COMP QUANT (gr/Rem)	COMP RATE (lb/hr)	CL RATE (No/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE F (fb/hr) (1	BA RATE R (16/hr) (1	CR L RATE R (85/hr) (8	LEAD RATE R (16/hr) (1	SR RATE R (lb/hr) (R	TIN Z RATE R (85/hr) (R	ZINC D RATE R (16/hr) (R	DBA D RATE R (Bo/hr) (R	DNT D RATE R (16/hr) (18	DPA H RATE R (16/hr) (18	HCB RATE F (lb/hr) (0		S RATE (lb/hr)
de	25 0.6 0.3 2.50005	6.4286 0.1543 0.0771 0.8429	0.0000	0.0000 0.0135 0.0000 1.0661	2,292 1,087 6,848	0.00	0.00 0.00	5.21 0.00 0.00 0.00	00.00	0.000	00000	0.00	0.0 0 00.0	ł	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8	0.0
acyclodecane ate Acetate Resin	16.2001 2.10005 16.2001	4.1657 0.5400 4.1657	0.0000	0.0000	20,874 (424)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	00.0	0.00	0.0
										·									
	62.9002	16.1743	2.7494	1.3439	30,678	00:00	0.00	5.21	0.00	0.00	0.22	0.00	00.0	00.00	00.00	0.00	0.00	0.00	0.00

.: E.	188 Tracer - M13 4,500 lten 110.9 gra	188 er – M13 4,500 (kema/hr 110.9 grains/flem							2	METALS FEED RATES	FEED R	ATES	ž.	OTENTI	POTENTIAL POHCFEED RATES	O FEED	RATES		
	COMP QUANT (gr/Rem)	COMP RATE (Ib/hr)	CL RATE (fb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Po/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CA L	LEAD RATE (16/hr) (1	SR RATE F	RATE P	ZINC RATE P	DBA RATE R	DNT RATE F	DPA RATE (16/hr) (HCB RATE (Ib/hr) (RATE (Po/hr)	S RATE (Ib/hr)
de acyclodecane ate Acetate Resin	21.1 0.5 0.3 38.8001 5.80007 37.3001 5.80007	13.5843 0.3214 0.1929 25.6500 3.7929 3.7929	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0280 0.0000 11.7389 0.0000	4,775 2,718 273,250 19,006 (16,847)	0.00.00.00.00	0.00.00.00	6.00.00.00 00.00.00 00.00	0.00 0.	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00 0.	0.00 0.	0.00.00.00.00.00	000000000000000000000000000000000000000	0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.00.00.00.00	0.00.00.00.00	0.00.00.00.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	110.9	71.2830	2.5033	54.3034	280,902	00.0	00.00	10.99	0.0	8.0	6.83	0.00	0.0	0.0	0.00	00.00	0.00	00.00	0.0

TE:	189 Tracer – No. 1/No. 2 (75–14–333) 6,000 kema/hr 48.9002 grains/hem	189 acer – No. 1/No. 2 (7 6,000 items/hr 48.9002 grains/item	75-14-33	<u>(5</u>					2	METALS FEED RATES	FEED RA	ATES	<u>a</u> .	OTENTL	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP QUANT (gr/kem)	COMP RATE (fb/hr)	CL RATE (Ib/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (Po/hr)	BA RATE F	CR L	LEAD RATE F	SR RATE F	TIN RATE (16/hr) (0	ZINC RATE (Ib/hr) (DBA RATE F	DNT RATE (DPA RATE (16)/ht/) (HCB RATE (Po/hr) (NG RATE (Po/hr)	S RATE (Ib/hr)
мдег	0.90002	0.7714	0.0000	1.4576 24.4482	10,269	0.77	0.00	0.0 0.0	0.00	0.00	0.00	0.00	0.00	0.00 00.00	0.0 0.00	0.00	0.0	0.00	0.00
ride ate	3.40001	23.4858	0.0000	0.0000	25,990 (18,460)	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00
	48.9002	41.9144	1.6533	37.4044	174,855	0.77	00.00	0.00	00.00	0.0	9.63	00:00	0.00	00.0	0.00	00:0	00.0	00.0	0.00

