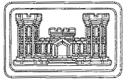
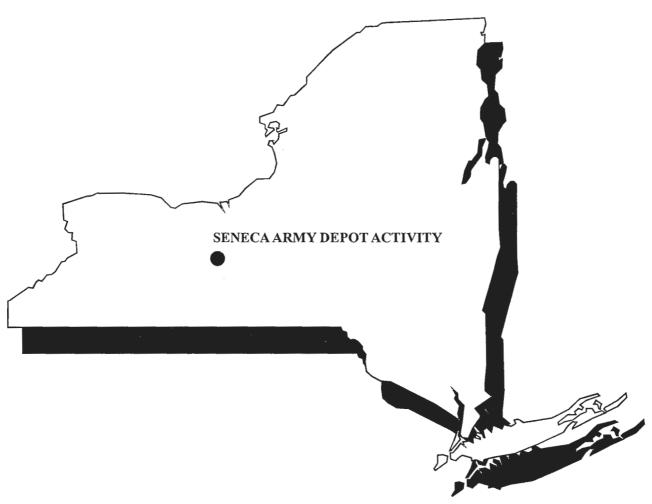
U.S. ARMY ENGINEER DIVISION


HUNTSVILLE, ALABAMA


01323

100

FINAL RADIOLOGICAL SURVEY REPORT - SEAD-12 PHASE I AND PHASE II SURVEYS VOLUME I - REPORT

CONTRACT NO. DACA87-95-D-0031 DELIVERY ORDER NO. 0005

MARCH 2003
PARSONS

DRAFT RADIOLOGICAL SURVEY REPORT SEAD-12

Prepared For:

SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK

Prepared By:

PARSONS

30 Dan Road Canton, Massachusetts

Contract Number DACA87-95-D-0031 Delivery Order # 5 730047

TABLE OF CONTENTS

Section	Ī				Page
1.0	INTRODUCTION			1-1	
	1.1				1-1
	1.2	Site History			1-3
		1.2.1	Building	gs 803, 804, and 805	1-3
		1.2.2	Building	g 806	1-4
		1.2.3	Building	g 810	1-4
		1.2.4	Building	g 812	1-5
		1.2.5	Building	gs 815 and 816	1-5
		1.2.6	Building	g 819	1-5
		1.2.7	Addition	nal SEAD-12 Buildings	1-6
		1.2.8	Backgro	und Buildings	1-6
2.0	BUILD	OING C	LASSIFIC	ATIONS	2-1
	2.1	MARS	SSIM Area	Classifications	2-1
	2.2	Classi	fication of	Buildings at SEAD-12	2-2
3.0	P A DIC	MITCI	IDES OF (CONCERN AND FIELD METHODOLOGY	3_1
5.0	3.1 Radionuclides of Concern				
	3.2	Field Methodology			
	5.2	3.2.1		ntation	
		3.2.1		Alpha and Beta Radiation Surveys	
				Gamma Radiation Surveys	
				Exposure Rate Surveys	
				Duct and Drain Surveys	
				Gamma Spectroscopy and Material Sampling	
				Instrument Function Check Procedures	
		3.2.2	Class I B	uilding Surveys	3-4
		3.2.3	Class II E	Building Surveys	3-5
		3.2.4	Limited (Class III Building Surveys	3-6
		3.2.5	In Situ G	amma Spectroscopy and Material Sampling	3-7
		3.2.6	Duct and	Drain Surveys	3-8
		3.2.7	Health an	nd Safety	3-9
4.0	BUILD	ING SU	JRVEY RI	ESULTS	4-1
	4.1				
	4.2	Use of Survey Data to Evaluate Building Status4-1			
	4.3	MARSSIM Statistical Evaluation of Direct and Scanning Measurements4-3			

		4.3.1	Wilcoxon Rank Sum Test	4-3
		4.3.2	The Confidence and Power of the WRS Test	4-3
		4.3.3	Box-and-Whisker Plots	4-4
		4.3.4	Direct Measurements	4-4
		4.3.5	Scanning Measurements	4-5
	4.4	Phase	I Building Survey Results	4-5
		4.4.1	Background Data	4-6
		4.4.2	Analyses of Direct Measurements	4-6
			4.4.2.1 Survey Area Measurements Versus Background	4-6
			4.4.2.2 Discretionary Measurements Versus Background	4-7
			4.4.2.3 Survey Area Measurements Versus DCGLw Adjusted	
			Background	4-7
		4.4.3	Analyses of Scanning Measurements	4-7
		4.4.4	Exposure Rate Measurements	4-8
		4.4.5	Smear Results	4-8
		4.4.6	Duct and Drain Data	4-9
		4.4.7	Radon	4-9
	4.5	Phase	II Building Survey Results	4-10
		4.5.1	Background Data	4-10
		4.5.2	Analyses of Direct Measurements	4-10
			4.5.2.1 Survey Area Measurements Versus Background	4-10
			4.5.2.2 Survey Plus Discretionary Measurements Versus	
			Background	4-11
			4.5.2.3 Survey Area Measurements Versus DCGLw Adjusted	
			Background	4-11
			4.5.2.4 Survey Plus Discretionary Measurements Versus	
			DCGLw -Adjusted Background	4-12
		4.5.3	Analyses of Scanning Measurements	4-12
		4.5.4	Exposure Rate Measurements	4-12
		4.5.5	Smear Results	4-12
		4.5.6	Gamma Spectroscopy Results	4-13
		4.5.7	Material Sampling Results	4-13
5.0	DISCU	USSION	AND CONCLUSIONS	5-1
	5.1	Discus	ssion of Phase I Building Survey Results	5-1
		5.1.1	Direct Measurements	5-1
			5.1.1.1 Gamma Measurements	5-2
		5.1.2	Scanning Measurements	5-2
		5.1.3	Exposure Rate Measurements	5-3
		5.1.4	Smear Sampling Results	5-3

	5.1.5	Duct and Drain Results	5-3	
5.2	Discu	Discussion of Phase II Building Survey Results		
	5.2.1	Direct Measurements	5-4	
		5.2.1.1 Gamma Measurements	5-4	
	5.2.2	Scanning Measurements	5-5	
	5.2.3	Exposure Rate Measurements	5-5	
	5.2.4	Smear Sampling Results	5-5	
	5.2.5	Gamma Spectroscopy	5-5	
	5.2.6	Material Sampling	5-6	
5.3	Findin	Findings from Specific Areas of Concern		
	5.3.1	Building 803,Room 6, Grid 15T (metal shelf)	5-6	
	5.3.2	Building 819, Room 1, Grid 91 (ceramic sick)	5-7	
	5.3.3	The crane in Building 819, Room 3	5-8	
	5.3.4	Building 819, Room 12D (generator room)	5-9	
5.4	Summ	nary of Findings5-9		
5.5	Concl	usions	5-10	

LIST OF TABLES

<u>Table</u>	<u>Title</u>
2-1	Survey Areas and Classifications
2-2	Room Classifications
3-1	Military Items That Contain Radionuclides as Integral Parts of their Components
3-2	Radionuclides of Concern
5-3	Radiation Survey Instrument Efficiencies
5-4	Location of In-Situ Gamma Spectroscopy Measurements
4-1 4-2	Derived Concentration Guideline Limits (DCGL _w) For Building Survey Areas Derived Concentration Guideline Limits (DCGL _{EMC}) For Building Survey Areas
4-3 4-4	Instrument Flag Values for Direct and Scanning Measurements Summary Statistics to Support Statistical Decision Levels
4-5	Summary of WRS Test – Phase I Direct Measurements (Excluding Discretionary Measurements) VS Background
4-6	Summary of WRS Test – Phase I Direct Measurements (Including Discretionary Measurements) VS Background
4-7	Summary of WRS Test – Phase I Direct Measurements (Excluding Discretionary Measurements) VS DCGL _w Adjusted Background
4-8	Summary of WRS Test – Phase I Direct Measurements (Including Discretionary Measurements) VS DCGL _w Adjusted Background
4-9	Summary Statistics of Phase I Scanning Measurements VS Instrument Scanning Flag Value
4-10	Phase I Exposure Rate Data
4-11	Summary of Phase I Smear Sampling Results
4-12	Smear Sampling - Surface and Volume Radioactivity Standards for Clearance, ANSI N13.12-1999 and 12 NYCRR Part 38 (Table 5)
4-13	Summary Statistics for Radiological Analyses on of Debris Samples Collected From Class I and Class II Buildings
4-14	Radon Survey Results
4-15	Summary of WRS Test - Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background
4-16	Phase II Locations of Potentially Elevated Surface Activity
4-17	Summary of WRS Test – Phase II Direct Measurements (Including Discretionary Measurements) VS Background
4-18	Phase II Survey Areas Exceeding Background

August 2002
P: PIT Projects SENECA S12RI BLDGSURV data_report Draft(Phase 1 & II) TABLE OF CONTENTS_7-30-02 doc

4-19	Summary of WRS Test - Phase II Direct Measurements (Excluding Discretionary			
	Measurements) VS DCGLw Adjusted Background			
4-20	Summary of WRS Test - Phase II Direct Measurements (Including Discretionary			
	Measurements) VS DCGLw Adjusted Background			
4-21	Summary Statistics of Phase II Scanning Measurements VS Instrument Scanning			
	Flag Value			
4-22	Phase II Exposure Rate Data			
4-23	Summary of Phase II Dry Smear Sampling Results			
4-24	Summary of Phase II Tritium Smear Sampling Results			
4-25	Summary of In-Situ Gamma Spectroscopy Measurements			
4-26	Summary of Potentially Elevated Gamma Spectroscopy Results			
4-27	Analytical and In-Situ Gamma Spectroscopy Results for Material Samples			
5-1	Summary of Phase I Direct Measurement Potential Exceedences			
5-2	Summary of Phase I Scanning and Debris Sampling Potential Exceedences			
5-3	Summary of Phase II Direct Measurement Potential Exceedences			
5-4	Summary of Phase II Scanning Potential Exceedences			
5-5	Summary of Gamma Spectroscopy Potential Exceedences			

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>
1-1	Sead-12 Building Locations
1-2	Floor Plan – Building 803
1-3	Floor Plan – Buildings 804 and 805
1-4	Floor Plan – Building 806
1-5A	Floor Plan – Building 810
1-5B	Floor Plan – Building 810
1-6	Floor Plan – Building 812
1-7	Floor Plan – Building 815
1-8	Floor Plan – Building 816
1-9	Floor Plan – Building 819
1-10	Floor Plan – Building 800
1-11	Floor Plan – Building 802
1-12	Floor Plan – Building 807
1-13	Floor Plan – Building 813
1-14	Floor Plan – Building 814
1-15	Floor Plan – Building 817
1-16	Floor Plan – Building 825
3-1	Debris Sample Locations – Building 804 and 805
3-2	Debris Sample Locations – Building 815
3-3	Debris Sample Locations – Building 816
4-1	Data Analysis Process – Flow Diagram
5-1	Box-and-Whisker Plots for Building 819, Room 3, Metal Crane (Alpha and Beta
	Measurements)

LIST OF APPENDICES

Appendix A	Derived Concentration Guideline Level Development Report for
	Sead-12 Radiological Surveys in Class 1 Buildings
Appendix B	Removal Action - 1986; Field Notes and Laboratory Analysis
Appendix C	Instrument Procedures; Use and Function Check
Appendix D	Instrument Calibration Sheets – Phase I
Appendix E	Instrument Source Check Sheets (by Instrument) - Phase I
Appendix F	Radiological Survey Data (Sorted by Building, Room, and Method)- Phase I
Appendix G	Duct and Drain Data
Appendix H	Radiation Scanning Box Plots VS Background - Phase I
Appendix I	Instrument Readings VS. DCGL Adjusted Background (Box Plots) By Room
	and Instrument, Including and Excluding Elevated Measurements- Phase I
Appendix J	Radiological Survey Data (Sorted by Building, Room, and Method)- Phase II
Appendix K	Radiation Scanning Box Plots VS Background - Phase II
Appendix L	Guidance for Spectrum Analysis Process (Parsons, 2001)
Appendix M	Instrument Calibration Sheets – Phase II
Appendix N	Instrument Source Check Sheets (by Instrument) – Phase II
Appendix O	URSA Identification and Quantification (see the included CD) and
	Interpretation of Gamma Spectroscopy Results.
Appendix P	Building Diagrams for Survey Locations- Class I and Class II Rooms
Appendix Q	Response to Comments

LIST OF ACRONYMS

A Alpha Radiation Am Americium

AEC Atomic Energy Commission

AEHA Army Environmental Hygiene Agency

Ag Silver

ALARA As Low As Reasonably Achievable

ANSI American National Standards Institute, Inc.
ASTM American Society for Testing and Materials

Au Gold

B Beta Radiation
BKGD Background

C Carbon Ca Calcium

CB Concrete Block

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

Cd Cadmium

CFR Code of Federal Regulations

Ci Curie
Cl Chlorine
Cm Curium
cm Centimeters

cm/sec Centimeters per second

Co Cobalt

cpm counts per minute

Cr Chromium
Cs Cesium

DCGL Derived Concentration Guideline Level

DCGL_{emc} Derived Concentration Guideline Level for Elevated Measurement

Comparisons

DCGL_w Derived Concentration Guideline Level for Wide Area Contamination

DOE Department of Energy

DOT Department of Transportation
dpm Disintegrations Per Minute
dps Disintegrations Per Second
DQO Data Quality Objective
DU Depleted Uranium

EE/CA Engineering Evaluation/ Cost Analysis
EMC Elevated Measurement Comparison

August 2002

EPA Environmental Protection Agency

ESI Expanded Site Inspections

Eu Europium

Fe Iron

FIDLER Field Instrument for the Detection of Low Energy Radiation

FM Floor Monitor
FS Feasibility Study

ft Feet

ft/sec Feet per second ft/yr Feet per year

G Gamma Radiation

H3 Tritium

HPS Health Physics Society
HSA Historic Site Assessment

I Iodine

IAG Interagency Agreement

In Indium Ir Iridium

IRDC Ionizing Radiation Dosimetry Center

KeV Kilo-electron volts

m meter

MARSSIM Multi-Agency Radiological Survey and Site Investigation Manual

MDA Minimum Detectable Activity
MDC Minimum Detectable Concentration

mg Milligram

mg/l Milligram per liter
mg/kg Milligrams per kilogram

mL Milliliter Mn Manganese

mrem milli-Roentgen equivalent man

mrem/yr milli-Roentgen equivalent man per year

mR Milli-Roentgen

Na Sodium

NA Not analyzed or not available

Nb Niobium NaI Sodium Iodide

NBS National Bureau of Standards

Ni Nickel

NIST National Institute of Standards

Np Neptunium

NRC Nuclear Regulatory Commission NRC Nuclear Regulatory Commission

NYCRR New York Code of Rules and Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health NYSDOL New York State Department of Labor

P Plutonium pCi pico Curies

pCi/g pico Curies per gram pCi/l pico Curies per liter

Pb Lead

Parsons ES Parsons Engineering Science, Inc

Pm Promethium
Po Polonium
ppm parts per million

Pu Plutonium

QA Quality Assurance

QA/QC Quality Assurance/Quality Control

OC Quality Control

Ra Radium

rad Radiation absorbed dose

RAGS EPA Risk Assessment Guidance for Superfund RCRA Resource Conservation and Recovery Act

rem Roentgen equivalent man

rem/yr Roentgen equivalent man per year

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

Rn Radon

ROC Radionuclide of Concern

Ru Ruthenium

Sb Antimony

SEAD Seneca Army Depot (old name)
SEDA Seneca Army Depot Activity

sec Seconds

SOW Statement of Work

Sr Strontium

TAGM Technical and Administrative Guidance Memorandum

Tc Technetium
Th Thorium

U Uranium

UCL Upper Confidence Level
ug/g Micrograms per gram
ug/kg Micrograms per kilogram
ug/mg Micrograms per milligram
ug/L Micrograms per liter
uR micro Roentgen

urem/hr micro Roentgen per hour

URSA Universal Radiation Spectrum Analyzer
USACE United States Army Corps of Engineers

USAEHA United States Army Environmental Hygiene Agency

USATHAMA United States Army Toxic and Hazardous Materials Agency

USDA United States Department of Agriculture

USEPA United States Environmental Protection Agency

USGS United States Geological Survey
UST Underground Storage Tank
UTL Upper Threshold Limit

WRS Wilcoxon Rank Sum Test WSA Weapons Storage Area

Zn Zinc Sulfide ZnS Zinc Sulfide

August 2002

REFERENCES

- 12NYCRR Part 38, 1994, Ionizing Radiation Protection, Part 38 of Title 12 of the Official Compilation of Rules and Regulations of the State of New York, NYSDOL
- Argonne National Laboratory, Manual for Implementing Residual Radioactive Material Guidelines using RESRAD including Data Collection Handbook, Version 5.0, September, 1993.
- ANL/EAD/LD-3. 1998, RESRAD-Build: A Computer Model for Analyzing the Radiological Doses Resulting from the Remediation and Occupancy of Buildings Contaminated with Radioactive Material, Version 2.37.
- ANSI/HPS N13.12-1999, 1999, Surface and Volume Radioactivity Standards for Clearance, American National Standards Institute, Inc.
- EPA, 1995. Exposure Factors Handbook, Volume III, Activity Factors, Office of Health and Environmental Assessment, Washington, D.C., EPA/600/p-95/002Fc.
- EPA, 1993. Protocols for Radon and Radon Decay Product Measurements in Homes (EPA 402-R-93-003), June, 1993.
- EPA, 1992. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance, Office of Solid Waste, Waste Management Division, July, 1992.
- NRC, 1997. Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), NUREG-1575, September 2000.
- NRC, 1992, Residual Radioactive Contamination from Decommissioning. Volume 1, Technical Basis for Translating Contamination Levels for Annual Dose, Battelle Pacific Northwest Labs., Richland, Washington, NUREG/CR-5512, September 25. Including U.S. NRC, 1990, Residual Radioactive Contamination from Decommissioning. Technical Basis for Translating Contamination Levels for Annual Dose. Draft Report for Comment, Battelle Pacific Northwest Labs., Richland, Washington, NUREG/CR-5512, PNL-7212, January, 1992.
- NRC, 1998, Draft Regulatory Guide, Demonstrating Compliance With The Radiological Criteria for License Termination, Residual Radioactive Contamination from Decommissioning, DG-4006, August, 1998.
- Parsons ES, 1995. Generic Installation Work Plan, June 1995.

August 2002 Page xiii

Parsons ES, 1998. Project Scoping Plan for Performing a CERCLA RI/FS at SEAD-12. June 1998.

Parsons ES, 2000. Derived Concentration Guideline Level Development Report for SEAD-12 Radiological Surveys in Class I Buildings, January 2000.

Parsons ES, 2000. Radiological Survey Report, Class I & II Buildings (Interim Report), July, 2000.

Parson ES, 2001. Remedial Investigation Report at the Radiological Waste Burial Sites (SEAD-12)-Final, February 2002.

Parsons ES, 2001. SEAD-63 Engineering Evaluation/ Cost Analysis (EE/CA), October, 2001.

USACE, 1997. Safety-Ionizing Radiation Protection, Regulation No. 385-1-80, May 30, 1997

US Department of Energy, 1993, RESRAD.

Woodward-Clyde, 1997. U.S. Army Base Realignment and Closure 95 Program. March 12, 1997.

August 2002 Page xiv

1 <u>INTRODUCTION</u>

1.1 PURPOSE OF REPORT

This report presents the findings of both Phase I and Phase II radiological surveys for buildings within the Former Weapons Storage Area (WSA), SEAD-12, at the Seneca Army Depot and serves as both the characterization survey and the final status survey. Phase I of the radiological investigation at SEAD-12 includes surveys of the buildings and rooms most likely to have been impacted by previous radiological activities at the site. Results from Phase I are reported in an interim report, Radiological Survey Report, Class I & II Buildings (Parsons ES, July 2000). Phase II of the radiological investigation at SEAD-12 includes surveys of the remaining buildings, in situ gamma spectroscopy on Phase I and Phase II buildings, the material sampling for Phase I and Phase II buildings, and the conclusions for the final status survey of all the SEAD-12 buildings.

The radiological surveys were conducted as part of the Remedial Investigation/Feasibility Study (RI/FS) for the site. The scope of this work is outlined in the SEAD-12 and SEAD-63 Project Scoping Plan for Performing a CERCLA Remedial Investigation/Feasibility (RI/FS) (Parsons ES, June 1998). Results of Remedial Investigation (RI) activities within SEAD-63 and the remainder of SEAD-12 (excluding the building radiological investigations) have been reported separately in the SEAD-63 Engineering Evaluation/Cost Analysis (EE/CA) (Parsons ES, Oct. 2001) and the SEAD-12 RI Report (Parsons ES, Feb. 2002)

This report incorporates the results and the conclusions presented in the interim report (Parsons, July 2000) with results of the radiological survey investigations of the remaining Class II buildings and all Class III buildings surveyed during Phase II of the investigation. The buildings investigated, as shown in **Figure 1-1**, are:

Phase I Investigation:

- Building 803
- Building 804
- Building 805
- Building 810 (the receiving room)
- Building 812 (the ammunition storage room)
- Building 815 (room 15)
- Building 816 (rooms 8, 9 and 10)
- Building 819

Phase II Investigation:

- Building 800
- Building 802

- Building 806
- Building 807
- Building 809
- Building 810 (except for the receiving room)
- Building 812 (except for the ammunition storage room)
- Building 813
- Building 814
- Building 815 (except for room 15)
- Building 816 (except for rooms 8, 9 and 10)
- Building 817
- **Building 823**
- Building 824
- **Building 825**
- Building 827

This report presents an overview of the instrumentation and methods used to collect the radiation scanning data, the data results and statistical interpretations using the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) protocols, and proposed conclusions for the building survey areas at SEAD-12.

The findings of this report are based on building guideline values, referred to in MARSSIM as Derived Concentration Guideline Levels (DCGLs). DCGLs are defined in MARRSIM as residual levels of radioactive material that correspond to allowable radiation dose standards and are developed based on site-specific release criteria, in this case for the buildings. In the case of SEAD-12, the release criteria selected are based on the NYSDEC TAGM of 10 mrem/yr as an acceptable dose equivalent exposure. The Derived Concentration Guideline Level (DCGL) Development for Radiological Surveys in Class I Buildings at SEAD-12 report (Parsons ES, Jan. 2000) describes the development of DCGLs used in this report. This DCGL report, which was updated based on communications between the Army, Parsons, NYSDOH, NYSDEC, and USEPA, is included as Appendix A of this report with the revised values presented with the data in Section 4.

The remainder of Section 1 provides a history of the site, a history of the buildings investigated as well as their radiological classification based on historical use. Section 2 describes the classification system employed for the building work and how each building fits in the system. Section 3 describes the radionuclides of concern and the instruments and field methods used to detect them. Section 4 describes the compliance statistics that were generated in evaluating the survey data collected in the buildings in accordance with MARSSIM. Section 5 discusses conclusions and recommendations for the final status survey based on the surveys and sampling within the buildings presented in this report.

P. PIT Projects SENECA SI2RI BLDGSURV data report Draft(Phase I & II) text sect. Ldoc

1.2 SITE HISTORY

This SEAD-12 site history is derived from a report documenting historical information about the Deep Creek Air Force Station (now the Fairchild Air Force Base), a trip-report prepared by Sandia National Labs in 1994, reviews of all declassified and/or unclassified Seneca Army Depot Activity (SEDA) reports and maps that are currently known to exist, aerial photos dating from 1959, 1968, and 1985 and personal communications with SEDA personnel. The information contained in the Deep Creek Air Force Station report is thought to be pertinent to this site investigation because until approximately 1962, all Weapons Storage Area (WSA) facilities nation-wide were controlled and operated by the Atomic Energy Commission (AEC). Also, the design and construction of the buildings used for weapons storage and maintenance at the Deep Creek Air Force Station are identical to those at SEDA.

SEAD-12 occupies the area of the former SEDA WSA. The former WSA was constructed by the U.S. Army Corps of Engineers from mid-1955 to 1957. In 1957, the WSA became operational and the facility was operated jointly by the Army and the AEC up to 1962. After 1962, all activities in the WSA were transferred to the full control of the Army. Activities at several of the facilities in the WSA, in particular Buildings 803, 804 and 819, are relatively well documented for the operational period prior to 1962. Activities and operating practices in the WSA after 1962 are currently classified or unknown. Currently, all buildings in the former WSA are completely demilitarized. The historical use of each building presented in this report is described below.

1.2.1 Buildings 803, 804, and 805

Buildings 803, 804, and 805 are located in the northern portion of SEAD-12, and include the area investigated as SEAD-12B during the Expanded Site Investigation (ESI) conducted in 1994. This area was the site of the initial WSA operations. During the period from 1957 to 1962, Building 803 was used for the storage of removable nuclear capsules, Building 804 was used as a maintenance building for removable nuclear capsules, and Building 805 was used as a storeroom. Maintenance activities involved disassembling of nuclear capsules for routine maintenance and cleaning, and for verification of the integrity of the fissile materials. Refer to **Figure 1-2** and **Figure 1-3** for floor plans of Buildings 803, 804, and 805 respectively.

Wastes generated during the processes performed in Building 804 included swipes containing solvents and uranium oxides, butcher paper, gloves, and lead-wire seals. It is estimated that 5 gallons of trichloroethylene, 1 gallon of alcohol and 1 quart of acetone were used annually. From 1957 to 1962, these wastes were stored in a dry waste disposal pit that was located 150 feet north and 28 feet east of Building 805 (the equipment building for Building 804). This dry waste disposal pit was lined with and covered by plywood. Former Sandia National Laboratory personnel reported that the wastes stored in this pit were removed and shipped for disposal whenever the pit was full. It is presumed that these wastes were shipped to Sandia National Laboratories in New Mexico for

disposal, though this has not been confirmed. The dry waste disposal pit was reported to have been excavated by the AEC in 1957, presumably to empty it for continued use, and again prior to their leaving the site in 1962. No data or further information is available on these two excavation events. SEDA personnel later excavated the dry waste disposal pit in 1965 and 1986. Reports from the 1965 and 1986 excavations indicated that no buried wastes were found in the area of the dry waste disposal pit. There are no records of radiological surveys from the 1965 excavation. Field notes from the 1986 excavation indicate that some plywood was unearthed, and laboratory analyses from soil samples and plywood samples reported that there was no residual radioactivity present. A copy of these field notes and the available laboratory analyses are presented in **Appendix B**.

Building 804 has a floor drain system that leads to an emergency holding tank, or underground storage tank (UST) located behind the building. The purpose of the UST was to contain any fissile material in case of an accidental release during maintenance of the nuclear capsules. There are no recorded releases of fissile materials at SEDA during the period from 1957 to 1962. In July of 1986, SEDA attempted to remove the tank. During this removal attempt, a portion of the top of the tank was ripped off. The tank was then back filled in place. The field notes and analysis results from this excavation are included with those from the 1986 dry waste pit excavation in **Appendix B**.

Although the operations performed in Building 804 are not known for the period following 1962, advances in weapons design by the mid-1960's had phased out the use of removable nuclear component capsules, therefore the maintenance activities associated with the nuclear capsules at Building 804 should have ceased. SEDA personnel have indicated that since 1962, the Army did not use Building 803 for nuclear capsule storage or Building 804 for nuclear capsule maintenance. Since at least the mid-1980s, Building 803 was used by the Army as a holding area for containerized radioactive wastes. Building 804 was occupied by the WSA Security Systems Maintenance Division.

1.2.2 **Building 806**

When the former WSA was active, Building 806 was used as a training center for radiological assistance team personnel. Room number 1 in Building 806 was used as a calibrations laboratory to calibrate and function check radiation scanning instruments with sealed radioactive sources. Refer to **Figure 1-4** for the floor plan of Building 806.

1.2.3 **Building 810**

Building 810, **Figure 1-5**, was used as a transfer area for military items that entered and exited the WSA. It was used for this purpose from the inception of the WSA in 1957 to the final demilitarization of the WSA in 1996. All military items arriving at and leaving from the WSA were sealed in specially designed containers that were then packed in Department of Transportation compliant transport containers. Only the loading and unloading area (receiving room, room 810-1 on

Figure 1-5) of Building 810 would have had sealed military items present that could have had radioactive materials within them. This area is located in the center of the northern portion of the building and measures approximately 50 feet by 28 feet. Also included in the receiving room area is the exterior loading dock area, measuring approximately 50 feet by 16 feet. No other areas of Building 810 were used to store or hold shipping containers that could have contained radioactive materials.

1.2.4 **Building 812**

Building 812 was used as the command structure for all security operations within the former WSA. When the WSA was active, all security activities including communications, monitoring, patrolling, and security weapons storage were coordinated and controlled from Building 812. Room 32 in Building 812 was used to store military equipment containing sealed radioactive sources as integral components. Refer to **Figure 1-6** for the floor plan for Building 812.

1.2.5 **Buildings 815 and 816**

Buildings 815 and 816 were constructed to maintain non-nuclear components of the weapons stored in the WSA. Activities up to 1962 included inspection and testing of non-nuclear mechanical and electrical systems. Following 1962, and up to approximately 1992, these buildings were used for classified maintenance functions. The actual operations that occurred in these buildings remain classified. Discussions with SEDA personnel indicate that any maintenance or quality assurance operations performed on military items that may have contained radioactive materials would have been done with those radioactive materials still sealed within those military items. The only radioactive material that would not have been considered sealed would have been metal parts that were fabricated with alloys containing U-238 and/or U-235. Once any maintenance or quality assurance operations were completed on any given military item, the item was immediately returned to and sealed in its shipping container. All military items were transported and stored in their sealed shipping containers. It should be noted that it was not Army policy to perform swipe sampling or radiation surveys on the shipping containers and these activities were not performed at SEDA. Refer to Figure 1-7 and Figure 1-8 for floor plans of Buildings 815 and 816 respectively.

After approximately 1992, Buildings 815 and 816 were used to de-militarize non-nuclear components as part of the nuclear stockpile reduction effort.

1.2.6 **Building 819**

From 1957 to 1962, Building 819 was used as a quality assurance inspection laboratory and was used by Sandia National Laboratories under contract to the AEC. For the period after 1962, Building 819 was likely used for similar quality assurance inspection purposes. During a site visit to Building 819

in 1994, it was being used for the storage of office furniture. Presently, the building is completely de-militarized. Refer to **Figure 1-9** for the floor plan for Building 819.

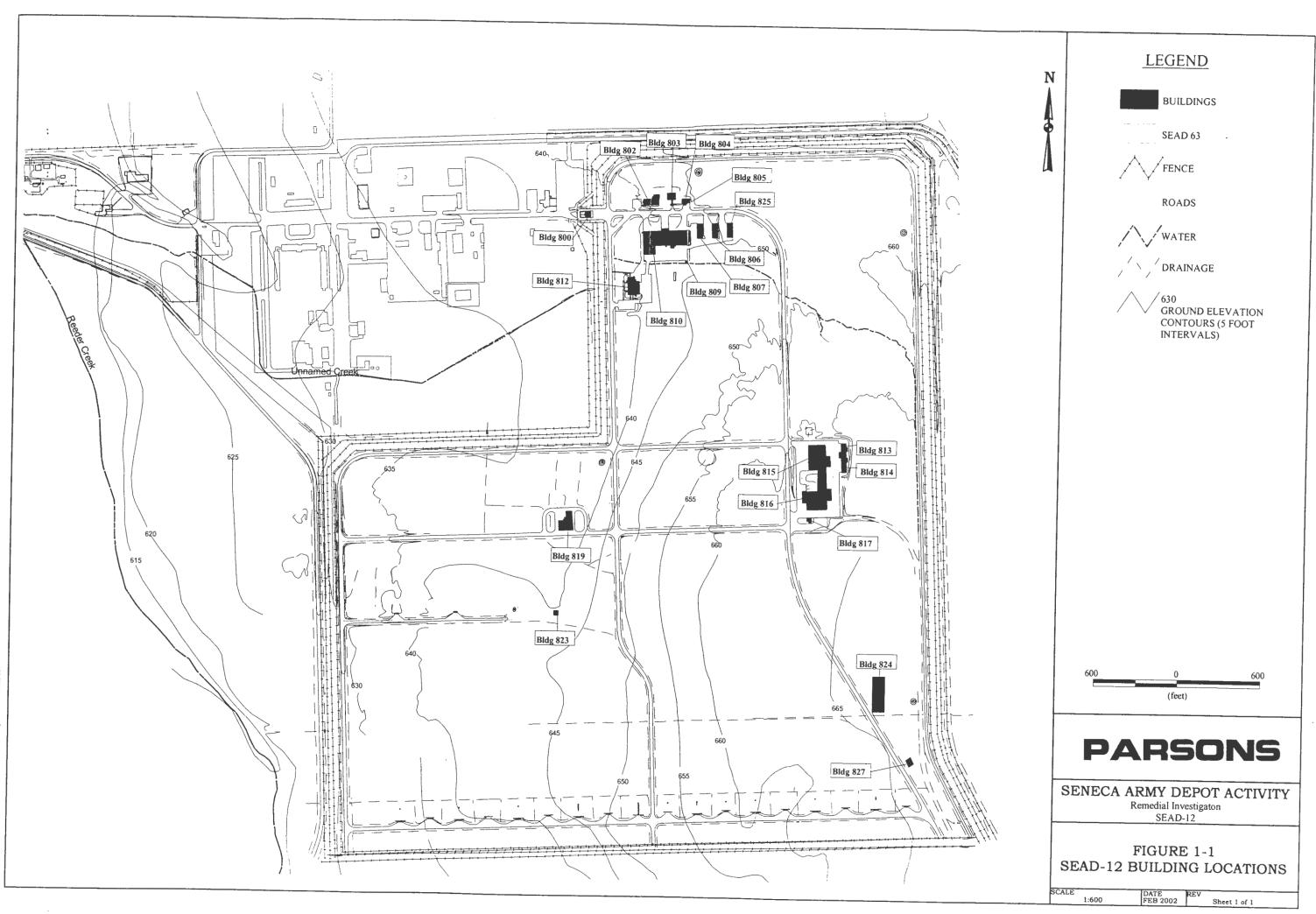
1.2.7 Additional SEAD-12 Buildings

The remaining buildings located within SEAD-12 were used for non-radiological and non-munitions related activities. According to historic reports (Woodward-Clyde, 1997) the uses of the remaining buildings are as follows:

- Building 800 was used as a security check-point building for access into SEAD-12 via the northnorthwest section of SEDA;
- Building 802 was used as an administrative office;
- Building 807 was used as a supply support shop;
- Building 809 was used for flammable storage;
- Building 813 was used as a storage workshop;
- Building 814 was used as a spray painting facility for painting vehicles;
- Building 817 was used as a utility building;
- Building 823 was used as a general purpose magazine depot;
- Building 824 was used as a railway loading platform; and
- Building 825 was used as a non-hazardous warehouse.

Refer to Figures 1-10 through 1-19 for floor plans of these buildings.

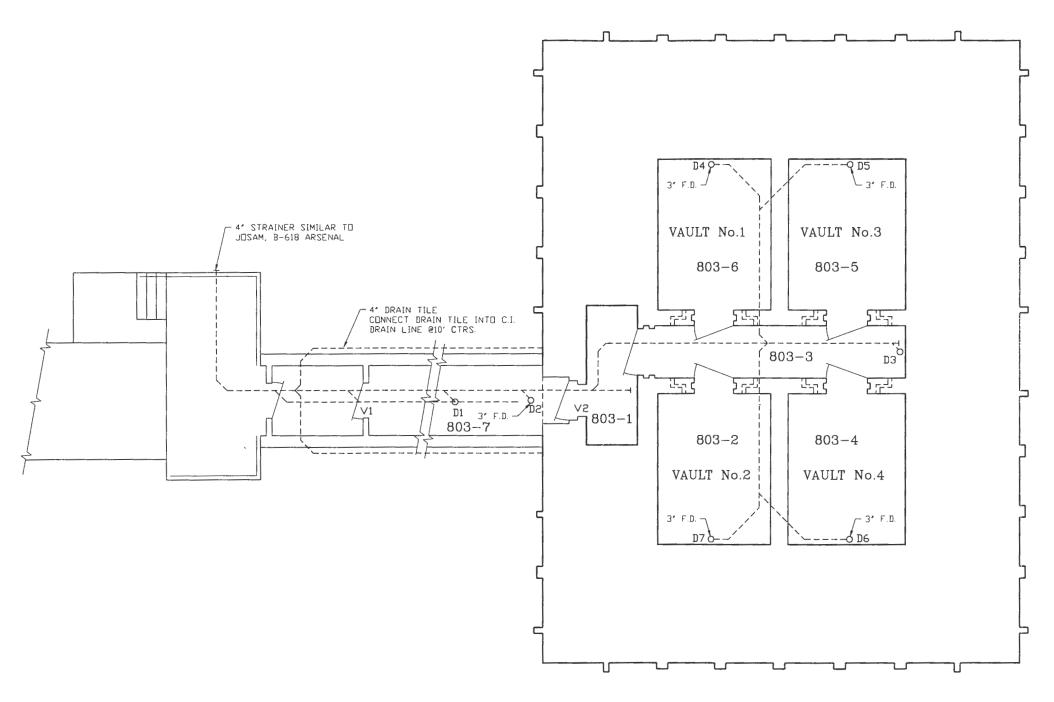
1.2.8 <u>Background Buildings</u>


The criteria for the selection of background buildings included: documentation that the building was not used in the handling or storage of radionuclides, and similar construction to the buildings being scanned in SEAD-12. Building 722, Igloo C0912, and Building 2104 were selected for the collection of background scanning data.

Igloo C0912 is located approximately 2 miles south of SEAD-12, near the west-end of Igloo Road 23. Igloo C0912 was selected for the collection of background scanning survey data for Building 803, because both have similar reinforced concrete construction and soil covered roofs.

Building 722 is located in the administrative area north-northwest of SEAD-12. Survey measurements from this building were used for background comparisons to the buildings included as part of the Phase I and Phase II surveys, (except Building 803). These buildings are of similar construction of reinforced concrete combined with block and mortar construction. Additionally, Building 722 had similar wall and floor coverings to those found in the SEAD-12 buildings (including painted concrete block, wallboard, paneling, and porcelain).

The property where Building 722 was located was transferred subsequent to the collection of the data for the Phase I survey, and the building was demolished. Consequently, an alternate reference building, which was Building 2104, was used during Phase II of the investigation for collection of background material samples and in situ gamma spectroscopy background reference measurements. Building 2104 is located just south west of the "Q" area. This building was built in 1951, within a five-year period of the buildings located at SEAD-12.


Additionally, Building 118, which is located it the administration area by Post 1, was used to collect one spectra for background comparison for in situ gamma analysis. This building was one of few buildings not used for radiological purposes that contained ceramic tile like that found in SEAD-12.

V_OIS30/SENECA/SEAD-12/SAMPLELO/BASE

N

Entire Building is a Class One Area.

BLDG. 803

NOTE(S):

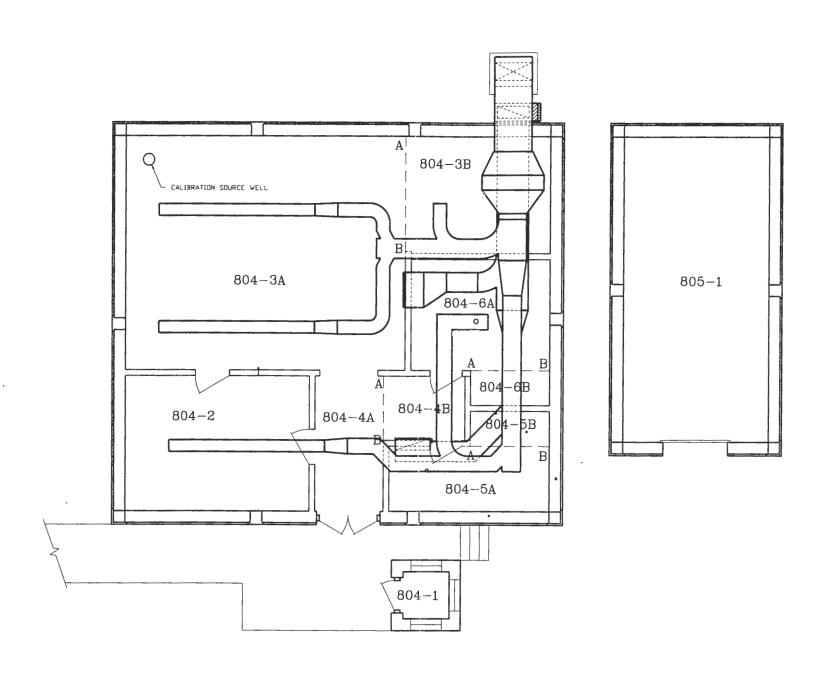
BUILDING INFORMATION REFERENCED FROM BLACK & VEATCH CONSULTING ENGINEERS. DRAWING NO. Y2-300, MAY 2, 1955. REVISED RECORD WORK AS-BUILT 9/5/58.

FEET 0 3 6
METERS 0 1 2

0 4' 8' 12'

(APPROX. SCALE FT.)

PARSONS


CLIENT/PROJECT TITL

SENECA ARMY DEPOT ACTIVITY

ENVIRONMENTAL ENGINEERING Deg. No. 780047-01001

FIGURE 1-2 FLOOR PLAN- BUILDING 803

AS NOTED PERSUARY 2000

BLDG. 804 AND 805

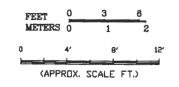
NOTE(S):

BUILDING INFORMATION REFERENCED FROM BLACK & VEATCH CONSULTING ENGINEERS. DRAWING NO. Y2-855, MAY 2, 1955. REVISED RECORD WORK AS-BUILT 6/2/58. CAMPBELL DESIGN ARCH./ENG. PLANNERS FLODR PLANS, DETAIL & SCHEDULES DRAWING NO. 10-87, SHEET M-1, PR. NO. 52-85, DATE: FEB. 18, 87.

NOTE:

Entire Building is a Class One Area: 2m x 2m GRIDS, 100% COVERAGE

• FLOOR


• WALL SURFACES BELOW 2 METERS

· UNEARTHEN ROOFS WITH DUCTS

EXTERIOR BUILDING SURFACES 2M FROM ACCESS
 HORIZONTAL SURFACES ABOVE 2M ABOVE FLOOR
 WHERE DUST OR PARTICLES VOULD DEPOSIT.

1m × 1m GRIDS, 10% CQVERAGE • CEILING (SUSPENDED AND NONSUSCENDED)

• UPPER WALLS (ABOVE 2m)

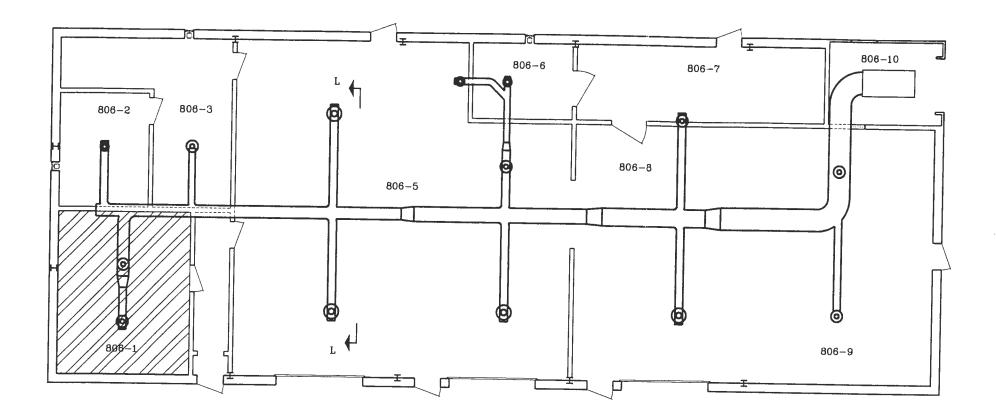
PARSONS

CLIENT/PROJECT TITLE

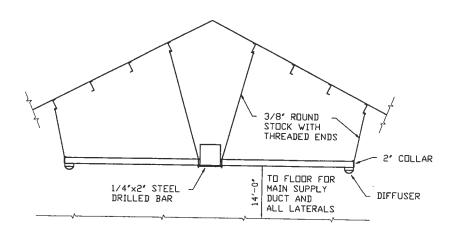
SENECA ARMY DEPOT ACTIVITY

INVENORMENTAL ENGENEERING 780047-01001

FIGURE 1-3 FLOOR PLAN-


BUILDINGS 804 & 805 OCTOBER 1999

N - -


NOTE(S):

BUILDING INFORMATION REFERENCED FROM MAJOR CORP. OF ENG. DRAWING NO. MISC. 275. RECORD DRAWING AS-BUILT YEAR 1959.

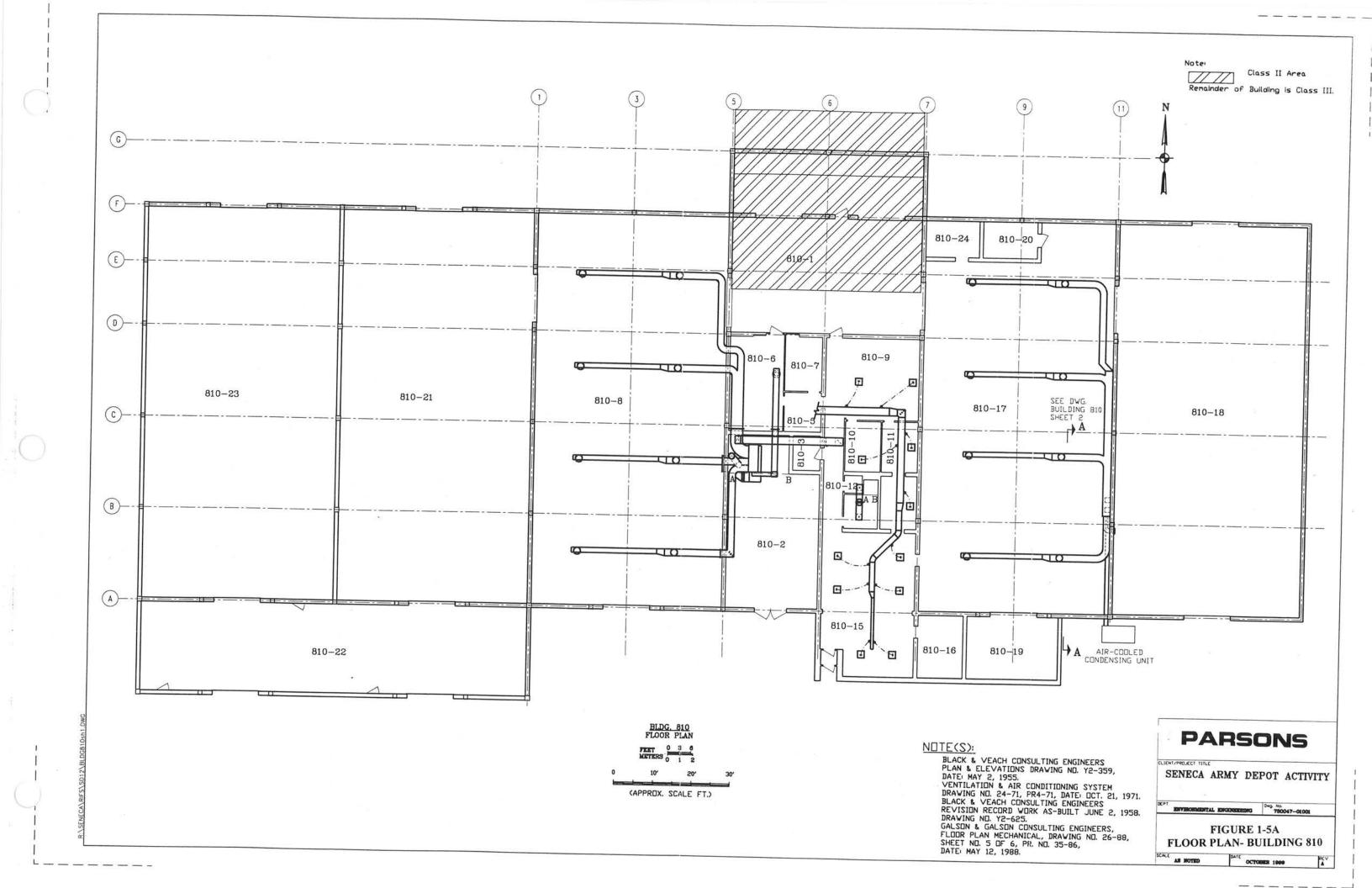
Class II Area
Remainder of Building is Class III.

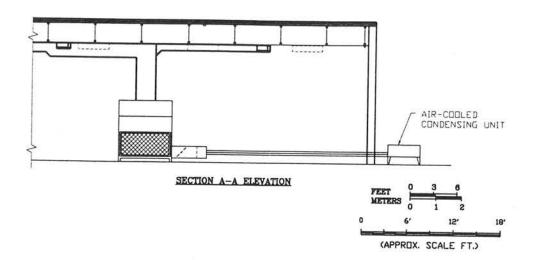
BLDG. 806

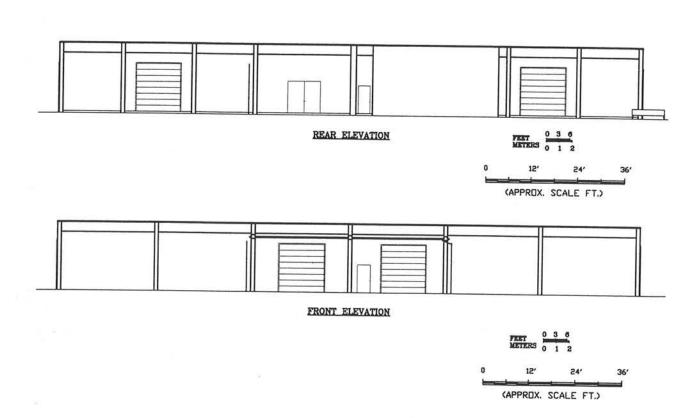
SECTION "L-L"
TYPICAL DETAILS OF HEATING DUCT SUPPORT AND
DIFFUSER OUTLESTS IN NON-CELING AREAS

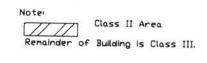
PARSONS

CLIENT/PROJECT TITLE


SENECA ARMY DEPOT ACTIVITY


ENTERCODERTAL ENCORPORATION 780047-01001


DE 1.4


FIGURE 1-4 FLOOR PLAN- BUILDING 806

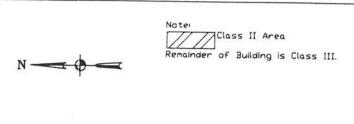
AS NOTED OCTOBER 1900

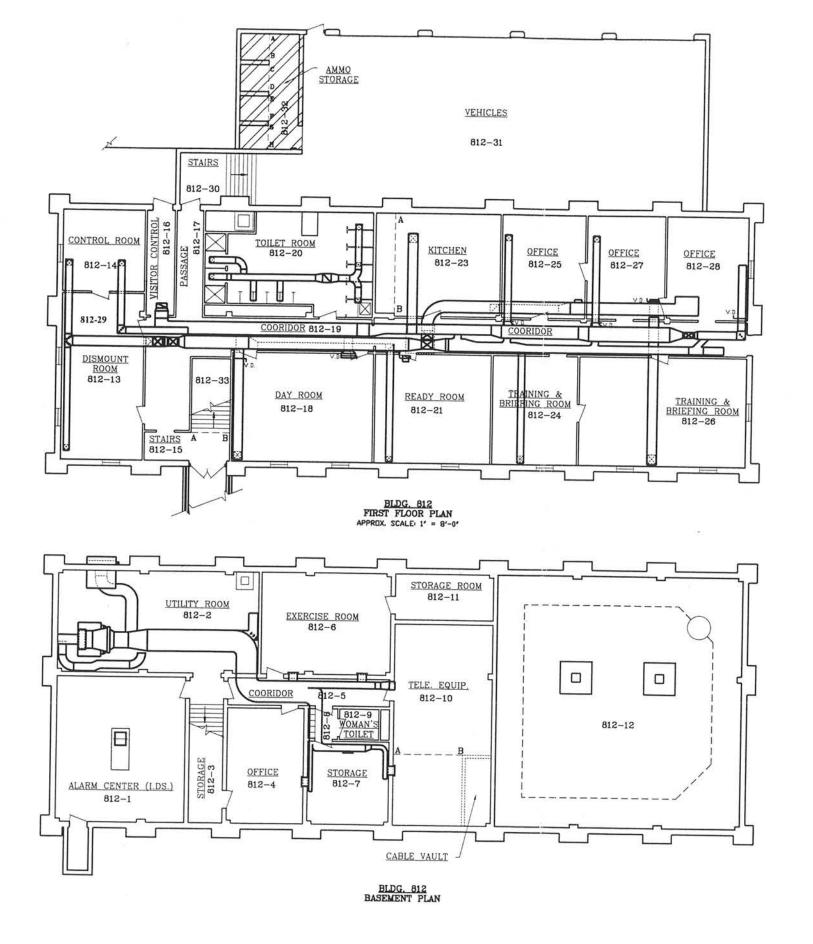
NOTE(S):

BLACK & VEACH CONSULTING ENGINEERS
PLAN & ELEVATIONS DRAWING NO. Y2-359,
DATE: MAY 2, 1955.

VENTILATION & AIR CONDITIONING SYSTEM
DRAWING NO. 24-71, PR4-71, DATE: DCT. 21, 1971.
BLACK & VEACH CONSULTING ENGINEERS
REVISION RECORD WORK AS-BUILT JUNE 2, 1958.
DRAWING NO. Y2-625.
GALSON & GALSON CONSULTING ENGINEERS,
FLOOR PLAN MECHANICAL, DRAWING NO. 26-88,
SHEET NO. 5 OF 6, PR. NO. 35-86,
DATE: MAY 12, 1988.