190 20MM HE-T(MK4) (w/single base propellant) 900 (tema/hr 722.52 grains/flem

POTENTIAL POHC FEED RATES

METALS FEED RATES

TE

S RATE (Ib/hr) 0000 0.00 0.00 0.00 DPA RATE (15/hr) 0.000 DATE (PATE (PATE) DBA RATE (Ib/hr) 0.00 0.000 ZINC RATE (Ib/hr) SR TIN RATE RATE (15/hr) (16/hr) 0.00 0.00 BA CH LEAD
RATE RATE RATE (B)/hr) (B)/hr) (B)/hr) (B)/hr) (B)/hr) 0.00 0.00 0.00 SB RATE (Ib/hr) 0.00 0.00 13,054 540 342,343 66,843 HEAT VALUE (BTU/hr) 0.0000 0.3646 0.0000 ASH PATE (PD/hr) 0.0000 CL RATE (Ib/hr) 0.7971 0.4757 78.9171 12.7054 COMP RATE (B/hr) 6.2 3.7 613.8 96.82 COMP QUANT (gr/ftem)

0.0

0.00

0.00

0.80

0.00

0.00

0.00

0.00

0.00

0.34

0.00

0.00

0.00

0.00

422,780

0.3646

0.0000

92.8954

722.52

COMP	COMP	C To	ASH	HEAT	V	SB	BA	CR	LEAD	SR	AIN.	ZINC	DBA	DNT	DPA	HCB	NG	တ
QUANT RATE		RATE	RATE	VALUE	RATE	RATE	RATE	RATE	RATE	RATE	RATE	RATE	RATE	RATE	RATE	RATE	RATE	RATE
(gr/Rem)		(Pb/hr)	(Ib/hr)	ነሳ (ጭተነ (BTU/hr) (ጭተነ (ጭተነ (ጭተነ (ጭ/hr) (ጭ/hr) (ሙ/hr) (ሙ/hr) (ሙ/hr) (ሙ/hr) (ሙ/hr) (ሙ/hr) (ሙ/hr) (ሙ/hr)	(Jp/Jrid)	(Jp/Jri)	(Jp/Jri)	(Jp/Jri)	(Ib/hr)	(Jp/Jri)	(lp/lpr)	(John)	(Ju/qu)	(Japyur)	(lp/hr)	(Ib/hr)	(Jayur)	
										_		_			-		_	

R: ATE: B:	191 Grenade Fuze (M215) 1,175 Kema/hr 0.37 grains/Rem	191 hade Fuze (M215) 1,175 kems/hr 0.37 grains/lem							3	ETALS F	METALS FEED RATES	TES	×)TENT!/	POTENTIAL POHC FEED RATES	C FEED	RATES		
F	COMP QUANT (gr/Rem)	COMP RATE (Ib/hr)	CL RATE (lb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (16/hr) (BA RATE R (16/hr) (0	CR L RATE R (Ib/hr) (R	LEAD RATE R (Pb/hr) (R	SR RATE R (lb/hr) (ii	TIN Z RATE R (Ib/hr) (N	ZINC 1 RATE R (16/hr) (10	DBA I RATE R (Ib/hr) (R	DNT RATE (16/hr) (0	DPA RATE F (lb/hr) (1	HCB RATE (Rb/hr) (NG RATE (Ib/hr)	S RATE (lb/hr)
wuffide	0.00 0.00 0.10 0.00 0.00	0.0067 0.0034 0.0134 0.0034	000000000000000000000000000000000000000	0.0127 0.0058 0.0079 0.0152 0.0000	88 (10) 7 72 *	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.	0 0 0 0 0 0	8 8 8 8 0 0 0 0 0	8888	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000
	0.37	0.0621	0.0000	0.0415	168	0.01	0.0	0.01	0.00	0.01	0.00	0.00	90.0	0.00	0.0	0.00	9.0	0.0	0.0

...