PARSONS


CLIENT/PROJECT TITLE


SENECA ARMY DEPOT ACTIVITY

ENVERONGENTAL ENGINEERING 780047-01001

FIGURE 1-5B FLOOR PLAN- BUILDING 810

OCTOBER 1999

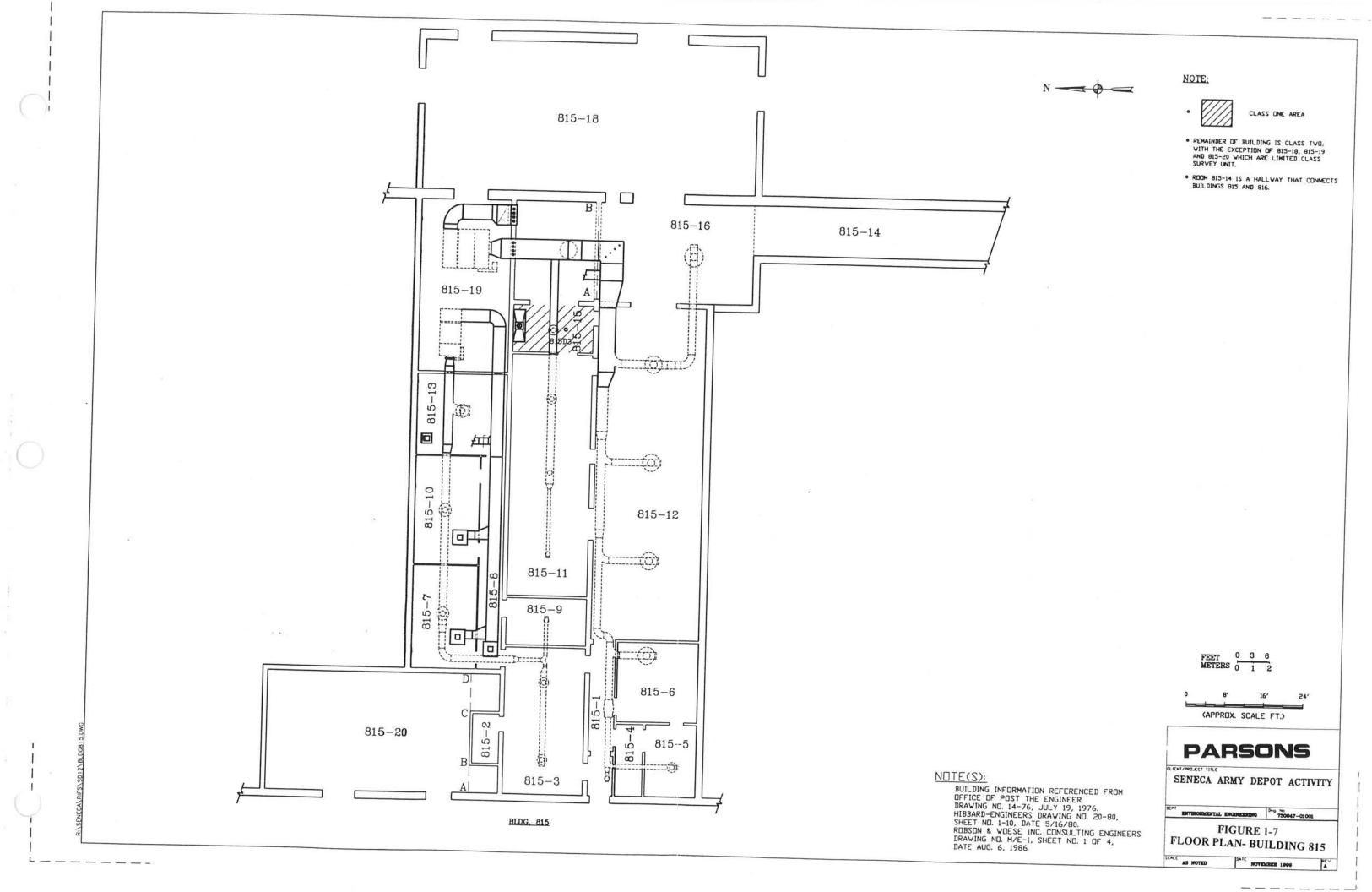
NOTE(S):

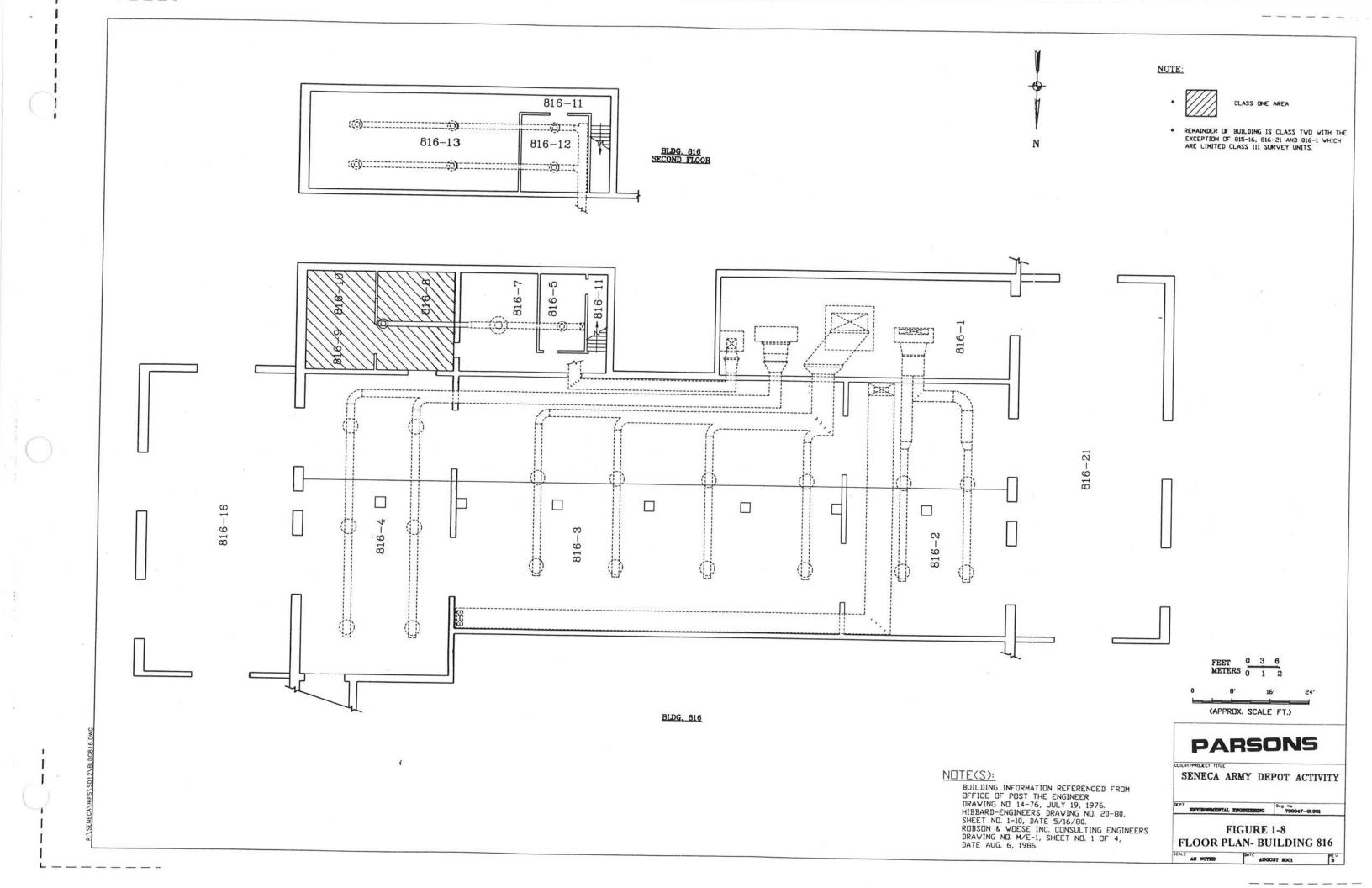
BUILDING INFORMATION REFERENCED FROM RECORD DRAWING OF WORK-AS-BUILT SEP. 5, 1958, DRAIWING NO. Y2-632.2, AND DRAWING FROM MACKNIGHT-FULIGNI-FRANGOLA ARCHITECTS ROBINSON & WOESE INC. CONSULTING ENGINEERS. SHEET NO. P1 (4 OF 7), DRAWING NO. 15-82, FEB. 12, 1982.

OFFICE OF FACILITES ENGINEER
AIR CONDITIONING & DETAILS DRAWING NO. 15.82 SHEET NO. HVAC-2 (7 OF 7), PR NO. 50-21, DATE FEB. 12, 1982.

OFFICE OF FACILITES ENGINEER
SHEET TITLE CHANGE ORDER #3, PR. NO. 50-81 DRAWING NO. 15-82, DATE FEB. 17, 1983.

0 3 6 FEET METERS 0 1 2 (APPROX. SCALE FT.)


PARSONS


SENECA ARMY DEPOT ACTIVITY

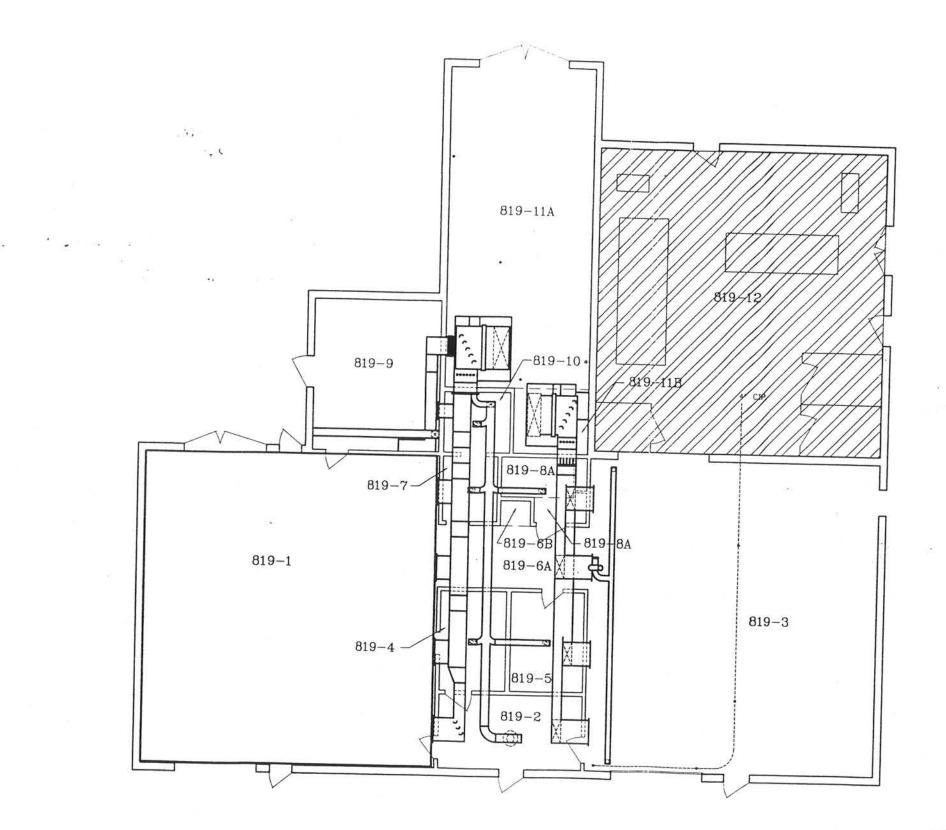

ENVIRONGENTAL ENGINEERING PPO No. 780047-01001

FIGURE 1-6 **FLOOR PLAN-BUILDING 812**

OCTOBER 1909

Class !! Area Remainder of Building is Class I.

NOTE(S):

**THIS DRAWING IS PRESENTED IN 1/2 SIZE.

SO YOUR SCALE IS 1/2 OF WHAT IS MARKED.

Le. IF THE SCALE IS MARKED

1' = 4'-0' THAN THE THRUE SCALE OF THE

DRAWING IS 1' = 2'-0'.

FEET 0 3 6 METERS 0 1 2

(APPROX. SCALE FT.)

PARSONS

LIENT/PROJECT TITLE

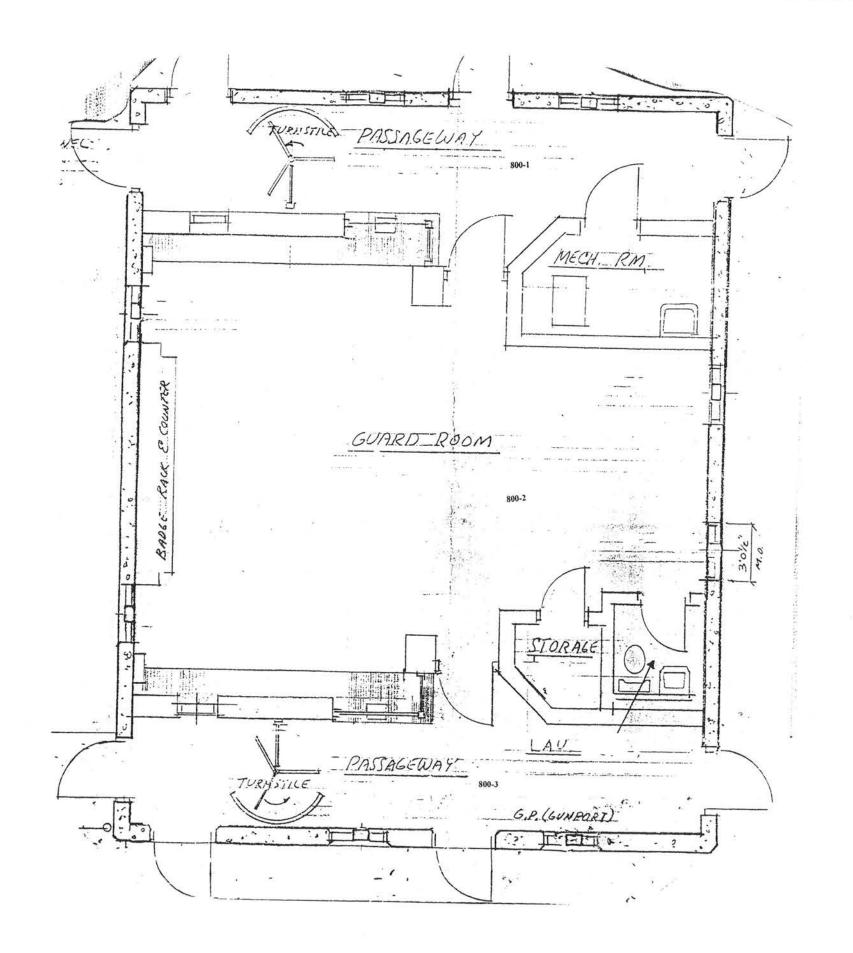

SENECA ARMY DEPOT ACTIVITY

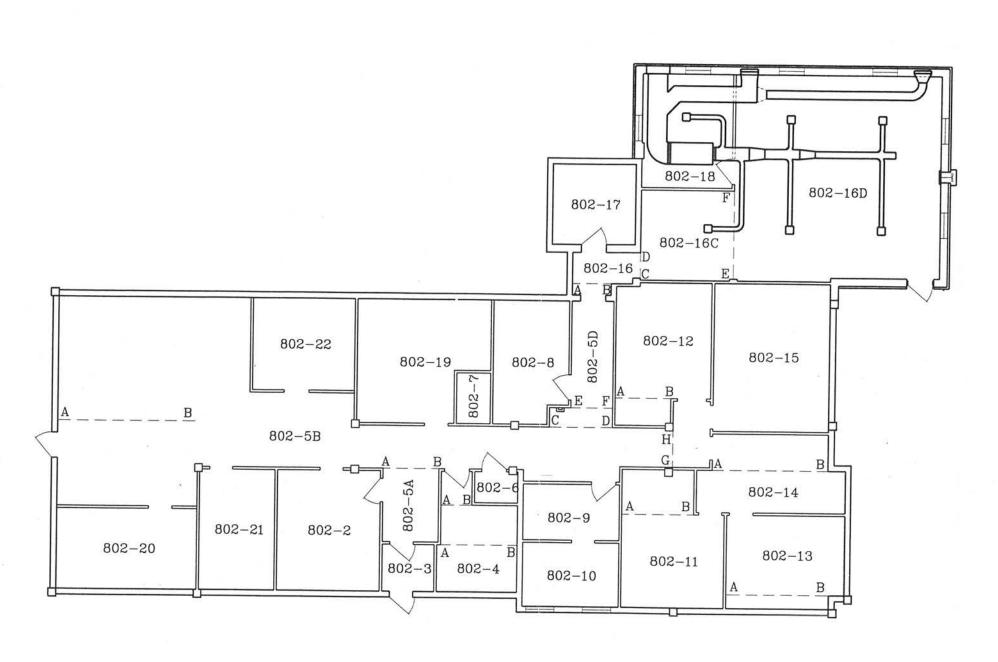
FIGURE 1-9 FLOOR PLAN-BUILDING 819

AS NOTED

BLDG. 819 APPROX. SCALE: 1' . 6'-0" NOTE(S)

BUILDING INFORMATION REFERENCED FROM BLACK & VEATCH CONSULTING ENGINEERS. DRAVING NOL Y2-621, MAY 2, 1955. REVISED RECORD VERK AS-BUILT 6/2/58. BLACK & VEATCH CONSULTING ENGINEERS. DRAVING NOL Y2-845, MAY 2, 1955. REVISED RECORD VERK AS-BUILT 6/2/58.

NOTES: 1) THIS DRAWING IS NOT TO SCALE. IT HAS BEEN ADAPTED FROM 1980 SEDA ENGINEERING DRAWING.

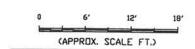

2) THE AREA OF BUILDING 800 IS1,272 SQ FT.

PARSONS

SENECA ARMY DEPOT ACTIVITY

FIGURE 1-10 FLOOR PLAN- BUILDING 800

SCALE NOT TO SCALE FEB 2002 REV Sheet 1 of 1



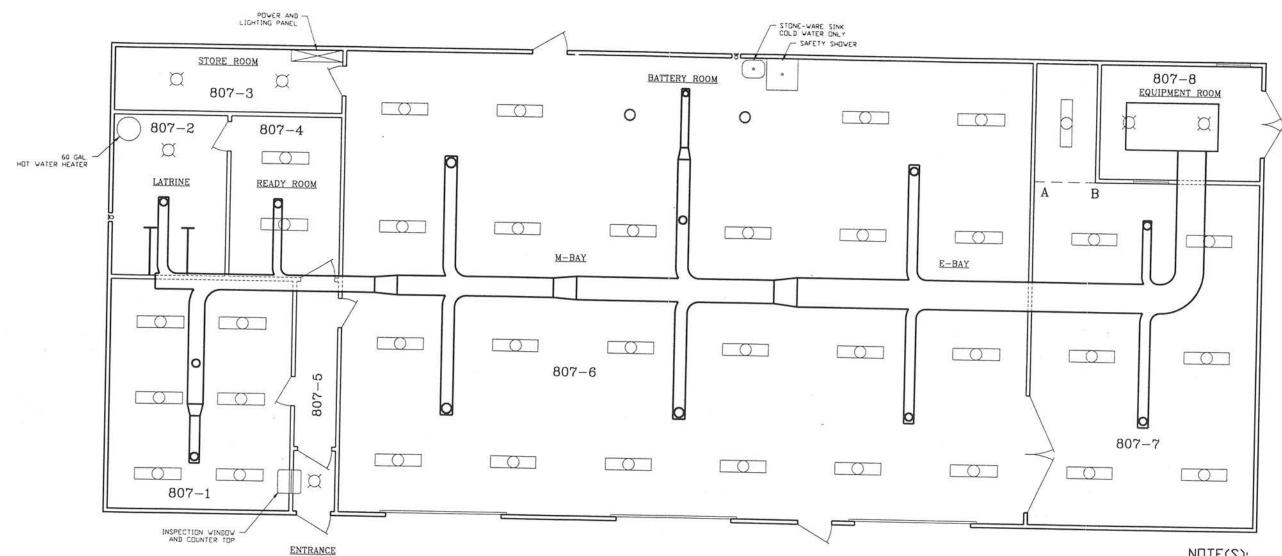
BLDG. 802 APPROX. SCALE: 1' = 6'-0"

NOTE(S):

DFFICE OF THE FACILITIES ENGINEER PLUMBING AND HEATING PLAN DRAWING NO. 18-79, SHEET NO. 7 OF 8, PR. NO. 49-76, DATE: DEC. 14, 1983.

* CHECK INTERIOR LAYOUT, INCONSISTENT INFORMATIN ON DRAWINGS.

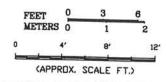
PARSONS


CLIENT/PROJECT TITLE

SENECA ARMY DEPOT ACTIVITY

ENVIRONMENTAL ENGINEERING 750047-01001

FIGURE 1-11 FLOOR PLAN- BUILDING 802


TED DATE AUGUST 1999

BLDG. 807 APPROX. SCALE: 1' = 4'-0"

NOTE(S):

*THIS DRAWING IS PRESENTED IN 1/2 SCALE.
SD YOUR SCALE IS 1/2 OF WHAT IS MARKED.
i.e. IF THE SCALE IS MARKED
1' = 4'-0' THAN THE TRUE SCALE OF THE DRAWING IS 1' = 2'-0'.

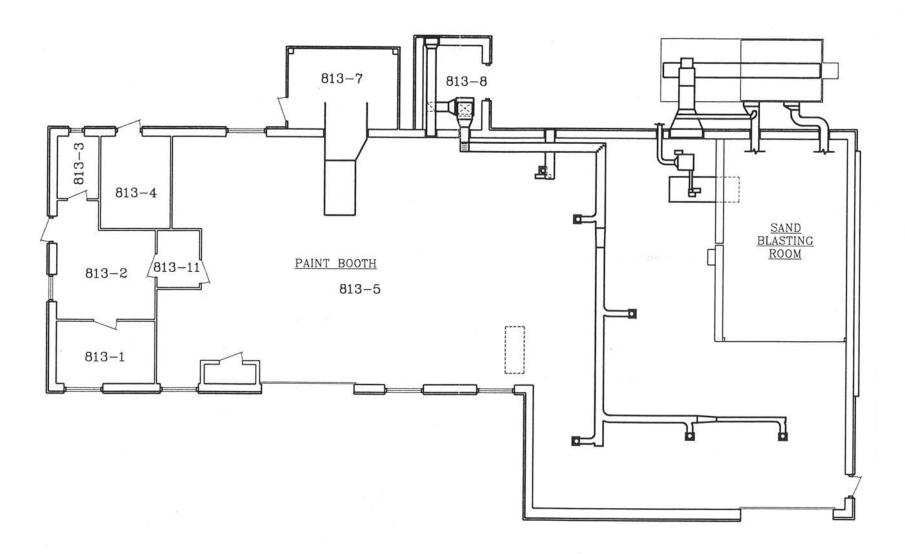
PARSONS

SENECA ARMY DEPOT ACTIVITY

ENVIRONMENTAL ENGINEERING 730047-01001 FIGURE 1-12 **FLOOR PLAN-BUILDING 807**

ADGUST 1999

() FLOURESCENT FIXTURE (4FT. - 3TUBE)


INCANDESCENT - CEILING TYPE

0 EXPLOSION PROOF FIXTURES (INCANDESCENT)

LEGEND:

NOTE(S):

BUILDING INFORMATION REFERENCED FROM MAJOR CORP. OF ENG. DRAWING MISC. 266. RECORD DRAWING AS-BUILT YEAR 1958. HEATING AND VENTILATION PLAN DRAWING NO. MISC. 267, RECORD DRAWING AS-BUILT YEAR 1958, REVISIONS: MARCH 17, 1959 FUEL TANK RELOCATED. RELOCATED.

BLDG. 813 APPROX. SCALE: 1' = 6'-0'

NOTE(S):

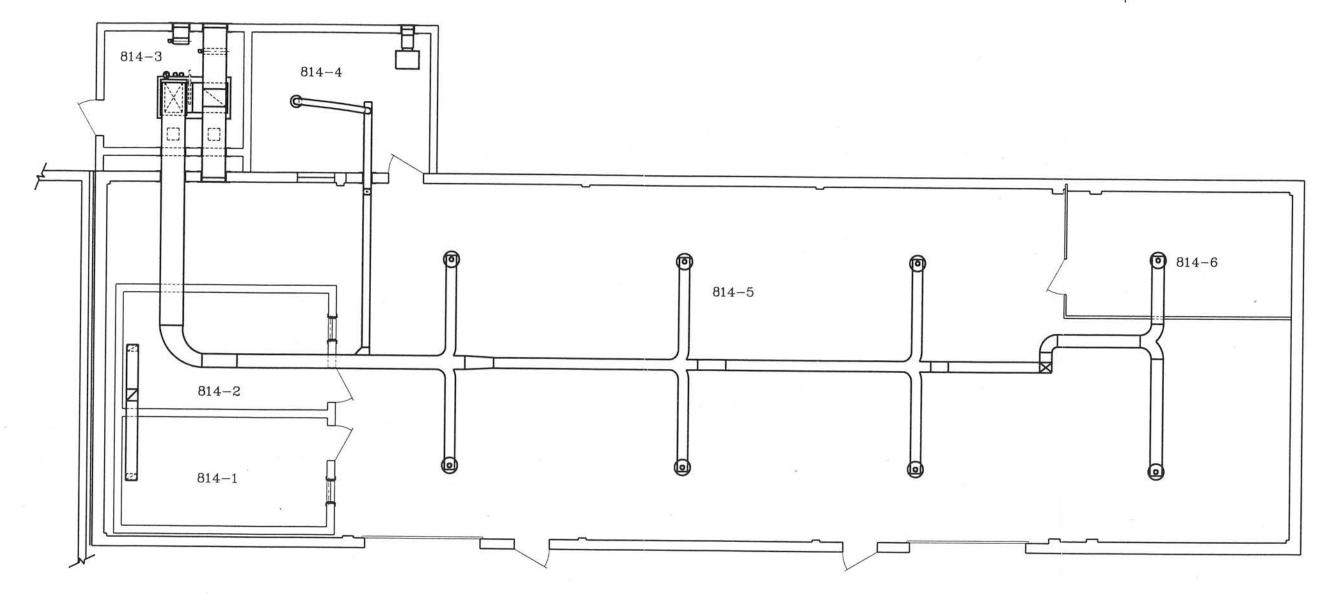
BUILDING INFORMATION REFERENCED FROM CAMBELL DESIGN GROUP ARCH,/ENG. PLANNERS DRAWING NO. 27-87, SHEET NO. M-1 (SHEET 6 OF 8) DATE MAY 1987. 0 6' 12' 18'
(APPROX. SCALE FT.)

PARSONS

CLIENT/PROJECT TITLE

SENECA ARMY DEPOT ACTIVITY

ENVIRONMENTAL ENGINEERING 780047-01001


FIGURE 1-13 FLOOR PLAN- BUILDING 813

EATE JULY 1999

TOTAL STATE OF THE STATE OF THE

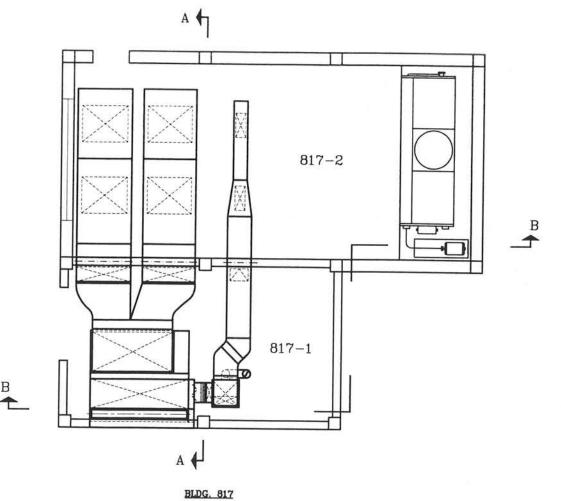
-

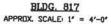
BLDG. 814 FIRST FLOOR PLAN APPROX. SCALE: 1' = 4'-0'

NOTE(S):

BUILDING INFORMATION REFERENCED FROM
CAMBELL DESIGN GROUP ARCH./ENG. PLANNERS
SHEET NO. M-1 (6 UF 8), DRAVING NO. 42-87,
DATE 1988.

(APPROX. SCALE FT.)


PARSONS


CLIENT/PROJECT TITLE SENECA ARMY DEPOT ACTIVITY

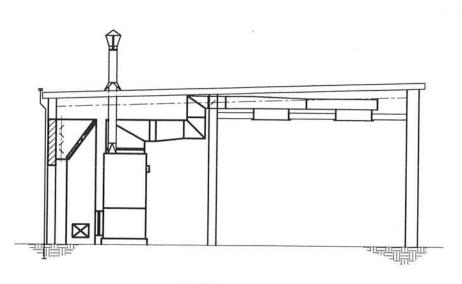
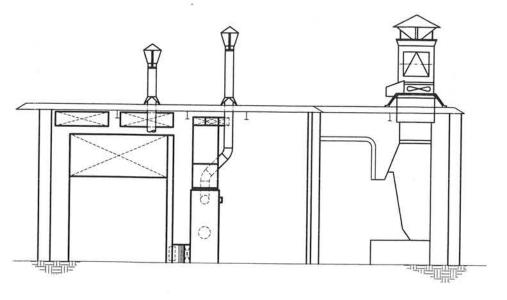

ENVIRONMENTAL ENGINEERING 780047-01001

FIGURE 1-14 FLOOR PLAN- BUILDING 814


SCALE AS NOTED TULY 1909

SECTION A-A APPROX. SCALE: 1' = 4'-0"

SECTION B-B APPROX. SCALE: 1' = 4'-0'

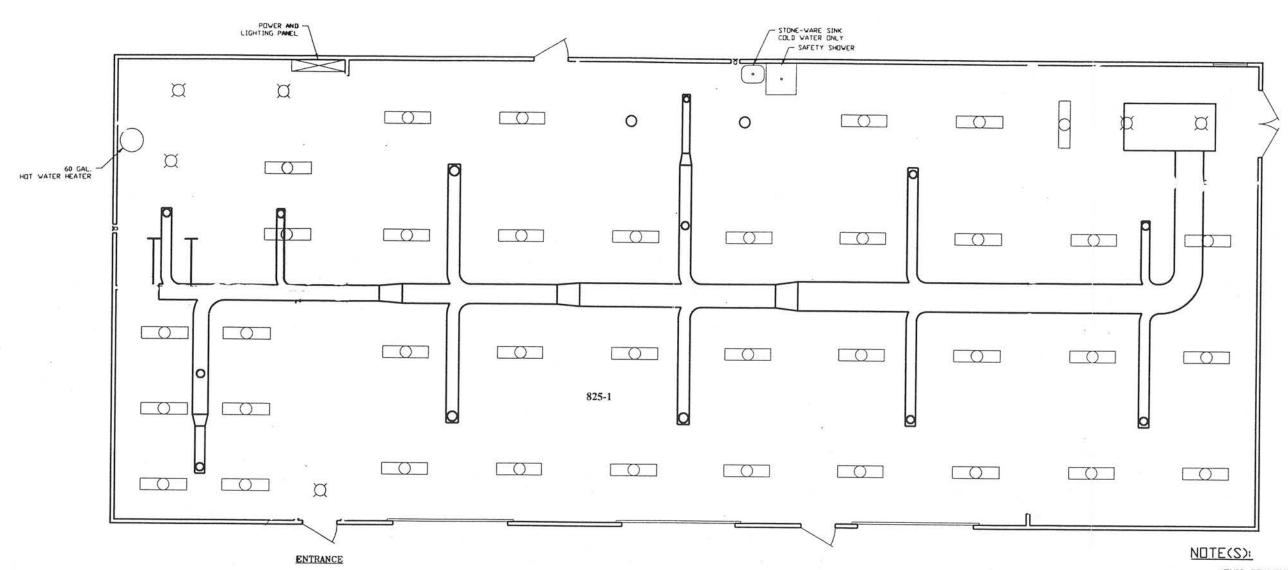
NOTE(S)

BUILDING INFORMATION REFERENCED FROM CARR, WILCOX & ERICKSON ARCHITECT ENGINEER FILE NO. 7527-908, SPEC. NO. ENG. 30-075-58-305, DATE MAY 19 1958. RECORD DRAWING OF AS-BUILT MAY 30, 1960.

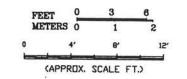
NOTE(S):

*THIS DRAWING IS PRESENTED IN 1/2 SIZE.
SD YOUR SCALE IS 1/2 DF WHAT IS MARKED.
I.e. IF THE SCALE IS MARKED
1' = 4'-0' THAN THE THRUE SCALE DF THE
DRAWING IS 1' = 2'-0'.

PARSONS


SENECA ARMY DEPOT ACTIVITY

ENVIRONMENTAL ENGINEERING Pag. No. 780047-01001


FIGURE 1-15 FLOOR PLAN- BUILDING 817

AUQUST 1999

BLDG. 825 APPROX SCALE: 1" = 4'-0" **THIS DRAWING IS PRESENTED IN 1/2 SCALE. SD YOUR SCALE IS 1/2 OF WHAT IS MARKED. I.e. IF THE SCALE IS MARKED 1' = 4'-0' THAN THE TRUE SCALE OF THE DRAWING IS 1' = 2'-0'.

PARSONS

LIENT/PROJECT TITLE

SENECA ARMY DEPOT ACTIVITY

ENVIRONMENTAL ENGINEERING TROOFT-01001 FIGURE 1-16 FLOOR PLAN-BUILDING 825 CETOR BA AUGUST 1999

FLOURESCENT FIXTURE (4FT. - 3TUBE)

D INCANDESCENT - CEILING TYPE

0 EXPLOSION PROOF FIXTURES (INCANDESCENT)

LEGEND:

NOTE(S):

BUILDING INFORMATION REFERENCED FROM MAJOR CORP. OF ENG. DRAWING MISC. 266. RECORD DRAWING AS-BUILT YEAR 1958. HEATING AND VENTILATION PLAN DRAWING NO. MISC. 267, RECORD DRAWING AS-BUILT YEAR 1958, REVISIONS: MARCH 17, 1959 FUEL TANK RELOCATED. RELOCATED.

2 BUILDING CLASSIFICATIONS

Buildings within SEAD-12 were classified as Class I, Class II, or Class III in the SEAD-12 RI/FS Project Scoping Plan based upon past operating history and threat of residual radioactive contamination. The Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) provides guidance on classification of buildings or grounds based upon past activities and is the basis for the classification system employed in this program. The percentage of building surfaces surveyed is dependent on the classification of the survey area to ensure that potential residual radiation is detected. The lower the classification number (Class I having greatest potential for residual radiation), the greater the survey coverage. As noted previously, the radiological survey portion of this report includes all of the buildings within SEAD-12 surveyed in both Phase I and Phase II radiological investigations.

2.1 MARSSIM AREA CLASSIFICATIONS

Impacted areas, as defined in the SEAD-12 RI/FS Project Scoping Plan, are areas that have some potential for containing radioactive material. In the SEAD-12 RI/FS Scoping Plan, impacted areas were subdivided into three classes in accordance with MARSSIM guidelines.

- Class I Areas: Areas that have, or had prior to remediation, a potential for radioactive contamination (based on site operating history) or known contamination (based on previous radiological surveys). Examples of Class I areas include: 1) site areas previously subjected to remedial actions, 2) locations where leaks or spills are known to have occurred, 3) former burial or disposal sites, 4) waste storage sites, and 5) areas with contaminants in discrete solid pieces of material with high specific activity. Note that areas containing radioactivity in excess of the Derived Concentration Guideline Levels (DCGLs), as defined in MARSSIM, prior to remediation were classified as Class I areas. DCGLs are defined in MARRSIM as residual levels of radioactive material that correspond to allowable radiation dose standards.
- Class II Areas: These areas have, or had prior to remediation, a potential for radioactive contamination or known contamination, but are not expected to exceed the DCGL, defined above. To justify changing an area's classification from Class I to Class II, the existing data (from the Historic Site Assessment (HSA) scoping surveys, or characterization surveys) should provide a high degree of confidence that no individual measurement would exceed the DCGL. Examples of areas that might be classified as Class I for the final status survey include: 1) locations where radioactive materials were present in an unsealed form (e.g., process facilities), 2) potentially contaminated transport routes, 3) areas downwind from stack release points, 4) upper walls and ceilings of some buildings or rooms subjected to airborne radioactive materials, 5) areas where low concentrations of radioactive materials were handled, and 6) areas on the perimeter of former contamination control areas.

• Class III and Limited Class III Areas: Any impacted areas that are not expected to contain any residual radioactivity, or are expected to contain levels of residual radioactivity at a small fraction of the DCGL, based on site operating history and previous radiological surveys. Examples of areas that might be classified as Class III include buffer zones around Class I or Class II areas, and areas with very low potential for residual contamination but insufficient information to justify a non-impacted classification.

2.2 CLASSIFICATION OF BUILDINGS AT SEAD-12

According to MARSSIM, a characterization survey is normally conducted prior to establishing a survey area and assignment of its classification used for the final survey. Limited information was available for much of the site and the Army did not feel it was cost effective to conduct both a characterization and final survey of each building. Therefore, this survey program was designed to serve as both a characterization survey and a final status survey to be conducted within the buildings in SEAD-12. Survey areas at SEAD-12 were established and assigned conservative classifications based on past operating history. In all cases a separate survey area was established in each room in each building of SEAD-12 as discussed in the meeting at Seneca Army Depot Activity on November 17th, 1999 with New York State Department of Health (NYSDOH) and New York State Department of Conservation (NYSDEC). Sampling and measurement frequency of the radiological surveys at SEAD-12 were then determined based on this classification. Although establishment of survey areas and final survey classifications without first conducting a characterization survey is a deviation from MARSSIM methodology, the conservative classification system employed and dense sampling coverage assigned provided a high degree of confidence for detection of radioactive contamination. The ultimate goal of collecting adequate survey data to assess each survey area for both characterization and final closure is achieved through the conservative assignment of classifications for each survey area.

The classifications of the survey areas, with rationale, are presented in **Table 2-1**. The room classifications for each of the buildings are presented in **Table 2-2**. It is identified in **Table 2-2** if a survey area (room) was included as part of the Phase I (in the interim report) or the Phase II investigation. As indicated previously, the survey areas included in Phase I of the project had the highest potential for being impacted by past practices.

Survey areas within Buildings 806, 810, 812, 815, 816, and 819 were comprised of multiple classifications within each building (refer to **Figures 1-4** to **1-9** respectively). Survey areas within these buildings having the greatest potential for impact were classified as Class I or II, and adjacent areas within these buildings were classified one level below these classifications (i.e. either Class II, III, or Limited Class III).

Survey Unit Classifications SEAD-12 Building Survey Report Seneca Army Depot Activity Table 2-1

Class I Survey Units	Rational For Classification	Dadiametra
		Radionucildes of Concern
Building 803	Used to store containerized radioactive waste and military	D. 220 11 230 11 230 11 200 2
	items containing radionuclides.	ru-239, U-238, U-235, Ra-226, Co-60, Co-57, H-3
Building 804	Used to perform maintenance on military items that	
	contained radionuclides.	Pu-239, U-238, U-235, Ra-226, H-3
Building 805	Used as a stores room for Building 804.	Pu-239 11-238 11-235 Ra-226 H-3
Building 815. Hot Room (Room 15) and areas of adjoining rooms to a	ry items that	C-11 (077 m) (077) (077)
distance of 2 meters from the access point to the Hot Room	re	Pu-239, U-238, U-235, Ra-226, Pm-147, Co-60, H-3
		6
Building 816 Hot Rooms (Rooms 8. 9. 10) and areas of adjoining	Used to perform maintainance on military items that	
moo	contained radionuclides. Uranium bearing alloys were	Pu-239, U-238, U-235, Ra-226, Pm-147, Co-60, H-3
20 1	exposed to ambient air.	
Building 819 And Surrounding Grounds and Asphalt, excluding the	Used to perform quality assurance testing on military items	
generator room as noted below	that contained radionuclides. Pu-239, U-238, U-235, Ra-226, Co-60, H-3	Pu-239, U-238, U-235, Ra-226, Co-60, H-3

Class II Survey Units	Rational For Classification	Dadiamalida
	101111111111111111111111111111111111111	Nautoliucitues of Concern
Building 815, except hot room and adjoining areas described above	Building 815 was used to perform maintainance on military Pu-239, U-238, U-235, Ra-226, Pm-147, Co-60, H-3 items that contained radiomiclides	Pu-239, U-238, U-235, Ra-226, Pm-147, Co-60, H-3
ounding aspnait, except hot room and adjoining	Building 816 was used to perform maintainance on military	
areas described above	items that contained radionuclides. Pu-239, U-238, U-235, Ka-226, Pm-147, Co-60, H-3	ru-239, U-238, U-235, Ra-226, Pm-147, Co-60, H-3
Building 806 Calibration Lab Only	Used to calibrate radiological survey meters and store	
Supplied the supplied to the s	sealed radioactive callibration sources.	Am-241, U-238, U-235, Th-230, Cs-137
Building 810. Receiving Room Only	Used as a loading and unloading area for containerized	
	military items that contained radionuclides.	U-238, Ka-226, Co-60, H-3
Building 812. Ammunition Storage Room	Used to store military items that contained radionuclides as	
	integral componetry.	Ka-226, Pm-147, H-3
	Electrical Power generation of parts of SEAD-12, Other	
Generator Room of Building 819	part of building used to perform quality assurance testing	Pu-239, U-238, U-235, Ra-226, Co-60, H-3
	on military items that contained radionuclides.	

Note:

1) All other survey units are Limited Class III with the the rational that there is a very low potential for residual contamination based on the historic usage of the room and/or the Class I or Class II room analysed in Phase I that is in the same building indicated no elevated radioactivity,

TABLE 2-2 **Room Classifications SEAD-12 Building Report** Seneca Army Depot Activity

Building	Survey Area (room)	Classification	Presentation Phase I				
722	All Rooms	Background					
800	All Rooms	Limited III	Phase II				
802	All Rooms	Limited III	Phase II				
	Room 1	I	Phase I				
[Room 2	1	Phase I				
	Room 3	1	Phase I				
803	Room 4		Phase I				
	Room 5	I	Phase I				
	Room 6	I	Phase I				
	Room 7	I	Phase I				
	Room 1	I	Phase I				
1	Room 2	1	Phase I				
804	Room 3	1	Phase I				
	Room 4	I	Phase I				
-	Room 5	I	Phase I				
	Room 6	I	Phase I				
805	Room 1	1	Phase I				
806	Room 1	II	Phase I				
	Remainder of Rooms	Limited III	Phase II				
807	All Rooms	Limited III	Phase II				
809	All Rooms	Limited III	Phase II				
810	Room 1	II	Phase I				
100.000	Remainder of Rooms	Limited III	Phase II				
812	Room 32	11	Phase I				
	Remainder of Rooms	Limited III	Phase II				
813	All Rooms	Limited III	Phase II				
814	All Rooms	Limited III	Phase II				
	Room 15	I	Phase I Phase II				
815	Rooms 1-14, 16	II					
	Rooms 18, 20	III	Phase II				
_	Room 8	1	Phase I				
	Room 9	1	Phase I				
816	Room 10	I	Phase I				
	Rooms 2-5, 7,11,12,13	II	Phase II				
017	Rooms 1, 16, 21	Limited III	Phase II				
817	All Rooms	Limited III	Phase II				
	Room 1	1	Phase I				
-	Room 2	I	Phase I				
-	Room 3	I	Phase I				
-	Room 4	1	Phase I				
-	Room 5	1	Phase I				
819	Room 6		Phase I				
-	Room 7 Room 8	1	Phase I				
-	Room 9	I	Phase I				
-	Room 10	1	Phase I Phase I				
-	Room 11	1	Phase I				
-	Room 12	ii +	Phase I				
823	All Rooms	Limited III	Phase II				
824	All Rooms	Limited III	Phase II				
825	All Rooms	The second of th					
827		Limited III	Phase II				
04/	All Rooms	Limited III	Phase II				

Notes:
1) Data for Phase I of the report was collected 10/1999 through 1/2000.

²⁾ Data for Phase II of the report was collected 6/2001 through 8/2001.

3 RADIONUCLIDES OF CONCERN AND FIELD METHODOLOGY

This section describes the radionuclides of concern, and the methodology and instrumentation used to conduct the Class I, Class II, Class III, and Limited Class III radiological surveys within the buildings at SEAD-12. Included in this report are the results from the following surveys:

- Phase I of building surveys conducted between October 18, 1999 and January 31, 2000;
- Phase II of building surveys conducted between June 4, 2001 and August 29, 2001; and
- The duct and drain surveys conducted in the Fall, 1998.

3.1 RADIONUCLIDES OF CONCERN

The identity of all radionuclides that were stored, as integral parts of military items within SEAD-12 and all radionuclides that were contained in sealed calibration check sources in SEAD-12 have been released by the Army. These radionuclides, and the buildings in which they were stored or maintained, are listed in Table 2-1. In addition, Table 3-1 presents a partial list of the military items that may have been stored in SEAD-12 along with the radionuclides that would have been contained as components of those items. All radionuclides of concern, their associated decay emissions, emission energies, and associated detection instruments are presented in Table 3-2.

3.2 FIELD METHODOLOGY

Field instrumentation, field personnel and field activities performed for Class I, Class II, Class III and Limited Class III Building Surveys, as well as the Duct and Drain Surveys, in situ gamma spectroscopy and material sampling are discussed in this section.

3.2.1 Instrumentation

This section describes the different survey instruments used to conduct alpha, beta, gamma, exposure rate and duct and drain surveys within the SEAD-12 buildings surveyed. The instruments used during the building surveys were selected in accordance with MARSSIM (NRC, 2000) and those described in the SEAD-12 RI/FS Project Scoping Plan (Parsons ES, June 1998).

3.2.1.1 Alpha and Beta Radiation Surveys

Alpha and beta radiation surveys were conducted concurrently with one instrument. The Ludlum model 43-37 large area gas proportional probe, also referred to as the floor monitor, was employed for all accessible floor grid locations and a few wall grids under 2 meters throughout the survey.

P: PIT Projects SENECA S12RI BLDGSURV data_report Draft(Phase I & II) text/sect_3.doc

Through the first half of the Phase I building survey program, the Ludlum model 43-68 hand-held gas proportional probe, (known as the hand-held) was used to survey all survey grids on upper walls, ceilings, horizontal surfaces, and all survey grids that were inaccessible with the floor monitor. Approximately halfway through the Phase I building survey program the hand-held began to have trouble maintaining instrument readings within the calibration range due to the effects of cold weather and fluctuating temperatures on the gas pressure within the instrument. Therefore, the hand-held was replaced with the Ludlum model 43-1-1 plastic scintillator probe, referred to as the phoswich. The phoswich is much less sensitive to temperature changes and is more efficient than the hand-held (Table 3-3). Both NYSDEC and USEPA were notified of this instrument change in a letter December 13, 1999 from Parsons on behalf of the Army. Building 805, Building 819, the Building 815 Class I room, and the Building 816 Class I rooms were surveyed for alpha and beta radiation with the hand-held. Building 803, the Building 806 calibration lab, the Building 810 receiving room, and the Building 812 ammunition storage room were surveyed for alpha and beta radiation with the phoswich. The phoswich was used for all buildings surveyed during Phase II. Detailed function check and scanning procedures are included in Appendix C.

3.2.1.2 Gamma Radiation Surveys

Gamma radiation surveys conducted during the building surveys were conducted using the Bicron G5 FIDLER (Field Instrument to Detect Low Energy Gamma Radiation) coupled with either the Bicron Analyst portable count rate meter or the Ludlum model 2350 data logger. FIDLER instrument efficiencies are provided in **Table 3-3**. Function check and scanning procedures are provided in **Appendix C**.

3.2.1.3 Exposure Rate Surveys

Exposure rate surveys performed during the building surveys were completed using the Bicron Micro-Rem meter. Exposure rate surveys were conducted as a diagnostic tool and for health and safety purposes only. Function check and scanning procedures are provided in **Appendix C**.

3.2.1.4 Duct and Drain Surveys

The duct and drain surveys, which were included as part of the "special sampling" in the SEAD-12 RI/FS Project Scoping Plan, were conducted employing a Ludlum model 44-62-2 sodium iodide (NaI) Tl scintillator, also referred to as a "peanut probe", coupled with a Ludlum Model 12 count rate meter. For the duct and drain surveys, the peanut probe-Model 12 combination was equipped with a 50-foot cable. The peanut probe and 50-foot cable were attached to a rigid steel fish tape to allow field personnel to scan up to 50 feet into a duct or drain from the access point. At the access point of each duct and drain location a direct measurement of low energy gamma radiation was collected with a Bicron FIDLER, and a direct measurement of alpha radiation was collected using a Ludlum model 43-5 zinc sulfide (ZnS) probe. In addition to the scanning data, debris samples were collected from

drains in the buildings where there was a sufficient volume of material for analysis. A total of 14 debris samples were collected from drains in Building 804 (six samples), Building 815 (two samples), and Building 816 (six samples). Debris sample locations from Buildings 804, 815, and 816 are shown on Figures 3-1 through 3-3.

3.2.1.5 Gamma Spectroscopy and Material Sampling

In situ gamma spectroscopy was completed using a Universal Radiation Spectrum Analyzer (URSA) manufactured by Radiation Safety Associates, Inc (RSA). The URSA is a combination of hardware and software that can be used with various detectors to acquire spectra that can be analyzed mathematically to identify and quantify radionuclides present in a source material. investigation a FIDLER was used in conjunction with the URSA to collect isotopic information at certain locations of interest within the buildings. A limited number of material samples were collected to verify results or obtain isotopic information where the use of gamma spectrometer was impractical. Function check and survey procedures are provided in Appendix L.

3.2.1.6 Instrument Function Check Procedures

To ensure that the highest quality data possible were collected during the radiation-scanning program, all radiation survey data were collected using laboratory calibrated survey instruments. All survey instruments were calibrated every twelve months, except for the FIDLER that was calibrated every three months. All health and safety instruments were calibrated every six months with the exception of the Micro-Rem that was calibrated every four months. The gamma spectroscopy system with the FIDLER was calibrated specifically to the SEAD-12 radionuclides of concern prior to collecting spectra. Detailed function check procedures are provided in Appendix C for the survey instruments and Appendix L for the gamma spectroscopy system.

In addition to the periodic laboratory calibrations, daily function checks were performed on survey and health and safety instruments. While in use, the floor monitors, phoswiches, FIDLERs, and Micro Rems were checked three times daily using National Institute of Standards (NIST) traceable radioactive sources to ensure that each instrument was operating properly and within specifications. The gamma spectroscopy system was checked several times a day using a NIST-traceable radioactive source to ensure that the calibration was still valid and the system was working properly.

Appendix D and Appendix E document the periodic calibrations and daily function checks from Periodic calibrations and daily function checks from Phase II are documented in Appendix M and Appendix N. All NIST traceable sources used for daily instrument function checks were calibrated every two years to ensure that each source's emission rate was accurately known.

3.2.2 Class I Building Surveys

The Class I Building surveys were conducted in accordance with the SEAD-12 RI/FS Project Scoping Plan. For the purpose of the radiation surveys, Class I Buildings were divided horizontally into two distinct subsets. These subsets were surveyed according to the following frequency:

- 1. 100% of the following surfaces conducted in 2 meter by 2-meter areas:
 - Lower walls (up to two meters above floor level),
 - Floor surfaces,
 - Horizontal surfaces above 2 meters,
 - Horizontal surfaces above floor level where dust or particulate material could deposit, and
 - Upper walls and ceilings of the Class I rooms in Buildings 815 and 816 (1 meter by 1 meter grids).

The Class I rooms in Buildings 815 and 816 received 100% coverage on the upper walls because of the higher potential for contamination on upper walls due to the use of hoods in those rooms.

- 2. 10% of the following surfaces conducted randomly in 1 meter by 1-meter areas:
 - Upper walls (above two meters above floor level),
 - Ceilings (suspended and non-suspended) 10% of surface conducted in randomly located 1 meter by 1-meter areas.
 - These areas will also serve as direct measurement and smear sample locations.

In accordance with the frequency described above, the following survey measurements were collected within the survey area:

- Alpha, beta, and gamma scanning measurements;
- Alpha, beta, and gamma direct measurements collected at the center of each 2m x 2m or 1m x 1m grid;
- Exposure rate measurements collected at the center of each 2m x 2m or 1m x 1m grid; and
- Gross alpha, beta, gamma and tritium smears collected at the center of each 2m x 2m or 1m x 1m grid.

Class I Buildings surveyed during Phase I of the investigation included Buildings 803, 804, 805, 815 (1 room), 816 (three rooms), and 819. All Class I surveys were completed during the Phase I of the investigation. Each survey grid square was assigned a unique grid square number. The grid number was combined with the building number and the room number to form a unique location identifier. Within each survey area the radiation dose in each survey grid to be scanned was first measured with an exposure rate meter, the Micro-Rem, to ensure that field personnel were working in a safe

radiological environment. Upon completion of the Micro-Rem measurements, each survey grid was scanned for low energy gamma radiation with the FIDLER and for alpha and beta radiation with the hand-held or phoswich. Scanning results for each grid square were recorded and all areas identified through the scanning surveys as elevated measurements (MARSSIM terminology defines elevated measurements as "hot spots") were marked and recorded for further investigation. Hot spots were defined in the field as areas where radiation of any type exceeded the field flag value, as defined in Appendix A, the DCGL Report. After the scanning surveys were completed, co-located direct measurements of low energy gamma radiation (measured using the FIDLER) and alpha and beta radiation measurements (using the hand-held or the phoswich) were collected at the center of each survey grid. All areas identified previously through the scanning surveys as "hot spots" were assigned a unique location identifier and additional direct measurements (discretionary measurements) were collected over the point in the "hot spot" having the highest measured radiation.

After all radiation surveys were complete, dry smears for gross alpha, beta, and gamma radiation and liquid scintillation smears for tritium were collected at the center of each grid and at each previously identified hot spot location. Detailed smear sampling procedures are provided in Appendix C. All smears collected as part of this program were sent under chains of custody to Ionizing Radiation Dosimetry Center (IRDC) Nuclear Counting Laboratory at the Red Stone Arsenal in Alabama for analysis.