192 Fuze, Time M65A1 7,300 Reme/hr

TE:	Fuze, Time M65A1 7,300 Rema/hr 51.99 grains/N	2,300 kema/hr 51.99 grains/lem								METALS FEED RATES	FEED R	ATES	G.	OTENTI	AL POH	POTENTIAL POHC FEED RATES	RATES		
	COMP QUANT (gr/Rem)	COMP RATE (b/hr)	CL RATE (fb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (Ib/hr)	TIN RATE (Ib/hr)	ZNC RATE (Ib/hr)	DBA RATE (Ib/hr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
	6.09	6.3510 47.8671	000000	0.0000	15,249	00.0	00.0	0000	00.00	00.00	00.0	0.00	000	000	0.00	0.00	0.00	0000	0.0
	86.72	54.2181	0.0000	2.6084	15,249	00.0	00:0	000	00:0	00.0	0.00	00:0	0.0	0.0	000	00:00	00:0	00.0	0.6

:R: \ATE: 0:	193 Fuze, Base Defonating(M91A1 1,900 kema/hr 353.401 grains/flem	193 uze, Base Detonating 1,900 kema/hr 353.401 grains/tem		w/booster)					3	ETALS F	METALS FEED RATES	(TES	ž.)TENT!/	POTENTIAL POHCFEED RATES	O FEED	RATES		
F	COMP QUANT (gr/ftem)	COMP RATE (fb/hr)	CL RATE (lb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (lb/hr)	SB RATE (16/hr) (BA RATE R (Ib/hr) (P	CR L RATE P (Ib/hr) (0	LEAD RATE P	SR RATE R (Ib/hr) (R	PATE R	ZINC RATE F	DBA RATE F	DNT RATE F	DPA RATE F (fb/hr) (0	HCB RATE F	NG RATE (S RATI (Ib/hr
oride horate trate	0.6480 0.5660 0.085 0.4810 12.3030 2.4500 0.5660 1.0000 19.6000 315.7000	0.1759 0.1536 0.0231 0.1306 3.3394 0.6650 0.1542 0.2714 5.3200 65.6900	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.2244 0.3844 0.3886 20.4021 0.0000 0.0000 0.0000	2,341 903 148 35,574 5,830 1,120 (4,182) 450,815	28.00 00.00 00.00 00.00 00.00 00.00 00.00	0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000.000.0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000
	353.401	95.9231	1.5542	32.3207	492,720	0.85	0.00	00.0	0.00	0.34	8.04	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.1

194 Fuze, Point Detonating (M564 w/booster) 1,900 items/hr

3: NTE:

METALS FEED RATES POTENTIAL POHC FEED RATES

	381.71	381.71 grains/llem																	
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Po/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (Ib/hr)	BA RATE (16/hr)	CR RATE (Ib/hr)	LEAD RATE (Po/hr)	SR RATE (Ib/hr)	RATE (16/hr)	ZINC RATE (Ib/hr)	DBA RATE (No/hr)	DNT RATE (Ib/hr)	DPA RATE (16/hr)	HCB RATE (Ib/hr)	NG RATE (lb/hr)	S RATE (Ib/hr)
ulfide the mate formate	1.31 0.06 7.16 0.12 2.4.24 320.4 0.02 26.4	0.3556 0.0163 1.9434 0.0326 0.5429 1.1509 96.9657 7.1657	0.0000	0.3052 0.0096 1.4894 0.0155 0.3747 0.5269 0.0000 0.0000	641 (12) 2,206 73 1,136 517 358,621 6 37,698	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8,000,000,000	0.0000000000000000000000000000000000000	00.00	0.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	80.000000000000000000000000000000000000	8.0.00000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0.00
	361.71	98.1784	0.3329	2.7213	401,089	0.00	0.28	0.01	8.0	1.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1

Я: VTE: I:	195 Simulator Projectie M74 500 Rema/hr 557.84 grains/hem	195 nulator Projectile M7 500 Rema/hr 557.84 grains/hem	2						2	METALS FEED RATES	FEED R	ATES	<u>a</u> .	OTENTI	POTENTIAL POHCFEED RATES	C FEED	RATES		
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (96/hr)		HEAT VALUE (BTU/hr)	AL RATE (Ib/hr)	SB RATE (Ib/hr) (BA RATE F (fb/hr) (1	CR 1 RATE 1 (Bo/hr) (LEAD RATE R	SR RATE (Bo/hr) (TIN RATE (Ib/hr) (ZINC RATE (Ib/hr) (DBA RATE (16) (16)	DNT RATE (Bo/hr) (DPA RATE (Ib/hr)	HCB RATE (16/hr)	NG RATE (Ib/hr)	S RATE (16/hr)
ъ	54.63 53.15	35,9393	00000	7.3812	\$2,002 86,290	0.00	00.0 00.0	0.0 00.0	0.00	0.00	0. 0 0. 0	0. 0 8. 0	00 00 00 00	0.00	0. 0 8. 0	8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	00.0	8 8 8 8	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	557.84	39.8457	0.0000	22.1415	138,293	3.91	0.00	0.00	8.0	0.00	8.0	0.00	0.0	0.00	0.00	0.00	0.00	8.0	3.58

5.56mm Blank Cartridge (M200) 22.500 llema/hr

.TE:	22,500 Rems/hr 7.96762 grains/le	22,500 items/hr 7.96762 grains/item								METALS	METALS FEED RATES	ATES		OTENT	POTENTIAL POHC FEED RATES	CFEED	RATES		
	COMP QUANT (gr/Rem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (Po/hr)	HEAT VALUE (BTU/hr)	AL RATE (16/hr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CA (Ib/hr)	LEAD RATE (Ib/hr)	SR RATE (lb/hr)	RATE (Ib/hr)	ZINC RATE (Ib/hr)	DBA RATE (Byhr)	DNT RATE (Ib/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	NG RATE (Ib/hr)	S RATE (Ib/hr)
wder uffide on the property of	0.02799 0.05909 0.02177 0.02790 0.00311 5.79393 0.01866 0.03421 0.01868 0.01828 0.018574 1.32797 0.00622	0.0900 0.1889 0.7397 0.0700 0.0900 0.0900 0.4798 0.2299 0.2299 0.2299 0.2299 0.2299	0000.0 00000.0 0	0.1700 0.1830 0.4340 0.0392 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,198 3,198 (530) (530) 1,268 80,788 212 (31) 71 1,082 3,037 1,937 5,566 29,120 8	80.0 00.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	000000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	800000000000000000000000000000000000000	800000000000000000000000000000000000000	0.00 0.	0.000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0000000000000000000000000000000000000
	7.96782	25.6108	0.0058	1.1051	124,081	0.09	0.14	0.39	0.00	0.21	00.0	0.00	0.00	0.23	0.23	0.34	0.00	4.27	0.0