3.2.3 Class II Building Surveys

For the purpose of the radiation surveys, Class II buildings were divided horizontally into two distinct subsets:

- 1. 50% of the following surfaces conducted in 2 meter by 2-meter areas:
 - Lower walls (up to two meters above floor level).
 - Floor surfaces,
 - Pavement,
 - Access points (such as doors or windows) to a distance of two meters beyond the Class II survey unit, and
 - Interior horizontal surfaces above 2 meters.
- 2. 10% of the following surfaces conducted in 1 meter by 1-meter areas:
 - Upper walls (above two meters above floor surface), and
 - Ceilings.

P. PIT Projects SENECA S12RI BLDGSURV data_report Draft(Phase I & II) text sect_3.doc

Class II survey areas were scanned in exactly the same way as Class I survey areas, but at the frequency described above (i.e. 50% rather than 100% of the lower walls, floors, etc.). The Class II survey areas surveyed during Phase I of the investigation consisted of the Building 806 calibration laboratory, the Building 810 receiving room, the Building 812 ammunition storage room, and the Building 819 Room 12 generator room. The Class II survey areas surveyed during Phase II of the investigation consisted of the remaining rooms in Building 815 and Building 816, including the hallway that connects the two buildings.

3.2.4 Limited Class III Building Surveys

Limited Class III buildings were completed by collecting direct alpha, beta, and gamma measurements, Micro Rem readings, and alpha, beta, gamma smears at a minimum of 15 locations per survey area, or 10% coverage. These locations were selected at places that would have been high traffic areas or areas where dust and debris would likely accumulate. Therefore the data was biased high. Additionally, all thresholds, (i.e. doorways and windows) were scanned and alpha, beta, gamma smears were collected. The same instrumentation used for Class I and II surveys was used for Limited Class III surveys.

If a direct measurement exceeded the instrument flag value, then the grid that the location was within was scanned with the alpha, beta and gamma instrumentation. The highest location in the grid was assigned a unique location identifier and additional direct measurements were collected over the point. The new location was recorded as a "hot spot" and marked for further investigation.

It should be noted that in the SEAD-12 RI/FS Project Scoping Plan (Parsons ES, June 1998) two different types of surveys were proposed for Class III buildings: Class III and Limited Class III. Those labeled "Class III" consisted of gridding each area and scanning and taking direct measurements at 10% of the grids. The majority of Buildings 806, 810, and 812 were designated "Class III". Buildings designated as "Limited Class III" would be scanned in areas where radioactivity may accumulate and a specific number of direct measurements would be collected, as described above. Buildings 800, 802, and 817 were designated "Limited Class III" buildings in the Scoping Plan (Parsons ES, June 1998). The level of effort accomplishes the same goals in demonstrating that no residual contamination exists within a survey unit.

All Limited Class III surveys were performed during Phase II of the investigation. The survey area classified as Limited Class III consisted of all of the following buildings: Building 800, Building 802, Building 806 (excluding the calibration room), Building 807, Building 809, Building 810 (except for the receiving room), Building 812 (except for the ammunition storage room), Building 813, Building 814, the open bay garages connected to Buildings 815 and 816, Building 817, Building 823, Building 824, Building 825, and Building 827, as noted in **Table 2-2**.

3.2.5 In Situ Gamma Spectroscopy and Material Sampling

In situ gamma spectroscopy, using the URSA, was used to further investigate a minimum of one location within each SEAD-12 building. Rationale for the locations where in situ gamma spectra were collected is as follows:

- The grid had the highest gamma measurement in a room that exceeded background using WRS statistics;
- b) The grid was potentially elevated; or
- c) The grid had the highest gamma in a building where spectra were being collected for general coverage of the building.

Approximately 100 locations, which are identified in **Table 3-4**, were analyzed using in situ gamma spectroscopy. The survey grids (either 1m x 1m or 2m x 2m) that were chosen for in situ gamma spectroscopy were first scanned using a FIDLER with an energy window set to preferentially detect the 59 keV photon of Am-241 at the location within the survey grid with the highest Am-241 scanning reading. The gamma spectroscopy system was then used to acquire a gamma spectrum at the same location.

The acquisition of the gamma spectrum at each location lasted between 30 to 120 minutes. The spectrum produced resulted in one of the four following outcomes:

- i. A radionuclide was identified and quantified below the DCGLw;
- ii. A radionuclide was identified and quantified above the DCGLw;
- A radionuclide was identified, but not quantified and therefore its activity in relationship to the DCGLw is unknown, or
- iv. A radionuclide present could not be identified due to interferences, surface anomalies, or other complicating factors.

Once the identification and quantification at a location were completed, a comparison with the DCGL_ws was made to determine if the radionuclides present were among the radionuclides of concern (ROC) or if the radionuclides present were naturally occurring and the reading was an anomalous elevated background location. If the quantity present exceeded the DCGL_ws, a material sample was taken for further analysis at the off-site lab and the location was marked for potential remediation. The lab analysis requested for these samples was based on the findings of the in situ spectroscopy.

To confirm the gamma spectroscopy results, material samples were collected at seven locations that were identified in the Class I and Class II survey units during Phase I of the investigation. After collection, the samples were weighed and analyzed with the gamma spectroscopy system in the temporary laboratory set up in the background Building 2104. The samples were then sent off-site to General Engineering Laboratories for further Pu-239 and Am-241 isotopic analysis.

All material samples were collected in accordance with established procedures to avoid cross contamination. Between 50 and 500 grams of material were collected at each location, based on analytical requirements.

It should be noted that use of in situ gamma spectroscopy eliminated much of the material sampling that was proposed in the SEAD-12 RI/FS Project Scoping Plan (Parsons, June 1998). In the Draft Radiological Survey Report (Parsons, July 2000), approximately 100 locations were identified for collection and analysis of material samples based on the findings of the Phase I building surveys and the anticipated findings of the Phase II surveys. However, an attachment that supplemented the report (see **Appendix O**) was issued to the USEPA and the NYSDEC proposing the use of in situ gamma spectroscopy to provide isotopic information at the proposed locations and limit the number of material samples collected.

3.2.6 Duct and Drain Surveys

Duct and drain surveys were conducted in the same manner in all Class I and Class II buildings during the Fall of 1998. All ducts and drains in each building were accessed to the greatest extent practical by opening all duct and drain maintenance points and cutting additional access points where no maintenance points were available. Each access point to be scanned was assigned a unique location identifier made up of the building number and a unique location number. Prior to any scanning and sampling activities, the radiation dose at each location was measured using a Bicron Micro-R meter to assure that all workers were in a safe environment. Direct measurements of the low energy gamma radiation present at the access points were measured with the FIDLER and direct measurements of the alpha radiation present at the access locations were measured with the ZnS probe.

At locations where a duct was being scanned, the pipe probe was inserted into the access point and advanced into the duct as far as possible. As the pipe probe was advanced, the field personnel ensured that the pipe probe was being inserted along a straight line into the duct. The depth of insertion was noted as well as the compass direction of the duct being scanned. After all collection details were noted in the field team logbook, the pipe probe was slowly withdrawn at a maximum rate of 0.1 feet per second. Scanning data was recorded in five-foot intervals from the deepest point into the duct to the access point. If at any point during scanning activities an area of elevated radiation was detected, scanning activities were halted and the area was re-scanned to confirm the elevated measurements. Dry smears were collected for gross alpha, beta, and gamma radiation analysis at all access locations surveyed.

At drain scanning locations, the drain was accessed by removing surface grates and catch basins when present. As with the duct locations, after the access location was opened, the pipe probe was inserted and advanced into the drain as far as possible. The depth of insertion was measured and noted. After all collection details were noted in the field team logbook, the pipe probe was slowly withdrawn at a maximum rate of 0.1 feet per second. Scanning data was recorded in five-foot intervals from the deepest point into the drain to the access point. If at any point during scanning activities an area of elevated radiation was detected, scanning activities were halted and the area was re-scanned to confirm the elevated measurements. Dry smears were collected for gross alpha, beta, and gamma radiation analysis at all access locations surveyed. In addition to the dry smears, material samples were collected from all drains that contained a sufficient volume of material. These material samples were analyzed for speciated radionuclides at Core Laboratories in Casper, Wyoming.

3.2.7 Health and Safety

All Parsons ES field personnel working on the SEAD-12 Building Program received a minimum of one hour of radiological safety and fundamentals training, as well as a minimum of 24 hours of onsite orientation and procedure training. Phase I surveys were overseen by either Rebecca Cropper (Health Physicist) or J. J. Davis (Certified Health Physicist). Phase II building surveys were overseen by either Ronald McConn (Health Physicist) or John Hackett (Health Physicist). The technical director for the SEAD-12 building surveys was overseen by Steve Woolfolk (Certified Health Physicist).

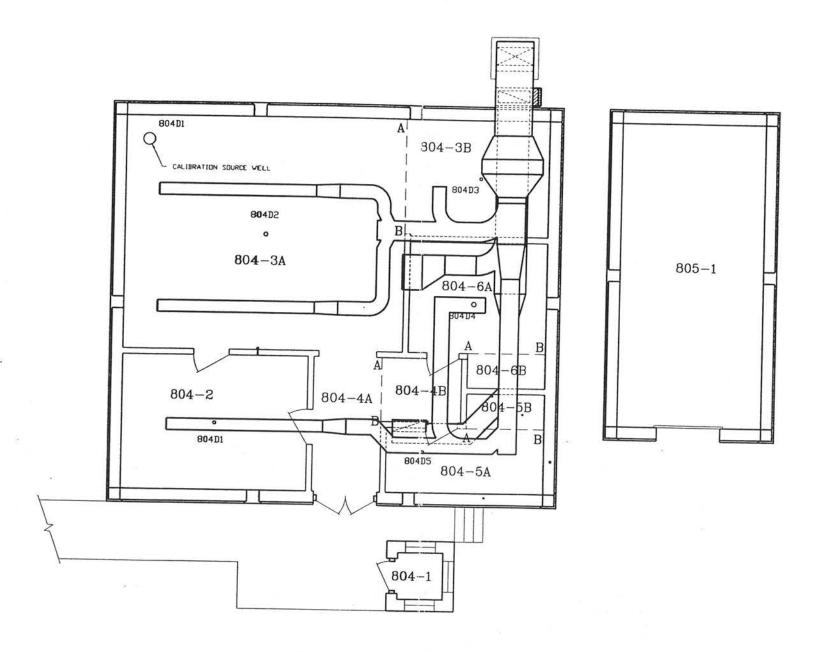
To ensure protection of all field personnel and to protect against cross-contamination between buildings, exclusion zones were made at the primary entrance to each surveyed building. A body scan was performed prior to exiting SEAD-12 buildings and when contact with potentially contaminated building surfaces could have occurred. Additionally, all instruments and supplies exiting the building were scanned before passing through the exclusion zone. The Health and Safety Plan for SEAD-12 provided further instruction on precautions that were taken throughout the building radiological survey at SEAD-12.

Table 3-1 Military Items That Contain Radionuclides As Integral Parts Of Their Components SEAD-12 Building Report Seneca Army Depot Activity

Taken from the Generic Radioactive Commodity Site Remediation Survey Protocol (November 1995)										
Military Item	Isotope									
Front Sight Post Assembly	H-3									
Radioluminous Fire Control Devices	H-3									
Compasses	H-3									
Infinity Collimator	H-3									
M1A1 Collimator	H-3									
M1A1 Quadrant Fire Control Device	H-3									
M58 and M59 Aiming Light Post	H-3									
Wrist Watches	H-3									
M72 Light Antitank Weapon (LAW)	Pm-147									
Front Sight Post Assembly	Pm-147									
Radium Dial/Compass/Check Source	Ra-226									
MC-1 Moisture Density Tester	Am-241									
M8A1 Chemical Agent Alarm	Am-241									
MA1 Tank Armor	U-238									
M1 Tank Armor	DU (Depleted Uranium)									
MC-1 Moisture Density Gauge	Cs-137 Am-241									

TABLE 3-2 Radionulides of Concern SEAD-12 Building Report Seneca Army Depot Activity

Radionuclide of Concern	Half Life (years)	Major Radiaton	Detection Instrument				
		Alpha	Beta	Gamma			
Pu-239	$2.4x10^4$	5.10 (11.5%)	.007 (19%)	0.14 (4.4%)			
		5.14 (15.1%)			Gas Proportional/Phoswich		
		5.15 (73.3%)					
U-238	$4.51x10^9$	4.15 (25%)	0.029 (16.8%)	0.13 (8.8%)	Gas Proportional/Phoswich		
		4.2 (75%)	0.044 (6.1%)				
U-235	7.1×10^{8}	4.36 (11%)	0.009 (28.5%)	0.013 (30.9%)	Gas Proportional/Phoswick		
		4.40 (55%)	0.011 (17.6%)	0.144 (10.5%)	Fidler		
			0.014 (68%)	0.184 (54%)			
			0.021 (19.6%)				
Ra-226	1.6×10^{3}	4.60 (5.5%)			Gas Proportional/Phoswick		
		4.78 (94.5%)			+1.0 x (0.17.17)		
Co-60	5.2		0.096 (100%)	1.173 (100%)	Gas Proportional/Phoswick		
				1.334 (100%)			
Co-57	0.8		0.007 (69.5%)	0.006 (49.3%)	Gas Proportional/Phoswich		
			0.014 (7.8%)	0.014 (9.5%)	Fidler		
				0.122 (85.5%)			
				0.136 (10.6%)			
H-3	12.3						
Pm-147	2.6		0.062 (100%)		Gas Proportional/Phoswich		
Am-241	432	5.44 (12.8%)	0.004 (16.1%)	0.014 (42.7%)	Gas Proportional/Phoswich		
		5.49 (85.2%)	0.010 (30.9%)	0.060 (35.9%)	Fidler		
			0.011 (14.8%)				
			0.037 (30.9%)				
Th-230	$77x10^{3}$	4.62 (23.4%)	0.009 (8.4%)	0.012 (8.4%)	Gas Proportional/Phoswich		
		4.69 (76.3%)	0.048 (16.9%)		Fidler		
Cs-137	30.1	0.157 (94.6%)	0.157 (94.6%)		Gas Proportional/Phoswich		
		0.415 (5.4%)	0.415 (5.4%)		25.5		


Table 3-3
Radiation Survey Instrument Efficiencies
SEAD-12 Building Report
Seneca Army Depot Activity

4-pie Efficiency	1.83%	1.93%	3.97%	12.09%	22.12%	12.35%	16.59%	26.80%	7.27%	8.78%	20.41%	11.95%	14.32%	25.58%	6.73%	18.21%	20.54%	17.26%	21.23%	3.01%					2.57%	10.04%	2.46%	1.06%	1.87%	27.83%	25.47%	28.91%	20.25%
Average Source Check	8324	8594	10921.67	1076	3253	1099	2471	79590.4	22220.8	781	2705	1063	2006	75972.6	20003.2	1618	2353	1534	2438	49252	227	187	790	803	41800	1147	3400	26000	3000	2473	3045	2569	2466
Average Background	6327	6487	9659	2	262	2	630	4	624	1	440	2	416	4	4	1	73	1	81	216	8	8	7	7	33	33	200	200	200	2	218	2	218
4-pie Emission rate	109090.8	8.060601	8.060601	0888	11100	8880	11100	296969.4	296969.4	8880	11100	8880	11100	296969.4	296969.4	8880	11100	8880	11100	1628000	1628000	1628000	1628000	1628000	1628000	11100	129870	2429691	149835	8880	11100	8880	11100
Source	Am-241	Am-241	Am-241	Th-230	Tc-99	Th-230	Tc-99	Am-241	Am-241	Th-230	Tc-99	Th-230	Tc-99	Am-241	Am-241	Th-230	Tc-99	Th-230	Tc-99	Cs-137	Cs-137	Cs-137	Cs-137	Cs-137	Cs-137	Tc-99	1-125	Cs-137 (wide)	Cs-137 (point)	Th-230	Tc-99	Th-230	Tc-99
Serial number	A981P/A397Q	A959P/A386Q	142486/A391Q	138256/136498	138256/136498	138256/136498	138256/136498	138256/136498	138256/136498	138262/136499	138262/136499	138262/136499	138262/136499	138262/136499	138262/136499	138238/138734	138238/138734	138254/140515	138254/140515	142486/150783	086601	826601	C250A	C251A	61403/51751	61403/51751	102850/144955	102850/144955	102850/144955	133669/166008	133669/166008	138254/155183	138254/155183
Radiation type	Low E Gamma	Low E Gamma	Low E Gamma	Alpha	Beta	High E Gamma	Gross Gamma	Gross Gamma	Gross Gamma	Gross Gamma	Gross Gamma	Beta	Gamma	Gamma	Gamma	Alpha	Beta	Alpha	Beta														
Instrument	Fidler	Fidler	Fidler	Floor monitor	Hand Held	Hand Held	Hand Held	Hand Held	High E Gamma	Micro-R	Micro-R	Micro-Rem	Micro-Rem	Pancake G-M	Pancake G-M	Peanut Probe	Peanut Probe	Peanut Probe	Phoswitch	Phoswich	Phoswich	Phoswich											
Date	6661/81/01	6661/81/01	10/18/1999	6661/81/01	6661/81/01	11/4/1999	11/4/1999	11/5/1999	6661/2/11	6661/81/01	6661/81/01	11/4/1999	11/4/1999	11/5/1999	6661/5/11	6661/81/01	6661/81/01	10/18/1999	10/18/1999	11/5/1999	10/18/1999	10/18/1999	6661/81/01	6661/81/01	10/18/1999	10/18/1999	10/29/1998	10/29/1998	10/29/1998	12/15/1999	12/15/1999	12/16/1999	12/16/1999

Table 3-4
Location of In-Situ Gamma Spectroscopy Measurements
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Grid
800	2	26
802	20	3
803	2	7
803	2	81
803	3	3
803	3	12
803	4	87
803	4	89
803	5	86
803	5	102
803	6	85
803	6	95
803	6	157
804	1	5
804	1	10
804	1	13
804	2	6
804	4	5
804	3A	0
804	3A	2
804	3A	14
804	5A	7
804	6A	6
805	1	3
805	1	6
805	1	13
805	1	14
805	1	17
805	1	20
806	1	3
806	5	14
806	5	29
807	2	3
809	1	9
810	1	10
810	1	31
810	3	18
810	10	8
812	20	20
812	32	0
812	9	2
813	3	5
814	4	14
815	6	15
815	9	5
815	11	26
815	14	9
815	15	15
815	15	17
815	15	27
815	15	29
815	15	38
815	16	21

Building	Room	Grid
816	2	22
816	3	61
816	4	45
816	5	5
816	7	3
816	8	5
816	8	14
816	9	1
816	10	9
816	10	9
817	2	15
819	1	5 (Hot spot 86)
819	1	91 (Hot spot 96)
819	2	11
819	3	78
819	3	152
819	3	0D
010	2	130 (Hot spot
819	3	148)
819	4	5
819	4	7
819	. 4	8
819	5	7
819	5	11
819	5	12
819	5	15
819	7	5
819	7	8
819	7	10
819	8	2
819	8	3
819	8	9
819	9	10
819	10	10
819	11	19
819	12	5
819	12	23
819	12d	2
819	12d	4
819	6b	3
823	1	5
824	1	11
825	1	21
827	1	10

BLDG, 804 AND 805

NOTE(S):

BUILDING INFORMATION REFERENCED FROM BUILDING INFURMATION REFERENCED FROM BLACK & VEATCH CONSULTING ENGINEERS. DRAWING NO. Y2-855, MAY 2, 1955. REVISED RECORD WORK AS-BUILT 6/2/58. CAMPBELL DESIGN ARCH./ENG. PLANNERS FLODR PLANS, DETAIL & SCHEDULES DRAWING NO. 10-87, SHEET M-1, PR. NO. 52-85, DATE: FEB. 18, 87.

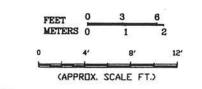
NOTE:

Entire Building is a Class One Area: 2m x 2m GRIDS, 100% COVERAGE

• FLOOR

. VALL SURFACES BELOV 2 METERS

· UNEARTHEN ROOFS WITH DUCTS


EXTERIOR BUILDING SURFACES 2M FROM ACCESS
 HORIZONTAL SURFACES ABOVE 2M ABOVE FLOOR
 WHERE DUST OR PARTICLES VOULD DEPOSIT.

1m x 1m GRIDS, 10% COVERAGE

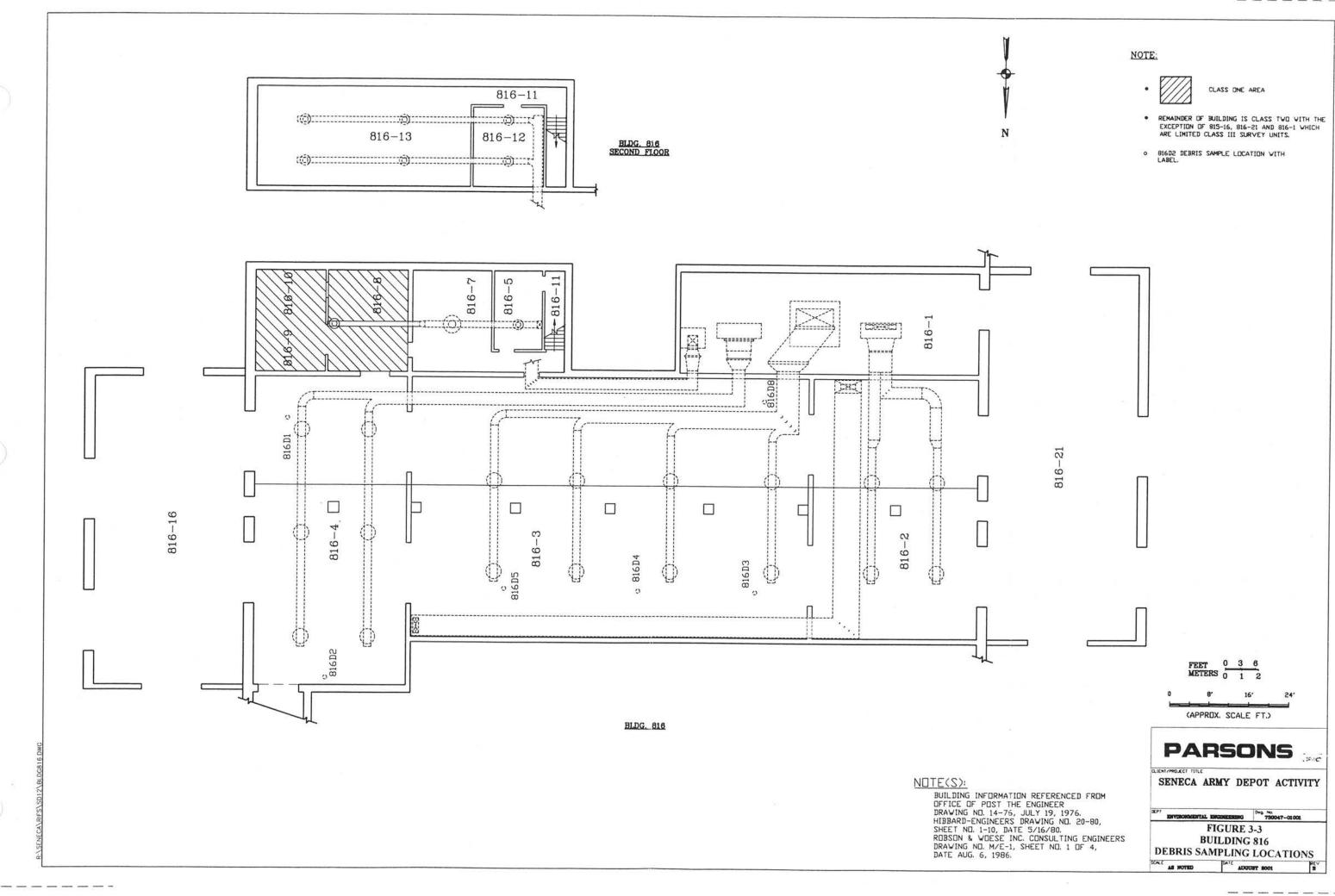
· CEILING (SUSPENDED AND NONSUSTENDED)

* UPPER WALLS (ABOVE 2m)

O 816D2 DEBRIS SAMPLE LOCATION WITH

PARSONS

CLIENT/PROJECT TITLE


SENECA ARMY DEPOT ACTIVITY

ENVIRONMENTAL ENGINEERING DNG 780047-01001 FIGURE 3-1 BUILDING 804 AND 805

DEBRIS SAMPLING LOCATIONS

NOTE: $N \longrightarrow \phi \longrightarrow$ CLASS ONE AREA 815-18 REMAINDER OF BUILDING IS CLASS TVO.
 VITH THE EXCEPTION OF 815-18, 815-19
 AND 815-20 WHICH ARE LIMITED CLASS
 SURVEY UNIT. • ROOM 815-14 IS A HALLWAY THAT CONNECTS BUILDINGS 815 AND 816. O 816D2 DEBRIS SAMPLE LOCATION WITH LABEL. 815-16 815-14 815-19 815-13 815-12 815-11 815 - 9() 815D2 FEET 0 3 6 METERS 0 1 2 815 - 6(APPROX. SCALE FT.) 815-2 815-20 **PARSONS** 815 - 5815-NOTE(S):

BUILDING INFORMATION REFERENCED FROM OFFICE OF POST THE ENGINEER DRAWING NO. 14-76, JULY 19, 1976. HIBBARD-ENGINEERS DRAWING NO. 20-80, SHEET NO. 1-10, DATE 5/16/80. ROBSON & WOESE INC. CONSULTING ENGINEERS DRAWING NO. M/E-1, SHEET NO. 1 OF 4, DATE AUG. 6, 1986. SENECA ARMY DEPOT ACTIVITY 815 - 3ENVEROIGNMENTAL ENGINEERING 730047-01001 FIGURE 3-2 BLDG. 815 **BUILDING 815** DEBRIS SAMPLING LOCATIONS

4 BUILDING SURVEY RESULTS

This section describes 1) the guideline values used to evaluate the buildings; 2) the data collected during the building surveys at SEAD-12 and how they are used to evaluate the buildings; and 3) the statistical analysis used to evaluate the survey data in accordance with MARSSIM.

4.1 **BUILDING GUIDELINE VALUES**

The process described in MARSSIM was used to develop the derived concentration guideline levels (DCGL) used to evaluate the building survey direct and scanning measurements. Using the RESRAD-BUILD computer code, the DCGL report, (Parsons ES, January 2000), Appendix A, describes the development of the two DCGLs based on the area of contamination, the DCGL_{EMC} and the DCGLw values. In Section 2.2 of MARSSIM, the DCGLEMC is defined as the guideline level for elevated measurement comparisons. It is used for evaluation "if the residual radioactivity appears as small areas of elevated activity within a larger area, typically smaller than the area between two measurement locations." Alternatively, the DCGLw is derived based on an average concentration over a broad area and the average activity over the entire area is evaluated. The DCGLw values are lower (more conservative) then the DCGL_{EMC} values.

The DCGL report data evaluation confirmed that the sampling grids were of appropriate size and that the number of measurements collected in each survey area was sufficient for statistically valid data analysis. DCGLw and DCGLEMC values, originally derived in the DCGL report, were revised based on communications of April 18, 2000 between the Army, Parsons, NYSDOH, USEPA, and NYSDEC. The revised DCGLws and DCGL_{EMC}s are presented in Table 4-1 and Table 4-2, respectively. The evaluation of the SEAD-12 building survey data using DCGLw values is described below.

4.2 USE OF SURVEY DATA TO EVALUATE BUILDING STATUS

Section 3.2 describes the various survey measurements collected during the Phase I and Phase II building surveys at SEAD-12. These include:

- Alpha, beta, and gamma direct measurements,
- Alpha, beta and gamma scanning measurements,
- Exposure rate measurements,
- Removable radiation surveys (consisting of gross alpha, beta, gamma, and tritium smears),
- Duct and drain scanning data,
- Radon measurements,
- In-situ gamma spectroscopy, and
- Materials sampling.

August 2002 P: PIT Projects SENECA S12RI BLDGSURV data_report Draft(Phase I & II) text sect 4 6-02 doc The survey measurements listed above were used to evaluate the status of the building survey areas as follows:

- Direct measurements were grouped as a data set per room and statistically compared to direct measurements collected from the background reference area (Building 722) using the Wilcoxon Rank Sum (WRS) test. The DCGLw value was added to each data point in the background data set to comprise the DCGLw -adjusted background data set. This data set was used to determine if direct measurements from a particular room exceeded the allowable exposure over background. Section 8.4 of MARSSIM describes the comparison of survey data to DCGLw values. In addition, direct measurement flag values were established to identify potentially elevated areas of activity in Limited Class III areas.
- Scanning measurements were used to determine if small areas of elevated levels of radioactivity were present in the buildings. Scanning results were compared to flag values based on the DCGLs and background data to determine if such areas exist. It should be noted that Section 2.5.1.1 of MARSSIM recommends the use of DCGL_{EMC}s to define elevated measurements. However, more conservative flag values were used to compare to site scanning data sets to determine the presence or absence of elevated activity.
- Exposure rate measurements were collected and used primarily to monitor the health and safety of the survey crew. Exposure rate measurements also served as a diagnostic tool in finding areas of elevated activity, but were not used to statistically support the facility closure.
- Smear data were used to determine if elevated levels of removable activity were present. In addition, smears were collected to test for the presence of tritium. Smear results were compared to American National Standard Institute (ANSI) criteria.
- Duct and drain scanning and removable radiation data were collected to determine if elevated levels of activity were present in the ventilation ducts and floor drains of the buildings.
- In-situ gamma spectroscopy was performed to identify and to quantify, where relevant, the radionuclides associated with elevated-activity materials.
- Material samples were collected and analyzed by an independent off-site laboratory to verify that fixed contamination was not present. In addition, materials sampling data were used to independently confirm the gamma spectroscopy results.

MARSSIM only utilizes the scanning and direct measurement data in evaluating the status of the survey areas.

MARSSIM EVALUATION OF DIRECT AND SCANNING MEASUREMENTS 4.3

All the statistical tests used to investigate whether a survey area contained residual radiological contamination were based on MARSSIM guidance. The process followed to perform compliance statistics is presented in Figure 4-1. Two types of data analysis were performed:

- 1) Direct measurements for the investigation of uniform contamination above allowable activity; and
- 2) Scanning measurements for the investigation of localized elevated radioactivity above allowable limits.

4.3.1 Wilcoxon Rank Sum Test

MARSSIM recommends the use of the WRS test, at specified probabilities of making Type I (alevel) and Type II (β-level) errors, to compare radioactivity data from survey areas to data collected from background, or reference, areas. The advantage of the WRS test is that no assumption is made about the underlying distributions of the data sets (i.e., it is a non-parametric test). The WRS test compares the relative ranks of the two data sets in order to determine if they are drawn from the same distribution. The test is insensitive to higher values or outliers. If a data set passes the WRS test, it can be concluded that the radionuclide concentrations in the survey area are not statistically different from the background buildings.

If a survey area data set failed the WRS test per MARSSIM, the background measurements were adjusted by adding the DCGLw to each background measurement. The WRS test was then re-run, comparing the survey area data set to the DCGLw-adjusted background data set.

The WRS test was run using the commercial software STATISTICA™ (Statsoft, 2001). The software generates a WRS test "p-value" that ranges between zero and one. A p-value of 0.05 or greater was used as the "pass" condition (i.e., the distributions of the two data sets are similar), which corresponds to a Type I error probability of 0.05. In other words, there is only a one-in-twenty chance of a false positive (i.e., incorrectly identifying the distributions as similar when they in fact are not). A p-value of less than 0.05 resulted in a "fail" (i.e., the distributions of the two data sets are different), and box-and-whisker plots were generated to determine which data set was elevated above the other.

4.3.2 The Confidence and Power of the WRS Test

Before conducting the WRS test, MARSSIM requires that the probabilities of making Type I (α) and Type II (β) errors be described. The confidence of a test is given by 1- α and the power of a test is given by 1-β. The level of these errors is estimated based on what MARSSIM defines as the relative shift in background data. The relative shift was estimated using the example outlined in Appendix A of MARSSIM. The gray region for each measurement was estimated as half the maximum detected

P: PIT Projects SENECA S12RI BLDGSURV data_report Draft(Phase I & II) text sect_4 6-02.doc

concentration in the background building. Based on this assumption, the relative shifts for alpha, beta, gamma and FIDLER measurements are presented in **Table 4-4**. The maximum Type I and Type II error probabilities supported for each measurement type are determined from Table 5.3 of MARSSIM which shows total the number of samples required at various error levels and relative shifts. The error probabilities are listed in the last two columns of **Table 4-4**.

4.3.3 Box-and-Whisker Plots

EPA (1992) recommends the use of box-and-whisker plots as a way to visualize and compare the variances and spreads between data sets. Therefore, box-and-whisker plots were used for cases that failed the WRS test to determine if the survey data are statistically less than or greater than background buildings. Box-and-whisker plots provide a summary view of the entire data set, including the overall location, degree of symmetry, and positions of outliers. The box encloses the central 50-percent of the data, with the top of the box representing the 75th-percentile and the bottom of the box representing the 25th-percentile. The small square in the middle of box represents the median of the data set. The upper and lower whiskers extend to the maximum and minimum measurement, respectively. Plots of survey area data were placed side by side to plots of background data and the data sets were compared visually to determine if the survey data were less or greater than the background data. Appendix H presents the box-and-whisker plots for each instrument and radiation type in each Phase I survey area. Appendix K presents the box-and-whisker plots for the Phase II survey data analysis.

4.3.4 Direct Measurements

For direct measurements collected in the grid-based surveys, the WRS test was performed for each instrument for alpha, beta, and gamma radiation measurements for each survey area. The WRS test compared the survey area data set with the background data set on a radiation-type and instrument-type basis. The WRS test was performed to establish whether the survey area data set was statistically similar to or different from the background data set. If the WRS test demonstrated that the two data sets were statistically different, box-and-whisker plots of the data were drawn and compared to determine which data set had the more elevated central tendency.

In the event that the survey area data set was elevated compared to the background data set, the WRS test was re-run using DCGL_W-adjusted background data in place of the original background data set. This process is described in Section 2.5.1.2 of MARSSIM. This analysis allows for the comparison of the survey data against the most conservative radioactivity concentrations, aside from background, to evaluate compliance with release criterion. The DCGL_W-adjusted background data set for a given radiation and instrument type was created by using the DCGL_W for the radionuclide that generates the lowest DCGL. This value was added to each background data point.

August 2002
P::PIT Projects SENECA:S12RI:BLDGSURV:data_report:Draft(Phase 1 & II):text:sect_4 6-02.doc

If a survey area data set was equivalent to or less than either the background or the DCGL_w-adjusted background data sets, it was concluded that the survey area met the release criterion and no further investigation was required to demonstrate compliance. If a data set was above the DCGL_w-adjusted background data set, additional investigation of the survey area was conducted.

Decisions were made in the field to collect discretionary measurements (from elevated measurement locations) in areas of potential contamination from survey units that were outside of the grid-based sampling data sets. Additional comparisons to background and DCGL_W-adjusted background using the WRS test were performed for survey areas where discretionary measurements were taken.

4.3.5 Scanning Measurements

Scanning measurements were compared to flag values, listed in **Table 4-3**, to determine the presence or absence of localized areas of elevated radioactivity within a survey area. Within a survey area, the maximum alpha/beta scanning measurement from each grid was compared to the DCGL_{EMC/5} (the DCGL_{EMC} divided by 5) plus the background mean value to establish the presence or absence of areas of elevated radiation. The DCGL_{EMC/5} value for a middle-sized room (5x12x4 meters, scanned on a 2x2-meter grid) was selected as an average room size across the site. The DCGL_{EMC} value was divided by 5 to provide a more conservative flag value, making an allowance for up to five elevated measurements per room. Gamma scanning measurements were compared to the 95% upper threshold limit (UTL) of the background FIDLER scanning results. The results of the scanning surveys are presented in **Sections 4.4.3** and **4.5.3**.

4.4 PHASE I BUILDING SURVEY RESULTS

Seven types of field measurements were collected during the SEAD-12 Phase I building surveys in order to support the closure. These measurement data were collected in units of counts per minute (cpm). These measurement types are:

- gross alpha from floor monitors,
- gross beta from floor monitors,
- gross alpha (gas proportional) from hand-held,
- gross beta (gas proportional) from hand-held,
- gross alpha (scintillation) from phoswich,
- gross beta (scintillation) from phoswich, and
- gross gamma from the FIDLER (field instrument for the detection of low energy radiation).

Any given survey area contains only five data types because the phoswich scintillation detector replaced the gas proportional detector for gross alpha and beta measurements during the Phase I investigation, as described in **Section 3.2.1.1**. However, all seven data types were collected from the background buildings to ensure comparability.

4.4.1 **Background Data**

As noted in Section 1, data were collected from Building 722 to be used as background measurements for all SEAD-12 buildings constructed of cement blocks (i.e. similar construction materials) except Building 803. Data from igloo CO912 were used as background data for Building 803 because both have similar woven-reinforcing bar and poured concrete construction.

At Building 722, data were collected for a number of surfaces in order to capture the variability in ambient radioactivity. Refer to Appendix F for the complete background data set. The data sets for all indoor surface matrices were combined to create a single background building data set. The purpose of collecting a background data set is to establish the radiation levels at which or below are considered to be attributable to natural sources, and above which are considered to be attributable to a synthetic or man-made source. The survey area data sets were then compared to background to determine if radioactivity in the survey areas was attributable to background or caused by a synthetic component. Capturing the full range of variability in background and making it available for comparison to all survey units at SEAD-12 obviates the need to classify and match survey and background building data sets by surface matrix criteria, removing an important source of subjectivity, error and uncertainty from the remedial investigations. Furthermore, this approach treats every survey unit as a single entity for the purpose of making closure and remedial decisions, and avoids remediation of different surface areas at different cleanup levels within the same survey unit.

The limitation of combining data for all surfaces is that certain elevated measurement locations may be smoothed over during this process. To insure that elevated measurements in a survey area were not being overlooked, site data were compared to DCGLws and DCGLEMCs based on Section 8.2 of MARSSIM. This process was conducted after survey area data were compared to background building data.

4.4.2 Analysis of Direct Measurements

The results of the WRS test on direct measurement data types for all of the Phase I survey areas are presented in this section. Refer to Appendix F for the complete Phase I direct measurement data sets on a room-by-room basis.

4.4.2.1 Survey Area Measurements Versus Background

The results of the direct measurement data (not including discretionary measurements) compared to background data are presented in Table 4-5. As noted above, WRS tests were performed for each of the five data types collected at each survey area.

August 2002 P. PIT Projects SENECA S12RI BLDGSURV data_report Draft(Phase 1 & II) text sect_4 6-02.doc The WRS test results are shown on **Table 4-5** and indicate that the majority of the survey areas have similar data distributions to the background data set (p-values greater than 0.05). Survey areas that exceeded background are listed in bold type. Alpha measurements, while similar to background in most cases, exceeded background primarily in Buildings 803, 804, and 819. Beta measurements exceed background in several buildings; however, these exceedences occur predominantly in the rooms of Building 819. Gamma measurements exceeded background in only a few cases.

4.4.2.2 Discretionary Measurements Versus Background

If a potentially elevated grid was located, additional direct measurements were collected at the location of the highest scanning measurement in that grid. These measurements, identified as discretionary measurements, were collected following procedures outlined in Section 3.2.2. Discretionary measurements were collected in Building 803 (Room 6), Building 819 (Rooms 1, 3, 4, and 5), and Building 804 (Room 3), because elevated locations were found during the scanning of these survey areas. WRS tests were re-run for these survey areas by including these elevated measurements in the data sets for the rooms (Table 4-6). As shown, for the six rooms and 30 data sets, 15 (i.e., half) of the readings exceed background. The majority of exceedences are beta measurements, with only two gamma exceedences (Rooms 4 and 5 of Building 819).

4.4.2.3 Survey Area Measurements Versus DCGLw-Adjusted Background

Background data was adjusted by adding the $DCGL_W$ to each measurement, as recommended in MARSSIM, and the WRS tests were re-run. The results for survey area data without discretionary measurements are presented in **Table 4-7**. Results for survey area data sets including discretionary measurements compared to the $DCGL_W$ -adjusted background data set are presented in **Table 4-8**. In all cases the $DCGL_W$ -adjusted background is higher than the survey areas. This is illustrated by the box and whisker plots presented in **Appendix I**.

4.4.3 Analysis of Scanning Measurements

The purpose of scanning measurements is to find localized areas of elevated radioactivity. For scanning measurement data, only summary statistics were compiled. Refer to **Appendix F** for the complete scanning data sets tabulated by building and by room. Scanning grids are shown for each of the buildings, by room, on figures presented in **Appendix H**. The comparisons of Phase I scanning measurements to the flag values are presented in **Table 4-9**. Scanning data from the survey areas (63 data sets) were generally below the flag value. The survey areas where the maximum scanning value exceeded the flag values were:

- Building 803, Room 3 (with the alpha/beta phoswich detector);
- Building 803, Room 6 (with the alpha/beta phoswich detector);
- Building 804, Room 3 (with the alpha/beta gas proportional hand-held detector);
- Building 804, Room 3B (with the alpha/beta gas proportional floor monitor and hand-held detector, and the gamma FIDLER detector);
- Building 805, Room 1 (with the gamma FIDLER detector);
- Building 816, Room 9 (with the alpha/beta gas proportional hand-held detector); and
- Building 819, Room 3 (with the alpha/beta gas proportional hand-held detector).

For these seven survey areas, the maximum gross alpha-beta scanning or gamma scanning result exceeded the scanning flag value.

4.4.4 Exposure Rate Measurements

Exposure rate measurements were collected concurrently with scanning and direct measurements to ensure a safe working environment for data collection crews and as a diagnostic tool to qualitatively locate areas of elevated radiation. **Table 4-10** presents the minimum, mean, and maximum exposure rate values for background building 722 and all Phase I survey areas. **Table 4-10** shows the survey area exposure rates to be at or below 10 μ rem/ hr and below the dose limit for one hour (0.002 Rem or 2000 μ rem [10 CFR 20]). A constant dose of 10 μ rem/ hr is equivalent to 0.088 Rem/yr, which is less than both the dose limit to an individual member of the general public (0.1 Rem/yr) and the dose limit to occupationally exposed workers (5 Rem/yr [10 CFR 20]). These levels are also well below the established worker safety level of 500 μ rem/hr (Radiation Protection Manual ER385-1-80, U.S. Army Corps of Engineers, based on an annual exposure of 1,000 mrem and an exposure time of 2,000 hours per year).

4.4.5 Smear Results

Smear samples were collected at all grid locations in each survey area, as well as at locations where discretionary measurements were collected. The gross alpha, beta, and gamma results from the dry smears, as well as the beta results from the tritium smears, are summarized in **Table 4-11**. Smear samples were used as a diagnostic tool to investigate the presence of removable contamination. Gross alpha, beta, and gamma radiation data from smear samples collected from each site survey area were compared to gross alpha, beta, and gamma smear sample data collected from the background building (Building 722) and with criteria published in the ANSI N13.12-1999 publication *Surface and Volume Radioactivity Standards for Clearance* (a standard for clearance and to derive screening levels based on the dose standard, **Table 4-12**). Refer to **Section 5.1** for further discussion of smear sampling results. The complete results are included in **Appendix F**.

4.4.6 Duct and Drain Data

The ducts and floor drains in the buildings in SEAD-12 were investigated to ascertain the presence or absence of radioactive contamination above permissible levels in the ventilation and floor drain systems. The duct and drain investigation methodology, as presented in Section 3.2.1.4, consisted of collecting gross gamma radiation scanning data inside the ducts and drains using a "peanut" probe at points of access. Low-energy gamma radiation and alpha radiation data were collected in the ducts and drains where accessible (Appendix G). Smear samples were collected from all openings in the ducts and floor drains and analyzed at the Army's Red Stone Arsenal counting lab for gross alpha, beta, and gamma radiation (Appendix G). The duct and drain smear sampling results are presented in Table 4-11. Gross alpha, beta, and gamma radiation data from smear samples collected from the ducts and drains were compared to gross alpha, beta, and gamma smear sample data collected from the background building (Building 722) and with criteria published in ANSI N13.12-1999 (Table 4-12). Refer to Appendix G for complete smear sampling results.

A total of 14 debris samples were collected from the drains in the Class I and II buildings. These samples were collected in all locations where there was sufficient material for speciated radionuclide analysis. The results for the speciated radionuclide analyses for the debris samples collected from the Class I and II buildings are presented in **Appendix G**. The results for the speciated radionuclide analyses for the debris samples collected from the Class I and II buildings were compared to criteria published in ANSI N13.12-1999. A summary of the comparison between the debris sample analyses and the ANSI standard is presented in **Table 4-13**. Refer to **Appendix G** for the full debris sample data set.

As shown in **Table 4-13**, radionuclides from the debris samples exceeding the screening levels (95th percentile of soil background data set, plus the ANSI screening criteria) were limited to a single exceedence apiece for bismuth-214, lead-210, lead-211, and radium-226. The maximum radium-226 and bismuth-214 concentrations were equal to the screening levels while lead-210 and lead-211 exceed the screening level by less than 5 pCi/g.

4.4.7 Radon

Radon data was collected using track-etch radon detection equipment. Thirty-three detectors were analyzed for radon from sixteen SEAD-12 buildings, as reported in **Table 4-14**. These data are from a SEDA survey conducted between July 1994 and July 1995. These data represent a long sampling interval, with data collection occurring while the buildings were operational. Both factors contribute to the data being highly representative of true radiological conditions in the buildings.

As shown on **Table 4-14**, the average radon concentrations ranged from 0.2 pCi/L to 12.1 pCi/L. The maximum average concentration of 12.1 pCi/L came from the west wall of Building 803 (room 1). Out of the 33 samples collected, there were only three samples contained greater than 1.0 pCi/L.

August 2002

Only the one sample from Building 803 exceeds the EPA guidance (EPA402-R-93-003) of 4 pCi/L for air.

4.5 PHASE II BUILDING SURVEY RESULTS

4.5.1 Background Data

Building 722 data were used as background data for the Phase II building surveys. Refer to **Appendix F** for the complete Building 722 background data set. Comparisons of Phase II survey data to background data were conducted in a similar manner as the Phase I data analysis.

Background material samples of cinder block wall and of concrete floor were obtained from Building 2104. These samples were sent to the laboratory for isotopic analysis. The data obtained was used for comparison against the building material samples and collected from SEAD-12 during Phase II of the investigation.

Background in situ gamma spectroscopy spectra were also collected from Building 2104. Additionally, background spectra were collected from Igloo C0912 and Building 118. The background spectra were collected to have material-specific background spectra to compare with spectra collected from survey areas. Moreover, the background spectra were used to attempt to establish a correlation between the laboratory results and the gamma spectroscopy results. In situ gamma spectroscopy was performed on the background material samples that were sent to the laboratory.

Background gamma spectra were collected using the same procedures established for the collection of site survey gamma spectra (refer to Section 3.2.5 and Appendix L).

4.5.2 Analysis of Direct Measurements

The results of the WRS test on direct measurement data types for all of the Phase II survey areas are presented in this section. Refer to **Appendix J** for the complete Phase II direct measurement data sets on a room by room basis. Additional discussion of the results is presented in **Section 5**.

4.5.2.1 Survey Area Measurements Versus Background

Summaries of the WRS results of the site survey data compared to background data are presented in **Table 4-15**. As noted above, WRS tests were performed for each of the five data types collected at each survey area.

Summary statistics and the WRS test results for each survey area are shown on **Table 4-15** and indicate that the majority of the survey areas have similar data distributions to the background data set (p-levels greater than 0.05). Alpha floor monitor survey data sets, while similar to background in

P: PIT Projects SENECA S12RI BLDGSURV data_report Draft(Phase I & II) text sect_4 6-02.doc

most cases, exceeded background in six survey areas located within Buildings 807, 810, and 815. There were no above-background beta floor monitor survey data sets. One alpha phoswich data set, from Building 810, was elevated above background. Likewise, there was one beta phoswich data set, from Building 812, that exceeded background. Gamma FIDLER data sets exceeded background for six survey areas, located in Buildings 810 and 812.

4.5.2.2 Survey Plus Discretionary Measurements Versus Background

Survey areas of where direct or scanning measurements detected a potentially elevated surface activity location are listed in Table 4-16. Per the procedures outlined in Section 3.2.2, additional direct measurements were taken in the potentially elevated grids at the highest scanning location. However, for several of the Phase II grids with potentially-elevated locations, the highest scanning location could not be determined because the reading was a function of the building material (i.e., readings were consistent throughout the grid). As a result, a discretionary measurement was not taken within that survey grid, and the potentially-elevated results were kept in the survey data set (listed in regular type in Table 4-16). For survey grids with a discernible maximum reading, a discretionary measurement was taken as before (locations listed in bold type in Table 4-16). WRS tests were re-run for these survey areas by including these elevated measurements in the data sets for the survey areas (Table 4-17). Of the five survey areas where discretionary measurements were taken, three survey areas (four data sets total) exceeded background. The data set for Building 812 (Room 20), was elevated for the gamma and beta phoswich data; the data sets for Building 810 (Rooms 10 and 12) were elevated for gamma data.

4.5.2.3 Survey Area Measurements Versus DCGLw-Adjusted Background

As with the Phase I data analysis, the background data set was adjusted by adding the DCGLw to each measurement, as recommended in MARSSIM, and the WRS tests were re-run for survey areas (without discretionary measurements) that exceeded background. The DCGLw was converted from the RESRAD-BUILD output units of dpm/100cm2 to cpm using the daily instrument efficiency and the active surface area of the detector, which are presented in Table 4-18 along with the survey areas that exceeded background. Where more than one instrument was used to survey a survey area, DCGLws were calculated and the WRS test performed on an instrument-by-instrument basis. The results for the WRS test between survey area and the DCGLw-adjusted background data set are presented in Table 4-19. For all alpha and beta measurements analyzed (for both floor monitor and phoswich), the survey area data are less than the DCGLw-adjusted background. For the gamma data sets analyzed, six of the seven data sets exceed the DCGLw-adjusted background. These data sets were from Building 810 (Rooms 9, 10, and 11) and Building 812 (Rooms 9, and 20). Box-andwhisker plots for these comparisons are presented in Appendix K.

August 2002 P: PIT Projects SENECA S12RI BLDGSURV data_report Draft(Phase I & II) text sect_4 6-02.doc

4.5.2.4 Survey Plus Discretionary Measurements Versus DCGLw-Adjusted Background

The four survey area data sets including discretionary measurements that exceeded background were compared to the DCGL_w-adjusted background. As with the survey area data without discretionary measurements, DCGL_ws were calculated on an instrument-by-instrument basis, using the average daily instrument efficiency and the active detector surface area. Results for the WRS tests for survey area data including discretionary measurements and the DCGL_w-adjusted background data are presented in **Table 4-20**. All four of the gamma data sets including discretionary measurements exceeded the DCGL_w-adjusted background.

4.5.3 Analysis of Scanning Measurements

The purpose of scanning measurements is to find localized areas of elevated radioactivity. For scanning measurement data, only summary statistics were compiled. Refer to **Appendix J** for the complete Phase II scanning data sets tabulated by building and by room. Scanning grids are shown for each of the buildings, by room, on figures presented in **Appendix P**. The comparisons of Phase II scanning measurements to the scanning flag values are presented in **Table 4-21**. All alpha-beta scanning data (both floor monitor and phoswich) from the Phase II survey areas are below the DCGL_{EMC 5} plus background flag value. The seven survey areas that had gamma scanning measurements that exceeded the scanning flag value are discussed in **Section 5.2.2**.

4.5.4 Exposure Rate Measurements

Exposure rate measurements were collected concurrently with scanning and direct measurements to ensure a safe working environment for data collection crews and as a diagnostic tool to qualitatively locate areas of elevated radiation. **Table 4-22** presents the minimum, mean, and maximum exposure rate values for all Phase II survey areas. **Table 4-22** shows the survey area exposure rates to be, at a maximum, slightly above or at 10 μrem/ hr and below the dose limit for one hour (0.002 Rem or 2000 μrem [10 CFR 20]). A constant dose of 10 μrem/ hr is equivalent to 0.088 Rem/yr, which is less than both the dose limit to an individual member of the general public (0.1 Rem/yr) and the dose limit to occupationally exposed workers (5 Rem/yr [10 CFR 20]). These levels are also well below the established worker safety level of 500 μrem/hr (Radiation Protection Manual ER385-1-80, U.S. Army Corps of Engineers, based on an annual exposure of 1,000 mrem and an exposure time of 2,000 hours per year).

4.5.5 Smear Results

Smear samples were collected at all surveyed grid locations in each Phase II survey area, as well as at locations where discretionary measurements were collected. Smear samples were used as a diagnostic tool to investigate the presence of removable contamination. Gross alpha, beta, and gamma radiation data from smear samples collected from each site survey area were compared to

gross alpha, beta, and gamma smear sample data collected from the background building (Building 722) and with criteria published in ANSI-HPS N13.12-1999 (refer to **Table 4-12**). The gross alpha, beta, and gamma smear sampling results are summarized in **Table 4-23**. During the Phase II work, tritium smears were collected only in the Class II survey areas of Buildings 815 and 816. The results from the tritium smear sampling are summarized in **Table 4-24**. Refer to **Section 5.2** for further discussion of Phase II smear sampling results. The complete results from Phase II are included in **Appendix J**.

4.5.6 Gamma Spectroscopy Results

Gamma spectroscopy measurements were collected from 103 locations, including background locations. The field gamma spectroscopy measurement locations (not including background and material sample spectroscopy measurements) are summarized in **Table 4-25**. Twenty-eight measurements demonstrated a potential difference from the spectra collected from background locations. These 28 spectra (listed in bold type in **Table 4-25**) required additional scrutiny to make identifications of the radionuclides present. The identification process is described in detail in **Appendix O.** The gamma spectroscopy results of the 28 locations are summarized in **Table 4-26**. Also presented in **Table 4-26** are results from additional potentially elevated (as indicated by WRS test results or scanning measurements) survey areas from the Phase I and Phase II surveys and one elevated material sample. The results of the gamma spectroscopy measurements demonstrate that the materials present at SEAD-12 are within background levels.