7: 	197 20mm Cartridge HEI-Single bu 900 kema/hr 991.483 grains/Nem	197 Jum Cattidge HEI1 900 kems/hr 991.483 grains/hem	Single base						3	METALS FEED RATES	EED RV	ITES	Æ	OTENT!	POTENTIAL POHC FEED RATES	C FEED	RATES		
	COMP	COMP	C.L. RATE	ASH	HEAT	AL	SB RATE	BA RATE F	CR L	LEAD RATE R	SR RATE R	TIN Z	ZINC	DBA RATE F	DNT RATE	ı—	HCB	NG RATE	S
•	(gr/Rem)	(Ip/Jul)	(Jp/Jr)	(Ib/hr)	(BTU/hr)					(tp//qt)						(Jp/Jpr)			(fb/hr)
¥	0.0778	0.0100	0.0000	0.0000	141	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
wder	52.7484	6.7819	0.0000	12.8145	90,281	8.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	1.4004	0.1801	0.0000	0.000	3,151	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ep <u>u</u>	0.5446	0.0700	0.0000	0.0601	126	0.0	0.05	0.0	0.00	0.0	0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.0	0.0
	14.4708	1.8605	0.0000	1.0916	(1,332)	0.00	0.00	66.0	0.00	0.00	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0
-8	0.5446	0.0200	0.000	0.1282	420	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.0	0.0
of the	0.9336	0.1200	0.0000	0.0105	1,783	0.00	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.0
ate	0.0778	0.0100	0.0000	0.0009	180	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	3.9678	0.5101	0.0000	0.0000	7,191	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.0	0.0
	7 002	0.0100	0000	0000	3 808	8 8	3 6	8 6	8.6	8 6	8.6	8 8	8 8	3 6	8 8	9 8	8.6	3 6	5 6
Juminum Allov	18.2052	2.3407	0.0000	4.0746	27,156	0.84	0.0	00.0	0.0	0.00	0.0	0.00	0.0	0.00	00.0	0.00	0.0	0.0	0.0
	605.362	77.8322	0.0000	0.0000	337,636	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	0.1556	0.0200	0.0000	0.0000	71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
rohlorate	19.9946	2.5707	0.6579	1.0411	629	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ffato	6.5352	0.8402	0.0000	0.5410	(287)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1
	97.0166	12.4736	0.000	0.0000	51,466	0.00	0.0	0.00	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.0	0.00	0.0
	0.0778	0.0100	0.0000	0.0000	12	0.0	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.00	0.0	0.00	0.0
	64.413	10.8531	0.0000	0.0000	27,098	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	2.6452	0.3401	0.0000	0.3401	0	0.00	0.00	0.00	0.00	0.00	0.00	0.27	0.00	0.0	0.00	0.00	0.0	0.00	0.0
lou	0.0778	0.0100	0.0000	0.0000	33	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0
	0.3112	0.0400	0.0000	0.0000	410	0.0	0.0	0.00	0.00	0.0	0.0	0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.0
	2.9564	0.3601	0.0000	0.0000	7,602	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.0	0.00	0.0
	0.0778	0.0100	0.0000	0.0013	154	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.0
•t	1.556	0.2001	0.0000	0.0953	451	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	61.7732	7.9423	0.0000	0.0000	906'99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.94	0.00	0.00	0.0	0.0
•	8.4802	1.0903	0.0000	0.0000	17,855	0.00	0.0	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	1.09	0.00	0.0	0.0
			_																
	991.483	991.483 127.4764	0.6579	20.1993	872,759	7.82	0.05	0.99	0.00	60.0	0.00	0.27	0.00	0.00	7.94	1.09	0.00	0.00	0.1

1 nea-43

198 20mm Cart API M53 1,200 (tems/fir 748,747 grains/fem

: =

METALS FEED RATES

••	748.747	745.747 grains/liem																	
	COMP QUANT (gr/Rem)	COMP RATE (Ib/hr)	CL RATE (fb/hr)	ASH RATE (Ib/hr)	HEAT VALUE (BTU/hr)	AL RATE (Bohr)	SB RATE (Ib/hr)	BA RATE (Ib/hr)	CR RATE (Ib/hr)	LEAD RATE (Po/hr)	SR RATE (Ib/hr)	RATE (BAn)	ZINC RATE (Rofter)	DBA RATE (Ib/hr)	DATE (Mo/hr)	DPA RATE (Ib/hr)	HCB RATE (Ib/hr)	RATE (Ib/hr)	S RATE (Ib/hr)
trate	12.7677	2.1887	0.0000	0.0000	(100)	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.0
onate	6.1215	1.0494	0.0000	0.5880	(826)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1:	0.583	0.0999	0.0000	0.0000	130		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:4486 0.0583	0.0100	0.0000	0.0000			0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
luminum Alloy	27.7508	4.7573	0.0000	8.2815	55,194	1.7.1	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
rate	9.0048	1.5591	0.0000	0.8651	(446)		0.00	0.00	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0
e e e e e e e e e e e e e e e e e e e	3.0316	0.5197	0.0000	0.2927	(386)		0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.00	0.0	0.00	0.00	0.00	0.1
lou	0.0583	0.0100	0.0000	0.0000	15. 33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.0
	1.166	0.1999	0.0000	0.0953	451		0.00	0.00	0.00	0.09	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	90.00 0.00	1.5591	0.0000	0.0000	25,532		0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.56	0.00	0.00	0.0
	748.747	748.747 128.3566	0.7212	12.7808	687,415	1.71	0.00	1.23	0.00	60.0	0.00	0.00	0.00	9.87	1.05	1.56	0.00	11.43	0.1

20mm Cart INC M96 900 kema/hr 635.47 graina/fem

ΛĒ ..

POTENTIAL POHC FEED RATES

METALS FEED RATES

RATE (Pb/hr) 0.1 0.00 NG RATE (Ib/hr) 8 8 8 8 8 8 8 8 8 8 8 0.00 HCB PATE (Ib/hr) 00.00 0.48 DPA PATE (Ib/hr) 0.00 DNT RATE (16/hr) 0.00 DBA RATE (lb/hr) 0.00 ZINC PATE (Ib/hr) 00.00 0 0.00 TIN RATE (Ib/hr) 0.00 SR RATE (fb/hr) 0.05 LEAD RATE (B/hr) 00.00 0 00'0 CR RATE (fb/hr) 0.00 8 8 8 8 8 8 8 8 8 8 8 BA RATE (Pb/hr) 0.05 RATE (Ib/hr) AL RATE (fb/hr) 3.62 141 54 6,082 7,863 147 116,517 256,189 71 76 2,894 (315) HEAT VALUE (BTU/hr) 369,730 0.0000 0.0258 0.0358 0.0483 17.4826 0.0000 0.0000 0.0778 4.4401 22.4002 RATE (lb/hr) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0492 2.8055 2.8547 CL RATE (16/hr) 0.0100 0.0300 0.4101 0.0700 10.0429 59.0569 0.0200 0.1700 10.9631 81.7033 COMP RATE (Ib/hr) 0.0778 0.2334 3.1898 3.7344 0.5448 78.1112 458.331 0.1556 1.3226 85.2688 3.501 635.47 QUANT (gr/ftem) COMP ick uifide nate e nnate luminum Alloy lorate rchlorate ffate

: <u>ii</u>	200 Fuze M501 220 I	200 M501 220 Rems/hr 1060 grains/liem		6.15152	i				2	METALS FEED RATES	FEED R	ATES		OTENTI	POTENTIAL POHC FEED RATES	C FEED	RATES	â	
	COMP QUANT (gr/ftem)	COMP RATE (Ib/hr)	CL RATE (Ib/hr)	ASH RATE (B/hr)	HEAT VALUE (BTU/hr)	AL RATE (fb/hr)	SB RATE (fb/hr)	BA RATE (fb/hr)	CR RATE (Ib/hr)	LEAD RATE (Pohr)	SR RATE (b/hr)	PATE (Pohr)	ZNC RATE (bhr)	DBA RATE (Bohn)	DNT RATE (ID/In)	DPA RATE (b/hi)	HCB RATE (Ib/hr)	NG RATE (fb/hr)	S RATE (Ib/hr)
lorade to the state of the stat	54.06 21.412 4.24 188.044 45.686 688.384 51.304	1.6990 0.6729 0.1333 5.9100 1.4358 1.6124 1.6124	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1.4581 0.3948 0.0000 0.0000 0.6573 0.2165 16.5805 0.7685	3,062 (482) 1158 31,092 645 0 0 24,555 3,634	0.00 0.00 0.00 0.00 0.00 0.00 0.00	7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00.000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.00 0.00 0.00 0.00 0.00 15.38 0.71	8.00.00.00	0.0000000000000000000000000000000000000	0.00.00.00	0.00.00.00	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000000000000000000000000000000000000	000000000000000000000000000000000000000	0.00
	1080	33.3143	0.4154	20.0758	62,664	0.00	1.22	0.36	0.00	16.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.2