4.5.7 Material Sampling Results

A total of seven material samples, including two background samples, were collected during the Phase II field effort. Two of these samples were background samples. The remaining sample locations were selected because the gamma FIDLER measurements were either the highest gamma measurement in a room that exceed background based on WRS statistics, or the room location had one of the highest elevated gamma readings. The purpose of these samples was to verify both the identification and quantification results of the gamma spectroscopy measurements. The analytical results of the material samples, along with the gamma spectroscopy results for the same samples, are listed in **Table 4-27**.

TABLE 4-1

DERIVED CONCENTRATION GUIDELINE LIMITS (DCGLw)^a FOR BUILDING SURVEY AREAS **SEAD-12 BUILDING REPORT** SENECA ARMY DEPOT ACTIVITY

Room Size (m)	2x2x4	6x5x2.5	5x12x4	12x12x5	10x20x5
43					
Scenario		W	orker (dpm/100	0 cm ²)	
AM-241	1.83E+02	1.15E+02	1.83E+02	2.29E+02	2.29E+02
CO-57	1.00E+06	3.63E+05	2.91E+05	2.28E+05	2.10E+05
CO-60	3.96E+04	1.45E+04	1.20E+04	9.57E+03	8.84E+03
CS-137	1.39E+05	5.46E+04	4.77E+04	3.89E+04	3.60E+04
H-3	3.24E+08	2.08E+08	3.24E+08	4.03E+08	4.03E+08
PM-147	3.44E+06	2.35E+06	3.44E+06	4.15E+06	4.15E+06
PU-239	1.90E+02	1.18E+02	1.90E+02	2.37E+02	2.37E+02
RA-226	5.98E+03	3.50E+03	4.79E+03	5.14E+03	4.98E+03
SR-90	4.88E+04	3.06E+04	4.78E+04	5.88E+04	5.88E+04
TC-99	6.79E+06	4.25E+06	6.79E+06	8.49E+06	8.49E+06
TH-230	2.54E+02	1.58E+02	2.54E+02	3.17E+02	3.17E+02
U-235	6.71E+02	4.19E+02	6.69E+02	8.33E+02	8.33E+02
U-238	6.98E+02	4.37E+02	6.98E+02	8.73E+02	8.73E+02
C				2.	
Scenario	(2(F: 01		lential (dpm/10		
AM-241	6.36E+01	3.97E+01	6.36E+01	7.94E+01	7.94E+01
CO-57	3.46E+05	1.26E+05	1.01E+05	7.89E+04	7.26E+04
CO-60	1.38E+04	5.02E+03	4.15E+03	3.31E+03	3.06E+03
CS-137	4.84E+04	1.90E+04	1.65E+04	1.35E+04	1.25E+04
H-3	1.12E+08	7.19E+07	1.12E+08	1.39E+08	1.39E+08
PM-147	1.20E+06	8.15E+05	1.19E+06	1.44E+06	9.32E+04
PU-239	6.57E+01	4.10E+01	6.57E+01	8.21E+01	8.21E+01
RA-226	2.08E+03	1.21E+03	1.67E+03	1.77E+03	1.73E+03
SR-90	1.69E+04	1.06E+04	1.65E+04	2.04E+04	2.04E+04
ГС-99	2.36E+06	1.48E+06	2.36E+06	2.95E+06	2.95E+06
ГН-230	8.80E+01	5.50E+01	8.80E+01	1.10E+02	1.10E+02
U -235	2.33E+02	1.45E+02	2.32E+02	2.89E+02	2.89E+02
J-238	2.43E+02	1.52E+02	2.42E+02	3.03E+02	3.03E+02

- Notes: a DCCL $_W$ -Derived concentration guideline level used for Wilcoxon Rank Sum statistical tests, derived
- -All values are provided as dpm per 100 cm².
- -Bold values are the most conservative.
- -All DCGLs correspond to 10 mrem/yr at 0 years except for Th-230 where thie maximum dose occurred at 100 years.
- -DCGL values derived using RESRAD-Build.

TABLE 4-2 DERIVED CONCENTRATION GUIDELINE LIMITS (DCGL_{EMC})^a FOR BUILDING SURVEY AREAS SEAD-12 BUILDING REPORT SENECA ARMY DEPOT ACTIVITY

Room Size (m)	2x2x4	2x2x4	5x12x4	5x12x4	12x12x5	12x12x5
Grid Size (m)	1x1	2x2	1x1	2x2	1x1	2x2
Scenario			Worker (d	pm/100 cm ²)	•	•
AM-241	7.33E+02	1.83E+02	1.10E+04	2.75E+03	3.28E+04	8.21E+03
CO-57	3.05E+06	1.00E+06	3.29E+06	1.11E+06	3.31E+06	1.11E+06
CO-60	1.23E+05	3.96E+04	1.38E+05	4.61E+04	1.38E+05	4.66E+04
CS-137	4.49E+05	1.39E+05	5.76E+05	1.91E+05	5.85E+05	1.96E+05
H-3	1.30E+09	3.24E+08	1.95E+10	4.87E+09	5.80E+10	1.45E+10
PM-147	1.38E+07	3.44E+06	2.04E+08	5.10E+07	5.70E+08	1.45E+08
PU-239	7.59E+02	1.90E+02	1.13E+04	2.84E+03	3.41E+04	8.53E+03
RA-226	2.32E+04	5.98E+03	1.31E+05	3.94E+04	1.68E+05	5.39E+04
SR-90	1.95E+05	4.88E+04	2.49E+06	6.49E+05	5.66E+06	1.57E+06
TC-99	2.72E+07	6.79E+06	4.07E+08	1.02E+08	1.22E+09	3.06E+08
TH-230	1.01E+03	2.54E+02	1.52E+04	3.81E+03	4.56E+04	1.14E+04
U-235	2.68E+03	6.71E+02	3.95E+04	9.91E+03	1.14E+05	2.90E+04
U-238	2.80E+03	6.98E+02	4.18E+04	1.05E+04	1.24E+05	3.12E+04
Scenario			Residential (dpm/100 cm ²)		
AM-241	2.54E+02	6.36E+01	3.81E+03	9.52E+02	1.14E+04	2.85E+03
CO-57	1.06E+06	3.46E+05	1.14E+06	3.83E+05	1.15E+06	3.86E+05
CO-60	4.26E+04	1.38E+04	4.76E+04	1.59E+04	4.80E+04	1.62E+04
CS-137	1.56E+05	4.84E+04	2.00E+05	6.67E+04	2.04E+05	6.81E+04
H-3	4.50E+08	1.12E+08	6.75E+09	1.69E+09	2.02E+10	5.02E+09
PM-147	4.77E+06	1.20E+06	7.03E+07	1.77E+07	1.98E+08	5.00E+07
PU-239	2.63E+02	6.57E+01	3.94E+03	9.87E+02	1.18E+04	2.95E+03
RA-226	8.03E+03	2.08E+03	4.54E+04	1.37E+04	5.84E+04	1.86E+04
SR-90	6.73E+04	1.69E+04	8.63E+05	2.25E+05	1.96E+06	5.45E+05
TC-99	9.40E+06	2.36E+06	1.41E+08	3.53E+07	4.24E+08	1.06E+08
TH-230	3.51E+02	8.80E+01	5.28E+03	1.32E+03	1.58E+04	3.96E+03
U-235	9.28E+02	2.33E+02	1.37E+04	3.44E+03	3.96E+04	1.00E+04
U-238	9.69E+02	2.43E+02	1.45E+04	3.63E+03	4.31E+04	1.08E+04

Notes:

 $^{^{}a}$ - DCGL_{EMC} =Derived concentration guideline level using an elevated measurement comparison. A concervative approach applied to investigate applied to smaller areas by modifying the DCGL_W.

⁻All values are provided as dpm per 100 cm².

⁻Bold values are the most conservative.

⁻All DCGLs correspond to 10 mrem/yr at 0 years except for Th-230 where thie maximum dose occurred at 100 years.

⁻DCGL values derived using RESRAD-Build.

Table 4-3 Instrument Flag Values for Direct and Scanning Measurements SEAD-12 Building Report Seneca Army Depot Activity

Instrument	Limiting Radionuclides	DCGL (dpm/100cm²) *	Area (cm²)	Efficiency ^ы	Above Background Instrument Flag Value (cpm)	Background Average (cpm) ^d	Field Instrument Flag Value (cpm)
Direct Measurements							
Alpha Floor Monitor	Pu-239	41	425	0.24	42	4	46
Beta Floor Monitor	Co-60	3060	425	0.17	2158	775	2933
Alpha Hand-Held	Pu-239	41	100	0.17	7	3	10
Beta Hand-Held	Co-60	3060	100	0.10	306	175	481
Alpha Phoswich	Pu-239	41	75	0.27	8	4	12
Beta Phoswich	Co-60	3060	75	0.20	459	365	824
FIDLER	Am-241	d/			722	11265	17000 °
canning Measurements							
Alpha-Beta Floor Monitor	Pu-239, Co-60	13/2760	425	0.24/0.17 (/	2007	800 g/	2807
Alpha-Beta Hand-Held	Pu-239, Co-60	13/2760	100	0.17/0.10	278	256 g/	534
Alpha-Beta Phoswich	Pu-239, Co-60	13/2760	75	0.27/0.20	417	437 ^{g/}	854
FIDLER	Am-241	d/		7.00		15541	19000 e/

a' dpm/100cm² = distintegrations per minute per 100 square centimeters. The DCGLs for the direct measurements (DCGL_ws) are listed in Table 4-1. The DCGLs for the scanning measurements (DCGL_{EMC/5}s, or DCGL_{EMC} divided by 5) are listed in Table 4-2. The DCGLs listed here are the most conservative for the measurement type.

b) The values in this column are based on the initial efficiencies for each instrument, as presented in Table 3-3. For the alpha-beta scanning measurements, the efficiency is a combination of the individual alpha and beta efficiencies.

c' The background average is the mean of the direct or scanning background measurements from Building 722 for each instrument, except where noted.

^{d'} For the FIDLER, the low efficiency along with the low DCGLs for Am-241 resulted in a low instrument flag value. As a result the instrument flag value was based only on background data.

^{e/} The FIDLER direct and scanning measurement flag values are equal to the 95% UTL (upper tolerance limit) of the Building 722 background direct and scanning data, respectively.

^f The efficiencies for the scanning measurements were a combination of the individual radiation type efficiencies from the direct measurements (i.e., alpha FM efficiency was 0.24/ beta FM efficiency was 0.17).

get The background average is the mean of the scanning measurements from the background igloo CO912.

Table 4-4
Summary Statistics to Support Statistical Decision Levels
SEAD 12 Building Report
Seneca Army Depot Activity

Radiation Type/ Detector Number of Samples Detected Concentration Minimum Maximum Maximum Mean opm Standard Alpha Floor 15 498 1435 775.0 284.05 Alpha Hand Held 105 8 2.7 1.91 Beta Hand Held 105 86 436 175.7 55.30 FIDLER 120 5267 19762 11265.3 3307.20			Range of Va	alues (cpm)				Minimum Number	Test Sunno	Test Supports At Most
Samples Minimum Maximum cpm Devi 15 0 8 3.8 15 498 1435 775.0 2 d 105 0 8 2.7 105 86 436 175.7 120 5267 19762 11265.3 33	5310	Number of	Detected Cor	ncentration	Mean	Standard	Shift	of Background &	Tyne I	Tyne II
15 0 8 3.8 15 498 1435 775.0 2 d 105 0 8 2.7 105 86 436 175.7 120 5267 19762 11265.3 33	Detector		Minimum	Maximum	cbm	Deviation		Site Samples	Error Probablity	Fror Probablity
d 105 08 1435 775.0 2 d 105 0 8 2.7 105 86 436 175.7 120 5267 19762 11265.3 33	a Floor	15	0	8	3.8	2.40	1.6692	25	500	0.1
d 105 0 8 2.7 2.7 175.0 2 105 0 8 2.7 175.0 2 126 175.7 120 5267 19762 11265.3 33	Floor	15	400	1000	0 1 1 1		1	C1	0.00	0.1
d 105 0 8 2.7 105 86 436 175.7 120 5267 19762 11265.3 33	1.1001	13	498	1435	775.0	284.05	2.5259	25	50.0	10
105 8 2.7 105 86 436 175.7 120 5267 19762 11265.3 33	o Uond Uold	105	C		1		1	01	0.00	0.1
105 86 436 175.7 120 5267 19762 11265.3 33	a Hallu Helu	COL	>	×	7.7	1.91	2.0899	115	0.05	10
120 5267 19762 112653 33	Hand Held	105	70	100	1111	000		2::-	0.00	0.1
120 5267 19762 11265 3 33	Halla Hela	COL	90	430	1/2./	55.30	3.9420	115	0.05	0.1
120 120/61 19/07	FR	120	7767	10763	110/67	000000			0.00	0.1
2001	N. C.	150	1070	12/07	11203.3	3307.79	2.9876	130	0.05	0.1

Phase I Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Seneca Army Depot Activity Summary of WRS Test Table 4-5

ALPHA PHOSWICH APH803R1 4.9 APH803R2 5.0 APH803R3 8.8 APH803R4 5.4 APH803R6 6.3 APH803R7 7.9 APH806R1 1.1 APH806R1 2.4 APH812R3 1.8 BETA PHOSWICH	(cbm)		fat inc	Dackground	Z	p-level	Survey	Background	Pass/Fail Background?	Higher if Fail
1 1 2 8 4 3 5 1 H		(cbm)	Rank Sum	Rank Sum			Valid N	Valid N	Alpha = 0.05 c/	•
2 2 4 3 5 1 1 2										
3 2 6 31 4 31 5	0	17	740	437	4.23	2.3E-05	22	26	Fail	APHS03D1
8 7 8 9 L L L 8	0	91	37289	938	6.92	4.8E-12	250	26	ie.	APH803R2
4 5 5 7 8	2	18	229	359	5.59	2.3E-08	61	26	Fail	APH803R3
8 2 7 2 8	0	91	37426	801	7.27	3.7E-13	250	26	Fail	APH803R4
3 2 9	0	25	37414	813	7.22	5.1E-13	250	26	Fail	APH803R5
	0	83	37224	727	7.43	1.1E-13	249	26	Fail	APH803R6
	_	7	782	443	4.27	1.9E-05	23	26	Fail	APH803R7
	0	с	387	6635	-5.18	2.3E-07	18	100	Fail	Backeround
	0	9	1639	7406	-3.39	6.9E-04	34	100	Fail	Background
BETA PHOSWICH	0	5	527	6376	-3.73	1.9E-04	17	100	Fail	Background
	94	226	254	922	-5.90	3.7E-09	22	26	Fail	Backeround
	108	969	31606	6620	-7.80	6.6E-15	250	26	Fail	Backeround
	129	705	426	019	-0.26	0.79	16	26	Pass	1
	88	273	31402	6824	-8.32	9.0E-17	250	26	Fail	Background
	109	315	31479	6748	-8.12	4.6E-16	250	26	Fail	Background
	06	329	31235	6715	-8.10	5.5E-16	249	26	Fail	Background
	164	407	099	595	1.70	0.089	23	26	Pass	0
	153	272	404	2199	-4.99	6.0E-07	81	100	Fail	Background
	182	482	2264	6782	-0.16	0.87	34	100	Pass) !
BPH812R3 241	201	272	019	6293	-3.04	0.0024	17	100	Fail	Background
ALPHA HAND-HELD										
AHH804R1 1.4	0	4	1353	7693	-3.33	8.5E-04	29	105	Fail	Backoround
	0	5	753	6387	-0.73	0.46	14	105	Pass	nuncisuana -
	0	22	3641	0806	-2.52	0.012	54	105	Fail	Backeround
AHH804R4 3.5	-	œ	2390	9599	2.38	0.017	29	105	Fail	AHH804R4
AHH804R5 2.6	0	01	3538	8397	-1.03	0.30	46	105	Pass	1

Phase I Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Seneca Army Depot Activity Summary of WRS Test Table 4-5

Higher if Fail	ò	Backeround	Background	Background	Background	Background	Davigioniin	Background	Background	AHH819R3	Background	0 1	ı	Background	0 1	Backeround	Backeround	Background	0 1		ВИНОВИДЕ	1	1	Background	Background	Background	BHH805R1	Background	Background	Background	0 1
Pass/Fail Background?	A links = 0.05 c/	Fail	Fail	Fail	Fail	1.63	Pass	Fail	Fail	Fai	Fail	Pass	Pass	Fail	Pass	Fail	Fail	Fail	Pass		Fail	Pass	Pass	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Pass
Background	Valid	105	105	105	105	105	105	105	105	105	15	105	105	105	105	105	105	105	105		105	105	105	105	105	105	105	105	105	105	105
Survey	Valid N	34	27	29	87	34	56	50	81	46	30	14	13	22	=	36	21	46	58		29	14	54	59	49	34	27	29	87	34	26
p-level		1.0E-04	1.5E-04	0.035	2.3E-08	6.6E-03	9.7E-02	2.3E-09	0.012	2.2E-06	0.013	0.78	0.12	3.7E-04	0.052	1.6E-04	2.5E-04	0.0059	0.17		9.5915E-05	0.29	0.070	4.1E-04	0.037	2.7996E-05	0.026	1.7E-17	1.1E-16	5.0E-10	7.6E-02
Z		-3.88	-3.79	-2.11	-5.59	-2.72	1.66	-5:98	-2.51	4.74	-2.50	-0.28	-1.53	-3.56	-1.94	-3.77	-3.66	-2.75	-1.38		3.90	-1.06	1.81	-3.54	-2.09	-4.19	2.23	-8.51	-8.30	-6.22	-1.77
Background	Rank Sum	8123	7641	9742	12223	7895	6647	9722	6854	8109	447	6333	6423	7268	6345	8240	7217	8833	1006		9969	6429	7903	7742	8677	8205	8859	11794	13315	6198	7237
Survey	Rank Sum	1607	1138	5137	9069	1836	2000	2368	773	11794	589	807	599	098	442	1772	785	3102	4366		2680	711	4818	1303	3259	1525	2190	3084	5214	Ξ	1409
Maximum	(cbm)	5	В	15	9	81	13	5	4	37	9	4	4	2	3	2	9	5	9		296	253	594	534	313	231	258	212	227	260	256
Minimum	(cbm)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		140	901	801	93	82	72	113	72	46	72	68
Mean	(cpm) b'	1.4	1.3	2.4	1.3	2.8	4.3	1.0	1.6	9.3	9.1	2.3	8.1	1.4	1.5	1.4	1.2	1.8	2.2		214	091	217	162	158	131	197	113	81	811	155
Measurement/Instrument/ Survey Area		AHH804R6	AHH805R1	AHH815R15	AHH816R8	AHH816R9	AHH816R10	AHH819R1	AHH819R2	AHH819R3	VHH81910	AHH819R4	AHH819R5	AHH819R6	AHH819R7	AHH819R8	AHH819R9	AHH81911	AHH819R12	BETA HAND-HELD	BHH804R1	BHH804R2	BHH804R3	BHH804R4	BHH804R5	BHH804R6	BHH805R1	BHH815R15	BHH816R8	ВНН816К9	BHH816R10

Phase I Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Seneca Army Depot Activity Summary of WRS Test Table 4-5

Measurement/ Instrument/	Mean	Minimum	Maximum	Survey	Background	Z	p-level	Survey	Background	Pass/Fail Background?	Higher if Fail
	(cpm) b/	(cbm)	(cbm)	Rank Sum	Rank Sum		Ğ	Valid N	Valid	4 Into - 0 06 c/	110 111 1211
BHH819R1	152	71	291	3218	8873	-2.61	06000	20	105	Co.u = Co.u	-
BHH819R2	206	157	272	1543	6083	3.06	0.0022	× =	501	- E	Background
BHH819R3	129	52	278	7146	13357	05 9-	7 OF-11	0.0	501	La L	ВИНВІУКІ
BHH81910	240	150	358	884	152	4 66	3.7E.06	16	103	Fail	Background
BHH819R4	566	175	378	1371	6725	200.7	1.2E.06	9 ;	<u>c</u> ;	Fail	BHH81910
BHH819R5	156	84	255	709	5417	65.4	CD-37:1	4 :	105	Fail	BHH819R4
BHH819R6	203	. 114	301	1705	041/	1.40	0.15	5.	105	Pass	:
BHH819R7	269	204	380	1120	6553	75.7	737.07	22	105	Fail	BHH819R6
BHH81988	231	130	330	1120	/990	4.49	7.3E-06	=	105	Fail	BHH819R7
RHH819B9	717	175	320	2002	0348	5.23	1.7E-07	36	105	Fail	BHH819R8
BHH81911	100	671	327	\$6.1	6207	3.02	0.0025	21	105	Fail	BHH819R9
D1111010113	196	90 ;	330	4196	7740	1.54	0.12	49	105	Pass	;
BHH819K12	149	7.1	264	3962	9405	-2.75	0.0059	58	105	Fail	Backeround
ALPHA FLOOR MONITOR											
AFM803R2	6.5	8	12	49	56	2.74	0.0062	4	10	Eoil	A EMONTO
AFM803R4	12.5	=	14	20	55	2.87	0.0042	. 4	01	Foil	A EMODER 2
AFM803R5	16.8	13	20	20	55	2.87	0.0041	. 4	2	Foil	A EMOODING
AFM803R6	0.11	4	17	59	62	2.31	0.021	· v	2 5	I I	AFM803RS
AFM803R7	7.7	4	=	71	65	2.21	0.027	; v	2 5	raii	AFM803K6
AFM804R2	15.4	2	26	798	149	4.64	3.5F-06	, ×	2 2	r all	AFINISOSK/
AFM804R3	11.3	2	58	1061	215	3.57	3 SE-04	9 %	C 4	r a	AFM804K2
AFM804R4	5.5	S	9	25	129	0.98	0.33	3 ~	S 2	Pace	AFM804K3
AFM804R6	6.3	7	12	190	162	2.14	0.032	. =	. <u>.</u>	Fail	4 EMODADA
AFM805R1	3.2	-	6	56	175	-0.79	0.43	۷.	3 2	Poss	AF MOUTEO
AFM806R1	3.7	2	S	99	165	0.00	-	9	. <u>.</u>	Pass	:
AFM810R1	4.6	2	8	422	245	1.07	0.28	21	5	Daes	
AFM812R3	4.0	_	∞	41	149	0.10	0.92	. 4	3 2	Pass	:
AFM815R15	3.0	_	9	57	174	-0.71	0.48		. <u>.</u>	Pass	ı
AFM816R8	3.9	-	∞	368	263	0.25	0.80	20	. <u>.</u>	Pass	:
AFM816R9	2.5	0	9	105	220	-1.41	0.16	01	5 5	Pass	
AFM816R10	4.8	3	7	48	142	0.81	0.42	4	15	Pass	
			9	0		The second second	ZSSZZZZ				120

Phase I Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Seneca Army Depot Activity Summary of WRS Test Table 4-5

Survey Area	Weam.	Minimum	Maximum	Survey	Background	Z	p-level	Survey	Background	Pass/Fail Background?	Higher if Fail
	(cpm)	(cbm)	(cpm)	Kank Sum	Rank Sum			Valid N	Valid N	Alpha = 0.05 °	
	1.0	- ,	6 ;	8101	308	1.71	0.087	36	15	Pass	1
	5.5	7	12	216	061	1.28	0.20	13	15	Pass	:
	7.3	-	17	1811	569	3.48	5.0E-04	49	15	Fail	AFM819R3
	2.0	2	2	=	142	-1.06	0.29	2	15	Pass	
	3.3	_	7	158	220	-0.50	0.62	12	15	Pass	ı
	3.7	2	9	166	212	-0.10	0.92	12	15	Pass	
	4.3	2	12	217	218	0.31	0.76	14	15	Pass	
	5.1	2	=	149	177	1.04	0.30	10	15	Pass	,
	5.4	2	Ξ	322	206	1.58	0.11	17	15	Pass	;
	9.9	-	01	406	190	2.55	0.011	19	15	Fail	AFM81911
	7.2	-	17	1506	264	3.25	0.0011	44	15	Fail	AFM819R12
BELA FEOOR MONTOR											
	675	609	902	21	84	-1.27	0.20	4	10	Pass	
	523	474	570	10	95	-2.83	0.0047	4	10	Fail	Background
	509	493	532	10	95	-2.83	0.0047	4	10	Fail	Background
	657	406	735	40	80	0.00	-	5	10	Pass	0 1
	731	929	762	63	73	1.30	0.19	9	10	Pass	1
	710	563	1005	599	347	-0.43	99.0	28	15	Pass	1
	872	543	2554	902	374	0.19	0.85	35	15	Pass	;
	562	517	909	6	144	-1.34	0.18	2	15	Pass	ı
	705	558	1079	136	215	-0.65	0.52	=	15	Pass	l
	792	755	835	98	146	1.52	0.13	9	15	Pass	1
	495	410	597	30	202	-2.84	0.00447974	9	15	Fail	Background
	998	625	8101	492	174	3.32	9.0E-04	21	15	Fail	BFM810R1
	865	552	919	24	991	-1.60	0.11	4	15	Pass	ı
	862	828	914	66	132	2.57	0.01020237	9	15	Fail	BFM815R15
	629	455	865	339	292	-0.72	0.47	20	15	Pass	
	640	482	877	011	216	-1.14	0.26	10	15	Pass	ı
	928	821	106	62	129	2.15	0.03	4	15	Fail	BFM816R10
	920	824	1025	1134	192	4.09	4.2E-05	36	15	Fail	BFM819R1

Phase I Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Seneca Army Depot Activity Summary of WRS Test Table 4-5

Measurement/ Instrument/ Survey Area "/	Mean	Minimum	Maximum	Survey	Background	Z	p-level	Survey	Background	Pass/Fail Background?	Higher if Foil
	(cpm) b/	(cbm)	(cbm)	Rank Sum	Rank Sum			Valid	N PiloA	41-1-0 OF C	ment in rail
BFM819R2	906	527	1083	230	176	161	0.0550208	13	Vi num i	CU.U = BudiA	
BFM819R3	1011	502	1215	1828	252	3.73	1 9F-04	6	C 1	rass	
BFM81910	1107	1063	1151	29	124	164	010	,	<u>c</u> :	Fall	BFM819R3
BFM819R4	952	298	1093	375	22		0.10	7 :	C :	Pass	,
BFM819R5	925	717	1163		6 1	67.7	0.0034	12	15	Fail	BFM819R4
BFM819R6	008	217	1050	177	/61	2.59	0.0097	12	15	Fail	BFM819R5
BEM819R7	1147	349	801	233	203	86.0	0.33	14	15	Pass	1
DEMOTOR	/+11	950	1704	185	140	3.05	0.0023	10	15	Fail	BFM819R7
DEMOTORIO	956	520	1125	353	175	2.74	0.0062	11	15	Fail	BFM819R9
BFM819K10	/011	1063	1151	29	124	1.64	0.1011	2	15	Pass	
BFM8I9KII	934	820	866	437	158	3.63	2.9E-04	19	15	Fail	RFM819B11
BrM819R12	731	406	1029	1341	430	0.36	0.72	44	15	Pass	1
GAMMA FIDLER											
GF803R1	4547	1593	8007	293	884	-5.10	3.4E-07	22	90	Poil	1 - 0
GF803R2	4264	2996	6783	32385	5569	-8.40	4 8E 17	22	0 6	rall	Background
GF803R3	4815	2336	0629	210	871	-5.76	4.6E-17	204	97	Fail	Background
GF803R4	3743	2120	7042	32385	5509	-8.40	4 8E 17	02	07	Fall	Background
GF803R5	4116	2470	8969	32385	5509	0.40	4.00-17	234	97	Fail	Background
GF803R6	3559	2276	6887	32385	5509	04.0	4.8E-17	525	76	Fail	Background
GF803R7	7463	5176	2958	703	550	0.40	4.8E-17	254	26	Fail	Background
GF804R1	12631	8477	14806	50/	927	-1.84	0.066	29	26	Pass	ĭ
GF804R2	0753	7/40	15040	2021	8544	2.19	0.029	53	120	Fail	GF804R1
GF804R3	0702	5500	10106	2/40	1045/	-2.59	0.0097	42	120	Fail	Background
GF804R4	20//	7071	91100	160/	13615	-3.34	8.3E-04	83	120	Fail	Background
GF804R5	0215	5773	13004	707	10094	57.7-	4.2E-13	31	120	Fail	Background
GE804B6	7450	3443	13904	3100	11265	-3.69	2.2E-04	46	120	Fail	Background
01804N	13020	4833	13264	1965	11731	-6.48	9.4E-11	45	120	Fail	Background
NE0810	2061	/896	16107	3196	8585	2.91	0.0037	33	120	Fail	GF805R1
Oravani Oravani	100/	6394	7765	625	9815	-5.98	2.3E-09	24	120	Fail	Background
Greior	10101	9629	15876	5414	12164	-2.49	0.013	29	120	Fail	Backeround
GF812K3	6382	5881	6820	441	9570	-6.08	1.2E-09	21	120	Fail	Backeround
Gr815KI	7854	6264	10772	4205	14323	-7.36	1.9E-13	72	120	Fail	Background
									9	•	

Phase I Direct Measurements (Excluding Discretionary Measurements) VS Background Seneca Army Depot Activity SEAD-12 Building Report Summary of WRS Test Table 4-5

GF816R8 8832 GF816R9 8086 GF816R10 8455 GF819R1 8982	(cpm) 6544 6854 7448 5080	(cbm)	•		Z	p-level	6	Background	Background?	Higher if Fail
	6544 6854 7448 5080		Rank Sum	Rank Sum			Valid N	Valid N	Alpha = 0.05 °	
	6854 7448 5080	13016	9246	16632	-5.98	2.3E-09	107	120	Fail	Bookowaland
	7448	6106	2045	11485	-5.88	4 0F-09	44	120	- all	Dackground
	5080	1776	1313	10012	-4 47	7 7E-06	30	120	Tall 17	Background
		13907	6834	14488	-4 90	9 6F-07	98	120	rall	Background
	7002	15548	2447	9029	0.42	0.68	3.1	120	rall	Background
	1642	14692	14176	21335	-8.51	1.8E-17	146	120	Fass	1
2000	7595	15963	2342	8390	2.20	0.028	36	120	rall Fell	Background
	8359	16756	2410	8175	3.06	0.0022	32	120	T 2	GF819R4
ORE	6811	15985	2889	9357	0.26	0.79	36	120	Dage	GF819KS
	9873	16779	2051	0962	3.24	0.0012	2.6	120	Fass	- 030
6000	8650	15402	3385	8862	2.35	0.019	3, 5	120	l a	GF819K/
326	9619	15557	3008	9553	-0.05	96.0	38	120	Dage	GFOLVEO
_	6016	16084	2813	8815	1.65	660 0	32	021	Dage	
	4717	15621	5126	12640	-3.63	2.9E-04	89	120	Fail	- Dood-one
GF819R12 6600	2531	14211	0189	17944	-9.57	1.2E-21	102	120	Fail	Background

Weasurement - A = Alpha; B = Beta; G = Gamma

Instrument - PH = phoswich; HH = hand-held; FM = floor monitor; F = FIDLER

Survey Area - Building, Room Number

b' cpm = counts per minute.

is said to fail. Box-and-whisker plots are generated (refer to Appendix H for the Phase I box-and-whisker plots) and compared in order to determine if the survey data is If the p-level is less than the alpha (type I) error of 0.05, the survey and background data sets are not considered to be part of the same population and the WRS test elevated above the background data.

Table 4-6
Summary of WRS Tests
Phase I Direct Measurements (Including Discretionary Measurements) VS Background
SEAD-12 Building Report
Seneca Army Depot Activity

Measurement/ Instrument/ Survey Area */	Mean (cpm) ^{b/}	Minimum (cpm)	Maximum (cpm)	Survey plus Discretionary	Background	Z	p-level	Survey plus Discretionary	Background	Pass/Fail Background?	Higher if Fail
				Rank Sum	Rank Sum			Valid N	Valid N	Alpha = 0.05 °	i i
ALPHA FLOOR MONITOR	MONITOR										
AFM803R6	=	4	17	59	62	2.31	0.071	4	9		
AFM804R3	13	2	28	1215	216	3.75	1.8F-04	. 82	01	Fail	AFM803R6
AFM819R1	9	-	15	1401	310	237	1 8E 02	43	0 :	Fall	AFM804R3
AFM819R3	œ	-	17	2845	316	3.56	3.8F-04	? 3	<u>c</u> :	Fail	AFM819R1
AFM819R5	4	2	9	419	284	0.03	0.97	22	<u>.</u> 2	Pass	AFM819R3
BETA FLOOR MONITOR	IONITOR									6650	1
BFM803R6	657	406	735	40	80	00.0	_	,	9		
BFM804R3	156	543	2554	1048	384	0.00	790	38	01	Pass	1
BFM819R1	923	824	1060	1505	206	4.20	2.7F-05	43	51	Fass	:
BFM819R3	1017	502	1215	2878	282	3.97	7.1E-05	3	<u>. 4</u>	Fall	BFM819R1
BFM819R5	939	712	1183	519	184	3.13	0.0018	: :	<u></u>		BF M819K3
ALPHA HAND-HELD	ELD										SACIONA
AHH804R3	3	0	22	3961.5	9079 5	-20.02	0.038	93	107		
AHH819R1	2	0	41	3132.5	10070.5	-5.41	6.423E-08	57	105	Fail	Background
AHH819R3	20	0	316	14765	9106	5 14	2 7736E 07	7 7	502	Fail	Background
AHH819R4	2	0	4	1023.5	6479.5	-0.17	0.87	5 4	105	Fail	AHH819R3
AHH819R5	2	0	4	929	6584	-1.87	0.061	15	105	Pass	
BETA HAND-HELD	TD									con .	
BHH804R3	227	108	594	5139	7903	2.14	0.032	95	105	Eail	Caroonina
BHH819R1	175	71	584	4261	8942	-1.35	0.18	57	105	Page	DHH804K3
BHH819R3	168	52	1125	10247	13625	-4.57	4.9E-06	113	105	Fail	Background
BHH819R4	280	175	378	1730	5773	5.06	4.2E-07	17	105	Fei	BHH810DA
BHH819R5	152	84	255	029	0659	-1.88	0.059	1.5	105	Pass	-
ALPHA PHOSWICH	СН										
APH803R6	7.9	0	83	37224	727	7.43	L.IE-13	676	96	Eo:1	Ancoord
APH819R3	6.1	3	10	1550	5472	3 58	3 4E-04	01	07	rail	APH803R6
BETA PHOSWICH	=							2	001	E L	APH819R3
BPH803R6	164	06	1640	31511	6715	-8.04	9.3E-16	250	96	Earl	Bookonood
										Lan	Dackground

Phase I Direct Measurements (Including Discretionary Measurements) VS Background Seneca Army Depot Activity SEAD-12 Building Report Summary of WRS Tests Table 4-6

Measurement/ Instrument/ Survey Area "	Mean (cpm) ^{b/}	Minimum (cpm)	Maximum (cpm)	Survey plus Discretionary Rank Sum	Background Rank Sum	Z	p-level	Survey plus Discretionary	Background	Pass/Fail Background?	Higher if Fail
BPH819R3	200	329	1492	1440	5582	376	85000	01	NI DIIRA	CU.U = RudiA	
						2	0,000	10	100	Fail	BPH819R3
GAMMA FIDLER											
GF803R6	3560	2276	6882	32640	1869	-8.40	4.7E-17	256	36	5.5	
GF804R3	10181	5592	90161	8115	13621	253	2100	000	07	ran	Background
GF819R1	9797	6080	15070	8050	2001	75.75	210.0	99	120	Fail	Background
CE010D2	1000	0000	1001	6069	13342	-4.43	9.6E-06	001	120	Fail	Backpround
OF819K3	600/	1642	14692	20344	23612	-8.01	1.2E-15	176	120	Pail	Dool
GF819R4	12755	7595	15963	2667	8509	2 36	0.018	30	92.	E :	Dackground
GF819R5	13766	8359	16756	3952	8451	4.76	2110	7 .	071	Fail	GAM819R4
						24.1	CO-011.7	3/	071	Fail	GAM819R5

^{a/} Measurement - A = Alpha; B = Beta; G = Gamma

Instrument - PH = phoswich; HH = hand-held; FM = floor monitor, F = FIDLER Survey Area - Building, Room Number

b' cpm = counts per minute.

of If the p-level is less than the alpha (type I) error of 0.05, the survey and background data sets are not considered to be part of the same population and the WRS test is said to fail. Box-and-whisker plots are generated (refer to Appendix H for the Phase I box-and-whisker plots) and compared in order to determine if the survey data is elevated above the background data.

Phase I Direct Measurements (Excluding Discretionary measurements) VS DCGLw-Adjusted Background Summary of WRS Test Table 4-7

SEAD-12 Building Report Seneca Army Depot Activity

-2.87	<u> </u>	Ra	10 10 10 10 10 15 21 406 646 66 1225 190 990 990	(cpm) Rank Sum
-2.87			10 10 10 15 21 406 646 66 1225 190 990	12 10 14 10 20 10 17 15 11 21 26 406 58 646 12 66 17 1225 10 190 17 990 17 990 17 990 17 990
-2.87			10 10 10 11 11 12 10 10 10 10 10 10	12 10 20 10 17 15 11 21 26 406 58 646 12 66 17 1225 10 190 17 990 17 990 17 990 17 990 17 990
-2.87			10 10 15 21 406 646 66 1225 190 990 231 21 10	14 10 20 10 17 15 11 21 26 406 58 646 12 66 17 1225 10 190 17 990 17 990 17 990 17 990 17 990
i			10 15 21 406 646 66 1225 190 990 231 21 10	20 10 17 15 11 21 26 406 58 646 12 66 17 1225 10 190 17 990 17 990 17 990 17 990
-2.87			15 21 406 646 66 11225 190 990 231 21 10	17 15 11 21 26 406 58 646 12 66 17 1225 10 190 17 990 17 990 17 990 17 990
-3.10			21 406 646 66 1225 190 990 231 21 10	11 21 26 406 58 646 12 66 17 1225 10 190 17 990 17 990 1018 231 901 10
-3.29			406 646 66 1225 190 990 231 21 10	26 406 58 646 12 66 17 1225 10 190 17 990 1018 231 901 10 1025 666
-5.36	~ E F		646 66 1225 190 990 231 21 10	58 646 12 66 17 1225 10 190 17 990 1018 231 914 21 901 10
-5.24			231 231 21 21 666	12 66 17 1225 10 190 17 990 1018 231 901 10 1025 666
4.30			1225 190 990 231 21 10 666	17 1225 10 190 17 990 1018 231 914 21 901 10
-5.84	- 1		231 231 10 10 666	10 190 17 990 1018 231 914 21 901 10
4.96			231 21 10 666	17 990 1018 231 914 21 901 10 1025 666
-5.76			231 21 10 10 666	914 21 901 10 1025 666
303			221 10 866	914 21 901 10 1025 666
-5.05			0 99	901 10 1025 666
-3.50		7	01	1025 666
-3.00			1000	000
60.0-			1325	1225
-5.82			278	1093
4.39			9/ 28	1183
4.5			2 4	1764
1 2 2			351	1155
10,0			061	061 866
-0.70			589	1029 589
-4.65		318 859		17 318
-6.62	3327	32074 6152		32074
-0 73				18 406
6.53	50		111108	111168
-0.55	200		37845	25 32845
3.00			33209	33209
20.00				70255

Phase I Direct Measurements (Excluding Discretionary measurements) VS DCGLw-Adjusted Background Seneca Army Depot Activity SEAD-12 Building Report Summary of WRS Test Table 4-7

	Higher if Fail	
	Pass/Fail DCGLw-Adjusted Background?	Alaha - a as d
	DCGLw-Adjusted Background	Valid
	Survey	Valid
	p-level	
	2	
	DCGLw- Adjusted Background	Rank Sum
	Survey	Rank Sum
The second secon	Maximum	(cbm)
	Minimum	(cbm)
	Mean	(cbm) b/
	Measurement/ Instrument/ Survey Area */	

		7	_			_	-	_	_				_	_	_	_	
Higher if Fail				Background	Background	,			Background	Background	Background		Background	,	Background	Background	1
DCGLw-Adjusted Pass/Fail DCGLw-Background Background?	Alpha = 0.05 °			Fail	Fail	Pass			Fail	Fail	Fail	Pass	Fail	Pass	Fail	Fail	Pass
DCGL _w -Adjusted Background	Valid N			105	33	105			105	105	105	105	105	105	105	105	120
Survey	Valid N			17	97	74		oc.	67	27	<u>*</u>	14	22	= ;	36	17	44
p-level			71 30 7	0.05-10	1.0E-17	0.53		4 50: 13	4.35-12	8.6E-14	6.5E-10	6.00/8	5.2E-09	0.085	7.0100	2.05-00	76.0
2			808	0.00	0.00	70.0		603	1.75	-7.40	-0.18	6 64	40.0-	7.1.7	4.03	3 =	0.11
DCGL _w - Adjusted Background	Rank Sum		8400	3762	9740	7240		8369	8306	2374	4/5/	7637	3689	8477	7393	07101	2012
Survey	Rank Sum		378	4753	6870	0,000		677	473	253	522	491	461	1535	809	4196	
Maximum	(cbm)		8	37	, 4			296	258	272	378	301	380	320	322	336	
Minimum	(cbm)		-	0	0			140	113	157	175	114	204	139	125	100	
Mean	(cpm) b/		3.5	9.3	2.2			214	197	206	566	203	569	231	217	861	
Measurement/ Instrument/Survey Area "		ALPHA HAND-HELD	AHH804R4	AHH819R3	AHH819R12		BETA HAND-HELD	BHH804R1	BHH805R1	BHH819R2	BHH819R4	BHH819R6	BHH819R7	BHH819R8	BHH819R9	BHH819R11	

Weasurement - A = Alpha; B = Beta; G = Gamma

Instrument - PH = phoswich; HH = hand-held; FM = floor monitor; F = FIDLER

Survey Area - Building, Room Number

by cpm = counts per minute.

If the p-level is less than the alpha (type I) error of 0.05, the survey and background data sets are not considered to be part of the same population and the WRS test is said to fail. Box-and-whisker plots are generated (refer to Appendix H for the Phase I box-and-whisker plots) and compared in order to determine if the survey data is elevated above the background data.

Phase I Direct Measurements (Including Discretionary Measurements) VS DCGLw-Adjusted Background SEAD-12 Building Report Seneca Army Depot Activity Summary of WRS Test Table 4-8

Adjusted Background Z p-level Discretionary Background Survey plus Discretionary Background Rank Sum Valid N Valid N 105 -3.10 0.0020 5 -5.02 5.1E-07 38 765 -5.74 8.7E-09 43 -64 -64 -64 108 -6.01 1.8E-05 5 -64 -64 -64 -64 -64 -64 -64 -64 -64 -64 -64 -64 -64 -64 -60 2.0E-09 64 -64 -60 -60 2.0E-09 64 -64 -60 -60 2.0E-09 64 -64 -60 <						DCGLw-				1550	Pass/Fail	
Namk Sum Nalid N Valid N Alpha = 0.05 c	Minimum Maximum				Survey plus Discretionary	Adjusted Background	Z	p-level	Survey plus Discretionary	Adjusted Background	DCGLw- Adjusted Background?	Higher if Fail
105 -3.10 0.0020 5 10 Fail 659 -5.02 5.1E-07 38 15 Fail 765 -5.76 8.7E-09 43 15 Fail 1080 -6.01 1.8E-09 64 15 Fail 450 -5.14 2.8E-07 22 15 Fail 105 -5.14 2.8E-07 22 15 Fail 617 -4.19 2.8E-05 38 15 Fail 617 -4.19 2.8E-05 38 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 450 -5.11 3.3E-07 22 15 Fail 450 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 Fail 754 -4.03 5.5E-05 18 2	(cpm) cpm) (cpm) F	(cbm)	+	1	Rank Sum	Rank Sum			Valid N	Valid N	Alpha = 0.05 c/	
105 -3.10 0.0020 5 10 Fail 659 -5.02 5.1E-07 38 15 Fail 765 -5.76 8.7E-09 43 15 Fail 1080 -6.01 1.8E-09 64 15 Fail 450 -5.14 2.8E-07 22 15 Fail 105 -5.14 2.8E-05 38 15 Fail 617 -4.19 2.8E-05 38 15 Fail 617 -4.19 2.8E-05 38 15 Fail 765 -5.73 1.0E-08 43 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 450 -5.11 3.3E-07 22 15 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 Fail 754 -4.03 5.5E-05 18 26	ALPHA FLOOR MONITOR											
659 -5.02 5.1E-07 38 15 Fail 765 -5.76 8.7E-09 43 15 Fail 1080 -6.01 1.8E-09 64 15 Fail 450 -5.14 2.8E-07 22 15 Fail 108 -5.04 1.8E-09 64 15 Fail 617 -4.19 2.8E-07 22 10 Fail 617 -4.19 2.8E-05 38 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 Fail Fail 754 -4.03 5.5E-05 18 26 Fail	11.0 4 17		17		15	105	-3.10	0.0020	5	01	Esti	-
765 -5.76 8.7E-09 43 15 Fail 1080 -6.01 1.8E-09 64 15 Fail 450 -5.14 2.8E-07 22 15 Fail 105 -5.14 2.8E-05 38 15 Fail 617 -4.19 2.8E-05 38 15 Fail 765 -5.73 1.0E-08 43 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 Fail Fail 754 -4.03 5.5E-05 18 26 Fail	13.2 2 5.8		58		772	629	-5.02	5.1E-07	38	51	Fail	Background
1080 -6.01 1.8E-09 64 15 Fail 450 -5.14 2.8E-07 22 15 Fail 105 -5.14 2.8E-05 5 10 Fail 617 -4.19 2.8E-05 38 15 Fail 765 -5.73 1.0E-08 43 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 26 Fail 754 -4.03 5.5E-05 18 26 Fail	5.8 1 15	1 15	15		946	765	-5.76	8.7E-09	43	15	Fail	Dackground
450 -5.14 2.8E-07 22 15 Fail 105 -3.06 0.0022 5 10 Fail 617 -4.19 2.8E-05 38 15 Fail 765 -5.73 1.0E-08 43 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 26 Fail 754 -4.03 5.5E-05 18 26 Fail	_	1 17	17		2080	1080	-6.01	1.8E-09	64	15	E E	Background
105 -3.06 0.0022 5 10 Fail 617 -4.19 2.8E-05 38 15 Fail 765 -5.73 1.0E-08 43 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 4742 -3.00 0.0027 249 26 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 26 Fail 754 -4.03 5.5E-05 18 26 Fail	3.8 2 6	2 6	9		253	450	-5.14	2.8E-07	22	15	Fail	Background
105 -3.06 0.0022 5 10 Fail 617 -4.19 2.8E-05 38 15 Fail 765 -5.73 1.0E-08 43 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 4742 -3.00 0.0027 249 26 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 Fail 754 -4.03 5.5E-05 18 26 Fail	BETA FLOOR MONITOR											
617 -4.19 2.8E-05 38 15 Fail 765 -5.73 1.0E-08 43 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 4742 -3.00 0.0027 249 26 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 26 Fail 754 -4.03 5.5E-05 18 26 Fail	657 406 735		735		15	105	-3.06	0.0022	5	01	Eail	Dest
765 -5.73 1.0E-08 43 15 Fail 1080 -6.00 2.0E-09 64 15 Fail 300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 4742 -3.00 0.0027 249 26 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 Fail 754 -4.03 5.5E-05 18 26 Fail	543		2554		814	617	-4.19	2.8E-05	38	15	Fail	Background
1080 -6.00 2.0E-09 64 15 Fail 300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 4742 -3.00 0.0027 249 26 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 26 Fail 754 -4.03 5.5E-05 18 26 Fail	824 1060	1090			946	765	-5.73	1.0E-08	43	15	Fail	Backeround
300 -4.39 1.1E-05 12 15 Fail 450 -5.11 3.3E-07 22 15 Fail 4742 -3.00 0.0027 249 26 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 Fail 754 -4.03 5.5E-05 18 26 Fail	502 1215	1215			2080	1080	-6.00	2.0E-09	64	15	Fail	Background
450 -5.11 3.3E-07 22 15 Fail 4742 -3.00 0.0027 249 26 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 Fail 754 -4.03 5.5E-05 18 26 Fail	598 1093	1093			78	300	-4.39	1.1E-05	12	15	Fail	Backeround
4742 -3.00 0.0027 249 26 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 26 Fail 754 -4.03 5.5E-05 18 26 Fail	939 712 1183 2	1183		2	53	450	-5.11	3.3E-07	22	15	Fail	Background
4742 -3.00 0.0027 249 26 Fail 819 -5.68 1.4E-08 18 26 Fail 6825 -8.32 8.8E-17 250 26 Fail 754 -4.03 5.5E-05 18 26 Fail	ALPHA PHOSWICH											
71 819 -5.68 1.4E-08 18 26 Fail 401 6825 -8.32 8.8E-17 250 26 Fail 36 754 -4.03 5.5E-05 18 26 Fail	0 83	83		e,	3209	4742	-3.00	0.0027	249	26	Fail	Background
401 6825 -8.32 8.8E-17 250 26 Fail 36 754 -4.03 5.5E-05 18 26 Fail	6.1 3 10	3 10	10		171	618	-5.68	1.4E-08	18	26	Fail	Background
401 6825 -8.32 8.8E-17 250 26 Fail 36 754 -4.03 5.5E-05 18 26 Fail												
754 -4.03 5.5E-05 18 26 Fail	06	Н	1640		31401	6825	-8.32	8.8E-17	250	26	Fail	Background
	500 329 1492		1492		236	754	-4.03	5.5E-05	18	26	Fail	Background

Phase I Direct Measurements (Including Discretionary Measurements) VS DCGL_w-Adjusted Background Seneca Army Depot Activity SEAD-12 Building Report Summary of WRS Test Table 4-8

Measurement/ Instrument/ Survey Area	Mean	Minimum	Maximum	Survey plus Discretionary	DCGL _w -Adjusted	В	p-level	Survey plus Discretionary	DCGLw- Adjusted Background	Pass/Fail DCGLw-Adjusted	Higher if Fail
•	(cpm) b/	(срт)	(cpm)	Rank Sum	Rank Sum			Nelley	N PHON	Background?	
ALPHA HAND-HELD	ELD								A STORY	Aipna = 0.05	
AHH804R3	3.4	0	22	2363	10678	-7.76	8.5E-15	95	105	Foil	Dantagan
AHH819R1	2.1	0	41	1863	11340	-9.83	8.8F-23	57	501	Fail	Dackground
AHH819R3	20.1	0	316	11749	12123	-1.35	0.18	113	201	Page	Background
AHH819R4	2.4	0	4	153	7350	-6.68	2.4E-11	17	105	Fail	Rackaraund
AHH819R5	1.7	0	4	120	7140	-6.33	2.4E-10	15	105	Fail	Background
BETA HAND-HELD	CD										D.
BHH804R3	227	108	594	2724	10318	-6.43	1.3E-10	56	105	Fail	Backarama
BHH805R1	197	113	258	756	8424	-6.80	1.1E-111	30	105	Fail	Background
BHH819R1	175	71	584	2125	11078	-8.84	1.0E-18	57	105	Fail	Background
BHH819R2	206	157	272	317	7685	-6.66	2.8E-11	21	105	Fail	Background
BHH819R3	891	52	1125	7420	16451	-10.65	2.0E-26	113	105	Fail	Backoround
BHH819R4	280	175	378	931	6572	-0.85	0.40	17	105	Pass	nuno Guana
BHH819R5	152	84	255	153	7107	-5.99	2.2E-09	15	105	Fail	Backoround
BHH819R8	231	139	320	1873	8567	-4.29	1.8E-05	39	105	Fail	Background

^a Measurement - A = Alpha; B = Beta; G = Gamma

Instrument - PH = phoswich; HH = hand-held; FM = floor monitor; F = FIDLER

Survey Area - Building, Room Number

b' cpm = counts per minute.

is said to fail. Box-and-whisker plots are generated (refer to Appendix H for the Phase I box-and-whisker plots) and compared in order to determine if the survey data is e If the p-level is less than the alpha (type I) error of 0.05, the survey and background data sets are not considered to be part of the same population and the WRS test elevated above the background data.

Table 4-9
Summary Statistics of Phase I Scanning Measurements VS Instrument Scanning Flag Value SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Measurement Type	Number of Grids Scanned	Minimum (cpm) ^{s/}	Maximum (cpm)	Mean (cpm)	Flag Value (cpm) b	Maximum Reading Greate than Flag?
ALPHA/BE	ETA FLOC	OR MONITOR						
803	2	AB ^{c/}	4	400	900	613	2807	No
803	4	AB	4	400	620	505	2807	No
803	5	AB	4	400	620	510	2807	No
803	6	AB	5	300	900	630	2807	No
803	7	AB	6	700	700	700	2807	No
804	2	AB	28	400	1200	732	2807	No
804	3B	AB	35	400	3000	860	2807	Yes
804	4B	AB	2	400	700	525	2807	No
804	6B	AB	11	400	1200	659	2807	No
805	1	AB	8	600	800	700	2807	No
806	1	AB	6	400	700	508	2807	No
810	1	AB	21	400	1100	807	2807	No
812	32	AB	4	400	600	500	2807	No
815	15	AB	6	600	1000	825	2807	No
816	8	AB	23	200	1000	572	2807	No
816	9	AB	12	40	600	162	2807	No
816	10	AB	4	600	1000	813	2807	No
819	1	AB	36	800	1100	924	2807	No
819	2	AB	13	400	1200	888	2807	No
819	3	AB	49	400	2000	1001	2807	No
819	4	AB	12	750	1050	917	2807	No
819	5	AB	12	800	1200	946	2807	No
819	6B	AB	14	500	950	750	2807	No
819	7	AB	10	1000	1200	1115	2807	No
819	9	AB	9	900	1200	1033	2807	No
819	10	AB	2	1200	1200	1200	2807	No
819	11B	AB	19	700	1200	955	2807	No
819	12D	AB	44	200	1200	743	2807	No
LPHA/BET	TA PHOS	WICH						
803	1	AB	22	40	380	162	854	No
803	2	AB	250	80	600	177	854	No
803	3	AB	20	50	900	322	854	Yes
803	4	AB	250	40	460	160	854	No
803	5	AB	250	60	400	300	854	No
803	6	AB	249	40	2500	172	854	Yes
803	7	AB	23	180	350	310	854	No
806	1	AB	18	100	350	202	854	No
810	1	AB	34	140	600	335	854	No
812	32	AB	17	100	480	274	854	No
LPHA/BET	A HAND-	HELD						
804	1	AB	29	100	340	221	534	No
804	2	AB	14	40	360	166	534	No
804	3B	AB	54	40	1000	216	534	Yes
804	4B	AB	29	30	600	162	534	Yes
804	5B	AB	49	40	400	161	534	No
804	6B	AB	34	40	360	147	534	No
805	1	AB	33	80	400	192	534	No
815	15	AB	30	60	200	130	534	
816	8	AB	84	40	400	127	534	No No
816	9	AB	6	200	1000	604	4.000000	No
816	10	AB	26	40	200	0.000	534	Yes
819	2	AB	18	90	320	215	534	No No

Table 4-9
Summary Statistics of Phase I Scanning Measurements VS Instrument Scanning Flag Value
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Measurement Type	Number of Grids Scanned	Minimum (cpm) ^{s/}	Maximum (cpm)	Mean (cpm)	Flag Value (cpm) b	Maximum Reading Greater than Flag?
819	3	AB	97	40	950	156	534	Yes
819	4	AB	14	220	400	283	534	No
819	5	AB	13	110	300	186	534	No
819	6B	AB	22	150	300	215	534	No
819	7	AB	11	250	360	275	534	No
819	8B	AB	36	100	500	242	534	No
819	9	AB	9	150	230	169	534	No
819	10	AB	18	140	370	246	534	No
819	11B	AB	49	80	450	205	534	No
819	12D	AB	58	60	450	167	534	No
GAMMA F	IDLER							
803	1	gamma	22	1000	9000	4568	19000	No
803	2	gamma	254	2000	8000	4194	19000	No
803	3	gamma	20	3000	8000	5250	19000	No
803	4	gamma	254	3000	11000	5608	19000	No
803	5	gamma	254	2000	9000	4303	19000	No
803	6	gamma	254	2000	8500	3594	19000	No
803	7	gamma	29	5950	9250	7793	19000	No
804	1	gamma	29	8800	15400	12403	19000	No
804	2	gamma	42	4000	16000	9474	19000	No
804	3B	gamma	83	4000	20000	9505	19000	Yes
804	4B	gamma	31	4000	9000	6190	19000	No
804	5B	gamma	49	500	15000	8993	19000	No
804	6B	gamma	45	4000	14000	7626	19000	No
805	1	gamma	33	8000	20000	13174	19000	Yes
806	1	gamma	24	6000	9000	7469	19000	No
810	1	gamma	67	6000	18000	10444	19000	No
812	32	gamma	21	5000	8000	6976	19000	No
815	15	gamma	73	5000	14000	8173	19000	No
816	8	gamma	82	5000	15000	8416	19000	No
816	9	gamma	44	5900	10000	7888	19000	No
816	10	gamma	30	6000	12000	8408	19000	No
819	1	gamma	36	6500	10500	7722	19000	No
819	2	gamma	31	5000	16000	10661	19000	No
819	3	gamma	146	2900	16000	7107	19000	No
819	4	gamma	26	7500	15500	12370	19000	No
819	5	gamma	25	8500	16000	12950	19000	No
819	6B	gamma	36	7000	15500	10790	19000	No
819	7	gamma	21	9500	16500	13333	19000	No
819	8B	gamma	36	7000	17000	11903	19000	No
819	9	gamma	38	6500	14000	10776	19000	No
819	10	gamma	32	9000	15000	12109	19000	No
819	11B	gamma	68	4000	16000	9154	19000	No
819	12D	gamma	102	3100	13650	6478	19000	INO

a/ cpm = counts per minute.

by For instruments measuring gross alpha and beta radiation, the flag value is equal to the instrument-specific DCGL_{EMC/5} plus the mean background scanning value. The DCGL_{EMC/5} is calculated by dividing the DCGL_{EMC} (see Table 4-2) by 5 to provide a more conservative flag value. For instruments measuring gross gamma radiation, the flag value was equal to the 95% UCL of the background scanning results.

^{c/} AB = gross alpha and beta radiation.

Table 4-10
Phase I Exposure Rate Data
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Minimum (urem/hr)	Mean (urem/hr)	Maximum (urem/hr)
722	~	4	9.28	16
	1	3	5	9
1	2	3	4.65	7
	3	3	4.2	5
803	4	2	4.57	8
	5	2	4.63	8
	6	2	4.5	8
	7	5	6.41	9
	1	7	8.7	10
	2	6	8.35	11
804	3	4	7.81	14.5
804	4	4	6.27	8
	5	5	7.29	10
	6	4	7.29	11
805	1	7	9.97	13
806	1	3	4.82	7
810	1	4	7.47	11
812	32	3.5	5.57	9
815	15	5	7.69	10
	8	5	7.1	10
816	9	7	8.9	10
	10	6	7.56	9
	1	4	7.05	12
	2	6	8.95	13
	3	3	6.61	10
	4	7	9.85	12
	5	7	10.06	13
819	6	6	8.79	11
019	7	7	10.14	12
	8	8	10.03	12
	9	6	8.7	12
	10	7	9.58	13
	11	5.5	8.36	12
	12	3	6.2	12

Summary of Phase I Smear Sampling Results at. bt. ct Seneca Army Depot Activity SEAD-12 Building Report Table 4-11

	ROOM	Y	ALPHA (dpm) "			BETA (dpm)		G	GAMMA (dpm)		TRE	TRITHIM RETA (dnm)	nm)
	1	5	MAXIMUM	2	MINIMUM		MEAN	MINIMUM	MAXIMUM	MEAN	MINIMIM	MAXIMIM	MFAN
803	-	0.0	23.0	2.5	0.0	64.0	5.7	0.0	0.0	0.0	00	0.08	6.0
803	2	0.0	25.0	1.2	0.0	43.0	2.2	0.0	56.0	0.2	00	54.0	1.5
803	0	0.0	3.7	0.4	0.0	2.7	0.4	0.0	0.0	0.0	0.0	18.6	5.0
803	4	0.0	6.4	0.3	0.0	16.0	0.5	0.0	58.0	0.4	00	31.0	2.7
803	2	0.0	8.3	0.5	0.0	17.3	6.0	0.0	84.0	1.3	0.0	414	23
803	9	0.0	26.3	0.7	0.0	14.9	1.0	0.0	65.0	0.0	0.0	73.6	9.8
803	7	0.0	2.5	0.3	0.0	4.4	0.2	0.0	0.0	0.0	00	00	0.0
804	_	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.40	0.0
804	2	0.0	8.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	00	0.02	0.0
	3A/B	0.0	1.3	0.0	0.0	3.2	0.0	0.0	0.0	0.0	0.0	0.0	3.0
	4A/B	0.0	0.0	0.0	0.0	4.9	0.2	0.0	00	00	0.0	11.5	5.7
804 5	5A/B	0.0	9.1	0.0	0.0	2.7	0.1	0.0	0.0	0.0	0.0	000	0.0
	6A/B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
805	-	0.0	-	0.2	0.0	5.4	0.4	0.0	0.0	0.0	0.0	13.2	0.3
908	_	0.0	0.0	0.0	0.0	27	0.1	0.0	0.0	0.0	0.0	12.0	0.3
810	_	0.0	1.5	00	0.0	3.4		0.0	0.0	0.0	0.0	10.2	0.4
	32	0.0	0.0	00	0.0		0.0	0.0	0.0	0.0	0.0	9.2	0.4
-	15	00	138 5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	~	0.0		0	0.0	0.00	3.7	0.0	1.99	1.7	0.0	301.0	11.4
816	0	0.0	1.51		0.0	5.0	0.1	0.0	65.0	1.6	0.0	8.4	0.2
918	0.	0.0	1.5.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+	2 .	0.0	0.1	0.1	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
610	- ,	0.0	14.0	0.3	0.0	25.0	0.7	0.0	78.0	1.4	0.0	123.0	2.1
010	4,	0.0	5.5	0.7	0.0	5.2	0.7	0.0	64.0	2.1	0.0	0.0	0.0
610	,	0.0	5.7.7	3.4	0.0	38.8	5.1	0.0	0.92	1.2	0.0	58.0	2
610	,	0.0	1.2	0.2	0.0	14.1	0.2	0.0	71.4	2.7	0.0	15.0	1.3
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
010	0A/B	0.0	4.0	0.3	0.0	5.8	9.0	0.0	0.0	0.0	0.0	45.0	12.9
	, 0, 10	0.0	4 (0.7	0.0	2.9	0.1	0.0	0.0	0.0	0.0	17.0	3.5
	SA/B	0.0	1.7	0.1	0.0	3.2	0.1	0.0	0.0	0.0	0.0	17.0	2.0
618	6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	59.0	1.6	0.0	26.0	1.9
	0 :	0.0	17.0	0.7	0.0	16.0	2.7	0.0	0.0	0.0	0.0	17.6	0.0
+	I I A/B	0.0	-	0.1	0.0	5.8	0.3	0.0	73.0	2.8	0.0	22.0	2.3
+	12A/B	0.0	1.3	0.1	0.0	4.7	0.1	0.0	77.0	1.3	0.0	15.7	4.6
777	VV -	0.0	8.	0.1	0.0	3.3	0.1	0.0	59.0	1.5			
21600	-												

ANSI/ HPS N13.13-1999 Screening levels: Group 1- Ra, Th, and Transuranics 600 dpm; Group 2 - Uranium and Select High Dose Beta-Gamma emitters, 6000 dpm; Group 3 - General Beta-Gamma emitters, 60000 dpm; Group 4 other Beta-Gamma Emitters, 600000 dpm.

b NYS DOL proposed acceptable levels: U-ntuaral and assoc, decay products - 1000 dpm alpha/cm2; Transuranies - 200 dpm/cm2; Beta-Gamma Emitters - 1000 beta-gamma/ 100 cm2.

of Smear Samples collected over a 100 cm² area.

^{ψ dpm = disintegrations per minute.}

TABLE 4-12

Smear Sampling - Surface and Volume Radioactivity Standards for Clearance ANSI N13.12-1999 and 12 NYCRR Part 38 (Table 5)

SEAD-12 Building Report Seneca Army Depot Activity

ANSI/ HPS N12.12 - 1999

Radionuclide Groups	Surface Screening Conventional Units ^(a) dpm/100 cm ²	Volume Screening Conventional Units ^(a) pCi/g
Group 1) Radium, Thorium, and Transuranics: ²¹⁰ Po, ²¹⁰ PB, ²²⁶ Ra, ²²⁸ Ra, ²³⁰ Th, ²³² Th, ²³⁷ Np, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Am, ²⁴⁴ Cm, and associated decay chains ^(b) , and others	600	3
Group 2) Uranium and select high dose beta and gamma emitters: ²² Na, ⁵⁴ Mn, ⁵⁸ Co, ⁶⁰ Co, ⁶⁵ Zn, ⁹⁰ Sr, ⁹⁴ Nb, ¹⁰⁶ Ru, ^{110m} Ag, ¹²⁴ Sb, ¹³⁴ Cs, ¹³⁷ Cs, ¹⁵² Eu, ¹⁵⁴ Eu, ¹⁹² Ir, ²³⁴ U, ²³⁵ U, ²³⁸ U, Natural Uranium ^(c) and others	6000	30
Group 3) General Beta, Gamma Emitters: ²⁴ Na, ³⁶ Cl, ⁵⁹ Fe, ¹⁰⁹ Cd, ¹³¹ I, ¹²⁹ I, ¹⁴⁴ Ce, ¹⁹⁸ Au, ²⁴¹ Pu, and others ^(a) .	60000	300
Group 4) Other Beta, Gamma Emitters: ³ H, ¹⁴ C, ³² P, ³⁵ S, ⁴⁵ Ca, ⁵¹ Cr, ⁵⁵ Fe, ⁶³ Ni, ⁸⁹ Sr, ⁹⁹ Tc, ¹¹¹ In, ¹²⁵ I, ¹⁴⁷ Pm, and others	600000	3000

a) Rounded by 1 significant figure.

b) For decay chains, the screening levels represent the total activity (i.e.: the activity of the parent plus the activity of the progeny) present.

c) Where the natural uranium activity equals 48.9% from 238U, 48.9% from 234U, plus 2.25% from 235U.

d) reproduced from ANSI Standard N13.12-1999, Surface and Volume Radioactivity Standards for clearance, Health Physics Society, 1999.

TABLE 4-12

Smear Sampling - Surface and Volume Radioactivity Standards for Clearance ANSI N13.12-1999 and 12 NYCRR Part 38 (Table 5) SEAD-12 Building Report Seneca Army Depot Activity

NYCRR Part 38 (Table 5)

ACCEPTABLE	SURFACE CO	NTAMINATION	LEVELS
------------	------------	-------------	--------

NUCLIDE (a)	REMOVABLE (bcde)
U-nat, U-235, U-238, and associated decay products except Ra-226, Th-230, Ac-227, and Pa-231.	1,000 dpm alpha/100cm ²
Transuranics, Ra-223, Ra-224, Ra-226, Ra-228, Th-nat, Th-228, Th-230, Th-232, U-232, Pa-231, Ac-227, Sr-90, I-125, I-126, I-129, I-131, I-133.	200 dpm/ 100cm ²
Beta-gamma emitters (nuclides with decay modes other than alpha emissions or spontaneous fission) except Sr-90 and others noted above.	1,000 dpm beta, gamma/100cm ²

- a.) Where surface contamination by both alpha and beta-gamma emitting nuclides exist, the limits established for alpha and beta-gamma emitting nuclides should apply independently.
- b.) As used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.
- c.) Measurements of average contamination level should not be averaged over more than one square meter. For objects of less surface area, the average should be derived for each object.
- d.) The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dryfilter or soft absorbent paper, applying moderate pressure, and assessing the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of less surface area is determined, the pertinent levels should be reduced proportionately and the entire surface should be wiped.
- e.) The average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/hr at 1 centimeter and 1.0 mrad/hr at 1 centimeter, respectively, measured through not more than 7 mg/cm² of total absorber.

FOR RADIOLOGICAL ANALYSES ON DEBRIS SAMPLES COLLECTED FROM CLASS I AND II BUILDINGS SEAD-12 BUILDING REPORT SENECA ARMY DEPOT ACTIVITY SUMMARY STATISTICS **TABLE 4-13**

			FREQUENCY OF	95TH PERCENTILE OF BKGD SOIL	SCREENING	SCREENING CRITERIA PLUS BKGD SOIL DATA	NUMBER ABOVE SCREENING CRITERIA PLUS	NUMBER	d d d d d d d d d d d d d d d d d d d
PARAMETER	UNIT	UNIT MAXIMUM	DETECT		CRITERIA(1)	SET.	BKGD	DETECTS	ANALYSES
Bismuth-214	pCi/g	5.2	%001	2.2	3	5.2		14	71
Cesium-137	pCi/g	=	94%	0.7	30	30.7			1 7
	pCi/g	0.0	24%	0.1	30	30.1		<u>+</u>	4 2
Cobalt-60	pCi/g	9.0	%12	0.3	30	30.3		4 5	41
Lead-210	pCi/g	20.2	82%	13.7		167		71	14
Lead-211	pCi/g	16.3	53%		. "	120		41	14
Lead-214	pCi/g	3.4	100%		, «	5.3		6	14
Plutonium-239/240	pCi/g	0.1	35%		, "	3.2	0	13	13
Promethium-147	pCi/g	0.3	17%		3000	2017	0	0	14
Radium-223	pCi/g	8.1			3000	3010	0	_	10
Radium-226	pCi/g	5.2			0 "	5.4	0	4	14
Radium-228	pCi/g	3.4	88%		0 6	2.6	_ <	14	14
Thorium-230	pCi/g	0.8	18%		0 4	3.0	0	14	14
Thorium-232	pCi/g	9.0	%001		0 "	3.5	0	3	14
Tritium	pCi/g	991	78%		3000	30.1		14	14
Uranium-233/234	pCi/g	18.1	94%		30	31.1	0	9	7
Uranium-235	pCi/g	0.8	53%	0.3	30	30.3	0	41	14
Uranium-238	pCi/g	1.2	100%	1.2	30	31.2		8 :	14
				CHARLE THE PARTY OF THE PARTY O	2.2	4:10	0	14	4

(1) Reference utilized for this table is ANSI/ Health Physics Society N13.12-1999.

TABLE 4-14
Radon Survey Results
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Location	Sample ID	Average Radon Concentration (pCi/l)
800		Office	1411471	0.9
802	4	Wall	3909812	0.9
802	4	Wall	3909761	0.8
803	1	W Wall	3909784	12.1
804	3A	Wall	3909730	0.8
805	1	W Wall	3909777	0.2
806	3	Wall	3909756	0.2
806	6	Wall	3909822	0.4
806	1	Wall	3909774	0.5
807	5	E Wall	3909654	0.3
807	9	Door	3909669	0.2
810	1	Bay 1	3909690	1.0
810	1	Bay 3	3909150	0.6
810	1	Bay 4	3909086	1.1
812	18	Snack Machine Room	1411477	0.9
812	25	MPDO Office	1411490	1.3
813	5B	E Wall	3909752	1.0
814	2B	E Wall	3909723	0.5
815	1A	E Bay	3909080	0.6
815	9	Crew #9	3909133	0.7
815	1A	E Bay	3909131	0.6
816	4	Hallway	3909104	0.7
816	4	D Bay	3909166	0.8
816	3	A Bay	3909132	0.8
816	3	A Bay	3909097	0.7
816	4	C Bay	3909107	0.6
816	8	RO Room	3909165	0.9
817	1	W Wall	3909063	0.4
819	3	NE Corner	3909651	0.4
819	6A	Hall	3909722	0.4
825		N Wall	3909731	0.2
825		N Wall	3909834	0.3
825		S Wall	3909743	0.3

Table 4-15
Summary of WRS Test
Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background

SEAD-12 Building Report Seneca Army Depot Activity

ALPHA FLOOR Mean Median Minimum Matimum St Dev Survey Background ALPHA FLOOR ACPan) (cpm) (cpm) (cpm) (cpm) Rank Sum Rank Sum ALPHA FLOOR ACPAMSONE 3.2 0 9 3.4 4.5 166 AFMSONE 3.7 3.5 0 9 3.4 4.5 166 AFMSONE 3.5 1 3 3.5 1 3.5 166 AFMSONE 3.5 1 3 3.5 1 4 1.1 4.5 166 AFMSONE 3.5 2 0 9 3.4 4.5 166 167 AFMSONE 3.5 2 1 3 3.5 1 4.4 4.5 146 145 146 145 146 145 146 145 146 145 146 145 146 145 146 145 146 145 146 1		1	יבוורגם הזוווין	Selleca Artilly Depot Activity	L,					
(cpm) (cpm) (cpm) Rank Sum 3.5 0 7 3.4 45 4.5 0 10 3.8 53 4.5 0 10 3.8 53 5.5 1 4 1.1 42 6.4 4 14 4.5 53 6.5 4 1.0 3.8 53 5.5 1 3 1.0 2.4 6.6 1.7 4.4 4.4 4.4 7.5 2 6 1.7 4.6 8.5 2 6 1.7 4.6 9.5 1 3 9.6 4.4 1.7 2 4 1.2 2.3 2.5 1 2 4 1.2 4 3.5 2 4 1.2 4 4 3.5 2 2 4 1.5 4 4 1 1 <t< th=""><th>Minimum</th><th></th><th>Survey</th><th>Background</th><th>7</th><th>n-lewel</th><th>Survey</th><th>Background</th><th>Pass/Fail</th><th></th></t<>	Minimum		Survey	Background	7	n-lewel	Survey	Background	Pass/Fail	
2 0 9 3.4 45 3.5 0 7 2.3 66 1.5 1 4 1.1 42 2.5 1 3 1.0 3.4 4 0 7 2.3 66 2.5 1 3 1.0 44 4 0 6 1.7 46 4 0 6 1.7 46 2.5 1 3 3 3 2.5 1 3 3 4 2.5 1 3 3 4 3.5 2 4 1.2 4 4 1 4 1.2 4 3.5 2 4 1.3 39 4 1 5 1.3 39 5 2 4 1.3 39 6 1 4 1.2 4 7 2 2 4 4 8 2 3 4 4	(cpm)	-	Rank Sum	Rank Sum	1	prieves	Valid N	Valid N	Alpha = 0.05 °	Higher if Fail
3.2 3.2 0 9 3.4 45 4.2 4 0 0 7 2.3 66 4.5 3.5 0 7 2.3 66 44 4.5 3.5 1 4 1.1 4.2 5.3 4.5 2.5 1 4 1.1 4.5 66 3.3 4 0 0 6 1.7 4.6 8.1 4.5 5 1 4 1.1 4.5 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 1.0 4.4 8.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
3.7 3.5 0 7 2.3 66 2.6 4 0 7 2.3 66 2.8 1.5 1 4 1.1 42 2.9 2.5 1 8 2.4 81 4.5 5 1 3.8 5.4 81 4.5 5 1 3.8 5.4 81 4.5 5 1 3.8 5.4 81 4.5 5 1 4 4.5 5.7 4.5 5 1 4 4.5 5.7 4.5 5 1 4 4.5 5.7 4.5 6 1.7 4.6 1.7 4.6 5.0 7 2 7 2.7 4.7 5.7 5.0 3 3 2 5 1.3 4.5 4.0 4 1 4 1.5 4.5 1.2 5.0 <td>0</td> <td>3.4</td> <td>45</td> <td>166</td> <td>0.10</td> <td>0,40</td> <td>,</td> <td></td> <td></td> <td></td>	0	3.4	45	166	0.10	0,40	,			
26 3 42 4 0 10 38 50 26 3 1 4 13 10 24 45 25 6 4 4 45 50 33 35 25 1 4 45 50 45 5 1 4 45 57 46 45 5 1 4 45 57 46 27 2 2 6 1 4 46 17 46 27 2 2 2 4 1 4 46 17 46 17 46 20 2 2 2 4 1 4	0	. "	64	991	0.70	0.48	0.3		Pass	ı
26 3 1 4 1.1 4.5 1.8 1.5 1 4 4.5 5.7 2.9 2.5 1 4 4.4 4.4 4.5 5 2.5 1 4 4.4 4.5 6 4 4 4.4 4.6 3.3 4 0 6 1.7 4.6 2.7 2 2 4 4.4 4.4 2.7 2 2 4 4.4 2.7 2.2 4 4 4.4 2.3 3.5 3 5 1.3 3.9 2.7 2.2 4 4 1.2 4.4 2.3 3.5 2 4 4.4 4.4 2.3 3.5 3 5 1.3 3.9 2.4 3.5 3 5 1.2 4.4 2.5 1 3 4 1.2 4.4 2.3 3.5 2 4 4.1 4.2 3.5 3 3 1 4 4.2 1.3 4.4 4 1 1 4 1.3 1.4 4.4 5	0	, «	83	157	40.0	76.0	9 .	13	Pass	1
1.8 1.5 1 3 1.0 24 2.9 2.5 4 14 4.5 57 4.5 5 2.5 1 4.6 6 4.5 5 2.5 1 4.6 6 4.5 5 2 6 1.7 140 24 4.5 5 2 6 1.7 140 24 4.5 5 2 6 1.7 140 24 2.7 2 2 6 1.7 140 24 5.0 2 3 5 1.0 24 81 5.0 2 2 4 1.1 4 4 5.0 2 2 4 1.1 4 4 5.0 3 3 1 6 1.9 54 4.0 2 1 4 1.9 5 1.0 5 5.0 4 1 1 4 1.2 1.2 1.4 4 5.0		2 -	42	161	0.04	06.0	0	15	Pass	1
7.5 6 4 14 4.5 5.4 4.5 2.5 1 8 2.4 8 3.3 4 0 6 1.7 140 4.5 5 2 6 1.7 140 2.7 2.5 1 8 2.4 8 2.7 2.5 1 5 1.3 39 2.7 2.5 1 5 1.1 44 5.0 7 2 6 1.1 44 5.0 7 2 6 1.1 44 5.0 7 2 6 1.1 44 5.0 3 2 2 1.3 39 4.0 6 1.2 2 4 1.2 2 5.0 3 1 6 1.9 5 1.9 5 4.0 2 3 1 6 1.9 5 1.9 5 5.0 3 3 4 1 1 4 4 <t< td=""><td>-</td><td></td><td>7 6</td><td>601</td><td>16.0-</td><td>0.35</td><td>'n.</td><td>15</td><td>Pass</td><td>1</td></t<>	-		7 6	601	16.0-	0.35	'n.	15	Pass	1
2.9 2.5 1 8 2.5 9 3.3 4 0 6 1.7 46 3.5 3.5 2 6 1.7 46 2.7 2 2 6 1.7 46 2.7 2 2 1 3 39 2.7 2 1 5 1.1 4 2.0 2 1 5 1.1 4 2.0 3 2 5 1.3 39 2.0 2 1 5 1.1 4 4.0 3 2 4 1.2 4 4.0 3 2 4 1.2 4 4.0 3 3 1 4 1.5 4 4.0 3 4 1 4 1.5 4 4.3 4 1 4 1.5 4 4 4.3 4 1 1 4 1.5 4 5.0 5 1 4	• 4	0.4	+7	901	70.1-	0.11	4	15	Pass	1
45 5 2 6 1.7 46 3.3 4 0 6 1.7 46 4.5 3.5 2 6 1.7 140 4.5 3 4 0 6 1.7 140 2.7 2.7 2.5 1 5 1.3 39 2.7 2.5 1 5 1.3 39 2.7 2.5 1 5 1.3 39 2.3 3.5 2 2 4 1.2 23 2.0 7 2 7 2.7 140 3.5 3.5 2 2 1.3 39 2.0 3 1 6 1.9 44 4.0 2 1 4 1.5 44 4.5 4 1 4 1.3 4 4 5.8 3 3 4 1 4 1.3 4 5.8 4 3 4 1 4 1.4 1 <		5. 0	2,	133	1.71	0.087	4	15	Pass	1
3.5 3.5 2 6 1.7 40 4.5 3.5 3.5 2 6 1.7 140 2.7 2.5 3.5 2 6 1.7 140 2.7 2.5 3.5 2 6 1.7 140 2.7 2.5 1 5 1.3 39 2.0 2 2 4 1.2 23 34 2.0 3.5 1 5 1.3 39 44 1.2 23 34 41 4 1.5 44 41 1.5 44 44 44 1.5 44 44 44 1.5 44	- (÷ i ÷	× ;	195	86.0-	0.33	∞	15	Pass	1
3.5 3.5 3.5 3.5 3.5 3.5 3.5 4.5 1.0 4.6 4.5 1.2 1.40 4.6 4.5 1.2 1.40 4.6 4.1 1.2 2.3 3.9 4.6 4.1 1.2 2.3 3.9 4.6 4.1 4.1 1.0 4.6 4.1 <td< td=""><td>4 C</td><td></td><td>40</td><td>145</td><td>0.56</td><td>0.58</td><td>4</td><td>15</td><td>Pass</td><td>1</td></td<>	4 C		40	145	0.56	0.58	4	15	Pass	1
4.5 5.5 3 5 1.3 5 5.9 2.7 2.5 1 5 1.0 46 2.7 2.5 1 5 1.0 44 2.7 2.5 1 5 1.0 44 2.3 3.5 2 2 4 4 1.0 44 2.3 3.5 2 2 4 1.0 44 1.0 44 1.0 44 1.0 44 44 1.0 44 1.0 44 1.0 44 44 1.0 3.0	· (- :	140	211	-0.45	0.65	=	15	Pass	ř
2.7 2 2 3 1.0 46 2.6 2.7 2 2 4 1.0 46 2.7 2.5 1 5 1.1 5 41 2.7 2.5 1 5 1.2 23 3 2.3 3.5 2 5 1.3 39 34 2.3 2 0 5 1.9 54 4 4.0 2 0 5 1.9 54 4 4.0 2 1 4 1.5 44 5 1.3 39 5 5.0 4 1 4 1.0 3.0 8 5 33 6 44 6 1.9 49 49 5.0 4 1 0 5 1.9 4	7 .	E	36	152	-0.15	0.88	4	15	Pass	1
2.6 2 2 4 112 23 2.6 2 1 5 119 54 5.0 7 2.7 2.7 64 3.5 3.5 2 7 2.7 64 2.3 3.5 2 7 2.7 64 4.0 2 0 5 1.9 54 4.0 2 0 5 1.9 54 4.0 2 0 5 1.9 54 4.0 2 0 5 1.9 54 4.0 2 0 5 1.9 54 4.0 2 0 5 1.9 54 5.8 6 4 10 3.0 57 4.3 4 1 0 3.0 57 4.3 4 1 0 3.0 57 4.3 4 1 0 3 0 57 5.8 6 5 7 0 3 0 57 6.8 7 4 1 0 3 1 4 1 7.3 7.5 3 4 0 6 <td>2</td> <td>0.1</td> <td>46</td> <td>144</td> <td>09.0</td> <td>0.55</td> <td>4</td> <td>15</td> <td>Pass</td> <td></td>	2	0.1	46	144	09.0	0.55	4	15	Pass	
2.7 2.5 1 5 11.5 41 5.0 7 2.5 1 5 41 3.5 3.5 2 7 2.7 64 2.3 3.5 2 5 1.9 54 2.0 3.5 2 6 1.9 54 4.0 2 2 8 2.8 53 5.3 3 4 1.5 42 42 6.4 10 3.0 3.0 57 4.3 4 1 6 1.9 49 5.8 6 4 10 3.0 57 4.3 4 1 7 2.2 36 5.8 6 5 1 4 4 6 1.9 40 5.8 6 4 1 7 2.2 36 4 4 1.3 2.2 36 4 4 1.3 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 <t< td=""><td>2 2 4</td><td>1.2</td><td>23</td><td>149</td><td>-0.72</td><td>0.47</td><td>3</td><td>15</td><td>Pass</td><td></td></t<>	2 2 4	1.2	23	149	-0.72	0.47	3	15	Pass	
2.7 2.5 1 5 1.9 54 3.5 3.5 2 7 2.7 64 2.3 3.5 2 5 1.9 54 4.0 2 2 8 2.8 53 4.0 2 2 8 2.8 53 6.5 6 4 1.0 3.0 57 4.3 4 1 6 1.9 49 6.5 6 4 1.0 3.0 57 4.3 4 1 7 2.2 36 5.8 6 4 1.0 3.0 57 5.8 6 4 1.0 3.0 57 5.0 4 1.0 3.0 57 5.0 4 1.3 4 0.6 58 5.0 4 2 1 4 1.1 58 5.0 4 2 1 4 1.4 64 5.8 4 3 4 0 5 </td <td>2 1 5</td> <td>1.5</td> <td>41</td> <td>691</td> <td>-1.01</td> <td>0.31</td> <td>S</td> <td>15</td> <td>Page</td> <td>1 3</td>	2 1 5	1.5	41	691	-1.01	0.31	S	15	Page	1 3
5.0 7 2 7 2.7 64 3.5 3.5 2 5 1.3 39 2.3 2 0 5 1.9 50 4.0 2 2 8 2.8 42 4.0 2 2 8 2.8 4 5.3 3 1 6 1.9 40 6.5 6 4 10 30 53 6.5 6 4 10 30 57 8.3 3.5 3 4 10 30 57 8.8 3.5 3 4 10 30 57 8.8 4 1 7 2.2 38 46 1.8 2 3 4 1.3 46 46 1.8 2 4 1 1 4 46 46 1.8 2 3 1 5 1.4 64 46 1.3 4 3 4 0.6 5 1.	2.5 1 5	6.1	54	177	-0.95	0.34	9	15	Dace	
3.5 3.5 2 5 11.3 39 2.6 3 1 4 11.5 42 4.0 2 2 8 2.8 53 4.0 2 2 8 2.8 53 5.3 3 1 6 1.9 49 6.5 6 4 10 3.0 57 4.3 4 10 3.0 57 5.0 4 1 7 2.2 36 5.8 6 5 7 0.8 72 5.0 4 1 7 2.2 88 5.0 4 1 7 2.2 88 5.0 4 1 1 4 1 5.0 4 2 1 4 1 5.0 4 2 1 4 1 5.0 4 2 1 4 1 5.8 4 0 3 1 4 6.2 5	7 2 7	2.7	64	147	0.97	0.33	٧.	2	Pass	1
2.3 2 0 5 1.9 50 2.6 3 1 4 1.5 42 4.0 2 2 8 2.8 53 5.3 2 1 6 1.9 49 6.5 6 4 10 6 1.9 49 6.5 6 4 10 3.0 57 8.3 3.5 3 4 0.6 39 8.8 3 4 0.6 39 8.0 4 1 7 2.2 88 8.0 4 1 4 1.3 29 8.0 4 2 1 4 1.3 29 8.0 4 2 1 4 1.3 4 8.0 4 2 1 4 1.3 4 8.0 3.5 2 5 1.4 64 8.0 3 1 5 1.4 64 8.0 1 3 4 1.3 4 1.3 8.0 1 3 4 1.3 4 1.3 8.0 1 3 4 1.3 <td< td=""><td>3.5 2 5</td><td><u></u></td><td>39</td><td>152</td><td>-0.15</td><td>880</td><td>. 4</td><td>2 2</td><td>rass</td><td>1</td></td<>	3.5 2 5	<u></u>	39	152	-0.15	880	. 4	2 2	rass	1
26 3 1 4 11.5 42 2.3 2 2 8 2.8 53 2.3 2 1 6 1.9 49 6.5 6 4 10 3.0 88 6.5 6 4 10 3.0 87 6.5 6 4 10 3.0 87 8.3 3.5 3 4 0.6 39 8.8 3 4 0.6 39 8.0 4 1 4 1.3 29 8.0 4 2 1 4 1.3 29 8.0 4 2 1 4 1.3 29 8.0 4 2 1 4 1.3 46 8.0 4 2 1 4 1.3 46 8.0 3.5 2 5 1.4 64 8.0 3.5 2 5 1.4 64 8.0 4 3 4 1.3 46 8.2 6 1.3 3.8 1.28 8.2 7 1 4 1.3 46 8.2 <td></td> <td>6.1</td> <td>50</td> <td>181</td> <td>1 26</td> <td>0.00</td> <td>+ 4</td> <td>51</td> <td>Pass</td> <td>î</td>		6.1	50	181	1 26	0.00	+ 4	51	Pass	î
4.0 2 2 8 2.8 53 2.3 2 1 6 1.9 49 3.3 3 1 6 1.9 49 4.3 4 1 7 2.2 36 4.3 4 1 7 2.2 36 5.8 6 5 7 0.8 72 5.8 6 5 7 0.8 72 5.0 4 2 7 0.8 72 5.0 4 2 5 1.5 29 5.0 4 2 5 1.5 29 5.0 4 2 5 1.5 29 5.0 3 1 5 1.4 64 5.8 2.5 1 4 1.3 4 4.4 5 2 5 1.4 64 5.8 4 3 4 0.5 4 4 7.3 7.5 3 1 3 4 4<	3 1 4	5	47	168	200	25.0	0 4	2 :	Pass	1
2.3 2 1 6 1.9 49 6.5 6 4 10 3.0 57 4.3 4 1 7 2.2 36 5.8 6 5 7 0.8 72 5.8 6 5 7 0.8 72 5.0 4 1 7 2.2 88 3.7 4 1 7 2.2 88 3.7 4 1 4 0.6 39 5.0 4 1 4 1.3 29 5.0 4 2 1 4 1 7.8 2 1 4 1.4 58 3.5 3.5 2 5 1.4 64 2.8 2.5 1 5 1.4 64 4.4 5 2 5 1.4 64 4.4 5 2 5 1.4 64 4.4 5 2 6 1.8 58 7.3 7.5 3 1 3 4 6 4.4 5 2 6 1.8 6 1 4.4 5<	2 2 2	, c	7 5	167	0.93	0.35	0 (2 :	Pass	ij
3.3 3 1 6 2.2 36 6.5 6 4 10 3.0 57 4.3 4 1 7 2.2 38 5.8 6 5 7 0.6 39 5.8 6 5 7 0.6 39 5.0 4 2 1 4 1.3 29 5.0 4 2 1 4 1.3 29 5.0 4 2 1 4 1.3 29 1.8 2 1 4 1.3 46 1.8 2.5 1 5 1.4 64 2.8 2.5 1 5 1.4 64 2.8 4 3 4 0.5 42 4.4 5 2 6 1.8 58 7.3 7.5 3 1 4 1 4.2 1 4 1 3 4 6 4.4 5 2 6 1.8 58 7.3 4 2 11 3 4 4 4.8 4 2 1 4 1	2	0 -	40	193	50.0	0.00	0	15	Pass	1
6.5 6 4 10 3.0 57 4.3 4 1 7 2.2 88 3.5 3.5 3 4 0.6 39 5.8 6 5 7 0.8 72 2.3 2 1 4 0.6 39 3.7 4 2 1 4 1.3 29 3.7 4 2 1 4 1.3 29 3.7 4 2 10 3.5 46 1.8 2 0 3 1.4 64 3.8 4 3 1 5 1.4 64 3.8 4 3 4 0.5 42 42 4.4 5 2 5 1.4 64 4.8 4 3 4 0.5 42 4.8 4 2 11 3.3 46 4.8 4 2 11 3.2 46 4.8 4 2 <	3	,,,	3,6	691	65.1-	0.17	٥.	5	Pass	I)
4.3 4 1 7 2.5 88 3.5 3.5 3 4 0.6 39 5.8 6 5 7 0.8 72 2.3 2 1 4 0.6 39 3.7 4 2 1 4 0.6 39 5.0 4 2 1 4 4 6 39 5.0 4 2 1 4 4 1.3 29 46 1.8 2 0 3 1.5 29 46 46 46 3.5 3.5 2 5 1.4 64 58 42 42 1.7 32 42 42 42 42 42 42 42 44 5 5 1.4 44 5 44 44 5 5 4 44 44 44 44 44 1.3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 4		55	134	14.0-	60.0	4 .	5	Pass	1
3.5 3.5 3 4 0.6 39 5.8 6 5 7 0.8 72 2.3 2 1 4 1.3 29 3.7 4 2 1 4 1.3 29 5.0 4 2 10 3.5 46 1.8 2 0 3 1.5 29 3.0 3 1 5 1.4 64 2.8 2.5 1 5 1.4 64 2.8 2.5 1 5 1.4 64 4.4 5 5 1.4 64 4.4 5 6 1.8 58 7.3 7.5 3 13 3.8 128 4.8 4 2 11 3.2 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467		5.0	200	134	/0.1	0.095	4 1	15	Pass	1
5.8 6 5 7 0.8 72 2.3 2 1 4 1.3 29 3.7 4 2 10 3.5 46 5.0 4 2 10 3.5 46 1.8 2 0 3 1.5 29 3.0 3 1 5 1.4 64 2.8 2.5 1 5 1.4 64 2.8 4 3 4 0.5 42 4.4 5 2 6 1.8 58 7.3 7.5 3 13 3.8 128 4.8 4 2 11 3.2 46 4.8 4 2 11 3.2 73 6.8 6 2 4 10 2.4 89 6.8 6 2 15 3.5 467		3 9	30	100	0.50	0.62	7	15	Pass	1
2.3 2 1 4 1.3 29 5.0 4 2 1 4 1.3 29 5.0 4 2 1 3.5 1.5 29 1.8 2 0 3 1.5 29 3.0 3 1 5 1.4 64 2.8 2.5 1 5 1.4 64 2.8 2.5 1 5 1.7 32 3.8 4 3 4 0.5 42 4.4 5 2 6 1.8 58 7.3 7.5 3 13 46 4.8 4 2 11 3.2 46 4.8 4 2 11 3.2 73 6.8 6 2 4 89 6.8 6 3.5 467	n v	0.0	5 6	121	0.70	0.92	4	15	Pass	1
3.7 4 2 5 1.5 29 5.0 4 2 10 3.5 29 1.8 2 10 3.5 46 3.0 3 1 5 1.4 64 2.8 2.5 1 5 1.4 64 2.8 2.5 1 5 1.4 64 3.8 4 3 4 64 32 44 5 2 6 1.8 58 7.3 7.5 3 13 3.8 128 2.0 1.5 1 4 1.3 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467) -	0.0	7/	139	89.1	0.094	2	15	Pass	1
5.0 4 2 10 3.5 29 1.8 2 0 3 1.5 25 3.0 3 1 5 1.4 58 3.5 2.5 1 5 1.4 64 2.8 2.5 1 5 1.4 64 3.8 4 0.5 1.7 32 4.4 5 2 6 1.8 58 7.3 7.5 3 13 3.8 128 2.0 1.5 1 4 1.3 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467	20 70	5.	29	162	-1.16	0.24	4	15	Pass	9
1.8 2 0 3 1.5 46 3.6 3 1 5 1.4 64 2.8 2.5 1 5 1.4 64 2.8 2.5 1 5 1.4 64 3.8 4 3 4 0.5 42 4.4 5 2 6 1.8 58 7.3 7.5 3 13 3.8 128 2.0 1.5 1 4 1.3 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467		C .	67	143	0.00	00.1	3	15	Pass	ı
3.0 3 1 5 1.4 58 3.5 2.5 1 5 1.4 64 2.8 2.5 1 5 1.7 32 3.8 4 3 4 0.5 42 4.4 5 2 6 1.8 58 7.3 7.5 3 13 3.8 128 2.0 1.5 1 4 1.3 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467		0.5	46	144	19.0	0.54	4	15	Pass	3
3.5 3.5 2 5 1.4 58 2.8 2.5 1 5 1.4 64 2.8 2.5 1 5 1.7 32 3.8 4 3 4 0.5 42 4.4 5 2 6 1.8 58 7.3 7.5 3 13 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467		2	57	166	-1.57	0.12	4	15	Pass	1
2.8 2.5 1 5 1.4 64 3.8 4 3 4 0.5 42 4.4 5 2 6 1.8 58 7.3 7.5 3 13 46 4.8 4 1.3 46 4.8 4 2 11 3.2 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467	- (- :	28	174	-0.67	0.50	9	15	Pass	,
3.8 4 3 4 0.5 42 4.4 5 2 6 1.8 58 7.3 7.5 3 13 3.8 128 2.0 1.5 1 4 1.3 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467	۷.	4.	64	891	-0.20	0.84	9	15	Pass	1
3.8 4 3 4 0.5 42 4.4 5 2 6 1.8 58 7.3 7.5 3 13 3.8 128 2.0 1.5 1 4 1.3 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467		1.7	32	158	-0.81	0.42	4	15	Pass	
4.4 5 2 6 1.8 58 7.3 7.5 3 13 3.8 128 2.0 1.5 1 4 1.3 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467	m	0.5	42	149	0.15	0.88	4	15	Pass	1
7.3 7.5 3 13 3.8 128 2.0 1.5 1 4 1.3 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467	2	8.	58	152	0.49	0.63	5	15	Pass	
2.0 1.5 1 4 1.3 46 4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467	٤	3.8	128	148	2.08	0.037	œ	5	Fail	Current
4.8 4 2 11 3.2 73 6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467 1		<u></u>	46	186	-1.62	0.11	9	15	Pass	for inc
6.2 5.5 4 10 2.4 89 6.8 6 2 15 3.5 467 1	2	3.2	73	158	0.55	0.58	9	15	Pass	
6.8 6 2 15 3.5 467	4	2.4	68	142	18.1	0.070	9	15	Pass	: :
	2	3.5	467	199	2.5	0.011	21	15	Fail	Common
	T a		20000	* Yankoza	120000	-	:	-		Survey

Summary of WRS Test Table 4-15

Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background
SEAD-12 Building Report
Seneca Army Denot Activity