Signal, Illuminating-AN-M37A2 25,971 items/hr 80.7 grains/item

ATE:

.. E

S RAT (lb/h

POTENTIAL POHC FEED RATES

METALS FEED RATES

NG RATE (lb/hr) 00:00 HCB RATE (lb/hr) DPA RATE (lb/hr) DNT RATE (lb/hr) DBA RATE (lb/hr) ZINC RATE (lb/hr) TIN RATE (lb/hr) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SR RATE (lb/hr) LEAD RATE (lb/hr) CR RATE (lb/hr) 0.00 80.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 BA RATE (lb/hr) SB RATE (lb/hr) 00.00 0 AL RATE (lb/hr) 14,933 (106) 687,549 239 1,167 1,135 23,794 250 786 (4,331) HEAT VALUE (BTU/hr) 0.0000 0.0871 117.6079 0.0000 0.3842 0.0000 3.7038 0.2548 1.2051 2.6975 ASH RATE (lb/hr) 0.0000 0.0000 0.0554 0.0554 0.0000 0.0000 0.1610 0.7614 0.0000 CL RATE (lb/hr) 0.8533 0.1484 286.3596 0.0742 0.5565 0.0742 2.2335 0.5665 2.9756 5.5096 COMP RATE (lb/hr) 0.23 0.04 0.02 0.02 0.15 0.02 0.602 0.602 0.15 0.15 0.15 COMP QUANT (gr/item) hlorate erchlorate trate anate \vdash **6**0 ∟

0 0 8 0 0 0 0 0 0 0

28.

8

Ö

0.07

8 ö

0.00

0.00

0.00

8

ö

8 αi

0.40

0.00

0.08

0.00

0.00

725,899

125.9403

0.9779

299.4156

80.7019

7

1. 1. <u>3.</u>

44

 $_{1}^{2}=\alpha$

202 Signar, Muminating—AN—M43A2 32,841 tiems/mm 63.77 crains/mmm

METALS FEED RATES

COMP COMP T. (gr/item) (b/h/) e 0.12 0.5647 0.01 0.1822 r 61.7329 290.5057 0.1 0.4706 0.15 0.7059 0.01 0.0471 0.01 0.0471 0.1870 e 0.743 3.4965 e 0.02 0.0941		CL (Ib/hr) (Ib	(Ib/hw) (19.3109 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000		AL RATE (lb/hr)	SB RATE (-			SR		ZINC	-	DNT.		HCB	NG	S
0.04 61.7329 29 0.15 0.01 0.301 0.401 0.743 0.02	1,5647 1,882 1,5062 1,470 1,4165 1,4165 1,4165 1,7059 1,7059 1,7059 1,7059		0.0000 0.1104 119.3109 0.0000			-	(lb/hr) ((lb/hr) ((lb/hr)		(lp/hr)		(III/QI)		(lb/hr)		(lb/hr)	(fb/m
0.15 0.01 0.301 0.401 0.743 0.02	0.4706 0.0471 0.0471 0.0471 0.7059 0.7059 0.0841		0.0000	9,882 (135) 697,505	0000	0.00	0.00	0000	0.00	0.00	0.00	00.0	0.00	0.00	00.0	0.00	0.00	0.0
0.301 0.401 0.743 0.02	1.4165 1.8870 2.7059 3.4965 5.0941	0.0000 0.5459 0.1806 0.0000	0.0000	1,516		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2000	0.0841		2.3489 0.8639 0.2859 1.7119	15,090 847 186 (2,748)	00000	0.00	0.000	0.00	0.0000	0.00	0.00	0.00	00.00	0.00	00000	0.000	0.00	0000
		0,0000	00000	2	0.00	0.00	00:0	00:0	000	00:0	0000	00.0	0.00	0.00	00.0	0.00	00.0	
63.7679 300.0826	0.0826	1.0780	1.0780 125.1192	724,957	0.00	0.00	0.10	0.00	0.50	1.43	0.00	0.00	0.00	0.00	0.00	0.47	00.0	29.