Application (Ambrillation) Minimal (Ambrillation) Minimal (Ambrillation) Application (Ambrillation) Application) Application (Ambrillation) Application) Application (Ambrillation) Application) Application (Ambrillation) Application) Appl	Mannent					מ	eneca Army	Seneca Army Depot Activity	ıty						
(cpm) (cpm) (cpm) (cpm) Rank Sam Rank Sam 2 per 13 per 13 Valid N Valid N Valid N Applies of the official of	Instrument/ Survey	Mean	Median	Minimum	Maximum	St Dev	Survey	Background		level a	Survey	Background	Pass/Fail		
8 2 21 48 833 201 3.46 5.6E-641 30 15 Physical Physic	Area "	(cpm) N	(cbm)	(срт)	(cbm)	(cbm)	Rank Sum	Rank Sum	4	h-icvei	Valid N	N PileA	Background?	Higher if Fail	
10	AFM810R21	8.4	80	2	21	4.8	833	203	3.45	5 KF-04	30	A SING IA	Aipna = 0.05		
1	AFM815R1	2.8	0.5	0	10	3.9	77	661	-1 24	0.22	8	6 5	Fail	Survey	
4.5 2. 5 1.4 99 178 0.16 0.75 8 1.5 Phass 9 9 9 9 1.4 99 178 0.16 0.35 8 1.5 Phass 6 3 1.0 1.4 9.0 1.15 1.16 0.25 3 1.5 Phass 6 3 1.0 1.4 9.0 1.13 1.10 0.25 3 1.5 Phass 6 3 1.0 1.1 2.7 3.8 1.13 1.0 0.3 3 1.5 Phass 6 1.1 2.7 3.8 1.0 2.0 0.0 3 1.5 Phass 6 1.1 2.7 3.8 1.0 2.4 0.0 1.1 1.0 9.5 1.5 Phass 7 4 1.1 2.7 3.9 1.1 0.0 3 1.5 Phass 8 1.1	AFM815R2	1.0	-	-		NA K	×Z	. Z	Z	Z	o –	<u>.</u>	Pass	ł	
9 9 9 NA NA NA NA PA Frais 4 4 4 4 4 7 14 66 145 17 0.45 2 15 Frais 6 3 10 3.5 3.6 113 1.16 0.65 3 15 Phass 6 3 11 2.7 3.8 133 1.10 0.05 4 15 Phass 6 1 1 2.7 3.8 133 1.14 0.06 4 15 Phass 6 1 1 2.7 3.8 133 1.14 0.06 4 15 Phass 7 4 1 1.2 2.8 0.06 0.05 1 Phass 8 1 1.8 1.9 1.4 1.0 2.4 0.06 0.05 1 Phass 4 1 1.0 0.0 1.1	AFM815R3	3.9	4.5	2	5	1.4	66	178	91.0	0.67	- 0	C .	Pass -	ı	
\$ \$	AFM815R4	0.6	6	6	6	X	× Z	2 2	2 2	0.0	۰ -	2 :	Pass	ŧ	
4 4 4 7 14 66 145 170 0.45 5 15 Phass 6 3 11 27 38 133 110 0.25 3 15 Phass 8 3 11 27 38 133 114 0.26 3 15 Phass 8 3 9 2.8 133 1.14 0.26 3 15 Phass 6 1 1 2.4 499 2.4 1.20 0.05 3 1.5 Phass 7 4 11 2.6 1.30 0.01 1.1 1.5 Phass 7 4 11 2.6 1.30 1.00 0.05 3 1.5 Phass 8 1.6 1.7 4.0 0.05 0.55 2.5 1.5 Phass 9 1.8 1.6 1.1 0.05 0.55 1.2 1.5	AFM815R5	5.0	S	2	۶	00	23	130	27.0	< .	- (5	Fail	:	
6 3 10 3.5 3.6 135 110 0.25 3 15 Phass 6 4 5 11 2.7 3.8 132 112 0.05 4 15 Phass 8 4 7 1 1.5 3.4 499 131 1.4 0.06 4 15 Phass 6 1 1.2 3.4 499 1.31 1.4 0.06 4 1.5 Phass 7 4 1.1 1.2 3.4 499 1.31 1.4 0.06 4 1.5 Phass 7 4 1.1 1.2 3.4 499 1.0	AFM815R6	5.0	4	4	7	4-1	6,4	130	0.75	0.45	7	12	Pass	ı	
6 5 11 27 38 135 120 0.63 4 15 Phass 8 3 4 7 115 38 133 114 0.05 3 15 Phass 6 1 1 2.6 133 114 0.05 3 15 Phass 5 3 1.8 6 131 1.0 0.04 4 15 Phass 5 3 1.8 1.0 2.04 2.52 0.01 1 Phass 7 4 1.1 2.6 81 1.0	AFM815R7	6.3	9	~	. 0		30	145	0 0	0.25	n (Pass	1	
5 4 7 1 3 13 14 0.00 4 15 Pass 6 3 1 3 13 14 0.00 4 15 Pass 6 3 1 3 2.8 60 131 2.0 0.06 3 15 Pass 5 3 9 1.8 183 168 1.8 0.01 2.7 15 Pass 5 3 9 1.8 183 168 1.8 0.01 2.4 10.7 1.8 Pass 4 1 2.6 8 1.9 1.4 1.0 0.0 1.1 1.8 Pass 4 2 6 1.4 1.67 2.1 0.0 0.0 1.5 Pass 3 1.1 2.7 3.4 3.7 3.7 3.2 1.8 Pass 4 1.0 3.0 3.2 3.2 3.2	AFM815R8	7.0	9	2	2 =	7.0	58	133	07.1	0.23	ς.	5 :	Pass	1	
8 3 9 2.8 60 135 10 0.050 3 15 Plass 6 1 1 3.4 499 284 2.52 0.012 2.2 15 Fail 7 4 1 1.6 81 1.90 2.46 0.014 5 15 Fail 7 4 1 1.6 492 234 0.05 2.6 1.6 Plass 7 4 1 1.6 402 2.3 0.07 1.6 1.8 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.8	AFM815R9	5.3	2	. 4	. 7		38	132	79.1	0.069	4 (2 :	Pass	ı	
6 1 13 3.4 400 151 2.0 0.050 4 15 Fall 5 4 11 3.4 400 151 12 15 Fall 5 4 11 2.6 81 1.9 183 1.68 1.8 0.01 1.1 15 Fall 3 1 8 1.9 4.92 23.9 -0.6 0.55 2.5 15 Fall 4 0 10 1.2 340 2.5 0.3 0.95 1.2 15 Fall 3 1 8 1.6 1.68 2.46 0.05 0.9 1.5 1.5 Fall 4 0 1.1 2.7 340 2.5 0.3 0.3 2.6 1.5 Pass 1 0 1.1 1.4 1.42 1.42 1.42 1.42 1.8 1.1 1.8 1.8 1.1 1.8 1.8 </td <td>AFM815R10</td> <td>7.0</td> <td>œ</td> <td>~</td> <td>. 0</td> <td></td> <td>000</td> <td>66.</td> <td>4 6</td> <td>0.20</td> <td>2</td> <td>15</td> <td>Pass</td> <td>1</td> <td></td>	AFM815R10	7.0	œ	~	. 0		000	66.	4 6	0.20	2	15	Pass	1	
5 3 9 1.84 1.87 1.84 1.87 0.01 2.84 0.01 2.75 1.81 1.89 1.89 1.89 1.80 0.01 2.75 1.85 Fail 7 4 1.1 2.6 8.1 1.9 492 323 0.05 2.5 1.5 Fails 4 2 6 1.4 167 2.46 0.014 5 1.5 Fails 4 0 1.0 2.7 340 2.55 0.3 0.79 1.9 1.5 Fails 3 1 8 1.6 1.68 391 -1.2 0.22 1.5 Fails Fails 4 0 1.1 2.7 340 2.3 0.3 2.2 1.5 Fails Fails 2 0 1.1 1.0 1.1 1.0 0.3 2.2 1.5 Fails 3 1 2 2.2 3.4	AFM815R11	6.7	ی د	, -	. =	2.4	00	131	2.0	0.050	4	15	Fail	Survey	
7 4 11 2.6 81 108 14 0.01 1 15 Pass 3 1 4 1.0 492 329 -0.6 0.55 25 15 Pass 4 2 6 1.4 462 329 -0.6 0.55 15 Pass 4 2 6 1.4 462 329 -0.6 0.5 15 Pass 3 1 8 1.6 1.4 167 221 -0.6 0.5 15 Pass 4 0 1 1 1.6 2.3 0.73 2.5 15 Pass 2 2 2 0.0 1.1 4.4 167 -0.8 2.4 0.01 2.4 0.01 2.5 15 Pass 1 0 0 6 2.8 4.4 167 -1.0 0.23 2 15 Pass 2 0	AFM815R12	5 8	· ·		20		664	507	75.7	0.012	22	15	Fail	Survey	
3 1 240 91 246 0.04 5 15 Fail 4 2 6 14 167 211 -0.05 0.96 12 15 Pass 4 2 6 14 167 211 -0.05 0.96 12 15 Pass 3 1 8 1.6 144 167 21 -0.05 0.96 15 Pass 4 0 11 2.7 559 303 0.73 26 15 Pass 2 2 2 0 11 1.0	AFM815R13	16	, 1	7	· :	0.6	8.3	891	∞.	0.071	=	15	Pass	,	
4 2 6 1.9 492 239 -0.6 0.55 25 15 Pass 4 2 6 1.9 492 237 -0.6 0.55 25 15 Pass 3 1 8 1.6 1.88 391 -1.2 0.22 52 15 Pass 3 0 1 1 2.7 340 255 0.3 0.79 19 15 Pass 2 0 1 2.7 2.1 1.4 1.7 0.8 2.2 15 Pass 1 0 6 2.8 4.4 167 -0.3 0.79 19 15 Pass 2 0 6 2.8 4.4 167 -0.3 0.79 19 15 Pass 1 7 2.1 6.0 1.4 167 -0.3 0.79 19 15 Pass 2 1 7 <td>AFM815R14</td> <td></td> <td>. [</td> <td>-</td> <td>: 0</td> <td>0.7</td> <td>18</td> <td>130</td> <td>2.46</td> <td>0.014</td> <td>v</td> <td>15</td> <td>Fail</td> <td>Survey</td> <td></td>	AFM815R14		. [-	: 0	0.7	18	130	2.46	0.014	v	15	Fail	Survey	
4 6 1 16 251 -0.05 0.96 12 15 Pass 3 1 8 1.6 1.84 251 -0.05 0.96 12 15 Pass 4 0 11 2.7 559 303 0.3 0.73 26 15 Pass 3 0 6 1.8 1.6 1.8 30.3 0.73 26 15 Pass 1 0 8 1.7 4.26 394 -2.49 0.013 22 15 Pass 1 0 8 1.7 4.26 394 -2.49 0.013 22 15 Pass 1 0 3 1.1 4.26 394 -2.49 0.013 22 15 Pass 2.5 0 8 1.7 4.26 1.70 -0.49 8 15 Pass 2.5 0 8 1.7 2.0	AFM815R16	2.5	0 4		× ×	y. ;	492	329	9.0-	0.55	25	15	Pass		
4 0 10 27 340 255 0.3 0.79 19 15 Passs 4 0 11 2.7 559 303 0.12 25 15 Passs 3 0 1 1.6 1688 393 -0.3 0.73 26 15 Passs 2 2 2 2 4 167 -0.8 0.43 5 15 Passs 1 0 8 1.7 4.26 394 -0.39 0.69 6 15 Passs 1 0 3 1.1 2.7 4.26 394 -0.39 0.69 6 15 Passs 1 0 3 1.1 3 4.26 191 -0.39 0.69 6 15 Passs 2.5 0 3 1.1 2.7 1.01 0.08 5 15 Passs 4.9 4.1 2.2	AEM816D2		,	7 0	0 3	1.4	167	211	-0.05	96.0	12	15	Pass	1	
4 1 8 16 1688 591 -1.2 0.22 52 15 Passs 3 0 1 1 27 559 303 0.3 0.73 26 15 Passs 2 2 0 11 142 -1.06 0.29 2 15 Passs 3 1 0 8 1.7 426 394 -2.49 0.013 25 15 Passs 1 0 8 1.7 426 394 -2.49 0.013 25 15 Passs 1 0 8 1.7 426 394 -2.49 0.013 25 15 Passs 1 0 3 1.1 30 181 -2.03 0.043 5 15 Passs 4 2 1 1 0.043 5 15 Passs 4 2 1 1 0.043 5<	AEM816B2	7 0	+ 1	٠.	0 ,	2.7	340	255	0.3	0.79	16	15	Pass	1	
4 0 11 27 559 303 0.73 26 15 Pass 2 2 2 2 4 167 -0.8 0.43 5 15 Pass 1 0 8 1.7 426 394 -2.49 0.013 25 15 Pass 1 0 8 1.7 426 394 -2.49 0.013 25 15 Pass 1 0 3 1.1 30 181 -2.49 0.01 5 15 Pass 1 0 3 1.1 30 181 0.69 6 15 Pass 1 0 3 1.1 30 181 0.043 5 15 Pass 4 2.5 8 191 0.68 0.49 5 15 Pass 4 2.1 10 0.68 0.49 5 15 Pass	AEMOIORS	6.7	η,	- (∞ ;	9.1	1688	591	-1.2	0.22	52	15	Pass	1	
3 0 6 2.8 44 167 -0.8 0.43 5 15 Pass 1 0 8 1.7 426 394 -2.49 0.013 25 15 Pass 1 0 8 1.7 426 394 -2.49 0.013 25 15 Pass 5 0 8 1.7 61 170 0.39 0.69 6 15 Pass 1 0 3 1.1 30 181 -2.03 0.043 5 15 Pass 2.5 0 8 2.5 8 191 -0.68 0.49 8 15 Pass 4.5 1.1 2.7 161 190 0.68 0.51 11 15 Pass 4.5 1.8 2.5 8 191 -1.70 0.089 5 15 Pass 4.5 1.8 2.5 1.3 1.7	AFM810K4	2.4	4	0	=	2.7	529	303	0.3	0.73	56	15	Pass	1	
2 2 2 0 11 142 -1.06 0.29 2 15 Pass 3 1 7 2.1 6.1 170 -0.39 0.013 25 15 Pass 5 0 3 1.1 30 181 -2.49 0.013 5 15 Pass 1 0 3 1.1 30 181 -2.03 0.043 5 15 Pass 1 0 8 2.5 86 191 -0.68 0.49 8 15 Pass 4 2 11 2.7 161 190 0.66 0.51 11 15 Pass 451 18 2.5 86 191 -0.68 0.51 11 15 Pass 479.5 182 2.5 182 2.13 11 15 Pass 49.1 464 495 182 -1.32 0.19 6	ArM816K/	2.8	m	0	9	2.8	44	167	8.0-	0.43	5	15	Pass		
1 0 8 1.7 426 394 -2.49 0.013 25 15 Fail 3	AFM816KII	2.0	2	7	7	0.0	=	142	-1.06	0.29	2	15	Pass	6 1	
3 1 7 2.1 61 170 -0.39 0.69 6 15 Pass 1 0 3 1.1 30 181 -0.68 0.69 5 15 Pass 1 0 3 1.1 30 181 -0.68 0.043 5 15 Pass 4 2 1 1 2.7 161 190 0.66 0.51 11 15 Pass 651 181 6.8 2.59 3.3 177 -1.70 0.089 5 15 Pass 651 181 6.8 2.59 3.3 177 -1.70 0.089 5 15 Pass 479.5 417 1040 304 49 182 -1.32 0.19 6 15 Pass 515 450 25 13 15 187 -2.28 0.010 5 15 Fail 471.5	AFM816K13	2.0		0	∞	1.7	426	394	-2.49	0.013	25	15	Fail	Rackaraind	
5 0 5 22 54 156 0.13 0.89 5 15 Pass 1 0 3 1.1 30 181 -2.03 0.043 5 15 Fail 4 2 0 8 2.5 86 191 -0.68 0.49 8 15 Fail 4 2 11 2.7 161 190 0.66 0.51 11 15 Pass 651 181 6.68 2.59 33 177 -1.70 0.089 5 15 Pass 479.5 417 1040 304 49 182 -1.32 0.19 6 15 Pass 491 464 495 13 15 182 -2.58 0.010 5 15 Pail 515 490 549 25 18 172 -2.20 0.028 4 15 Pail 486	AFM817R1	3.3	3		7	2.1	19	170	-0.39	69'0	9	15	Pace	Dackground	
1 0 3 1.1 30 181 -2.03 0.043 5 15 Fail 4 2 11 2.7 161 190 -0.68 0.49 8 15 Pass 651 181 668 2.5 161 190 0.66 0.51 11 15 Pass 479.5 417 1040 304 49 182 -1.32 0.19 6 15 Pass 479.5 417 1040 304 49 182 -1.32 0.19 6 15 Pass 479.5 417 1040 304 49 182 -1.32 0.19 6 15 Pass 479.1 464 495 13 15 182 -3.27 0.01 5 15 Fail 541.5 513 52 18 172 -2.40 0.028 4 15 Fail 440.6 458	AFM817R2	3.8	S	0	5	2.2	54	156	0.13	0.89	5	15	Pass		
2.5 0 8 191 -0.68 0.49 8 15 Pass 4 2 11 2.7 161 190 0.66 0.51 11 15 Pass 651 181 2.7 161 190 0.66 0.51 11 15 Pass 479.5 417 1640 304 49 182 -1.32 0.19 6 15 Pass 573 481 464 495 13 15 182 -1.32 0.19 6 15 Pass 51.5 491 464 495 13 15 172 -2.58 0.010 5 15 Fail 51.5 490 549 25 18 172 -2.40 0.016 4 15 Fail 496 458 516 25 18 174 23 174 18-2 4 15 Fail 484 416	AFM823KI	1.4	-	0	3	Ξ	30	181	-2.03	0.043	5	15	Fail	Backoround	
4 2 11 2.7 161 190 0.66 0.51 11 15 Pass 651 181 668 259 33 177 -1.70 0.089 5 15 Pass 479.5 417 1040 304 49 182 -1.32 0.19 6 15 Pass 573 182 599 217 23 187 -2.58 0.010 5 15 Pass 491 464 495 13 15 187 -2.58 0.010 5 15 Fail 515 490 549 25 16 174 -2.40 0.016 4 15 Fail 471.5 116 519 18 174 -2.40 0.016 4 15 Fail 496 458 516 25 13 177 -2.70 0.0069 4 15 Fail 502.5 462	AFM824KI	1.5	2.5	0	∞ :	2.5	98	161	-0.68	0.49	8	15	Pass	-	
651 181 668 259 33 177 -1.70 0.089 5 15 Pass 479.5 417 1040 304 49 182 -1.32 0.19 6 15 Pass 573 182 518 217 23 187 -2.58 0.010 5 15 Fail 491 464 495 13 15 187 -2.58 0.010 5 15 Fail 515 490 549 25 16 172 -2.20 0.028 4 15 Fail 471.5 116 519 142 38 238 -3.74 1.8E-04 8 15 Fail 496 458 516 25 13 177 -2.70 0.0069 4 15 Fail 502.5 462 560 46 14 72 279 -2.60 0.0069 4 15 Fail	AFINIOZORI	4.0	4	7	=	2.7	191	190	99.0	0.51	=	15	Pass	1	
469 651 181 668 259 33 177 -1.70 0.089 5 15 Pass 649 479.5 417 1040 304 49 182 -1.32 0.019 6 15 Pass 424 573 182 599 217 23 187 -2.58 0.010 5 15 Fail 485 491 464 495 13 15 172 -2.20 0.028 4 15 Fail 543 541.5 513 576 26 18 172 -2.20 0.028 4 15 Fail 517 515 490 549 25 16 174 -2.40 0.016 4 15 Fail 410 471.5 116 519 142 38 238 -3.74 1.8E-04 8 15 Fail 492 496 458 549 44 72	BETA FLOOR MO	ONITOR													
649 479.5 417 1040 304 499 182 -1.75 0.037 5 15 Passs 424 573 182 599 217 23 187 -2.58 0.010 5 15 Passs 485 491 464 495 113 15 195 -2.50 0.010 5 15 Passs 543 541.5 513 576 26 18 172 -2.20 0.028 4 15 Fail 517 515 490 549 25 16 174 -2.40 0.016 4 15 Fail 410 471.5 116 519 142 38 238 -3.74 1.8E-04 8 15 Fail 492 496 458 516 25 13 177 -2.70 0.0069 4 15 Fail 507 502.5 462 560 46 14	BFM800R1	469	159	181	899	259	33	177	1 70	0800		31	4		
424 573 182 599 217 23 187 -2.58 0.010 5 15 Fail 485 491 464 495 13 15 195 -3.77 0.001 5 15 Fail 543 541.5 513 576 26 18 172 -2.20 0.028 4 15 Fail 517 515 490 549 25 16 174 -2.40 0.016 4 15 Fail 492 496 458 519 142 38 238 -3.74 1.8E-04 8 15 Fail 479 496 458 516 25 13 177 -2.70 0.0069 4 15 Fail 507 502.5 462 560 46 14 72 2.60 0.009 4 15 Fail 50 545 514 635 58 21	BFM800R2	646	479.5	417	1040	304	46	182	-1.32	0.06	י ר	<u> </u>	Pass	;	
485 491 464 495 13 15 195 -3.77 0.001 5 15 Fail 543 541.5 513 576 26 18 172 -2.20 0.028 4 15 Fail 517 515 490 549 25 16 174 -2.40 0.016 4 15 Fail 492 496 458 519 142 38 238 -3.74 1.8E-04 8 15 Fail 492 496 458 516 25 13 177 -2.70 0.0069 4 15 Fail 479 484 416 549 44 72 279 -3.97 7.2E-05 11 15 Fail 507 502.5 462 560 46 14 176 -2.60 0.009 4 15 Fail 500 545 514 635 58 21	BFM800R3	424	573	182	865	217	23	187	-2 58	0100	· v	5 2	Fass	:	
543 541.5 513 576 26 18 172 -2.20 0.028 4 15 Fail 517 515 490 549 25 16 174 -2.40 0.016 4 15 Fail 410 471.5 116 519 142 38 238 -3.74 1.8E-04 8 15 Fail 492 496 458 516 25 13 177 -2.70 0.0069 4 15 Fail 479 484 416 549 44 72 279 -3.97 7.2E-05 11 15 Fail 507 502.5 462 560 46 14 176 -2.60 0.009 4 15 Fail 500 545 514 635 58 21 169 -1.90 0.057 4 15 Pars	BFM802R1	485	491	464	495	13	15	195	-3 27	0 001	5	51	Earl	Dackground	
517 515 490 549 25 16 174 -2.40 0.016 4 15 Fall 410 471.5 116 519 142 38 238 -3.74 0.016 4 15 Fall 492 496 458 516 25 13 177 -2.70 0.0069 4 15 Fall 479 484 416 549 44 72 279 -3.97 7.2E-05 11 15 Fall 507 502.5 462 560 46 14 176 -2.60 0.009 4 15 Fall 560 545 514 635 58 21 169 -1.90 0.057 4 15 Pars	BFM802R2	543	541.5	513	576	26	81	172	-2 20	0.028	7	2 2	rall	Background	
410 471.5 116 519 142 38 238 -3.74 1.8E-04 8 15 Fail 492 496 458 516 25 13 177 -2.70 0.0069 4 15 Fail 479 484 416 549 44 72 279 -3.97 7.2E-05 11 15 Fail 507 502.5 462 560 46 14 176 -2.60 0.009 4 15 Fail 560 545 514 635 58 21 169 -1.90 0.057 4 15 Pars	BFM802R3	517	515	490	549	25	91	174	-2 40	0.016	4	. <u>.</u>	L'all	Background	
492 496 458 516 25 13 177 -2.70 0.0069 4 15 Fail 479 484 416 549 44 72 279 -3.97 7.2E-05 11 15 Fail 507 502.5 462 560 46 14 176 -2.60 0.009 4 15 Fail 560 545 514 635 58 21 169 -1.90 0.057 4 15 Pass	BFM802R4	410	471.5	911	519	142	38	238	-3.74	1.8E-04	- 00	2 2	Fail	Background	
479 484 416 549 44 72 279 -3.97 7.2E-05 11 15 Fail 507 502.5 462 560 46 14 176 -2.60 0.009 4 15 Fail 560 545 514 635 58 21 169 -1.90 0.057 4 15 Passs	BFM802R5A	492	496	458	516	25	13	177	-2.70	69000	4	; 5	Fail	Background	
507 502.5 462 560 46 14 176 -2.60 0.009 4 15 Fair 560 545 514 635 58 21 169 -1.90 0.057 4 15 Pass	BFM802R5B	479	484	416	549	44	72	279	-3.97	7.2E-05		<u>.</u>	Fail	Background	
560 545 514 635 58 21 169 -1.90 0.057 4 15 Pares	BFM802R5D	202	502.5	462	999	46	14	176	-2.60	0.009	4	5 2	Fair	Background	
	BFM802R6	260	545	514	635	58	21	691	-1.90	0.057	4	. 2	Pace	Dackground	

Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Seneca Army Depot Activity Summary of WRS Test Table 4-15

Meaning					ñ	eneca Army	Seneca Army Depot Activity	Ž					
Instrument/ Survey	Mean	Median	Minimum	Maximum	St Dev	Survey	Background		n level	Survey	Background	Pass/Fail	
Area "	(cpm) ^{b/}	(cbm)	(срт)	(cbm)	(cbm)	Rank Sum	Rank Sum	1		Valid N	N PileA	background:	Higher II Fail
BFM802R7	454	428	426	508	47	8	163	-2 43	0.015		15	Aipna = 0.05	- 4
BFM802R8	704	703	663	747	35	50	160	-0.22	0.827	n v	. <u>.</u>	rall	Background
BFM802R9	267	450	443	1139	280	34	197	-2 49	0.013	, ,c	2 5	Fail	
BFM802R10	491	487	467	530	26	8	192	-3.01	92000	v	2 -	Tan I	Background
BFM802R11	444	446	427	457	13	10	180	-3.00	0.002	, 4	2 4	rall	Background
BFM802R12	494	490	442	552	39	26	205	3.00	0.0018	t 4	C 3	Fall	Background
BFM802R13	909	515	429	546	46	23	187	2.57	0100	o 4	2 :	rail	Background
BFM802R14	452	450	419	484	23	5	181	10.7	0.000	o 4	2 :	Fail	Background
BFM802R15	488	484	443	533	·	56	200	3.10	0.001	0 4	2 :	Fail	Background
BFM802R16B	484	485	443	521	33	3 2	178	2.00	0.0014	0 4	2 :	Fail	Background
BFM802R16C	446	442.5	410	487	33	2 5	0/1	2.00	0.0031	,	2 :	Fail	Background
BFM802R16D	454	465	428	481	35	0, 00	356	2.00	0.0027	4 1		Fail	Background
BFM802R17	474	470	443	513	11.	0, -	577	07.5	2.1E-04	,	15	Fail	Background
BFM802R18	443	444	400	480	3,5	7 2	9/1	08.7-	0.0051	4	15	Fail	Background
BFM802R19	222	531	487	543	07	5 7	561	-3.27	0.0011	v.	15	Fail	Background
RFM802R20	557	548	530	503	07	0 :	1/4	-2.40	0.016	4	15	Fail	Background
BEM802R21	366	240	030	393	77	4 .	157	-1.72	0.086	8	15	Pass	
BFM802R2	531	576.5	303	909	940	7.	691	-1.90	0.057	4	15	Pass	ï
DEMANAGE	420	320.3	480	160	25	91	174	-2.40	0.016	4	15	Fail	Background
DEM 807D2	470	454.5	285	454	24	21	210	-3.50	4.6E-04	9	15	Fail	Background
DEM807R2	764	705.5	629	752	37	\$	167	-0.16	0.88	9	15	Pass	, ;
BFM80/K3	104	59/	758	268	4	43	148	0.25	0.80	4	15	Pass	1
BFM80/R4	444	451.5	419	455	17	01	180	-3.00	0.0027	4	15	Fail	Background
BFM807R5	439	446	403	464	24	15	195	-3.27	0.0011	S	15	Fail	Backeround
BFM807R6	663	689	278	717	54	82	194	-0.90	0.37	~	15	Pass	Durch Bround
BFM807R7	450	493	182	542	133	26	206	-3.15	0.0016	9	15	Fail	Backereine
BFM807R8	744	753	692	795	38	71	160	0.39	0.70	9	15	Pass	Dackground
BFM809R1	106	668	853	955	36	66	132	2.57	0.010	9	15	Fail	Survey
BFM810R8	841	826	640	1100	121	465	202	2.4	0.015	21	5	Fail	Survey
BFM810R21	721	714	470	1038	148	677	359	-0.33	0.75	30	15	Pass	6 -
BFM815R1	290	218	162	490	145	36	240	-3.87	1.1E-04	8	15	Fail	Background
BFM815R2	453	453	453	453	۷ Z	۲X	ΥZ	۲X	Y X	_	15	Pass W	, 1
BFM815R3	486	474	430	609	99	42	234	-3.49	4.9E-04	8	15	Fail	Background
BFM815R4	545	545	545	545	Υ _N	۲ Z	٧X	Ϋ́	Y Y	_	15	Pass ^{p/}	. 1
BFM815R5	481	480.5	476	485	9	3	150	-2.24	0.025	2	15	Fail	Backeround
BFM815R6	650	648	586	724	64	42	168	-0.92	0.36	2	15	Pass	1
BFM815R7	443	444	438	447	2	9	165	-2.67	0.0077	3	15	Fail	Background
BFM815R8	470	472.5	444	492	20	01	180	-3.00	0.0027	4	15	Fail	Background
BFM815R9	530	534	495	195	33	10	191	-2.19	0.028	3	15	Fail	Background
BFM815R10	423	435	379	444	31	01	180	-3.0	0.0027	4	15	Fail	Background
BFM815R11	573	583	440	636	20	314	389	-3.22	0.0013	22	15	Fail	Background
BrM815K12	866	165	544	859	36	801	243	-2.1	0.036	=	15	Fail	Background

Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Summary of WRS Test Table 4-15

Manne	17 17				Š	eneca Army	Seneca Army Depot Activity	ity					
Instrument/ Survey	Mean	Median	Minimum	Maximum	St Dev	Survey	Background	2	p-level	Survey	Background	Pass/Fail Background?	Higher if Fell
Area	(cbm)	(cbm)	(cbm)	(cbm)	(cbm)	Rank Sum	Rank Sum		•0	Valid N	Valid N	Alpha = 0.05 °	tuguet ii raii
DEMOISKIS	433	438	393	465	56	15	195	-3.27	0.0011	S	15	Fail	Background
DEMOISKI4	679	635	477	723	55	443	378	-2.0	0.050	25	15	Pass	nino Branci
DEMOTORIO	190	587	452	636	57	Ξ	267	-2.8	0.0054	12	15	Fail	Racharound
BrM816K2	593	109	520	099	43	259	336	-2.5	0.011	61	15	Fail	Racharound
BFM816K3	583	586.5	472	664	45	1546	733	-3.3	8.2E-04	52	. 51	Tie Ci	Dackground
BFM816R4	280	588.5	467	647	46	437	425	-3.0	0.0030	26	5	1.63	Background
BFM816R7	468	475	417	510	35	17	193	-3	0.0019	٧.	<u> </u>	Fail	Background
BFM816R11	534	533.5	525	542	12	7	146	1 64	010		C -	rall	Background
BFM816R13	494	473	417	969	55	348	472	4.60	4 3E-06	7 2	C 3	Pass	1
BFM817R1	129	631	809	800	92	09	171	0.47	0.64	67	2 :	Fail	Background
BFM817R2	671	299	645	717	28	47	163	-0.48	5 0	o v	<u>.</u>	Pass	ı
BFM823R1	428	417	402	461	28	15	105	3.37	11000	,	2	Pass	1
BFM824R1	589	731	120	778	284	84	100	0.77	0.44	0	0 :	Fail	Background
BFM825R1	639	645	572	714	51	133	330	-0.77	0.44	×:	15	Pass	1
						771	677	-1.38	0.17	=	15	Pass	1
ALPHA PHOSWICH	СН												
APH800R1	8.0	_	0	2	9.0	130	5976	-4 47	7 8F-06	10	001	E23	-
APH800R2	1.7	-	0	9	2.0	669	6682	4 02	\$ 7E-05	2 - 5	8 2	rail :	Background
APH800R3	0.7	0	0	3	Ξ	144	5962	4 33	1 SE-05	101	8 5	rall	Background
APH802R1	=	-	0	4	13	422	0099	101	0 15 07	2	001	rail	Background
APH802R2	=	-	0	3	60	103	6003	5,5	7.1E-07	× :	001	Fail	Background
APH802R3	1.5	-	0	4	. 1	258	2050	3 60	2 57 04		001	Fail	Background
APH802R4	2.0	_	0	. 01		222	6766	2.00	3.3E-04	= «	001	Fail	Background
APH802R5A	1.5	-	0		- -	753	5063	26.7	0.0029	5 ;	100	Fail	Background
APH802R5B	60		0 0	٦ ٣	- 0	203	5665	-5.53	4.2E-04	= ;	100	Fail	Background
APH802R5D	13	-	0 0	۰ ۳	6.0	544	1150	4.89	9.9E-07	4 :	001	Fail	Background
APH802R6	60	-	> c	י ר	7 0	161	//00	4.06	4.9E-05	12	001	Fail	Background
APH802R7	- 3		> <	7 (7.0	181	6147	4.72	2.3E-06	12	100	Fail	Background
APH802P8	1 [0 0	٠, ١	= :	245	6083	4.12	3.8E-05	12	100	Fail	Background
APH802B8	- 0	- (0 0	n .	= :	181	5925	-3.94	8.2E-05	01	100	Fail	Background
A DEPOSITOR	0.7	7 0	0 0	4 ;	4 (272	5723	-2.48	0.013	6	100	Fail	Background
ABLIGOTO	7.0	6.7	0 0	0 .	3.0	436	2670	-1.26	0.21	10	100	Pass	, :
A DELIGODE 12	0.70	7 6	0	4 (Ξ.	341	5875	-2.75	0900.0	=	100	Fail	Background
A DE1802B13	0.0	0.5	0 0	7	0.7	8=	5988	-4.60	4.3E-06	10	100	Fail	Background
AF1002K13	0.6	<u>.</u>	0 .	9	8.	236	5870	-3.36	7.8E-04	10	100	Fail	Background
APH802R14	7.7	7 -	_ (4	7.7	328	5777	-2.39	0.017	10	100	Fail	Background
APHROZKIS	4 .		0	4	_	206	6685	-3.67	2.4E-04	10	100	Fail	Background
APH802KI6B	_ :	- (0	3	0.1	200	2109	4.16	3.2E-05	=	100	Fail	Background
APH802R16C	6.6	7	_	3	0.7	293	5923	-3.23	0.0012	=	100	Fail	Background
APH802KI6D	0.7	7.	0	7	6.1	999	2880	-2.09	0.036	14	100	Fail	Background
APH802K17	J (<u>.</u>	0 (т ·	1.0	251	8209	4.07	4.7E-05	12	100	Fail	Background
ALTIOUZKIO	7.7	7	0	9	9.1	356	2860	-2.60	0.0094	=	100	Fail	Background

V
7
A
್ಯಕ್ತಿ
-
E
0
9
·c
ě
-
100
\Section4\Section 4 Tables 6-02\
-
ō
-
.0
9
4
0
ಕ
, s
S
0
5
13
5
as
÷
=
Œ
==
9
2
25
OL
므
9
E
2
S
d
ŏ
등
S
ts
8
5
ž
=
ā
7
à

Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Summary of WRS Test Table 4-15

	_ D	0	
Conos	A many	Banat	7 Y

Median	Minimum	Marimum								Donn/E-11	
_		Maximum	or nev	Survey	Background	Z	p-level	Survey	Background	Reckaround?	Wieken 10 Paris
-	(cbm)	(cbm)	(cbm)	Rank Sum	Rank Sum			Valid	N PileA	Alaho - 0 of o	rigner ii raii
	0	8	2.3	208	6121	-4.47	7.9E-06	1.2	001	Aipna = 0.05	-
	0	S	1.5	266	6062	-3 92	9 0F-05	2	901	rall	Background
_	0	6	2.4	300	2165	3 16	0.000	! -	90.	rail	Background
	0	4	1.3	201	\$109	4 14	3 SE-05	= =	8 8	Fail	Background
-	0	4	1.2	350	6437	-4 75	2.1E-06	91	001	Fall	Background
	0	3	_	175	6932	-5 27	1 4F-07	2 2	8 9	rail	Background
_	0	3	6.0	929	8387	-7 66	1 8E-14	32	80.	Tall	Background
-	0	2	0.7	278	3099	5.66	1.05-14	20	00.	Fail	Background
_	0	. 6	60	308	6862	5.70	7 57 00	/-	001	Fail	Background
	0	. "	0.0	342	6663	-5.78	7.5E-09	20	100	Fail	Background
_	0	4	000	215	2020	7.5	7.3E-07	17	100	Fail	Background
_	0	٠, ر	8 0	236	6129	21.7-	1.1E-12	34	001	Fail	Background
+	0	7	0.0	200	0433	-5.32	1.0E-07	15	100	Fail	Background
_	0 0		7.7	290	2002	-1.17	0.24	6	100	Pass	1
	0 0	+ c	7 .	157	5838	-3.76	1.7E-04	6	100	Fail	Background
	0 0	n (0.0	163	6054	-4.52	6.1E-06	=	100	Fail	Background
_	0 0	7 .	8.0	192	6024	4.23	2.3E-05	=	100	Fail	Background
_	0 0	- (0.5	66	9009	4.79	1.7E-06	10	100	Fail	Background
	0 0	n (5.1	631	6873	-4.86	1.2E-06	22	100	Fail	Backeround
	0 0	7 .	0.7	175	6153	4.78	1.7E-06	12	100	Fail	Background
_	0 0	4 .	Ξ:	133	5862	4.03	5.7E-05	6	100	Fail	Background
+	0	4 (2.	402	6269	-3.94	8.3E-05	15	100	Fail	Background
+	0	2	1.2	163	5833	-3.70	2.1E-04	6	100	Fail	Background
	o v	n ;	= ;	311	6475	-5.06	4.3E-07	91	100	Fail	Background
	9 (= -	4.	1852	2170	5.89	3.8E-09	81	100	Fail	Survey
	0 0	7	8.0	334	6959	-5.23	1.7E-07	17	100	Fail	Background
_	0 0	n (8.0	230	9559	-5.71	1.1E-08	91	100	Fail	Background
_	0 (m 1	<u></u>	170	5826	-3.62	2.9E-04	6	100	Fail	Backeround
	0 0	y i	E. :	200	7051	-5.12	3.1E-07	24	100	Fail	Background
	0 0	n (5.1	371	6533	4.94	7.8E-07	17	100	Fail	Background
_	0 0	η,	0.	292	6378	4.85	1.2E-06	15	100	Fail	Background
	0 0	4 r	<u> </u>	376	6410	4.53	5.8E-06	91	100	Fail	Background
	0 0	٠,	= :	487	6774	-5.15	2.6E-07	20	100	Fail	Background
	0 0	4 -	2 :	6081	8923	69.9-	2.2E-11	46	100	Fail	Background
_	0 0	4 4	- :	188	7857	-5.73	1.0E-08	34	100	Fail	Background
	0 0	0 1	× :	451	6220	-3.52	4.3E-04	15	100	Fail	Background
	0 0	0 .	4 .	357	6313	4.31	1.7E-05	15	100	Fail	Background
-	0 0	4 1	0 .	1117	8199	-6.73	1.8E-11	36	100	Fail	Background
_	0 0		2.1	1293	7222	-3.75	1.8E-04	30	100	Fail	Background
	0 0	4 4	E	389	6398	4.43	9.4E-06	91	100	Fail	Background
+		,	9	230	6368	-3.66	2.5E-04	17	100	Fail	Background
_	0	+	7.1	477	6544	-4.49	7.0E-06	8	100	Fail	Background

Table 4-15
Summary of WRS Test
Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background
SFAD-12 Ruilding Report

SEAD-12 Building Report Seneca Army Depot Activity

	=	T					100.00		1700							5197		e e e		941	982									Τ								Γ			-
	Higher if Fail	Danielond	Dackground	Background	Dackground	Background	Background	Background	Background	Background	Backeround	Background	1	Background	Backoround	Backpround	Background	0																							
Pass/Fail	Background?	Fail	li el	Ta Lie	lien.	Fair	Fail	Fail	Pall	Fail	Pass	Fail	Fall	Ta Ta	Fail																										
Background	N pileA	100	100	001	100	001	001	001	8 0	001	100	100	100	100	100	100	100	100	100	001	001	00	001	100	001	001	001	8 1	901	100	100	100	100	100	100	100	100	100	100	100	
Survey	Valid	15	15	15	15	15	2	15	2 2	15	15	61	22	15	15	91	22	33	35	15	61	2	91	22	2 :	2 :	0 :	± ;	77	15	15	15	15	14	15	15	15	15	15	15	2000
I lead a	p-ievei	2.8E-05	5.7E-04	7.4E-08	3.6E-06	8.0E-05	1.8E-08	2 8F-05	0.10	3.3E-05	1.5E-06	3.2E-09	3.4E-10	4.5E-07	1.4E-07	4.0E-06	6.0E-09	6.5E-12	0.97	1.4E-06	3.2E-07	8.8E-08	5.2E-06	1.65-07	4.0E-07	1.0E-03	1.0E-07	2.3E-04	1 1F-07	2.1E-06	3.8E-04	2.5E-05	3.5E-05	3.6E-10	3.0E-06	1.9E-04	1.2E-06	1.3E-06	5.6E-04	8.9E-05	
	7	-4.19	-3.44	-5.38	-4.63	-3.95	-5.63	4 19	-1.66	4.15	-4.81	-5.92	-6.28	-5.04	-5.26	-4.61	-5.82	-6.87	-0.04	58.4	-5.1	-5.55	3 3	47.0-	10.5-	4.32	26.0-	3 30	-531	4.75	-3.55	4.21	4.14	-6.27	-4.67	-3.73	-4.85	-4.84	-3.45	-3.92	XXX 0.00
Survey Background	Rank Sum	6539	6210	6442	6352	6270	6472	6300	6055	6294	6373	6089	7084	6402	6427	6420	7015	8002	80808	03/0	6698	0430	6413	6760	6314	6508	6171	1710	6434	9989	6223	6302	6293	8467	6357	6244	6378	6377	6211	6267	
Survey	Rank Sum	371	460	229	318	401	861	371	731	376	297	332	419	269	243	367	489	906	202	443	333	324	574	766	356	378	384	850	237	305	447	369	377	1545	313	426	292	293	459	404	
St Dev	(cbm)	1.4	1,4	9.0	Ξ	1.2	0.5	1.5	5.4	1.3	8.0	0.7	8.0		0.1	0.0	6.0	0 V		- c	Ç -	: -		+ 0	0 -	80	2: -	2.1	6.0	0.1	1.5	1.3	1.5	1.3	1.2		0.1	2	<u>«</u>	1.5	
Maximum	(cpm)	4	4	2	4	4	-	5	17	4	2	2 .	7	4 ′	2 .	0 4	,	ر ر	2 4	٠.	- 4	. "	o 4		4 4		1 4	. 0	3	6	2	2	S	2	4 (S	3	m	7	9	
Minimum	(cpm)	0	0	0	0	0	0	0	0	0	0	0 (0 0	0 0	0 0	0 0	0 0	0 0	· c	0 0	0 0	0 0	o c	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0 0	0	
Median	(cbm)	-	2	-	-	2	-	-	1.5	T-0.0				- <	> -	-		. "	-	. 0	0		-			_	_	2	0	-	-	2			- (7 -	-		- (7	- 2
Mean	(cpm) N	1.3	8 -	8.0	1.2	9.1	0.5	1.3	4.3	1.4	1.2	0.7	0.0	7.0		j =	0 0	5.7	60	- 1	0.5	13	1.2	0.1	4.	6.0	1.7	2.2	0.7	=	8.	1.5	4.	4.	_ 0	0 -		0.0	6 .	7.7	0
Measurement/ Instrument/ Survey	Area "	APH812R2	APH812R3	APH812R4	APH812R5	APH812R6	APH812R7	APH812R8	APH812R9	APH812R10	APH812R11	APH812K13	APH812D15	APHRIDRIG	APH812R17	APH812R18	APH812R19	APH812R20	APH812R21	APH812R23	APH812R24	APH812R25	APH812R26	APH812R27	APH812R28	APH812R29	APH812R30	APH812R31	APH812R33	APH813R1	APH813R2	APH813R3	APH813R4	APH813K5	APH813K/	ABHOLDE	APHOLISKII	APH814K1	APH814K2	APH814R3	APHXIAKA

Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Seneca Army Depot Activity Summary of WRS Test Table 4-15

Measurement/	138				5	בווכרם יאו וווא	Selleca Arilly Depot Activity	2					The Control of the Co
Instrument/Survey	Mean	Median	Minimum	Maximum	St Dev	Survey	Background		a long	Survey	Background	Pass/Fail	
Area "	(cpm) b	(cbm)	(cbm)	(cbm)	(cpm)	Rank Sum	Rank Sum	1	b-icaci	N PiloA	N File/A	Background?	Higher if Fail
APH814R5	1.7	2	0	5	13	1505	8136	6 30	2.25.00	NI DIIR A	N DIRA	Alpha = 0.05	
APH814R6	6.0	-	0	. "	0 1	281	0618	40.0-	7.45.07	65.	001	Fail	Background
APH815R1	0.5	0.5	0	-	0.5	105	0000	4.73	7.05-07	2 9	001	Fail	Background
APH815R2	2.7	2	-	Ξ	3.0	105	5785	5 5	2.35-00	2 :	001	Fail	Background
APH815R3	8.0	_	0	. 4	0	401	7136	4.1.7	0.014	0 6	001	Fail	Background
APH815R4	6.0				2.0	- 44 -	6063	9.5	9.0E-10	23	100	Fail	Background
APH815R5	8		0	1 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	747	2903	4.34	1.4E-05	01	100	Fail	Background
APH815R6	0.7	1 0	0 0		0.0	455	6217	-3.50	4.6E-04	15	001	Fail	Background
APH815R7		۰ ر	0 0	n 4	6.0	237	6434	-5.31	1.1E-07	15	100	Fail	Background
VICTORIAN V	t C	4 (0	0	1.7	54	6014	-2.31	0.021	14	100	Fail	Background
APHRISPO	6.6	7 (0 (vo -	1.5	632	8059	-3.73	1.9E-04	61	100	Fail	Background
APHRISHO	0.7	7 ,	٥.	9	1.7	527	5915	-1.95	0.051	13	100	Pass	0 1
APHOLORIO	17	5.5	- (9	8	165	5964	-1.87	0.061	14	100	Pass	;
ABIIOTO	 -	- (0	4		2679	10201	-7.67	1.7E-14	09	100	Fail	Background
APH813K12		7,	0 (vo :	5.	1517	7937	-5.08	3.7E-07	37	100	Fail	Background
APHOLORIS	2.5	5.5	0	œ	2.3	716	5839	-0.78	0.44	14	100	Pass	0 1
APH815K14	7.7		0 (S	1.2	2169	9613	-7.42	1.2E-13	53	100	Fail	Background
APHOLORIO	0.	- 201	0 (S	1.5	1592	8139	-5.39	6.9E-08	39	100	Fail	Background
APHSISKIS	0.1	-	0 (9	1.4	208	8169	4.71	2.5E-06	23	100	Fail	Background
APH8ISKI9	4.5	4	m	10	6.1	1039	5632	1.42	0.16	15	100	Pass	nuncia i
APH815K20	2.6	2	0	9	9.1	732	6172	-2.13	0.033	17	100	Fail	Rackoround
APH816R1	1.7	2	0	2	=	666	7386	-5.06	4.1E-07	29	100	Fail	Rackoround
APH816R2	4 (-	0	S	4.	2802	6166	-6.92	4.7E-12	59	100	Fail	Backoround
APH816R3	6.0	-	0	5	0.1	10216	17046	-10.70	1.0E-26	133	100	Fail	Rackground
APH816R4	0.1	-	0	4	=	3533	11518	-8.77	1.8E-18	73	100	Fail	Backoround
APH816R5	6.0	-	0	3	8.0	581	7421	-6.52	7.1E-11	26	100	Fail	Rackoround
APH816R7	=	-	0	4	1.2	408	6614	-5.02	5.2E-07	8	100	Fail	Background
APH816R11	0.1	0.5	0	٣	1.2	819	7133	-5.64	1.7E-08	24	100	Fail	Background
APH816R12	2.1	2	0	2	9.1	400	5928	-2.65	0.0081	12	100	Fail	Background
APH816R13	0.5	0	0	2	9.0	346	7036	-6.46	1.0E-10	21	100	Fail	Background
APH816R16	2.4	6	0	9	1.4	1088	6788	-3.05	0.0023	25	100	Fail	Background
APHISION	2.5	7	0	9	1.7	1114	1929	-2.88	0.0040	25	100	Fail	Background
APH81/KI	0.7	0	0 (2 .	6.0	112	5883	-4.26	2.0E-05	6	100	Fail	Background
Aprilograpi	0.0	0 .	0	4	1.3	145	966	4.31	1.7E-05	10	100	Fail	Background
AL LOUISA	5.0	5.1	0	3	-	661	9069	-3.74	1.8E-04	10	100	Fail	Background
APH824KI	8.0	0	0	4	1.3	164	5942	4.11	3.9E-05	10	100	Fail	Backeround
APH825KI		-	0	9	1.4	412	6728	-5.33	9.7E-08	61	100	Fail	Background
APH827R1		-	0	9	1.5	310	6361	-4.70	2.6E-06	15	100	Fail	Background
BETA PHOSWICH	Ξ												•
BPH800R1	131	116	06	345	40	08	2103	105	1 25 07		4 4		
BPH800R2	174	140	95	460	102	447	6939	5.83	0.4E.00	0 5	001	Fail	Background
	ī				1	71.	1570	-5.74	7.4E-07	7 17	001	Fail	Background

Summary of WRS Test Table 4-15

						Scheea Al IIII Depot Activity	היחתי שלים						
Measurement/ Instrument/ Survey		Median	Minimum	Maximum		Survey	Background	Z	p-level	Survey	Background	Pass/Fail Background?	Higher if Fail
Arca RDH800D3	(cpm)_	(cbm)	(cbm)	(cbm)	(cbm)	Rank Sum	Rank Sum			N pileA	Valid N	Alpha = 0.05 "	,
DELIGORE	///	711	701	140	14	55	0509	-5.20	2.0E-07	10	100	Fail	Backpround
BPH802K1	210	183	128	372	98	517	6505	4.15	3.3E-05	81	100	Fail	Background
DP 1902K2	249	220	185	393	99	358	5858	-2.55	0.011	Ξ	100	Fail	Backeround
BPH802K3	220	205	191	332	45	257	8989	-3.54	4,0E-04	=	100	Fail	Background
BPH802R4	260	282	811	432	131	343	5653	-1.68	0.093	6	100	Dass	Dackground
BPH802R5A	276	218	162	512	124	417	2800	-1.97	0.049	O	001	Fass	1
BPH802R5B	198	181	159	284	42	273	6282	-4 59	4 4F-06	14	001	rall	Background
BPH802R5D	249	260	172	283	32	444	5885	100	2200	2 2	001	rall	Background
BPH802R6	184	184	154	209	17	153	9219	4 04	7 7E-07	2 2	001	rail	Background
BPH802R7	217	208	167	254	29	290	6038	3,45	2 65 04	<u> </u>	00.	rail	Background
BPH802R8	238	241	137	384	49	304	5801	19.0	0.0001	4 5	001	Fail	Background
BPH802R9	961	193	167	228	20	130	2866	2.5	5 7E 05	2 0	001	Fail	Background
BPH802R10	290	249	180	494	Ξ	407	5608	70.+	0.12-03	٠ .	00 :	Fail	Background
BPH802R11	209	193	175	242	: 5	206	5011	10.1	21.0	0 :	90 (Pass	1
BPH802R12	178	160	121	238	41	130	5075	5.4	5.1E-05	= :	001	Fail	Background
BPH802R13	218	208	140	333	- 5	213	29/3	74.4	9.9E-06	10	100	Fail	Background
BPH802R14	216	200	180	370	‡ 5	717	5889	-3.52	4.3E-04	01	100	Fail	Background
BPH802R15	200	191	140	364	99	507	2905	-3.65	2.6E-04	01	001	Fail	Background
BPH802R16B	200	207	145	360	9 0 0	161	5915	-3.79	1.5E-04	01	001	Fail	Background
BPH802R16C	851	157	130	180	55	577	1665	-3.86	1.1E-04	=	100	Fail	Background
BPH802R16D	180	175	123	760	<u> </u>	۲۵ زر	0130	-5.29	1.3E-07	= ;	001	Fail	Background
BPH802R17	197	104	133	351	5 6	777	0334	-5.04	4.7E-07	4	001	Fail	Background
BPH802R18	205	187	135	177	000	500	6123	4.45	8.8E-06	12	001	Fail	Background
BPH802R19	061	170	551	354	76	917	0009	-3.95	7.9E-05	=	100	Fail	Background
BPH802R20	255	234	183	340	96	081	6148	4.68	2.8E-06	12	100	Fail	Background
BPH802R21	235	227	701	365	30	444	2880	-2.16	0.031	12	100	Fail	Background
BPH802R22	245	211	204	423	90	341	5876	2 5	0.0038	= :	00	Fail	Background
BPH806R2	183	139	125	322	71	351	30/06	77.75	0.000	= :	001	Fail	Background
BPH806R3	145	143	116	197	- 01	020	7733	60.4	2.85-00	9 6	00 .	Fail	Background
BPH806R5	137	128	06	243	34	744	6527	0 40	2.00-13	77	001	Farl	Background
BPH806R6	162	154	611	268	. 64	23.7	2758	603	3.15.00	20	00.	Fail	Background
BPH806R7	153	140	113	257	40	202	6909	6.46	3.15-09	- 6	001	Fail	Background
BPH806R8	143	141	10.	199	0	767	6747	0.40	1.0E-10	07:	001	Fail	Background
BPH806R9	142	135	108	200	33	200	0410	10.0	1-2+7	: :	001	Fail	Background
BPH806R10	144	122	107	254	48	187	6149	5 69	1.75-17	96	001	Fall :	Background
BPH807R1	215	218	180	249	20	187	5808	-3 30	7.0E.04	20	001	Fall	Background
BPH807R2	186	172	146	277	40	120	5876	4 13	3.6E-05	0	8 9	- L	Background
BPH807R3	160	160	135	182	15	86	6131	5 24	1.6E.07	` =	001	raii	Background
BPH807R4	163	991	137	183	12	86	6131	-5.24	1.6E-07	: =	801	rall	Background
BPH807R5	180	182	1.40	000			,		0.70.		33	Fall	Background
		70.	0+	607	20	801	8665	4 65	3 3F-06	10	100	East	Darl Grand

Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background
SEAD-12 Building Report
Seneca Army Depot Activity Summary of WRS Test Table 4-15

	Higher if Fail		Background	E	Background	6	Background		Background	Background	Background	Background	Backeround	Background	Background		Background	Background	Background	Background	Backpround	Backpround	Backpround	Backpround	Backoround	Current																
Pass/Fail	Background?	Alpha = 0.05 °	Fail	Fail	rail	Fail	Pass	Fail	Pass	Fail	Fail	Fail	Fail	rail	rail	rail	raii	rass	Fall	Fail	Fail	Fail	Fail	Fail	Fail	Pass	Fail	Lail														
Backeround	nungua di	Valid N	001	000	001	001	001	001	100	100	100	100	100	001	000	00.	001	00 .	001	8 2	80	90	901	901	001	001	001	100	100	100	100	100	100	100	100	100	100	100	100	100	100	901
Survev		N pile A	27 0	, 1	2	,	91	× .	17	91	6	24	17	2 ;	9 6	07	0 5	34	2 4	2 %	8 8	8 -	17		2 2	15	15	15	15	15	15	91	15	15	16	22	15	15	91	22	33	35
32	p-level	3 21 00	3.35-08	8 OF-09	9 3E 04	0.35-04	0.015	2.8E-08	6.3E-06	3.1E-07	3.6E-05	6.3E-04	0.17	2.7E-04	51000	0.0015	0.5E-07	4.3E-07	1 3E-04	1.8F-10	9 9E-10	9 6F-07	010	1 7F-11	1.5E-06	1.1E-07	3.0E-08	1.3E-09	2.4E-09	1.3E-06	1.4E-05	66.0	1.6E-07	1.3E-08	3.9E-08	2.7E-08	1.1E-07	8.8E-07	1.1E-04	1.0E-07	5.2E-11	0.048
	Z	3	1 83	-5.77	2 24	10.0	25.43	-5.55	4.52	-5.12	5 5	-3.42	3,56	50.0-	32.1	2.5	4 00	00 7	-3.83	-6.38	119-	4 90	-1 64	-6.73	-4.82	-5.30	-5.54	-6.06	-5.97	-4.83	4.35	0.02	-5.24	-5.69	-5.50	-5.56	-5.31	4.92	-3.86	-5.33	-6.57	1.97
Survey Background	Donk Cum	6738	5038	6495	5804	6163	6603	6484	0484	6490	5/8/5	16/9	6330	6030	9620	8580	2209	6401	6262	8143	7656	6390	6113	6849	6380	6439	6467	6530	6159	6382	6324	5848	6431	6486	6758	5869	6440	6392	6332	0569	1961	6407
Survey	Rank Sum	10	22	176	192	633	320	410	4 6	167	050	824	431	697	754	2152	1337	269	409	1174	859	280	162	172	290	232	203	140	151	288	347	938	240	185	383	519	231	278	454	553	951	2773
St Dev	(cum)	(iii) =	17	20	65	124	. 25	46	2 6	35	40	011	3 6	99	39	48	84	43	256	43	46	34	63	81	70	32	23	23	20	40	28	134	56	56	56	33	34	33	63	27	44	133
Maximum	(com)	177	182	211	375	615	274	355	237	257	315	679	288	471	327	301	302	265	1175	284	274	307	380	191	406	216	239	202	500	283	321	539	234	215	245	297	246	236	412	254	284	631
Minimum	(com)	142	130	131	143	155	135	166	163	143	173	204	177	201	166	145	131	137	144	113	124	156	184	16	411	124	156	122	138	124	6 .	691	144	123	156	155	138	135	147	146	Ξ	193
Median	(cpm)	156	155	164	203	245	179	201	197	182	237	259	224	249	242	235	236	174	181	195	160	200	569	124	184	193	171	148	154	061	203	300	184	787	161	661	1.00	861	213	211	681	408
Mean	(cpm) by	158	155	170	217	270	188	216	197	187	242	296	227	270	244	229	223	185	263	202	195	199	277	127	193	184	179	151	191	203	346	100	188	107	161	507	081	194	877	207	194	398
Measurement/ Instrument/ Survey	Area "	BPH807R7	BPH807R8	BPH807R9	BPH809R1	BPH810R3	BPH810R5	BPH810R6	BPH810R7	BPH810R8	BPH810R9	BPH810R10	BPH810R11	BPH810R12	BPH810R15	BPH810R17	BPH810R18	BPH810R19	BPH810R20	BPH810R22	BPH810R23	BPH810R24	BPH810R25	BPH812R1	BPH812R2	BPH812R3	BPH812R4	BPH812R5	BPH812K0	DDUSIZE	BPH812B0	BPU\$12B10	BPH912R10	BPH912B13	DBUS12R13	BPH812R14	DPT1812R13	BPH812R16	DPH812K17	BPH812K18	BPH812K19	BPH812K20

Summary of WRS Test
Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background
SEAD-12 Building Report
Seneca Army Denot Activity Table 4-15

	Higher if Fail		Background	Background	Backoround	Backoround	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Background	Backpround	Backeround	Background															
Pass/Fail	Background?	Aipna = 0.05	ran	Tan n	Tall 1.	Tall L	rall	raii	rail	Tall Log	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fail	Fall	rall	1 1 1	- C	Fail																
Background	N PHeA	001	901	00 0	001	8 -	001	8 8	901	801	001	100	100	100	100	100	100	001	001	001	001	000	001	00 .	00 1	001	80	00 0	001	001	100	100	100	100	100	100	100	100	001	001	100
Survey	N biley	1	0 0	2	2 4	22	77	2 4	2 4	14	22	15	15	15	15	15	1	15	2 :	2	2 :	c :	<u>.</u>	2 6	95	5	2 9	23	0	15	15	4	61	13	14	09	37	4	53	39	23
	p-ievel	7 1F-09	2 9F-08	1 IE-09	4 2F-08	2 6F-12	1 4F-08	2 SE-08	1 2F-07	7 4E-07	3.5E-10	2.9E-07	9.8E-05	2.0E-05	0.012	1.8E-07	2.5E-11	3.0E-04	2.3E-04	9.4E-07	3.3E-06	0.1E-03	2,0012	2.5E-05	5.0E-14	9.0E-00	1.6F-04	2.4E-10	1.7E-04	9.2E-05	1.1E-06	4.4E-07	8.2E-09	0.0026	2.3E-06	3.6E-21	4.0E-13	4.5E-08	1.5E-15	6.9E-16	3.1E-09
	7	-5 79	-5.55	60.9-	-5 48	-7 00	-5.68	-5 57	-5 29	-4.95	-6.27	-5.13	-3.89	-4.26	-2.50	-5.22	89.9-	-3.61	-3.69	06.7	40.4	5 6	42.54	7.7	15.7-	335	-3.78	-6.33	-3.76	-3.91	-4.87	-5.05	-5.76	-3.01	-4.73	-9.44	-7.26	-5.47	-7.98	-8.07	-5.93
Survey Background	Rank Sum	6497	6765	6533	6535	7201	6484	6471	6511	6324	7092	6418	6979	6313	6102	6429	8571	6235	6244	0369	6283	6190	6306	8602	6347	5872	5914	7176	5912	6271	6386	6335	6795	6035	6298	10730	8397	6384	0826	8722	7114
Survey	Rank Sum	173	375	137	252	303	187	199	276	232	411	253	401	357	569	241	144	455	280	313	388	480	263	1129	323	233	192	450	193	399	284	220	346	406	258	2151	1057	172	2001	1008	513
St Dev	(cbm)	56	65	56	34	22	56	36	36	35	34	42	36	32	6 6	\s :	60	8 6	24.	41	. 02	44	. 48	4 1	45	78	103	32	38	48	43	31	37	38	43	37	35	27	27	70	44
Maximum	(cbm)	202	413	661	252	198	224	248	247	282	227	284	287	187	343	702	267	267	261	308	288	298	317	273	279	404	502	233	244	288	284	526	245	271	284	265	265	222	2//	240	14.7
Minimum	(cbm)	117	138	95	122	Ξ	125	68	Ξ	136	109	120	0/1	4 6	2,2	571	271	6 19	155	149	159	145	147	138	139	114	144	911	138	119	122	140	411	551	124	/ :	134	55.	174	771	1 171
Median	(cbm)	169	188	139	180	165	177	168	182	186	061	101	205	240	170	6/1	244	231	190	211	222	242	203	175	192	209	187	177	207	226	201	061	182	027	88	7/1	193	180	707	701	
Mean	(cbm) N	891	195	146	180	091	170	691	981	190	182	791	177	253	187	202	216	223	861	202	216	232	211	185	202	216	214	185	202	214	194	88 6	336	103	170	0/-	130	100	081	881	
Measurement/ Instrument/ Survey	Area "	BPH812R21	BPH812R23	BPH812R24	BPH812R25	BPH812R26	BPH812R27	BPH812R28	BPH812R29	BPH812R30	BPH812R31	DDLI912D1	BPH813D3	BPH813R3	RPH813R4	RPH813R5	BPH813R7	BPH813R8	BPH813R11	BPH814R1	BPH814R2	BPH814R3	BPH814R4	BPH814R5	BPH814R6	BPH815R1	BPH815R2	BPH815R3	BPH815R4	BPH815R5	BPH815R6	BPH815K/	BPH815K8	RPHRISPIO	RPHRISPII	DDUGISHIO	BPH815D13	BPH815D14	RPH815R16	BPH815R18	

Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Seneca Army Denot Activity Summary of WRS Test Table 4-15

Maximum St Dev Survey
(cpm) (cpm) Rank Sum
277 51
32
65
45
00
000
22
96
226 30 16
198 22 265
. 100
55
000
07
61
295 31 359
738 191 152
13
<u> </u>
198 28 134

3726	3645	2853	4781	589	120	0906	-6.30	3.0E-10	15	120	Eog	
4910	4537	3201	7915	1248	469	10409	-7.65	2 OE-14	2.2	02.	rall	Background
3754	3694	2851	4537	522	120	0906	630	3.0E-10	21	071	rail	Background
6942	6622	4778	9215	1036	909	0600	6.30	9.0E-10	5	071	Fail	Background
7658	7360	5001	10431	1346	000	0606	17.0-	8.0E-09	57	120	Fail	Background
6643	4400	1000	10431	0471	101	8826	4.29	1.8E-05	91	120	Fail	Background
2450	00+00	5775	7908	926	288	8892	-5.13	3.0E-07	15	120	Fail	Backeround
8109	6046	4718	7394	685	285	8916	-5.80	6.7E-09	17	120	Fail	Background
9199	6334	5449	9698	867	302	8878	-5.03	5 OF-07	15	120	Lio'l	Dackground
0919	5941	4969	8305	821	541	10044	-673	1 8E-11	30	02-	La L	Background
8651	9165	5823	10232	1340	635	8681	3.11	81000	71	120	rall	Background
5380	5430	3153	6368	673	188	0138		0.00.0	2 .	071	Fail	Background
6381	6557	5005	2002	470	096	0716	0.15	01-20.0	0 !	170	Fail	Background
6000	6003	5333	0.444	0/4	200	0768	-5.32	1.0E-07	15	120	Fail	Background
1770	2000	2337	2444	807	314	9988	-4.94	7.7E-07	15	120	Fail	Backpround
785	2/95	2626	6182	091	224	8956	-5.57	2.5E-08	15	120	Fail	Background
6185	6113	4894	7296	647	253	8927	-5 37	7 9F-08	15	021		Dackground
1109	5793	5192	8948	881	241	8030	5.15	4 OF 00		07.	raii	Background
8699	6422	5152	9013	1307	342	6668	0.0	1,75-00	2 :	071	Fail	Background
6663	6555	8368	0010	5101	1 00	04/4	-5.09	3.3E-07	0	120	Fail	Background
5644	5703	5131	6163	101	100	6/88	-5.03	4.8E-07	15	120	Fail	Background
5773	0000	1010	6010	321	194	8986	-5.78	7.3E-09	15	120	Fail	Background
2113	6000	49.39	009/	119	232	9084	-5 84	5 4F-00	1,4	001		

Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background SEAD-12 Building Report Summary of WRS Test Table 4-15

Mann												
	Median	Minimum	Maximum	St Dev	Survey	Background	b		Survey	Background	Pass/Fail	
(cbm) N	(cbm)	(cbm)	(cbm)	(cbm)	Rank Sum	Rank Sum	7	p-level	N PiloA	N Files	Background?	Higher if Fail
6784	6577	5562	8721	1014	319	8861	-4 01	0 25 07	N DIIRA	N. Dilk v	Alpha = 0.05	
4861	4905	4327	5147	255	120	0906	6.30	2.0E-07	<u>.</u>	120	Fail	Background
1615	5256	4259	5661	387	266	9745	7.00	1 25 13	2 5	120	Fail	Background
6224	6272	5176	6760	331	286	0030	6 47	1.35-12	17 :	120	Fail	Background
4860	4884	4235	5491	434	145	9171	5.47	4.25-08	9 ;	120	Fail	Background
2989	6635	5824	9007	800	353	1716	74.0-	1.35-10	<u>0</u>	120	Fail	Background
1606	606	6770	11468	1394	655	8535	20.02	3.25-07	0 .	120	Fail	Background
7604	7367	6515	9832	1064	409	8771	4 30	1.00.05	2 :	120	Fail	Background
6934	6714	6140	8894	807	335	8845	07.7	1.95-05	2 5	120	Fail	Background
7142	7025	5838	8327	119	371	90045	00.4	0.20-00	c)	120	Fail	Background
6365	6369	4664	7820	959	467	6469	35.4	9.7E-07	9 0	120	Fail	Background
5858	6149	3600	7197	000	931	1216	47.0-	4.5E-10	22	120	Fail	Background
6304	6557	4821	7537	774	200	0154	16.7-	1.6E-15	36	120	Fail	Background
6550	6644	4738	7501	477	777	9154	-5.71	1.2E-08	17	120	Fail	Background
6420	6368	5556	7475	040	9 6	9454	-5.92	3.2E-09	20	120	Fail	Background
6153	6345	3073	2544	800	330	9123	-5.50	3.7E-08	17	120	Fail	Background
4476	4327	3255	5640	833	876	11059	-7.66	1.8E-14	34	120	Fail	Background
4906	4030	7117	2049	608	132	9048	-6.22	5.1E-10	15	120	Fail	Background
4504	4835	2646	0646	420	127	9053	-6.25	4.1E-10	15	120	Fail	Background
4341	4429	3344	5169	990	133	9047	-6.21	5.3E-10	15	120	Fail	Background
4810	4860	4303	5780	020	071	0906	-6.30	3.0E-10	15	120	Fail	Background
4683	4585	3771	5387	907	77.	9058	-6.29	3.2E-10	15	120	Fail	Background
4364	4486	3050	5340	100	971	9054	-6.26	3.9E-10	15	120	Fail	Background
4566	4509	3083	5083	370	101	10858	-8.45	3.0E-17	30	120	Fail	Background
3989	3901	2639	4745	545		9420	-6.83	8.6E-12	8	120	Fail	Background
4437	4399	3942	5024	253	120	0906	-6.30	3.0E-10	15	120	Fail	Background
7651	7586	5819	9000	600	120	9060	-6.30	3.0E-10	15	120	Fail	Background
11280	10455	7330	19060	704	774	8759	4.19	2.8E-05	15	120	Fail	Background
11296	10082	7314	1203	25.28	1072	8244	-0.16	0.87	91	120	Pass	. 1
0264	9397	7474	170/1	2407	(57)	8354	-0.09	0.93	18	120	Pass	ı
11963	11270	9049	16903	2663	1700	28482	-1.52	0.19	17	120	Pass	1
19601	9937	0529	16046	2874	2.40	9109	0.70	0.45	9	120	Pass	ï
2922	12301	8696	16877	1636	2149	9/16	-0.55	0.59	30	120	Pass	1
5299	15474	11449	18841	/707	0917	8280	2.25	0.024	24	120	Fail	Survey
6120	16070	10537	16001	2352	1981	7887	4.49	7.1E-06	17	120	Fail	Survey
4684	15360	11087	10177	1677	1044	7537	4.37	1.3E-05	2	120	Fail	Survey
2296	11040	7318	16984	2074	104/	7669	3.72	2.0E-04	16	120	Fail	Survey
0477	9804	7113	15478	5075	1615	8256	1.22	0.22	20	120	Pass	,
7056	7333	2113	1,4030	2210	3425	10436	-1.50	0.13	46	120	Pass	ı
006/	1322	2237	14030	2707	1474	10461	-5.06	4.3E-07	34	120	Fail	Backeround
2410	0411	1/44/1	9136	1911	254	8926	-5.36	8.2E-08	15	120	Fail	Background
74/	0446	X	12817						2000			

Summary of WRS Test Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background Table 4-15

SEAD-12 Building Report Seneca Army Denot Activity

		Higher if Fail		Background	Background	Background	ı	1	Background	1	Survey	Background	Background	Background	1	Background	1			Background	Survey	Background		Background	Background	Background	Background	Backeround	Background	Background	. 1	1	Background	, 1	Background	Background						
: !	Pass/Fail	background?	CO.U = Kildir	L S	Fail	L all	Pass	Fass	rall	Fail	Fail	Fail	Fail	Fail	Fail	Pass	Fail	Fail	Fail	Fail	Pass	Fail	Pass	Pass	Pass	Fail	Fai	Fall	rass	rall	Tail I	Fail	Fail	Fail	Fail	Fail	Pass	Pass	Fail	Pass	Fail	Fail
	Background	N PileA	120	021	120	021	021	120	200	120	120	120	120	120	120	120	120	120	120	120	120	071	07.	071	071	071	021	021	120	120	120	120	120	120	120	120	120	120	120	120	120	120
	Survey	Valid	30	36	30	91	17	8	2	2 :	2 :	2 :	2 :	2 :	<u>c</u> :	2 :	9 !	2 :	2 9	6 (77	0 4	5 7	9 (3 6	32	6 5	01	2 2	91	22	15	15	16	17	22	15	15	15	15	15	41
	n-level	Preven	1 9F-05	2.3E-15	6.7E-12	99 0	0.38	2.4E-11	5 3E 06	5.35-06	3.0E-03	7.2E-04	1.8E-06	0.05-00	0.042	0.20	2.2E-06	3.2E-04	3.15-08	210.0	1 00 03	0.73	010	0.50	0.030	1 85 06	4 9F-04	0.17	1 SE-06	8.5E-05	6.6E-08	6.1E-05	5.7E-06	9.3E-03	1.3E-08	3.4E-13	0.14	99.0	0.035	0.54	8.0E-07	7.1E-12
≥	Z	1	-4.28	-7.92	-6.86	-0.45	-0.88	-6.68	A 55	5.5	69.5	4 77	1.4	3 6	-2.04	2 2	2,5	2.00	4.00	1.50	3.78	-1.20	2.1	0.54	217	4.78	-3 49	-1 39	4 82	-3.93	-5.40	4.01	4.54	-2.60	-5.68	-7.28	-1.46	-0.43	-2.11	0.61	4.94	98.9-
Seleca Army Depot Activity	Background	Rank Sum	1266	11304	10521	8286	8415	9397	8810	8730	6618	8847	8736	8451	6321	17510	6167	4/00	8088	8867	8679	8331	8026	8675	1996	8359	8658	8626	8848	8802	9538	8733	8088	8605	9150	1286	8369	8222	8461	8074	8865	8740
acca At IIII)	Survey	Rank Sum	1354	942	804	1030	1038	194	370	441	493	338	444	729	850	1797	206	220	922	1292	551	849	1291	1478	1968	3731	522	1104	332	514	615	448	372	711	303	282	811	826	617	1107	315	440
3	St Dev	(cbm)	2985	828	973	2030	2471	848	2055	644	837	866	196	2164	2242	2100	1178	452	1606	1760	2486	1313	2815	1729	2330	3135	1774	2410	431	928	1274	824	1077	1313	1412	8/2	2241	0407	1676	3106	1363	1967
	Maximum	(cbm)	14938	7371	7812	15070	14307	5756	13977	8451	8683	8440	8577	14487	14960	18360	9331	6469	12395	13020	12183	11762	17570	13344	14296	20286	11802	14324	7925	10348	9245	6866	9491	12380	10702	81/6	15104	14173	141/3	COOL	9582	10406
Minter	Minimum	(cbm)	5758	3983	4734	8739	6635	3379	4992	6202	6012	5077	5409	6200	7125	10866	4831	4731	6352	7189	4457	7199	8240	6964	7020	9529	5446	2006	6426	6649	4275	6927	4402	5853	7747	14/7	8366	7447	/44/	7307	3841	4647
Madian	Median	(cbm)	7563	8819	6836	0186	8626	4819	7082	8124	8346	7418	8102	8955	9162	15943	8425	5946	9188	9852	8409	10353	11735	10832	8586	13875	7813	8226	7145	7823	7534	7711	7481	9/06	5186	0063	10372	0000	11478	6434	6731	7447
Meen	THE STATE OF THE S	(cpm) by	8365	6042	1099	01601	10548	4650	7228	7831	8080	9569	7781	8056	10285	15738	8132	5888	9328	10104	8111	10257	12521	10873	9940	14464	8262	10232	2002	8040	7147	7307	1296	6300	4894	0000	10990	9507	11762	6647	2400	7537
Measurement/	Instrument/Survey	Area "	GF810R21	GF810R22	GF810R23	GF810K24	GESTOR 25	GF812R1	GF812R2	GF812R3	GF812R4	GF812R5	GF812R6	GF812R7	GF812R8	GF812R9	GF812R10	GF812R11	GF812R13	GF812R14	GF812R15	GF812R16	GF812R17	GF812R18	GF812R19	GF812R20	GF812R21	GF812R23	GF812R24	GF812R25	GF812R26	CE012D20	GE812D20	GF812D30	GF812R31	GF812R33	GF813R1	GF813R2	GF813R3	GF813R4	GF813R5	GF813R7

Summary of WRS Test
Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background
SEAD-12 Building Report Table 4-15

	t Activity
0	0
	Army
	Seneca

	ila;		PL	P	pι	ρι	þ	pı	P.	P	рı	P	P.	Б.	ъ.	p 7	p 7	2 0	2 0	9	Р	р	P	Ъ	P	P	, l	p -	D +	, T	,	-	73	T	751	707	Ţ.	ъ.	
	Higher if Fail		Background	Backoround	Background	Backeround	Background	THE PARTY OF THE P																															
Pass/Fail	Background?	Alpha = 0.05 °	Fail	2 2	Fail	rail	Fail	Fall																															
Paraller L	Dackground	N pile A	120	120	120	120	120	120	120	120	120	130	071	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	
Current	Yella N	N Dille v	<u> </u>	2	2 :	2 5	2 .	2	36	5	× =	= ;;	ና =	- 1	20,	17	23	91	81	82	48	61	78	15	23	2 5	20	78.	185	86	56	23	56	12	46	52 52	51	2 2	
	p-level	1 20 06	6 45 06	0.0E-05	2.9E-08	375.07	3.7E-07	2.7E-00	9.2E-17	9.9E-08	1 35 05	1.35-03	0.043	9.0F-06	1 SF-05	6.2E-09	6.3E-12	8.9E-03	1.2E-09	7.6E-27	5.1E-16	4.1E-09	2.3E-13	4.0E-18	1.8E-12	5.0E-08	2 9F-12	1 6E-21	0.0	2.9E-21	1.8E-06	1.0E-05	5.4E-10	7.7E-08	8.8E-17	1.7E-12	3.0F-10	7.2E-10	
	Z	72.1	200	5 55	5.35	07.5	20.03	4.07	-8.3	4.35	27.7	5.68	2002	4 4 4	4 32	-5.81	-6.87	-2.62	-6.08	-10.73	-8.1	-5.88	-7.33	9.08	50.7-	6.00	86.9-	-9.53	-13.22	-9.47	4.77	4.41	-6.21	-5.37	-8.32	-7.00	-6.30	91 9-	2
Survey Background	Rank Sum	8783	8730	8057	8011	9888	8630	11677	110//	9921	8445	10352	8164	0968	9186	9170	1686	8098	9302	16557	12450	9359	14827	16871	8047	9230	10456	15695		17527	9753	9443	10034	6508	12326	10177	0906	9040	
Survey	Rank Sum	397	450	228	696	294	350	1043	250	578	201	1124	482	493	684	283	405	400	289	3946	1747	3/1	1010	373	233	223	719	4007	18358	6345	979	853	869	611	477	409	120	140	
St Dev	(срш)	1691	555	698	913	986	882	813	394	2273	825	1408	2769	1365	1722	696	863	1858	1002	839	1771	366	986	880	936	1179	1024	1398	1265	1697	1646	6101	557	603	1103	1027	724	198	
Maximum	(срш)	12550	8671	7149	7481	7868	8281	8168	6957	13063	9030	12599	14601	11165	12577	7396	7158	13594	/34/	8/55	7675	8541	0996	6585	7001	6846	6922	10733	11789	11932	11953	10101	5005	7045	5569	6516	4929	5692	
Minimum	(cpm)	4929	6804	4844	4491	4796	5413	4204	5713	5498	5934	9665	6945	5715	6140	4417	4153	6167	41.89	4180	4802	2050	4371	3567	4151	3650	3430	2872	3160	3557	5214	4308	4289	4326	3147	2958	2913	3247	
Median	(cbm)	7183	7956	6036	5940	6837	7354	5958	6365	6874	6514	7306	7758	7522	7530	6251	5684	8571	5965	5373	6321	8114	6172	5506	1219	5276	0829	6360	5442	7219	909/	6224	5287	6235	5820	5321	4336	4960	
Mean	(cpm) b	7393	7883	6120	6355	1899	7140	5853	6293	7688	8999	7625	9277	7610	7890	5997	2,00	5708	5785	8189	6261	8013	6250	5360	8658	5146	6422	6495	5755	0883	8185	2219	5216	6237	5669	8059	4151	4730	
Measurement/	Area"	GF813R8	GF813R11	GF814R1	GF814R2	GF814R3	GF814R4	GF814R5	GF814R6	GF815R1	GF815R2	GF815R3	GF815R4	GF815R5	GF815R6	GF815R7	Creises	GF815P10	GF815R11	GF815R12	GF815R13	GF815R14	GF815R16	GF815R18	GF815R19	GF815R20	GF816R1	GF816R2	GF816R3	GF816Bs	GF816R7	GF816R11	GF816R12	GF816R13	GF816R16	GF816R21	GF817R1	GF817R2	

Phase II Direct Measurements (Excluding Discretionary Measurements) VS Background Summary of WRS Test Table 4-15

Seneca Army Depot Activity SEAD-12 Building Report

		Higher if Fail			Backoround	Dinoi Such	Backoround
	Pass/Fail	Background?	Alpha = 0.05		Fai		Fail
	Background	Well W	NI DITE A		120		120
	Survey	Vallay	A MINE I	30	20		15
	Pulevel	hard.		0 10 13	7.1E-17		3.0E-10
	7	2		0 22	-0.05	000	-0.30
	Background	Rank Sum	-	10830	00001	0700	9000
	Survey	Rank Sum		405		120	120
	St Dev	(cbm)		216		436	222
	Maximum	(cbm)		6 42		1965	
	Minimum	(cbm)	0.00	3919		3 52	
	Median	(cbm)	4010	4913		4302	
	Mean	(cbm) ^N	4006	4900	3000	4793	
VICE SELECTION OF THE PROPERTY	nstrument/ Survey	Area "	CEROSEDI	O 02.3NI	CE637D1	1N/7010	

Measurement - A = Alpha; B = Beta; G = Gamma

Instrument - PH = phoswich; HH = hand-held; FM = floor monitor; F = FIDLER

Survey Area - Building, Room Number

 $^{\text{lv}}$ cpm $\,=$ counts per minute.

is said to fail. Box-and-whisker plots are generated (refer to Appendix XXXX for the Phase II box-and-whisker plots) and compared in order to determine if the survey data is e If the p-level is less than the alpha (type I) error of 0.05, the survey and background data sets are not considered to be part of the same population and the WRS test elevated above the background data.

W NA = not applicable.

The alpha floor monitor measurement for survey area 815R2 was compared to the 95 % upper threshold limit (UTL) of the alpha floor monitor background. The measurement of one cpm is less than the background 95% UTL of 8 cpm, so it is concluded that the survey area is within background.

The alpha floor monitor measurement for survey area 815 R4 was compared to the 95 % upper threshold limit (UTL) of the alpha floor monitor background. The measurement of 9 cpm is greater than the background 95% UTL of 8 cpm. However, the alpha phoswich measurements from this survey area pass the WRS background test, so it is concluded that the entire survey area is within background

Part The beta floor monitor measurements for survey areas 815 R2 and 815 R4 was compared to the 95 % upper threshold limit (UTL) of the beta floor monitor background. The measurements of 453 and 545 cpm (for survey areas 815 R2 and 815 R4, respectively) are less than the background 95% UTL of 1435 cpm. As a result, it is concluded that these survey areas are within background.

Table 4-16
Locations of Potentially Elevated Surface Activity a/
Phase II Building Surveys
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Original Grid	Hotspot Designation
810	3	10	17
810	3	11	18
810	3	16	16
810	5	4	4
810	10	12	17
810	12	4	4
810	12	5	17
810	12	13	18
812	9	2	2
812	9	4	4
812	9	8	8
812	9	10	10
812	9	11	11
812	9	16	16
812	17	8	17
812	17	9	18
812	17	10	19
812	20	5	44
812	20	11	45
812	20	15	36
812	20	16	37
812	20	17	38
812	20	18	39
812	20	19	40
812	20	20	41
812	20	21	42
812	20	25	46
812	20	33	43
813	3	5	5

^{a/} Bolded values indicate discretionary measurements that were not included with the survey data.

For several survey grids, readings over the instrument flag value were taken, but a localized elevated measurement could not be discerned. As a result, the original grid measurement was noted as a elevated but left in the survey data set, and an additional discretionary measurement was not taken.

Phase II Direct Measurements (Including Discretionary Measurements) VS Background Seneca Army Depot Activity SEAD-12 Building Report Summary of WRS Test Table 4-17

Instrument/ Survey	Mean	Median	Minimum	Maximum	Std Dev	Survey plus	Background			Survey plus	Backoround	Pass/Fail	
Area "	(cbm) N	(cbm)	(cbm)	(cbm)	(cbm)	Rank Sum	Rank Sum	7	p-level	Discretionary Valid N	VellaV	Background?	Higher if Fail
ALPHA PHOSWICH	н										N mm	Alpha = 0.05	
APH810R3HS	6.0	_	0			320							
APH810R10HS	6.0	. 0	0	. •		30.	6653	-5.3	1.1E-07	81	100	Fail	Backeround
APH810R12HS	=	-	> <		2 :	165	6631	-5.1	2.7E-07	18	100	Fail	Background
APHRIDRITHS					5	421	0099	-4.9	8.8E-07	81	100	Fail	Doolean
APHRIORAGHS	- r	- •	0 0	m (0.1	404	6499	-4.7	2.8E-06	17	100	Fail	Doctored
CHOZNIZIGHAN	7.7	4	0	20	6.5	3739	2669	1.5	0.13	46	100	Pass	packground
BETA PHOSWICH	_												
BPH810R3HS	266	241	155	615	117	718	2304	100	.0000				
BPH810R10HS	294	259	204	029		0 10	6,304	9.7-	0.0081	<u>8</u>	100	Fail	Background
BPH810R12HS	368	240	100	71.	101	6/5	6146	-1.5	0.14	81	100	Pass	, 1
BPH812R17HS	336	214	147	4/1	70	793	6229	-2.1	0.037	81	100	Fail	Backoround
SHOCHCIOLIDA	0.7	417	/+1	714	- 17	535	6969	-3.6	2.9E-04	17	100	Eoil	Deel
SHU2NZION IG	440	448	193	655	145	4228	6503	3.6	3.6E-04	94	100	Feil	Sackground
GAMMA FIDLER													Survey
GF810R3HS	12079	01601	7330	18535	3812	1345	9746	70	0.00				
GF810R10HS	15377	15632	11449	18841	2063	2001	0570	_	0.33	81	120	Pass	E
GF810R12HS	14988	15868	11082	19177	2007	1930	7595	_	2.5E-06	18	120	Fail	Survey
GF812R17HS	12807	12154	8240	07371	0700	1919	7/9/	4.2	2.4E-05	18	120	Fail	Survey
CFRIZEZOHS	71751	14033	05.70	1/3/0	6967	1427	8027	1.7	0.10	17	120	Pass	
O CONTRACTOR OF THE CONTRACTOR	2000	14243	6766	21545	3603	2468	8393	5.9	4.4E-09	46	120	Eatl	

^M Measurement - A = Alpha; B = Beta; G = Gamma Instrument - PH = phoswich; HH = hand-held; FM = floor monitor; F = FIDLER. Survey Area - Building, Room Number

cpm = counts per minute.

If the p-level is less than the alpha (type I) error of 0.05, the survey and background data sets are not considered to be part of the same population and the WRS test is said to fail. Box-and-whisker plots are generated (refer to Appendix K for the Phase II box-and-whisker plots) and compared in order to determine if the survey data is elevated above the background data.

Table 4-18 Phase II Survey Areas Exceeding Background Based on WRS Test SEAD-12 Building Report Seneca Army Depot Activity

Locat Building	ion Room	Measurement Type	Instrum	ent	Survey Date	Average Survey Efficiency */	Detector Area (cm²) b
807	6	Alpha	Floor Monitor	138256	6/9/2001	0.0315	425
810	8	Alpha	Floor Monitor	138256	7/13/2001	0.0437	425
810	21	Alpha	Floor Monitor	138256	7/13/2001	0.0437	425
815	11	Alpha	Floor Monitor	138256	6/13/01, 6/20/01	0.0347	425
815	13	Alpha	Floor Monitor	138256	6/12/2001	0.0363	425
809	1	Beta	Floor Monitor	138256	6/10/2001	0.144	425
810	8	Beta	Floor Monitor	138256	7/13/2001	0.139	425
810	5	Alpha	Phoswich	119803	7/12/2001	0.113	86
812	20	Beta	Phoswich	119803	7/17/2001	0.116	86
				119815	7/17/01, 7/18/01	0.1465	86
810	9	Gamma	Fidler	A951P	7/12/01, 7/23/01	0.0042	126
810	10	Gamma	Fidler	A983P	7/13/2001	0.00447	126
				A951P	7/23/2001	0.00423	126
810	11	Gamma	Fidler	A983P	7/12/2001	0.00457	126
810	12	Gamma	Fidler	A983P	7/13/2001	0.00447	126
812	9	Gamma	Fidler	A983P	7/28/01, 7/29/01	0.0046	126
812	20	Gamma	Fidler	A951P	7/17/01, 7/18/01	0.00424	126

^{a/} The average daily efficiency was obtained by averaging the efficiencies obtained from the three daily source checks for the day(s) on which the survey was performed.

b' cm² = square centimeters.

Phase II Direct Measurements (Excluding Discretionary Measurements) VS DCGLw-Adjusted Background Seneca Army Depot Activity SEAD-12 Building Report Summary of WRS Test Table 4-19

Measurement/ Instrument/ Survey Area	Mean	Median	Minimum	Maximum	Standard Deviation	Survey	DCGL _w -Adjusted Background	Z	p-level	Survey	DCGL _w -Adjusted Background	Pass/Fail DCGLw-Adjusted	Higher if Fail
	(cbm) ^{b/}	(cbm)	(cbm)	(cbm)	(срт)	Rank Sum	Rank Sum			Valid	Valid	Alphe = 0.05 c	
ALPHA FLOOR MONITOR	FOR											COO - BIRD	
AFM807R6	7.3	7.5	3	13	3.8	27	001					Įį.	
AFM810R8	8 9	۷.	, ,		0.0	0/	198	-1,17	0.24	œ	15	Pass	1
AFM810R21		0 0	7 (5 5	3.5	278	388	-3.55	3.8E-04	21	15	Fail	Dackson
AEM815D11	7 0.4	۰.	7.	17	8.8	185	454	-2.63	0.0085	30	15	Te L	Dackground
AFM81SB13	1.0	0 1		<u>e</u> :	3.4	341	362	-2.39	0.017	22	12	Eail	Background
CINCIONIO	0.7		4	=	2.6	32	178	-1.80	0.072	5	15	Pass	Background
BETA FLOOR MONITOR)R												
BFM809R1	106	668	853	956	3%	10	016						
BFM810R8	841	826	640	2011	3 2	17	710	-3.50	4.6E-04	9	15	Fail	Backeround
		0.20	040	0011	171	231	435	-5.05	4.3E-07	21	15	Fail	Background
ALPHA PHOSWICH													
APH810R5	7.9	8	9	Ξ	1.4	1301	0625	173	0000				
							07.5	1.13	0.003	81	100	Pass	
BETA PHOSWICH													
BPH812R20/119803 4	222	227	193	243	21	10	5450	-3 38	7.2E.04		001		
BPH812R20/119815 ⁴⁷	421	424	227	631	124	287	8063	000	2 12 12	,	901	Fail	Background
						100	cono	76.1-	2.4E-15	31	100	Fail	Background
GAMMA FIDLER													
GF810R9	12922.38	12300.5	8696	16877	2527	2160	8280	366	0.004				
GF810R10/A983P 47	15244.06	15109	11449	18841	2155	1731	7696	200	0.024	+7	120	Fail	Survey
GF810R10/A951P W	16186	16186	16186	76191	7		6067	4.29	1.8E-05	91	120	Fail	Survey
CE810D11	1616013	02031	00101	00101	VZ.	V.	V.	Y Z	V V	_	120	Pass	1
CE810D17	14604	16070	/5001	16902	2257	1643	7537	4.36	1.3E-05	15	120	Fail	Survey
CESTABO	14094	0000	11082	19177	2613	1647	6992	3.72	2.0E-04	91	120	Te 3	Survey
CERTIDIO	1446371	5.7845.	10866	18360	2100	1797	7519	4.73	2.2E-06	91	120	E E	Survey
07071010	14402./1	6/861	6756	20286	3135	3731	8359	4.28	1.8E-05	35	001		Sarrey

Measurement - A = Alpha, B = Beta, G = Gamma

Instrument - PH = phoswich; HH = hand-held; FM = floor monitor; F = FIDLER

Survey Area - Building, Room Number

 $^{^{\}text{lv}}$ cpm = counts per minute.

is said to fail. Box-and-whisker plots are generated (refer to Appendix XXXX for the Phase II box-and-whisker plots) and compared in order to determine if the survey data is ✓ If the p-level is less than the alpha (type 1) error of 0.05, the survey and background data sets are not considered to be part of the same population and the WRS test elevated above the background data.

Wore than one instrument was used to collect data for this above-background room. The WRS test was performed for the data collected by each individual instrument used for an above-background room.

Phase II Direct Measurements (Including Discretionary Measurements) VS DCGLw-Adjusted Background Summary of WRS Test Table 4-20

Seneca Army Depot Activity SEAD-12 Building Report

Measurement/ Instrument/	Mean	Median	Minimum	Maximum	Standard	Survey plus	DCGL _w -	1	100	Survey plus	DCGL _W -	Pass/Fail DCGLw-	
Survey Area	(cpm) ^N	(cbm)	(cbm)	(cpm)	(cDm)	Discretionary Rank Sum	Background Rank Sum	2	p-level	Discretionary	Background	Adjusted Background?	Higher if Fail
BETA PHOSWICH										N DIIRA	N Diley	Alpha = 0.05 °	
10011100111011													
BPH812R20/119803 W	222	226.5	193	243	21	10	5450	-3 38	7.2E-04	4	001		
BPH812R20/119815 ^{JV}	466	448.5	227	655	133	1169	8084	0 20	3 60 16	- (001	rai	Background
							1000	-0.40	2.3E-10	4.5	001	Fail	Background
GAMMA FIDLER													
GF810R10/A951P 4/	16437	16436.5	16186	16687	354	233	7270	111	7,000	,	953		
GF810R10/A983P 4"	15244	15109	11449	18841	2155	1731	7585	4 7 9	1 85 05	7 1	120	Fall	Survey
GF810R12HS	14988	15867.5	11082	19177	2619	6161	7.27	;	3.45.05	0 9	071	Fail	Survey
GF812R20HS	15616	14922.5	9529	21545	1091	6460	0101	110	7.4E-0.5	0.	120	Fail	Survey

 $^{a\prime}$ Measurement - A = Alpha; B = Beta; G = Gamma Instrument - PH = phoswich; HH = hand-held; FM = floor monitor; F = FIDI.ER

Survey Area - Building, Room Number

 $^{^{\}text{N}}$ cpm = counts per minute.

of If the p-level is less than the alpha (type I) error of 0.05, the survey and background data sets are not considered to be part of the same population and the WRS test is said to fail. Box-and-whisker plots are generated (refer to Appendix XXXX for the Phase II box-and-whisker plots) and compared in order to determine if the survey data is elevated above the background data.

^ω More than one instrument was used to collect data for this above-background room. The WRS test was performed for the data collected by each individual instrument used for an above-background room.

Table 4-21
Summary Statistics of Phase II Scanning Measurements VS Instrument Scanning Flag Value SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Measurement Type	Number of Grids Scanned	Minimum (cpm) "	Maximum (cpm)	Mean (cpm)	Flag Value (cpm) ^{b/}	Maximum Reading Greater than Flag
AI PHA	RETA	FLOOR MO	NITOR					
810	8	AB e		400	(00	600	2007	
I			1		600	500	2807	No
810 815	21	AB AB	3 12	400	800	567	2807	No
815	3	AB		80	800	259	2807	No
815	4	AB	8 8	200	600	419	2807	No
815	5	AB	11939	100 350	600	250	2807	No
815	6	AB	2 5		700	475	2807	No
815	7	20,000	3	400	800	540	2807	No
815	8	AB AB	4	300	500	417	2807	No
815	9	AB -	3	300	600	438	2807	No
815	10	AB	4	300	800	533	2807	No
815	11	AB	22	200	600	413	2807	No
815	12	AB	11	300	800	545	2807	No
815	13	AB	5	400 300	800	545	2807	No
815	14	AB	25		600	410	2807	No
815	16	AB	12	400	800	578	2807	No
816	3			400	800	546	2807	No
816	4	AB AB	52 26	400 400	800	563	2807	No
816	7	AB	1590	0000000	800	561	2807	No
816	11		5	400	600	490	2807	No
816	13	AB	2 25	400	600	500	2807	No
810	15	AB	25	300	800	500	2807	No
LPHA/	BETA I	PHOSWICH						
800	1	AB	5	60	200	130	854	No
800	2	AB	3	60	250	138	854	No
800	3	AB	5	60	200	124	854	No
802	1	AB	10	80	420	204	854	No
802	2	AB	4	100	480	254	854	No
802	3	AB	2	120	350	228	854	No
802	4	AB	2	100	240	155	854	No
802	5A	AB	2	140	280	215	854	No
802	5B	AB	8	120	300	205	854	No
802	5D	AB	2	180	300	228	854	No
802	6	AB	1	120	300	210	854	No
802	7	AB	1	160	220	190	854	No
802	8	AB	2	100	260	160	854	No
802	9	AB	2	100	320	215	854	No
802	10	AB	2	150	300	213	854	No
802	11	AB	3	100	300	203	854	No
802	12	AB	1	100	220	160	854	No
802	13	AB	3	120	250	192	854	No
802	14	AB	5	120	400	198	854	No
802	15	AB	3	100	220	157	854	No
802	16B	AB	3	100	300	213	854	No
802	16D	AB	6	100	280	173	854	No
802	17	AB	1	100	280	190	854	No
802	18	AB	3	120	300	195	854	No
802	19	AB	2	100	450	235	854	No
802	20	AB	2	140	500	275	854	No
802	21	AB	3	120	240	183	854	No
802	22	AB	2	100	400	245	854	No
806	2	AB	1	80	220	150	854	No
806	3	AB	7	80	220	143	854	No
806	5	AB	6	80	280	138	854	No
806	6	AB	2	100	180	140	854	No
806	7	AB	3	100	180	140	854	No
806	8	AB	2	80	200	140	854	No
806	9	AB	4	80	220	143	854	No
806	10	AB	1	100	200	150	854	No
807	1	AB	1	120	220	170	854	No

Table 4-21
Summary Statistics of Phase II Scanning Measurements VS Instrument Scanning Flag Value SEAD-12 Building Report Seneca Army Depot Activity

Building	Room	Measurement Type	Number of Grids Scanned	Minimum (cpm) *	Maximum (cpm)	Mean (cpm)	Flag Value (cpm) b	Maximum Reading Greater than Flag
807	3	AB	3	100	300	197	854	No
807	4	AB	1	100	300	200	854	No
807	5	AB	4	120	300	203	854	No
807	6	AB	8	100	300	177	854	No
807	7	AB	3	100	240	183	854	No
807	8	AB	1	100	200	150	854	No
809	1	AB	4	100	300	198	854	No
810	3	AB	4	160	600	348	854	No
810	5	AB	4	120	420	220	854	No
810	6	AB	2	120	280	205	854	No
810	7	AB	1	120	260	190	854	No
810	8	AB	3	120	320	203	854	No
810	9	AB	4	100	380	270	854	No
810	10	AB	3	200	400	275	854	No
810	11	AB	2	200	380	270	854	No
810	12	AB	5	180	550	309	854	63,777
810	15	AB	5	120	380	252	854	No
810	17	AB	6	120	380	257		No
810	18	AB	3	100	260	183	854 854	No
810	20	AB	2	180	C 000000000000000000000000000000000000	60000000	20000000	No
810	22	AB	8	TEACHER.	350	248	854	No
810	23	AB	3	120 120	400	244	854	No
810	24	AB	3	11000000	400	240	854	No
810	25	AB	2	180	400	267	854	No
812	1	AB	2	120	320	215	854	No
812	3		100	60	200	130	854	No
812	4	AB	1	100	280	190	854	No
812	5	AB	2	120	250	173	854	No
5888968 III	5.5	AB	7	80	250	132	854	No
812	6	AB	2	100	180	140	854	No
812	7	AB	1	100	200	150	854	No
812	8	AB	3	80	220	157	854	No
812	9	AB	8	100	600	351	854	No
812	10	AB	2	80	240	153	854	No
812	11	AB	1	100	200	150	854	No
812	13	AB	4	100	220	166	854	No
812	14	AB	4	100	300	193	854	No
812	15	AB	4	100	260	163	854	No
812	16	AB	3	100	360	193	854	No
812	17	AB	5	100	600	268	854	No
812	18	AB	4	100	280	175	854	No
812	19	AB	17	80	400	189	854	No
812	20	AB	12	180	800	481	854	No
812	21	AB	2	100	180	145	854	No
812	23	AB	1	100	200	150	854	No
812	24	AB	3	60	200	143	854	No
812	25	AB	2	80	240	165	854	No
812	26	AB	4	60	220	143	854	No
812	27	AB	3	80	280	177	854	No
812	28	AB	3	80	220	133	854	No
812	29	AB	4	80	300	168	854	No
812	30	AB	3	100	240	160	854	No
812	31	AB	7	60	360	184	854	No
813	1	AB	2	120	280	220	854	No
813	2	AB	5	120	400	226	854	
813	3	AB	3	100	500	308	854	No No
813	4	AB	1	120	240	180		No
813	5	AB	ii	80	340		854	No
813	7	AB	i	100	1000000000	199	854	No
813	8	AB	1	C2-C312	300	200	854	No
813	îi	AB	2	200	400	300	854	No
814				80	300	180	854	No
814	1	AB	1	120	320	220	854	No
814	2	AB	1	100	300	200	854	No
	3	AB	1	150	300	225	854	No
814	4	AB	1	200	300	250	854	No

Table 4-21 Summary Statistics of Phase II Scanning Measurements VS Instrument Scanning Flag Value SEAD-12 Building Report Seneca Army Depot Activity

Building	Room	Measurement Type	Number of Grids Scanned	Minimum (cpm) "	Maximum (cpm)	Mean (cpm)	Flag Value (cpm) b	Maximum Readin
814	5	AB	8					Greater than Flag
814	6	AB	3	80	420	210	854	No
815	1	AB	10	100	400	233	854	No
815	2	AB	10	60	800	286	854	No
815	3	AB	23	100	500	222	854	No
815	4	AB	3	80	340	192	854	No
815	5		(2)(2)	100	260	185	854	No
	24.00	AB	15	60	420	237	854	No
815 815	6 7	AB	15	100	360	201	854	No
815	8	AB	14	80	340	208	854	No
200000	9	AB	19	60	400	188	854	No
815 815	1873	AB	13	100	420	246	854	No
30000	10	AB	14	80	360	199	854	No
815	11	AB	60	60	600	191	854	No
815	12	AB	37	80	380	197	854	No
815	13	AB	14	60	320	188	854	No
815	14	AB	53	100	380	204	854	No
815	16	AB	39	80	380	187	854	No
815	18	AB	8	60	360	198	854	No
815	19	AB	1	120	280	200	854	No
815	20	AB	4	80	240	155	854	No
816	1	AB	1	100	280	190	854	No
816	3	AB	132	30	360	193	854	No
816	4	AB	73	60	700	230	854	No
816	5	AB	26	140	400	247	854	No
816	7	AB	18	100	380	213	854	No
816	11	AB	24	80	320	206	854	No
816	12	AB	12	100	300	196	854	No
816	13	AB	21	75	250	154	854	No
816	16	AB	9	60	320	186	854	No
816	21	AB	9	80	340	194	854	No
817	1	AB	1	100	250	175	854	No
817	2	AB	3	60	240	158	854	52500
824	1	AB	4	80	300	173	854	No No
825	1	AB	7	100	350	186	854	
827	1	AB	2	60	240	155	854	No No
AMMA	EIDI E	TD.					0.54	110
800	1	Gamma	5	2000	4500	3350	19000	No
800	2	Gamma	3	3500	5000	4333	19000	No
800	3	Gamma	5	2000	4000	3100	19000	No
802	1	Gamma	10	3000	10000	6150	19000	No
802	3	Gamma	6	4000	9000	6167	19000	No
802	4	Gamma	2	4000	8000	5750	19000	No
802	6	Gamma	1	4000	8000	6000	19000	No
802	7	Gamma	1	5000	8000	6500	19000	No
802	8	Gamma	2	400	8000	3950	19000	No
802	9	Gamma	2	4000	7000	5500	19000	No
802	10	Gamma	2	4000	8000	5750	19000	No
802	11	Gamma	3	3000	8000	5833	19000	No
802	12	Gamma	1	4000	7000	5500	19000	No
802	13	Gamma	3	4000	7000	5500	19000	No
802	14	Gamma	5	3000	8000	5400	19000	No
802	15	Gamma	3	4000	7000	5167	19000	No
802	17	Gamma	1	4000	9000	6500	19000	No
802	18	Gamma	3	4000	7000	5167	19000	
802	19	Gamma	2	6000	8000	7000	19000	No
802	20	Gamma	2	5000	9000	6750		No
802	21	Gamma	3	4000			19000	No
802	22	Gamma		200	11000	6333	19000	No
802			2	5000	8000	6500	19000	No
	16B	Gamma	3	3000	10000	6167	19000	No
802	16D	Gamma	6	3000	9000	5583	19000	No
802	5A	Gamma	2	5000	10000	7250	19000	No
802	5B	Gamma	8	3000	9000	5813	19000	No
802	5D	Gamma	2	4000	10000	6500	19000	No

Table 4-21
Summary Statistics of Phase II Scanning Measurements VS Instrument Scanning Flag Value SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Measurement Type	Number of Grids Scanned	Minimum (cpm) "	Maximum (cpm)	Mean (cpm)	Flag Value (cpm) b	Maximum Reading
806	2	Gamma	1	5000	9000	7000	19000	No
806	3	Gamma	7	4000	8000	5714	19000	No
806	5	Gamma	6	3000	8000	5417	19000	No
257.0000		93777777777777	2	4000	5555555	6000		100000
806	6	Gamma	10000		8000	100000000	19000	No
806	7	Gamma	3	4000	8000	5833	19000	No
806	8	Gamma	2	4000	8000	6250	19000	No
806	9	Gamma	4	3000	8000	5375	19000	No
806	10	Gamma	1	3000	5000	4000	19000	No
807	1	Gamma	1	3000	7000	5000	19000	No
807	2	Gamma	1	3000	6000	4500	19000	No
807	3	Gamma	3	2000	7000	4500	19000	No
807	4	Gamma	1	3000	6000	4500	19000	No
807	5	Gamma	4	3000	6000	4375	19000	No
807	6	Gamma	8	1000	7000	3875	19000	No
807	7	Gamma	3	3000	6000	4500	19000	No
807	8	Gamma	T I	2000	5000	3500	19000	No
809	1	Gamma	4	4000	10000	6625	19000	No
810	3	Gamma	4	6000	20000	12125	19000	YES
810	5	Gamma	4	4000	20000	11250	19000	YES
810	6	Gamma	2	5000	10000	7750	19000	No
250230	10000	3/3/2000 00000	0.000		1270000000			F. 202 Marie
810	7	Gamma	1	9000	14000	11500	19000	No
810	8	Gamma	4	5000	8000	6500	19000	No
810	9	Gamma	5	7000	14000	11000	19000	No
810	10	Gamma	5	10000	21000	15000	19000	YES
810	11	Gamma	2	8000	17000	12500	19000	No
810	12	Gamma	5	9000	20000	13800	19000	YES
810	15	Gamma	5	6000	15000	10400	19000	No
810	17	Gamma	6	4000	12000	8000	19000	No
810	18	Gamma	3	4000	8000	5833	19000	No
810	20	Gamma	2	6000	12000	9250	19000	No
810	21	Gamma	3	4000	10000	6500	19000	No
810	22	Gamma	8	2000	8000	5250	19000	No
810	23	Gamma	3	3000	8000	5667	19000	No
810	24	Gamma	3	8000	12000	9667	19000	No
810	25	Gamma	2	6000	12000	8500	19000	No
			2	3000	6000	4250	19000	No
812	1	Gamma	27.5		200,000,000	Geograph 1996		73732
812	2	Gamma	1	4000	7000	5500	19000	No
812	3	Gamma	1	4000	7000	5500	19000	No
812	4	Gamma	2	6000	8000	7000	19000	No
812	5	Gamma	7	4000	9000	6286	19000	No
812	6	Gamma	2	3000	8000	5500	19000	No
812	7	Gamma	1	6000	10000	8000	19000	No
812	8	Gamma	3	5000	10000	8167	19000	No
812	9	Gamma	7	10000	20000	15000	19000	YES
812	10	Gamma	2	5000	9000	6750	19000	No
812	11	Gamma	1	5000	8000	6500	19000	No
812	13	Gamma	4	4000	12000	8000	19000	No
812	14	Gamma	4	4000	13000	7875	19000	No
812	15		4	3000	11000	200700000000000000000000000000000000000	19000	
0.0000000000000000000000000000000000000	3333	Gamma				6000		No
812	16	Gamma	3	4000	12000	7667	19000	No
812	17	Gamma	5	6000	24000	15600	19000	YES
812	18	Gamma	4	4000	14000	8875	19000	No
812	19	Gamma	17	1000	15000	8206	19000	No
812	20	Gamma	12	8000	26000	17292	19000	YES
812	21	Gamma	2	4000	8000	6000	19000	No
812	23	Gamma	1	6000	10000	8000	19000	No
812	24	Gamma	3	3000	9000	6167	19000	No
812	25	Gamma	2	6000	9000	7500	19000	No
812	26	Gamma	4	2000	10000	6125	19000	No
812	27	Gamma	3	6000	9000	7167	19000	No
012	28	Gamma	3	200000000000	9000	6333	120000000000000000000000000000000000000	
812	40	Gamma	3	3000	9000	0333	19000	No
812	7.557.6	C	- A - 1	2000	12000	7750	10000	X1
812 812 812	29 30	Gamma Gamma	4 3	3000 4000	12000 10000	7750 6833	19000 19000	No No

Table 4-21 Summary Statistics of Phase II Scanning Measurements VS Instrument Scanning Flag Value SEAD-12 Building Report Seneca Army Depot Activity

Building	Room	Measurement	Number of Grids	Minimum	Maximum	Mean	Flag Value	Maximum Reading
	1695,8055	Туре	Scanned	(cpm) "	(cpm)	(cpm)	(cpm) [™]	Greater than Flag
812	33	Gamma	1	10000	14000	12000	19000	No
813	1	Gamma	2	6000	13000	9500	19000	No
813	2	Gamma	5	6000	13000	9400	19000	No
813	3	Gamma	3	8000	17000	12667	19000	No
813	4	Gamma	1	5000	8000	6500	19000	No -
813	5	Gamma	11	3000	10000	5773	19000	No
813	7	Gamma	1	5000	9000	7000	19000	No
813	8	Gamma	1	4000	9000	6500	19000	No
813	- 11	Gamma	2	5000	10000	7250	19000	No
814	1	Gamma	1	3000	7000	5000	19000	No
814	2	Gamma	1	4000	6000	5000	19000	No
814	3	Gamma	1	4000	8000	6000	19000	No
814	4	Gamma	1	3000	7000	5000	19000	No
814	5	Gamma	8	3000	9000	5188	19000	No
814	6	Gamma	3	4000	7000	5167	19000	No
815	1	Gamma	18	5000	14000	7639	19000	No
815	2	Gamma	11	2000	11000	6273	19000	No
815	3	Gamma	31	3000	14000	7468	19000	No
815	4	Gamma	11	5000	15000	8909	19000	No
815	5	Gamma	17	4000	12000	7206	19000	No
815	6	Gamma	20	3000	15000	7750	19000	No
815	7	Gamma	17	3000	9000	5853	19000	No
815	8	Gamma	23	3000	9000	5674	19000	No
815	9	Gamma	16	5000	16000	8875	19000	No
815	10	Gamma	18	3000	8000	5611	19000	No
815	11	Gamma	82	3000	12000	5713	19000	No
815	12	Gamma	48	3000	13000	6432	19000	No
815	13	Gamma	19	4000	10000	6263	19000	
815	14	Gamma	78	4000	11000	7651	19000	No
815	16	Gamma	51	3000	12000	6137	19000	No
815	18	Gamma	8	3000	7000	4813	19000	No
815	19	Gamma	i l	2000	7000	4500	19000	No
815	20	Gamma	4	2000	7000	4375	19000	No
816	1	Gamma	1	3000	6000	4500	19000	No
816	3	Gamma	185	2000	13000	5965	19000	No
816	4	Gamma	99	2000	16000	6682		No
816	5	Gamma	26	500	14000	7433	19000	No
816	7	Gamma	23	5000	13000	7848	19000	No
816	11	Gamma	26	3000	13000	6500	19000	No
816	12	Gamma	12	3000	8000	5083	19000	No
816	13	Gamma	46	3000	9000	5924	19000	No
816	16	Gamma	9	2000	8000	537277945	19000	No
816	21	Gamma	10	3000	6000	4667 4500	19000	No
817	1	Gamma	1	2500	4000	3250	19000	No
817	2	Gamma	3	3000	7000	5,000,000	19000	No
823	î	Gamma	1	6000	10000	4833 8000	19000	No
824	1	Gamma	7	2000	7000	4071	19000	No
825	i	Gamma	7	3000	6000		19000	No
827	1	Gamma	2	3000	6000	4286 4250	19000 19000	No No

^{a/} cpm = counts per minute.

For instruments measuring gross alpha and beta radiation, the flag value is equal to the instrument-specific DCGL_{EMC/5} plus the mean background scanning value. The DCGL_{EMC/5} is calculated by dividing the DCGL_{EMC} (see Table 4-2) by 5 to provide a more conservative flag value. For instruments measuring gross gamma radiation, the flag value was equal to the 95% UTL (upper threshold limit) of the background scanning results.

of AB = gross alpha and beta radiation.

Table 4-22
Phase II Exposure Rate Data
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Minimum (μRem/hr) ^{a/}	Mean (μRem/hr)	Maximum (μRem/hr)
722 b/	1	4	9.3	16
800	1	3	4.9	7
800	2	3	4.9	8
800	3	2	4.5	6
802	1	4	5.7	8
802		4	6.2	8
802	2 3	5	6.2	9
802	4	4	6.4	8
802	6	2	4.8	7
802	7	5	5.8	7
802	8	5	6.3	8
802	9	3	5.4	7
802	10	4	6.8	9
802	11	4	5.7	8
802	12	4	5.9	8
802	13	5	6.4	9
802	14	5	5.8	7
802	15	3	5.4	8
802	17	4	5.6	7
802	18	3	5.1	7
802	19	3	5.6	8
802	20	6	7.3	9
802	21	5	6.1	8
802	22	4	6.2	8
802	16B	4	5.7	7
802	16C	3	4.9	6
802	16D	4	5.6	7
802	5A	4	6.1	8
802	5C	3	5.5	9
802	5D	5	6.8	8
806	2	4	4.9	6
806	3	3	4.2	6
806	5	0	0.6	3
806	6	3	3.9	5
806	7	3	4.6	6
806	8	3	4.3	6
806	9	3	4.2	6
806	10	4	5.4	7 7
807	1	4	4.6	
807	2 3	3	4.3	5
807	3	3 3 3 2	4.6	6
807	4	3	4.3	6
807	5	2	4.5	6
807	6	4	4.6	6
807	7	3 3	4.9	11
807	8	3	4.7	6
807	9	3	5.0	8
809	1	4	6.1	7
810	3	6	8.6	11
810	5	6	7.9	11
810	6	5	8.3	11
810	7	7	8.3	11

Table 4-22
Phase II Exposure Rate Data
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Minimum (μRem/hr) *	Mean (μRem/hr)	Maximum (μRem/hr)
810	8	6	8.7	12
810	9	7	8.8	12
810	10	7	9.4	12
810	11	7	8.7	10
810	12	7	10.2	12
810	15	6	8.5	11
810	17	4	7.3	10
810	18	4	5.6	9
810	19	4	5.4	8
810	20	5	6.6	9
810	21	4	6.2	9
810	22	4	5.3	7
810	23	3	5.6	8
810	24	5	6.7	9
810	25	5	7.8	10
812	1	4	4.9	7
812		4	5.5	10
812	3	4	5.3	6
812	2 3 4	3	5.4	7
812	5	3	4.8	8
812	6	4	6.1	12
812	7		6.5	12
812	8	5	7.0	10
812	9	8	10.1	12
812	10	4	5.9	7
812	11	4	5.3	7
812	13	6	7.1	9
812	14	6	6.9	9
812	15	5	8.5	11
812	16	6	7.3	9
812	17	7	9.8	13
812	18	6	9.0	12
812	19		7.2	10
812	20	5	10.9	15
812	21		7.3	9
812	23	5	7.1	9
812	24	5 5 4	5.7	8
812	25	5	5.9	7
812	26	5	5.9	
812	27		5.9	8 7
812	28	5	5.6	7
812	29	6	6.8	9
812	30	4	5.6	8
812	31	3	5.2	7
812	33	4	6.9	10
813	1	5	6.7	10
813	2	4	5.7	7
813	3	5	6.7	9
813	4	4	6.3	9
813	5	4	5.8	9
813	7	4	7.2	
813	8	5	6.8	10
813	11	3	5.1	8 6

Table 4-22
Phase II Exposure Rate Data
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Minimum (μRem/hr) ²	Mean (μRem/hr)	Maximum (μRem/hr)
814	1	3	5.5	7
814	2	4	5.7	7
814	3	5	6.0	8
814	4	5	7.1	10
814	5	3	5.2	7
814	6	4	5.4	7
815	1	4	5.7	7
815	2	4	5.1	6
815	3	4	6.0	8
815	4	5	7.3	12
815	5	3	6.2	9
815	6	5	6.2	9
815	7	4	5.5	9
815	8	4	5.6	8
815	9	5	7.0	9
815	10	1	3.7	9
815	11	3	5.2	10
815	12	4	6.0	10
815	13	5	5.3	7
815	14	4	5.7	8
815	16	3.5	5.6	9
815	18	3	4.3	6
815	19	3	4.1	7
815	20	2	4.1	7
816	1	2	4.6	6
816	2	3	5.6	9
816	3	3	5.4	8
816	4	3	5.2	8
816	5	5	7.9	10
816	7	6	7.8	10
816	11	5 5	6.4	9
816	12		5.9	8
816	13	4	5.6	7
816	16	3	4.3	5
816	21	3	4.1	5
817	1	4	5.2	7
817	2	4	5.3	7.5
823	1	10	10.0	10
824	1	3	3.6	5
825	1	3	4.5	7
827	1	4	4.7	6

 $^{^{}a\prime}$ $\mu Rem/hr = microrem$ per hour.

^{b/} Building 722 is the background building.

Table 4-23
Summary of Phase II Dry Smear Sampling Results a/, b/, c/
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room		pha (dpm			Beta (dpm)		G	amma (dpr	n)
	(6) (85, 8000)	Mimimum	Average	Maximum	Mimimum	Average	Maximum	Mimimum	Average	Maximum
800	1	0.0	0.1	1.2	0.0	0.0	0.0	0.0	0.0	0.0
800	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
800	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
802	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
802	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
802	3	0.0	0.1	0.9	0.0	0.6	3.5	0.0	0.0	0.0
802	4	0.0	0.2	2.1	0.0	0.4	4.1	0.0	0.0	0.0
802	5A	0.0	0.3	1.3	0.0	0.3	2.9	0.0	0.0	0.0
802	5B	0.0	0.1	1.3	0.0	0.4	3.8	0.0	0.0	0.0
802	5D	0.0	0.0	0.0	0.1	0.0	3.4	1.4	0.0	57.4
802	6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
802	7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
802	8	0.0	0.2	1.4	0.0	0.0	0.0	0.0	3.3	53.5
802	9	0.0	0.0	0.0	0.0	0.2	0.0	0.0	3.2	0.0
802	10	0.0	0.0	0.0	0.1	0.2	0.0	1.4	3.7	0.0
802	11	0.0	0.0	0.0	0.1	0.4	2.8	1.2	4.0	50.6
802	12	0.0	0.1	1.2	0.0	0.3	4.0	0.0	0.0	0.0
802	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.5	63.6
802 802	14	0.0	0.0	0.0	0.0	0.2	4.0	0.0	0.0	0.0
802	15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
802	16B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
802	16C	0.0	0.0	0.0	0.0	0.2	0.0	0.0	2.7	0.0
802	16D	0.0	0.1	2.2	0.0	0.7	6.9	0.0	0.0	0.0
802	17 18	0.0	0.0	0.0	0.0	0.5	4.4	0.0	0.0	0.0
802	19	0.0	0.0	0.0	0.0	0.2	0.0	0.0	3.3	0.0
802	20	0.0	0.2	1.8	0.0	0.3	4.1	0.0	0.0	0.0
802	21	0.0	0.2	1.8	0.0	0.0	0.0	0.0	0.0	0.0
802	22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
806	2	0.0	0.0	0.0	0.2	0.0	0.0	1.4	0.0	0.0
806	3	0.0	0.1	1.4 1.1	0.0	0.0	0.0	0.0	3.1	49.2
806	5	0.0	0.1		0.0	0.0	0.0	0.0	3.1	67.7
806	6	0.0	0.1	1.1 1.6	0.0	0.2	4.3	0.0	0.0	0.0
806	7	0.0	0.1	2.2	0.0	0.9	5.8	0.0	3.2	50.4
806	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
806	9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	43.4
806	10	0.0	0.0	0.0	0.0	0.5	4.7	0.0	0.0	0.0
807	1	0.0	0.2	1.4	0.0	0.0	0.0	0.0	0.0	0.0
807	2	0.0	0.0	0.0	0.0		3.5	0.0	0.0	0.0
807	3	0.0	0.2	1.4	0.0	0.0	0.0	0.0	0.0	0.0
807	4	0.0	0.1	1.9	0.0	0.0 1.3	0.0	0.0	0.0	0.0
807	5	0.0	0.1	1.2	0.0	0.0	8.5	0.0	7.1	56.9
807	6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
807	7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	56.9
807	8	0.0	0.0	0.0	0.0	0.0	3.2	0.0	5.5	52.6
807	9	0.0	0.5	2.6	0.0	3.5		0.0	0.0	0.0
809	1	0.0	0.3	1.0	0.0	1.3	7.6		6.4	52.0
810	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
810	5	0.0	0.0	0.0	0.0	0.0	4.1	0.0	0.0	0.0
810	6	0.0	0.0	0.0	0.0	0.2	0.0		0.0	0.0
810	7	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
810	8	0.0	0.1	1.6	0.0	0.0	0.0	0.0	0.0	0.0
	9	0.0	0.0	0.0	0.0		3.6	0.0	0.0	0.0
810	9 1	0.0	0.0	() ()	0.0	0.0	0.0	0.0	2.7	65.9

Table 4-23
Summary of Phase II Dry Smear Sampling Results^{a/, b/, c/}
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	A	lpha (dpm)	d/		Beta (dpm)		G	amma (dpr	n)
Dunuing	Koom	Mimimum	Average	Maximum	Mimimum	Average	Maximum	Mimimum	Average	Maximum
810	11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
810	12	0.0	0.0	0.0	0.0	0.3	3.6	0.0	0.0	0.0
810	15	0.0	0.2	1.7	0.0	0.3	5.8	0.0	2.6	52.3
810	17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
810	18	0.0	0.1	1.2	0.0	0.1	3.2	0.0	1.5	51.9
810	19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
810	20	0.0	0.0	0.0	0.0	0.2	3.6	0.0	2.9	44.1
810	21	0.0	0.2	1.6	0.0	0.0	0.0	0.0	0.0	0.0
810	22	0.0	0.1	1.8	0.0	0.5	5.0	0.0	1.2	44.5
810	23	0.0	0.2	1.6	0.0	0.4	3.5	0.0	1.8	54.6
810	24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
810	25	0.0	0.1	1.0	0.0	0.2	3.3	0.0	0.0	0.0
812	1	0.0	0.1	1.4	0.0	0.0	0.0	0.0	0.0	0.0
812	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
812	3	0.0	0.3	4.0	0.0	0.7	9.9	0.0	0.0	0.0
812	4	0.0	0.1	1.5	0.0	0.0	0.0	0.0	3.1	46.0
812	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
812	6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	45.0
812	7	0.0	0.1	1.5	0.0	0.0	0.0	0.0	0.0	0.0
812	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
812	9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	46.5
812	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	61.8
812 812	11	0.0	0.1	1.2	0.0	0.0	0.0	0.0	0.0	0.0
812	13 14	0.0	0.1	1.0	0.0	0.3	3.3	0.0	8.2	60.9
812	15	0.0	0.1	1.0	0.0	0.6	4.1	0.0	2.5	54.0
812	16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	45.4
812	17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
812	18	0.0	0.0	1.3	0.0	0.0	0.0	0.0	2.6	48.5
812	19	0.0	0.0	0.0 1.7	0.0	0.2	3.5	0.0	3.0	66.5
812	20	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
812	21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	49.2
812	23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
812	24	0.0	0.3	1.4	0.0	0.0	0.0	0.0	0.0	0.0
812	25	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0
812	26	0.0	0.1	1.3	0.0	0.7	5.5 4.6	0.0	0.0	0.0
812	27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
812	28	0.0	0.0	0.0	0.0	0.9	4.6	0.0	3.2	48.4
812	29	0.0	0.0	0.0	0.0	0.2	3.5	0.0	0.0	0.0
812	30	0.0	0.1	1.3	0.0	0.8	4.4	0.0	0.0	0.0
812	31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
812	33	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
813	1	0.0	0.0	0.0	0.0	0.2	3.3	0.0	0.0	0.0
813	2	0.0	0.0	0.0	0.0	0.3	3.9	0.0	0.0	0.0
813	3	0.0	0.0	0.0	0.0	0.4	2.8	0.0	0.0	0.0
813	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
813	5	0.0	0.1	1.4	0.0	0.0	0.0	0.0	0.0	0.0
813	7	0.0	0.1	1.7	0.0	0.0	0.0	0.0	8.2	72.9
813	8	0.0	0.1	1.3	0.0	0.0	0.0	0.0	7.1	55.6
813	11	0.0	0.0	0.0	0.0	0.2	3.3	0.0	0.0	0.0
814	1	0.0	0.1	1.4	0.0	0.0	0.0	0.0	0.0	0.0
814	2	0.0	0.1	1.0	0.0	0.0	0.0	0.0	0.0	0.0
814	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.5	52.8
814	4	0.0	0.1	1.4	0.0	0.9	3.8	0.0	0.0	0.0

Table 4-23
Summary of Phase II Dry Smear Sampling Results^{a/, b/, c/}
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	A	lpha (dpm)	al .		Beta (dpm)		C	amma (dpi	n)
Dunding	Koom	Mimimum	Average	Maximum	Mimimum	Average	Maximum	Mimimum	Average	Maximum
814	5	0.0	0.2	1.8	0.0	0.1	2.7	0.0	0.0	0.0
814	6	0.0	0.2	2.2	0.0	0.2	3.5	0.0	0.0	0.0
815	1	0.0	0.0	0.0	0.0	0.2	2.9	0.0	0.0	0.0
815	2	0.0	0.2	1.7	0.0	0.0	0.0	0.0	0.0	0.0
815	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
815	4	0.0	0.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0
815	5	0.0	0.2	1.7	0.0	0.0	0.0	0.0	3.1	53.3
815	6	0.0	0.2	1.3	0.0	0.2	3.0	0.0	0.0	0.0
815	7	0.0	0.1	1.3	0.0	0.0	0.0	0.0	2.7	46.7
815	8	0.0	0.2	1.3	0.0	0.1	2.7	0.0	4.1	50.5
815	9	0.0	0.3	2.1	0.0	0.3	4.9	0.0	3.3	52.7
815	10	0.0	0.1	1.5	0.0	0.2	3.8	0.0	2.8	50.5
815	11	0.0	0.1	1.5	0.0	0.0	0.0	0.0	0.6	46.6
815	12	0.0	0.0	1.5	0.0	0.1	3.0	0.0	1.4	67.3
815	13	0.0	0.0	0.0	0.0	0.5	5.5	0.0	6.1	65.3
815	14	0.0	0.0	1.8	0.0	0.3	4.5	0.0	0.0	0.0
815	16	0.0	0.2	2.4	0.0	0.0	0.0	0.0	1.8	46.2
815	18	0.0	0.2	2.2	0.0	0.5	5.0	0.0	0.0	0.0
815	19	0.0	0.2	1.6	0.0	0.2	3.0	0.0	0.0	0.0
815	20	0.0	0.1	1.6	0.0	0.0	0.0	0.0	0.0	0.0
816	1	0.0	0.1	1.6	0.0	0.1	3.3	0.0	0.0	0.0
816	2	0.0	0.1	1.2	0.0	0.2	5.0	0.0	1.4	58.3
816	3	0.0	0.1	2.1	0.0	0.2	4.5	0.0	3.9	65.5
816	4	0.0	0.1	2.0	0.0	0.1	2.9	0.0	0.0	0.0
816	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	53.0
816	7	0.0	0.1	1.1	0.0	0.4	4.6	0.0	2.3	53.1
816	11	0.0	0.1	1.5	0.0	0.2	4.6	0.0	2.1	54.7
816	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	51.0
816	13	0.0	0.2	1.7	0.0	0.3	3.7	0.0	0.0	0.0
816	16	0.0	0.1	1.3	0.0	0.0	0.0	0.0	1.9	46.4
816	21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
817	1	0.0	0.0	0.0	0.0	2.8	9.3	0.0	5.9	48.0
817	2	0.0	0.1	1.0	0.0	1.7	7.3	0.0	0.0	0.0
823	1	0.0	0.3	1.0	0.0	3.8	9.6	0.0	0.0	0.0
824	1	0.0	0.2	1.3	0.0	0.2	2.8	0.0	3.5	62.1
825	1	0.0	0.1	1.7	0.0	0.4	4.2	0.0	1.7	50.1
827	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	51.3

Notes:

^{a/} ANSI/ HPS N13.13-1999 Screening levels: Group 1- Ra, Th, and Transuranics 600 dpm; Group 2 - Uranium and Select High Dose Beta-Gamma emitters, 6000 dpm; Group 3 - General Beta-Gamma emitters, 60000 dpm; Group 4 other Beta-Gamma Emitters, 600000 dpm.

b/ NYS DOL proposed acceptable levels: natural U and assoc. decay products - 1000 dpm alpha/cm²; Transuranics - 200 dpm/cm²; Beta-Gamma Emitters - 1000 beta-gamma/100 cm².

^{c/} Smear Samples collected over a 100 cm² area.

d/ dpm = disintegrations per minute.

Table 4-24
Summary of Phase II Tritium Smear Sampling Results^{a/, b/, c/}
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Triti	um Beta (d	pm) ^{d/}
Dunuing	Room	Minimum	Average	Maximum
815	1	0.0	0.6	10.2
815	2	0.0	0.0	0.0
815	3	0.0	0.0	0.0
815	4	0.0	1.1	11.9
815	5	0.0	0.0	0.0
815	6	0.0	0.0	0.0
815	7	0.0	0.0	0.0
815	8	0.0	0.0	0.0
815	9	0.0	0.0	0.0
815	10	0.0	0.0	0.0
815	11	0.0	0.0	0.0
815	12	0.0	0.2	8.5
815	13	0.0	0.5	9.5
815	14	0.0	0.1	11.4
815	16	0.0	1.1	46.2
815	18	NA e/	NA	NA
815	19	NA	NA	NA
815	20	NA	NA	NA
816	1	NA	NA	NA
816	2	0.0	3.4	15.8
816	3	0.0	5.1	15.9
816	4	0.0	4.7	16.1
816	5	0.0	4.5	17.9
816	7	0.0	6.0	18.1
816	11	0.0	0.4	9.6
816	12	0.0	0.0	0.0
816	13	0.0	7.7	21.7
816	16	NA	NA	NA
816	21	NA	NA	NA

Notes:

al ANSI/ HPS N13.13-1999 Screening levels: Group 1- Ra, Th, and Transuranics 600 dpm; Group 2 - Uranium and Select High Dose Beta-Gamma emitters, 6000 dpm; Group 3 - General Beta-Gamma emitters, 60000 dpm; Group 4 other Beta-Gamma Emitters, 600000 dpm.

b/ NYS DOL proposed acceptable levels: natural U and assoc. decay products - 1000 dpm alpha/cm²; Transuranics - 200 dpm/cm²; Beta-Gamma Emitters - 1000 beta-gamma/ 100 cm².

c/ Smear Samples collected over a 100 cm2 area.

d/ dpm = disintegrations per minute.

e NA = Not applicable. Tritium smears were not collected at this location.

Table 4-25
Summary of In-Situ Gamma Spectroscopy Measurements
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Grid	Gamma Spec Location ID	Potentially Elevated? */	Outcome
800	2	26	CI	No	Bkgd
802	20	3	C1	No	Bkgd
803	2	7	C8	No	Bkgd
803	2	81	C7	No	Bkgd
803	3	3	C2	No	Bkgd
803	3	12	Clb	No	Bkgd
803	4	87	C3	No	Bkgd
803	4	89	C4	No	Bkgd
803	5	86	C6	No	Bkgd
803	5	102	C5	No	Bkgd
803	6	85	C9	No	Bkgd
803	6	95	C10	No	Bkgd
803	6	157	C11	No	Bkgd
804	1	5	C8	No	Bkgd
804	1	10	C9	No	Bkgd
804	1	13	C10	Yes	< DCGL _{EMC}
804	2	6	C6	Yes	Bkgd
804	4	5	C7	No	Bkgd
804	3A	0	C1	Yes	Bkgd
804	3A	2	C2b	No	Bkgd
804	3A	14	C3	No	Bkgd
804	5A	7	C5	Yes	Bkgd
804	6A	6	C4	No	Bkgd
805	1	3	C1	No	Bkgd
805	1	6	C2	No	Bkgd
805	1	13	C5	No	Bkgd
805	1	14	C4	Yes	Bkgd
805	1	17	C3	No	Bkgd
805	1	20	C6	Yes	Bkgd
806	1	3	C1	Yes	Bkgd
806	5	14	C3	No	Bkgd
806	5	29	C2	No	Bkgd
807	2	3	Cl	No	Bkgd
809	1	9	CI	No	Bkgd
810	1	10	Cl	No	Bkgd
810	1	31	C2	No	Bkgd
810	3	18	C3	Yes	Bkgd
810	10	8	C4	No	Bkgd
812	20	20	C3	No	Bkgd
812	32	0	C1	No	Bkgd
812	9	2	C2	No	Bkgd
813	3	5	C1	No	Bkgd
814	4	14	C1	No	Bkgd
815	6	15	C8	No	Bkgd
815	9	5	C6	No	Bkgd
815	11	26	C5	No	Bkgd
815	14	9	C9	No	Bkgd
815	15	15	C3	Yes	Bkgd
815	15	17	C4	No	Bkgd
815	15	27	Duct smear sample	No	Bkgd
815	15	29	C2	No	Bkgd
815	15	38	CI	No	Bkgd
815	16	21	C7	No	Bkgd

Table 4-25 Summary of In-Situ Gamma Spectroscopy Measurements SEAD-12 Building Report Seneca Army Depot Activity

Building	Room	Grid	Gamma Spec Location ID	Potentially Elevated? *	Outcome
816	2	22	C7	No	Bkgd
816	3	61	C6	Yes	Bkgd
816	4	45	C5	No	Bkgd
816	5	5	C8	No	Bkgd
816	7	3	C9	Yes	Bkgd
816	8	5	C1	Yes	Bkgd
816	8	14	C2	No	Bkgd
816	9	1	C3	No	Bkgd
816	10	9	C4	Yes	Bkgd
816	10	9	C4a	Yes	Bkgd
817	2	15	Cl	No	Bkgd
819	1	5 (Hot spot 86)	C2	Yes	Bkgd
819	1	91 (Hot spot 96)	C1	Yes	Bkgd
819	2	11	C3	No	Bkgd
819	3	78	C4	No	Bkgd
819	3	152	C5	No	Bkgd
819	3	0D	C7	No	Bkgd
819	3	130 (Hot spot 148)	C6	No	Bkgd
819	4	5	C8	Yes	Bkgd
819	4	7	C9	No	Bkgd
819	4	8	C10	No	Bkgd
819	5	7	C12	Yes	Bkgd
819	5	11	C13	Yes	Bkgd
819	5	12	C14	Yes	Bkgd
819	5	15	C11	Yes	Bkgd
819	7	5	C16	No	Bkgd
819	7	8	C17	Yes	Bkgd
819	7	10	C18	No	Bkgd
819	8	2	C19	Yes	Bkgd
819	8	3	C20	No	Bkgd
819	8	9	C21	No	Bkgd
819	9	10	C22	No	Bkgd
819	10	10	C23	No	Bkgd
819	11	19	C24	Yes	Bkgd & < DCGL _{EM}
819	12	5	C26	No	Bkgd
819	12	23	C28	Yes	Bkgd
819	12d	2	C27	Yes	Bkgd
819	12d	4	C25	Yes	Bkgd
819	6b	3	C15	No	Bkgd
823	1	5	C1	Yes	Bkgd
824	1	11	C1	No	Bkgd
825	1	21	Cl	No	Bkgd
827	1	10	C1	No	Bkgd

a/ A measurement was considered suspect if there had been an exceedence in that survey area during the building surveys (refer to Tables 5-1 and 5-4), or if a radionuclide was identified and quantified above the DCGL_w. All potentially elevated results are described in Tables 4-26 and 5-7.

Table 4-26
Summary of Potentially Elevated Gamma Spectroscopy Results
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Коош	Grid	Gamma Spec Location ID	Sample Material	Rationale for Gamma Spectroscopy	Radionuclides Identified	Peak Energy (keV) "	2nd Peak Energy (keV)	Upper Bound Peak Activity (dpm/100 cm²) ^{b/}	DCGLw (dpm/100 cm²)	Upper Bound Activity Exceeds	Conclusion
803	£	13	CIB	concrete	Alpha exceeds background based on WRS test; alpha/beta scanning above	No ID after background subtraction	NA	NA	ΥN	NA	×Z	Background
803	e	3	Ω	concrete	Alpha exceeds background based on WRS test; alpha/beta scanning above flag	No ID after background subtraction	Ϋ́	Ϋ́Z	ΝΑ	, v	Y X	Background
803	9	95	C10	concrete	Alpha exceeds background based on WRS test; -alpha/beta scanning above flag	No ID after background subtraction	Ϋ́	V.	« Z	ď.	Š	Background
803	9	157	Ð	metal	Alpha exceeds background based on WRS test;	Th-228	79.35	I	204	No DCGL	× ×	Background
					alpha/beta scanning above flag	Pb-212	234.6	78.67	25	No DCGL	N N	Backeround
803	9	88	63	metal	Alpha exceeds background based on WRS test; alpha/beta scanning above	No ID after background subtraction	NA A	V V	V V	, V	×	Background
804	-	13	C10	cinder block	Gamma exceeds background based on WRS	U-235	6781	96.93	219	145	Yes	Within the DCGL _{FMC} - Refer to Table 5.5
			1		iest	Pb-210	46.95	1	1717	No DCGL	AN	Background
804	7	9	92	plass	Alpha exceeds background	Th-234	96.16	63.29	849	152	Yes	Background - Refer to
) [0	based on WRS test	U-235	190	96.93	18	145	No	Backpround
						Pb-210	50.53		478	No DCGL	AN	Backeround
804	38	0	5	floor tile w/	Alpha/beta scanning above	T1-208	70.07	277.4	610	No DCGL	NA	Background
		ā.		concrete base	flag	Th-234	95.65	63.29	999	152	Yes	Background - Refer to

Table 4-26
Summary of Potentially Elevated Gamma Spectroscopy Results
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Коош	Grid	Gamma Spec Location ID	Sample Material	Rationale for Gamma Spectroscopy	Radionuclides Identified	Peak Energy (keV) "	2nd Peak Energy (keV)	Upper Bound Peak Activity (dpm/100 cm²) ^{b/}	DCGLw (dpm/100 cm²)	Upper Bound Activity Exceeds	Conclusion
						Ra-223	82.86	269.5	114	No DCGL	NA	Background
	9				Bi-214 and Ra-226 debris	Th-228	82.86	1	3706	No DCGL	NA	Background
804	Sa	_	S	cinder block	elevated; Class I Survey	Pb-210	52.36	1	1003	No DCGL	NA	Background
					Area	Th-234	99.96	63.29	1188	152	Yes	Background - Refer to
						U-235	179.9	96.93	36	145	ON	Background
	9		0.07.60		Gamma exceeds	Pb-210	44.02		1895	No DCGL	NA	Background
802	-	4	2	concrete	background based on WRS	Th-228	79.1		445	No DCGL	VA	Background
					test	Th-234	16.29	63.29	662	152	Yes	Background - Refer to Table 5-5
808	_	20	90	concrete	background based on WRS	Th-228	80.36		6406	No DCGL	ΥN	Background
					test	Th-234	94.65	63.29	1599	152	Yes	Background - Refer to Table 5-5
908	_	3	ū	wood over	General Coverage, Class II	U-238	13.9	1	54	152	N _o	Background
				concrete 1100r	Survey Area	Pb-210	45.61	1	1397	No DCGL	ΥN	Background
810	10	8	2	porcelain	Gamma exceeds background based on WRS	Pb-210	48.41	1	1705	No DCGL	NA.	Background
					test	Th-228	80.11	E	176	No DCGL	ΑN	Background
810	-	90	٣	alerado	General Coverage, Class II	Th-228	87.38	1	4736	No DCGL	NA	Background
			3		Survey Area	Th-234	87.38	63.29	1059	152	Yes	Background - Refer to
812	6	,	S	ceramic block	Gamma exceeds	Pb-210	47.49	1	1563	No DCGL	NA VA	Background
	i i	e	3	4000	test	Cs-137	33.07	2.199	43	12500	N _o	Background and not exceeding DCGL
812	20	20	ß	ceramic block	Beta and gamma exceed background based on WRS test	Pb-210	43.66	1	938	No DCGL	Å.	Background
813	3	S	15	cinder block	General Coverage, Limited	U-235	191.2	96.93	88	145	No	Background
					Class III Survey Area	Pb-210	47.55	â	1528	No DCGL	NA A	Background

Table 4-26
Summary of Potentially Elevated Gamma Spectroscopy Results
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Коош	Grid	Gamma Spec Location ID	Sample Material	Rationale for Gamma Spectroscopy	Radionuclides Identified	Peak Energy (keV) */	2nd Peak Energy (keV)	Upper Bound Peak Activity (dpm/100 cm²) ^W	DCGLw (dpm/100 cm²)	Upper Bound Activity Exceeds DCGL?	Conclusion
					Phase I debris sampling indicated elevated levels of	Ac-228	99.96	336	557	No DCGL	NA VA	Background
815	15	15	ឌ	cinder block	Pb-211; Beta exceeds background based on WRS	Pb-212	242.9	78.67	112	No DCGL	NA A	Background
					test	Th-234	99.96	63.29	1030	152	Yes	Background - Refer to Table 5-5
816	10	6	25	wood (analyzed using wood	Beta exceeds background based on WRS test; Class I	Th-234	91.64	63.29	663	152	Yes	Background - Refer to Table 5-5 and reanalysis below (#C4a)
				background)	Survey Area	U-235	161	96.93	5	145	No	Backmenned
						Th-231	24.04	85.27	1183	No DCGL	NA	Background
						Pb-210	49.99	1	192	No DCGL	Y.	Background
918	01	6	C4a	wood (analyzed using concrete	Beta exceeds background based on WRS test: Class 1	Pb-210	47.07	ı	924	No DCGL	ν V	Background
				background)	Survey Area	Th-234	68.16	63.29	789	152	Yes	Background - Refer to Table 5-5
816	3	19	90	cinder block	General Coverage	Th-234	98.16	63.29	832	152	Yes	Background - Refer to
						U-235	186.2	96.93	64	145	No	Background
816	7	3	ව	cinder block	General Coverage	No ID after background subtraction	V V	Ϋ́Z	NA	Ϋ́Z	Ϋ́Z	Background
918	∞	ĸ	5	concrete	Class 1 room in Bldg, 816	Th-234	94.15	63.29	192	152	Yes	Background - Refer to Table 5-5
						Pb-210	47.07	1	1776	No DCGL	٧X	Background
	;	700			Alpha and beta exceed	Th-234	98.41	63.29	989	152	Yes	Background - Refer to
619	=	61	C24	cinder block	background based on WRS	TI-208	75.59	277.4	602	No DCGL	Ϋ́	Background
					lest	Bi-211	355.2	74.39	401	No DCGL	VV	Background
						Pb-214	355.2	78.67	140	No DCGL	ΥN	Background

Table 4-26
Summary of Potentially Elevated Gamma Spectroscopy Results
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Коош	Grid	Gamma Spec Location ID	Sample Material	Rationale for Gamma Spectroscopy	Radionuclides Identified	Peak Energy (keV) "	2nd Peak Energy (keV)	Upper Bound Peak Activity (dpm/100 cm ²) ^{b/}	DCGLw (dpm/100 cm²)	Upper Bound Activity Exceeds DCGL?	Conclusion
					9 (200)	Ra-226	192.7	351.9	5388	1210	Yes	Background and DCGL _{enc} - Refer to Table 5-5
819	12	23	C28	cinder block	Alpha exceeds background based on WRS test	U-235	192.7	96.93	328	145	Yes	Background and DCGL _{EMC} - Refer to Table 5-5
						Bi-211	353.7	74.39	538	No DCGL	NA	Background
						Pb-214	353.7	78.67	187	No DCGL	NA	Background
						Th-231	21.76	85.27	545	No DCGL	NA	Background
					20 00 00 00 00 00 00 00 00 00 00 00 00 0	Ra-223	80.86	269.5	101	No DCGL	NA	Background
819	12D	7	C27	cinder block	Alpha exceeds background	Th-228	80.86		3493	No DCGL	NA	Background
		Ų.	2000		based on WRS test	Ac-228	94.15	336	1002	No DCGL	NA	Background
						Th-234	94.15	63.29	1575	152	Yes	Background - Refer to Table 5-5
					34	Pb-210	51.33	ī	267	No DCGL	NA NA	Background
819	-	Spot 96)	ū	ceramic block	Beta exceeds background based on WRS test	Th-228	88.38		2179	No DCGL	V.	Background
		5				Th-234	88.38	63.29	487	152	Yes	Background
819	-	5 (Hot	2	concrete	Beta exceeds background	Pb-210	52	ı	2285	No DCGL	Ϋ́	Background
	4	Spot 86)	}		based on WRS test	TI-208	70.83	277.4	210	No DCGL	A A	Background
						Ac-228	95.91	336	225	No DCGL	NA	Background
010	33	,	o C		Gamma exceeds	Pb-210	48.41	1	515	No DCGL	NA	Background
619	7	n	3	cinder block	background based on WRS	Th-234	95.91	63.29	468	152	Yes	Background - Refer to Table 5-5
						U-235	179.9	96.93	88	145	No	Background
					-1	U-235	181.2	66.93	140	145	No	Background
	,	;		wood panel over		Th-228	9.62	ı	2747	No DCGL	NA	Background
819	'n	5	5	cinder block wall	background	Pb-210	46.15	1	879	No DCGL	NA	Background
			7		1631	Th-234	92.14	63.29	9611	152	Yes	Background - Refer to Table 5-5

Table 4-26
Summary of Potentially Elevated Gamma Spectroscopy Results
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Коош	Grid	Gamma Spec Location ID	Sample Material	Rationale for Gamma Spectroscopy	Radionuclides Identified	Peak Energy (keV)	2nd Peak Energy (keV)	Upper Bound Peak Activity (dpm/100 cm²) ^{b/}	DCGLw (dpm/100 cm²)	Upper Bound Activity Exceeds DCGL?	Conclusion
					C	Pb-210	46.95	1	1038	No DCGL	NA	Background
819	ĸ	7	C12	wood panel over cinder block wall	Gamn background	Th-234	97.41	63.29	1044	152	Yes	Background - Refer to Table 5-5
					test	T1-208	71.58	277.4	2084	No DCGL	VA	Background
						Ac-228	97.41	336	663	No DCGL	NA	Background
819	vo	=	C13	wood panel over	Gamma exceeds background based on WRS	Ra-226	188.4	351.9	1871	1210	Yes	Background - Refer to
				Ciliaci Diock wall	test	U-235	188.4	96.93	114	145	No	Background
						Pb-210	47.07	1	1303	No DCGL	NA	Background
						Ac-228	99.96	336	37	No DCGL	NA	Background
				10 <u>5</u>	Gamma exceeds	Ra-226	182.7	351.9	1764	1210	Yes	Background - Refer to Table 5-5
819	v	12	C14	wood panel over	back	U-235	182.7	66.93	108	145	No	Background
				CITIZET DIOCK WALL	test	Bi-211	354	74.39	211	No DCGL	AN	Background
						Pb-214	354	78.67	73	No DCGL	VA	Background
						Th-228	84.87	I	173	No DCGL	NA	Background
						Th-234	68.16	63.29	14	152	No	Background
						Pb-210	40.62	1	1480	No DCGL	NA	Background
010	ı	۰	į		Gamma exceeds	Th-228	79.1	ı	4358	No DCGL	NA	Background
616		o	<u> </u>	cinder block	background based on WKS	Th-234	94.4	63.29	1504	152	Yes	Background - Refer to Table 5-5
						Ac-228	94.4	336	951	No DCGL	NA	Background
						Pb-210	47.68	-	262	No DCGL	NA	Background
819	œ	,	61.5	cinder block	Gamma exceeds	Th-234	97.41	63.29	214	152	Yes	Background - Refer to Table 5-5
	,	1			test	Ra-223	83.87	269.5	102	No DCGL	NA	Background
						Th-228	83.87	1	3339	No DCGL	NA	Background
						Ac-228	97.41	336	136	No DCGL	NA	Background
819	124	4	C25	material	Alpha exceeds background	Pb-210	42.69	Ŀ	399	No DCGL	NA	Background
		ă			based on WRS test	Th-234	93.15	63.29	602	152	Yes	Background - Refer to Table 5-5
823	-	v	CI	cinder block	General coverage	Pb-210	52.12	ı	829	No DCGL	NA	Background

Table 4-26
Summary of Potentially Elevated Gamma Spectroscopy Results
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Коош	Grid	Gamma Spec Location ID	Sample Material	Rationale for Gamma Spectroscopy	Radionuclides Identified	Peak Energy (keV) */	2nd Peak Energy (keV	2nd Peak Peak Activity (dpm/100 cm²) (dpm/100 cm²)	DCGLw (dpm/100 cm²)	Upper Bound Activity Exceeds DCGL?	Conclusion
	DLad					Pb-210	80.78	1	713	No DCGL	NA	Background
2104	DKgd Material	N	N	background cinder block	Background	Th-234	95.65	63.29	350	152	Yes	Background - Refer to Table 5-5
	Sample					U-238	16.42	1	360	152	Yes	Background - Refer to

* keV = kiloelectron volts; the peak energy refers to the primary photon energy that was used to identify the radionuclide.

^b dpm/100cm² = disintegrations per minute per 100 square centimeters; the upper bound peak activity is a conservative estimate of the surficial activity for the identified radionuclide based on the energy peak activity determined by the analysis software plus 50 percent.

ODCGLw = Derived Concentration Guideline Level; from Table 4-1.

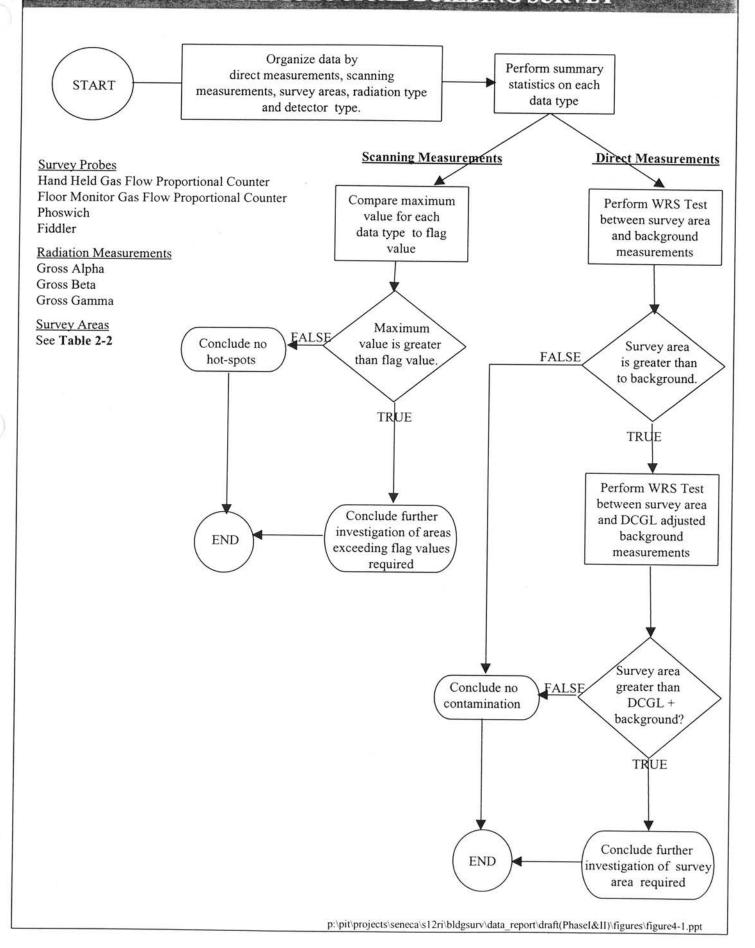
 $^{d'}$ NA = not applicable.

o"..." indicates that a second energy peak was either not identified or not used to verify the identification of a radionuclide.

Table 4-27
Analytical and In-Situ Gamma Spectroscopy Results for Material Samples
SEAD-12 Building Survey
Seneca Army Depot Activity

	Labor	atory A	nalytical Dat	а	URSA Gamma	Spectros	copy Data
Sample	Result (pCi/g)	Error (+/-)	Qualifier	MDA (pCi/g) b/	Result (pCi/g)	Error (+/-)	MDA (pCi/g)
804-1-C8							
Americium-241	0.0143	0.0107		0.0122	Not Identified c/		0.06
Plutonium-239/240	-0.0122	0.0139	U d/	0.0297	Not Identified		0.04
804-3-C3							
Americium-241	0.00571	0.0151	U	0.0273	Not Identified		0.07
Plutonium-239/240	-0.0137	0.012	U	0.0288	Not Identified		0.04
819-5-C11	-						
Americium-241	0.0118	0.0103	U	0.0141	Not Identified		0.08
Plutonium-239/240	-0.0166	0.0126	U	0.0288	Not Identified		0.04
819-5-C13							
Americium-241	0.0123	0.0099	U	0.0136	Not Identified		0.08
Plutonium-239/240	0.00136	0.0027	U	0.0299	Not Identified		0.05
819-12D-C27	1						
Americium-241	0.0104	0.0139	U	0.0233	Not Identified		0.08
Plutonium-239/240	0.00542	0.0109	U	0.0163	Not Identified		0.05
BKGD CB1							
Americium-241	0.0141	0.0116	U	0.0169	0.37 e/	0.19	0.09
Plutonium-239/240	0.0193	0.0225		0.0193	1.67 e/	0.83	0.05
BKGD FL							
Americium-241	0.019	0.0159	U	0.024	Not Identified		0.12
Plutonium-239/240	0.011	0.0156	U	0.0165	Not Identified		0.06

a/pCi/g = picocuries per gram.


b/ MDA = minimum detectable activity.

e/ "Not Identified" indicates that there is no discernable activity detected above the MDA to allow the radionucludes to be identified.

d In the laboratory analysis the "U" qualifiers indicate that the reported results are below the MDA and are non-detectable activity.

The identification for BKGD-CB1 of Pu-239 and Am-241 is complicated by the presence of multiple radionuclides having a gamma emission at the 13 keV energy level. Also identified were U-233 at 1.88 pCi/g (+/- 0.94), U-238 at 0.83 pCi/g (+/-0.42), Th-208 at 0.81pCi/g (+/-0.94), and Pb-210 at 1.65 pCi/g (+/- 0.83). The correct identification is naturally-occurring U-238 based on the other radionuclides that were identified in the sample and the fact that background building 2104 was never used for radiological activities.

FIGURE 4-1 DATA ANALYSIS PROCESS - FLOW DIAGRAM SEAD 12 RADIOLOGICAL BUILDING SURVEY

5 DISCUSSION AND CONCLUSIONS

During the Phase I and Phase II building surveys at SEAD-12, radiological investigations were conducted in all Class I, Class II, and Class III/ Limited Class III buildings. The investigations included alpha, beta, and gamma direct and scanning measurements, exposure rate measurements, gross alpha/beta/gamma smear samples, tritium smear samples, gamma spectroscopy, and materials sampling. MARSSIM compliance analyses were performed for gross alpha, beta, and gamma direct and scanning survey data for the areas listed above as described in **Section 4**. The results from the MARSSIM analysis and exposure rate and smear analyses from the Phase I work are discussed in **Section 5.1** below. The results from the Phase II building surveys are discussed in **Section 5.2**. The conclusions based on these results are presented in **Section 5.3**.

5.1 DISCUSSION OF PHASE I BUILDING SURVEY RESULTS

The results of the Phase I direct measurements, scanning, exposure rate measurements, smear and debris sampling, and duct and drain investigation are summarized in **Tables 5-1** and **5-2** and are discussed below.

5.1.1 Direct Measurements

Alpha, beta, and gamma direct measurement data sets from each room were statistically compared to the background data set using the WRS test. The survey areas/measurement types that were elevated above background based on the WRS are listed in **Table 5-1**. Twenty-eight of the Phase I survey areas had at least one measurement data set that was elevated above background. In addition, six of the survey areas where discretionary measurements were taken had data sets elevated above background.

The alpha and beta data sets that were elevated above background were compared to a DCGL_w-adjusted background (**Table 4-7**). None of these data sets were elevated above the DCGL_w-adjusted background data set. The gamma measurement data sets that were elevated above background are discussed below in **Section 5.1.1.1**. The final step in the data analysis process involved comparing the survey area data sets including discretionary measurements with the DCGL_w-adjusted background (**Table 4-8**). The results of this comparison indicate that none of the survey area data sets with discretionary measurement data were elevated above the DCGL_w-adjusted background data set.

The primary criterion for release of the SEAD-12 buildings is compliance with the DCGLs, which has been demonstrated here. Although no survey area exceeded the DCGLs, and thus met the release criteria, several areas were further investigated. Specific locations of concern from Phase I survey areas identified to be above background were evaluated further by the collection of gamma

spectroscopy measurements. The gamma spectroscopy results are presented in Section 4.5.6, and discussed below in Section 5.2.5.

5.1.1.1 Gamma Measurements

Gamma direct measurements were not compared to the DCGLw-adjusted background. The worstcase gamma DCGLw (for Am-241) is equal to 39.7 dpm/100cm2. When the DCGLw is converted to cpm using the FIDLER field efficiency for Am-241 and the detector area, it is equal to less than 1 cpm. The addition of a DCGLw of less than 1-cpm does not significantly change a gamma background data set that ranges from 5,000 to 20,000 cpm. As a result, gamma measurement data was compared only to background. If the gamma measurements for a survey area exceeded background, the survey area was considered to be potentially elevated and was evaluated further.

As shown in Table 5-1, six Phase I survey areas had gamma measurements that were elevated above background based on the WRS test. In situ gamma spectroscopy was performed at locations within these six survey areas during the Phase II work. The gamma spectroscopy results are presented in Section 4.5.6, and discussed below in Section 5.2.5.

5.1.2 **Scanning Measurements**

Comparisons of the alpha and beta radiation scanning measurements to the DCGL_{EMC 5} plus the mean of the background data set (Table 4-9 and Table 5-1) found that seven of the Phase I survey areas contained localized areas of elevated radioactivity. The survey areas containing one or more scanning measurements in excess of the DCGL_{EMC 5} are:

- Building 803 (Room 3),
- Building 803 (Room 6),
- Building 804 (Room 3),
- Building 804 (Room 4),
- Building 805 (Room 1),
- Building 816 (Room 9), and
- Building 819 (Room 3).

As noted in Table 5-2, none of these seven rooms have more then five alpha/beta radiation scanning measurements that exceed the DCGL_{EMC/5} criteria (which provides for up to five elevated measurements per room). Building 803 (Room 6), and Building 816 (Room 9) had only a single scanning measurement that exceeded the DCGL_{EMC/5} criteria. Building 819 (Room 3) had two alpha/beta scanning measurements that exceeded the DCGL_{EMC/5} criteria. The four measurements that exceeded the DCGL_{EMC.5} criteria in Building 803 (Room 3) were all 900 dpm (DCGL_{EMC.5} criteria of 854 dpm). The three scanning measurements with the alpha/beta gas proportional that exceeded the DCGL_{EMC 5} criteria in Building 804 (Room 3) (1000, 800, and 700 dpm) were all from

ceramic tile, a material that has a naturally high background. In addition there were two scanning measurements taken with the floor monitor from Building 804 (Room 3) that exceeded the DCGL_{EMC 5} criteria. Building 804 (Room 4) also had two scanning measurements that exceeded the DCGL_{EMC 5}.

Two of the Phase I survey areas had potentially elevated areas of gamma radiation – Building 804 (Room 3), and Building 805 (Room 1). The field flag value for scanning for gamma radiation was 19,000 cpm, or the 95% UTL (upper tolerance limit) of the background scanning data set. Building 804 (Room 4) had four scanning measurements that equaled or exceeded the flag value, while Building 805 (Room 1) had only one exceedence. Gamma spectroscopy was performed on these survey areas during the Phase II work. The gamma spectroscopy results are presented in Section 4.5.6, and discussed below in Section 5.2.5.

Four specific areas of concern that were initially surveyed during the Phase I investigation – the metal shelf in Building 803 (Room 6), the ceramic sink in Building 819 (Room 1), the metal crane in Building 819 (Room 3), and selected areas in Building 819 (Room 12D) – are addressed in individually in **Section 5.3**. These areas warranted additional discussion either due to elevated scanning or direct measurements encountered or based on community interest in the re-use of the area.

5.1.3 Exposure Rate Measurements

All exposure rate measurements collected from the Phase I survey areas were below the maximum exposure rate measurement of 16 μ rem/hr collected in the background building (**Table 4-10**). In addition, all measurements were well below the established worker safety level of 500 μ rem/hr (Radiation Protection Manual ER385-1-80, USACE).

5.1.4 Smear Sampling Results

The smear data collected from the Phase I survey areas are summarized in **Table 4-11**. As indicated in **Table 5-2**, there were no exceedances of the ANSI or NYSDOL standards.

5.1.5 Duct and Drain Results

The results of the Phase I duct and drain smear sampling are summarized in **Table 4-11**. As indicated in **Table 5-2**, none of the duct and drain smears samples collected during Phase I exceed the ANSI and NYSDOL standards.

The results of the debris sampling conducted at several duct and drain locations is presented in **Table 4-13**. Three survey areas (listed in **Table 5-2**) had radionuclide levels at or exceeding the radionuclide-specific ANSI standard. As such, these survey areas were investigated further during Phase II using gamma spectroscopy (see **Sections 4.5.6** and **5.2.5**).

5.2 DISCUSSION OF PHASE II BUILDING SURVEY RESULTS

The results of the Phase II building surveys are discussed below.

5.2.1 Direct Measurements

Direct measurements collected during the Phase II investigation were analyzed using the same methodology utilized during the analysis if the data collected during Phase I of the investigation. The comparisons of survey area data and survey area data plus discretionary measurements to the background data set are shown in **Tables 4-15** and **4-16**. Fourteen of the Phase II survey areas had measurement data sets that were elevated above background, as shown in **Table 5-3**. Only three of the Phase II survey areas with data sets including discretionary measurements were elevated above background.

The Phase II alpha and beta radiation measurement data sets that were elevated above background were compared to the DCGL_W-adjusted background (**Table 4-19**). There were no alpha or beta data sets that were elevated above the DCGL_W-adjusted background. The comparison of alpha and beta measurement data sets including discretionary measurements to the DCGL_W-adjusted background resulted in no exceedences. The gamma measurement data sets that were elevated above background are discussed below in **Section 5.2.1.1**.

The primary criterion for release of the SEAD-12 buildings is compliance with the DCGLs, which has been demonstrated here. While no survey area exceeded the DCGLs, and thus met the release criteria, several of the above background survey areas from Phase II were evaluated further by the collection of gamma spectroscopy measurements. The gamma spectroscopy results are presented in **Section 4.5.6**, and discussed below in **Section 5.2.5**.

5.2.1.1 Gamma Measurements

Gamma radiation data sets that exceeded background were not compared to the $DCGL_W$ -adjusted background. The worst-case gamma $DCGL_W$ (for Am-241) is equal to 39.7 dpm/100cm² (**Table 4-1**). When the $DCGL_W$ is converted to cpm using the FIDLER field efficiency for Am-241 and the detector area, the $DCGL_W$ is equal to less than 1 cpm. The addition of a $DCGL_W$ of less than 1-cpm will not significantly change a background data set that ranges from 5,000 to 20,000 cpm. As a result, gamma measurement data was compared only to background. If the gamma measurements for a survey area exceeded background, the survey area was considered to be potentially elevated and was evaluated further.

As shown in **Table 5-3**, six Phase II survey areas have gamma measurement data sets that are elevated above background. In addition, three of the survey area data sets with discretionary measurements are elevated above background. To further investigate, gamma spectroscopy was performed at locations within these survey areas (refer to **Sections 4.5.6** and **5.2.5**).

5.2.2 Scanning Measurements

Comparisons of the alpha/beta scanning measurements to the DCGL_{EMC/5} plus the mean of the background data set (**Table 4-21**) found that none of the Phase II survey areas had alpha/beta scanning measurements above the DCGL_{EMC/5} flag value. There were seven Phase II survey areas (listed in **Table 5-4**) that had at least one gamma scanning measurement above the background 95% UTL flag value.

As noted in **Table 5-4**, Building 812 (Room 20) is the only one of these survey areas that has more than five gamma measurements that exceed the 95% UTL – all other Phase II survey areas have three or less. The materials associated with Building 812 (Room 20) are ceramic tiles and ceramic block, which intrinsically have naturally high background radiation. To further investigate the area, gamma spectroscopy was performed in this survey area (refer to **Sections 4.5.6** and **5.2.5**).

5.2.3 Exposure Rate Measurements

All exposure rate measurements collected from the Phase II survey areas were below the maximum exposure rate measurement of 16 μrem/hr collected in the background building (**Table 4-22**). In addition, all measurements were well below the established worker safety level of 500 μrem/hr (Radiation Protection Manual ER385-1-80, USACE).

5.2.4 Smear Sampling Results

Smear results were compared to the ANSI standard and the NYSDOL guidelines for each radiation type (alpha, beta, gamma, and H³-beta) on a room-by-room basis. **Table 4-23** summarizes the dry smear data collected from the Phase II survey areas. **Table 4-24** summarizes the tritium smear sampling results from Phase II. All Phase II smear sampling results met ANSI and NYSDOL standards.

5.2.5 Gamma Spectroscopy

Results of in-situ gamma spectroscopy conducted at SEAD-12 are presented in **Tables 4-25** and **4-26**. The gamma spectroscopy results for the survey areas that may have had potential exceedences as determined by in-situ gamma spectroscopy are listed in **Table 5-5**. A more detailed discussion of the results and their interpretation is presented in **Appendix O**.

For the most part, the radionuclides identified were associated with the U-238, U-235, or Th-232 natural decay series. Often several radionuclides from the same decay chain were identified, confirming the presence of naturally occurring material. Where applicable, the activity concentrations of identified radionuclides were compared to the DCGLws. If the activity was greater than the DCGLw, then a weight of evidence approach was taken to determine if the measurement indicated a source of contamination, or was a naturally occurring elevation in background. For

example, the gamma spectroscopy measurement for Building 804 (Room 1, Grid 13) indicated an upper bound activity that was greater than the $DCGL_{W}$. The following arguments were made to support a "suitable for release" consideration:

- The measured activity concentration is less than the DCGL_{EMC};
- Direct alpha and beta measurements for this survey area did not exceed the DCGL_w-adjusted background
- There are no scanning exceedences associated with this survey area.
- Only one other radionuclide (associated with the natural U-238 decay chain) was identified.

As a result, the U-235 activity that was greater than the U-235 $DCGL_W$ was considered to be a naturally occurring elevated background measurement. Other gamma spectroscopy measurements with radionuclide identification and quantification that was greater than the $DCGL_W$ were handled similarly. In this manner, it was determined from the gamma spectroscopy results that the in situ spectra collected during Phase II were characteristic of background, and did not indicate the presence of contamination.

5.2.6 Material Sampling

As shown in **Table 4-27**, material samples were collected from seven locations and analyzed with the field gamma spectroscopy system and by an offsite laboratory. The results demonstrate that there was no Pu-239 or Am-241 contamination present in any of the survey area samples. Pu-239 and Am-241 were identified in the background material sample BKGD CB1; however, this identification is the result of the presence of several other naturally occurring radionuclides that have similar low-energy gamma photons (around 13 keV), such as U-238, U-235, Th-234, and U-234. Background Building 2104, as additional evidence to support the misidentification, was never used for radiological activities; any radioactive materials present would have to be the result of naturally occurring materials.

5.3 FINDINGS FROM SPECIFIC AREAS OF CONCERN

Over the course of the Phase I and II surveys, four specific sampling locations of concern were noted. The survey results from these four areas are addressed below. Based on elevated scanning or direct measurements encountered during the survey or because of community interest in the re-use of the area, these areas required additional clarification. Additionally described below are measures that will be taken in some of the areas to satisfy the criteria of being as low as reasonable achievable (ALARA).

5.3.1 Building 803, Room 6, Grid 15T (metal shelf)

Elevated alpha and beta measurements (849 and 1640 cpm, respectively, compared to field flag values of 12 and 824 cpm) were detected on this shelf during the Phase I building survey. The

gamma measurement for this location was within background. Both dry and tritium smear samples collected from the shelf were within background, indicating that any contamination present was not removable. During Phase II of the building surveys, in-situ gamma spectroscopy analysis was performed on the shelf in order to identify the radionuclides present. The gamma component of the contamination was not significant enough to allow for identification, and the gamma spectroscopy system was not able to differentiate between the contamination on the shelf and background.

Based on the initial elevated alpha/beta measurements, it is likely that the detected radioactivity is associated with radium paint, which is comprised of the alpha-emitter Ra-226 and the beta emitter Ra-228. Ra-226 also has a significant gamma emission at 186 keV; however, this emission was not notable during the survey since the FIDLER used with the gamma spectroscopy system is most efficient at detecting gamma energies less than 100 keV, and its efficiency drops as gamma energies increase. It is likely that the background gamma levels in the room (constructed of concrete) were sufficient to mask or drown out the Ra-226 gamma emissions.

As discussed in **Section 4**, the survey area in which this elevated reading was found - Building 803, Room 6 - met the release criteria. The data set from the entire survey area passed the comparison to the DCGL_w-adjusted background. In addition, while the hotspot on the shelf exceeded the DCGL_{EMC 5}, it was the only hotspot associated with the survey area and so met the localized elevated measurement criterion because the DCGL_{EMC 5} allows for five exceedences. However, in the interest of satisfying ALARA criteria, the elevated shelf Building 803, Room 6 will be removed and disposed.

5.3.2 Building 819, Room 1, Grid 91 (ceramic sink)

During the Phase I building surveys, elevated alpha and beta measurements were detected inside and around the ceramic sink located in Building 819, Room 1. Smear samples did not indicate the presence of removable contamination. In-situ gamma spectroscopy was performed on interior of the sink during the Phase II building surveys. Three naturally occurring radionuclides were positively identified based on the in-situ gamma spectroscopy measurement – Pb-210, Th-228, and Th-234. Pb-210 and Th-234 are decay products associated with the U-238 decay chain, and Th-228 is associated the Th-232 decay chain.

While the measured activity of Th-234 is higher than the U-238 DCGL_w of 152 dpm/100cm², it is likely to be naturally occurring. Ceramic materials typically contain high levels of naturally occurring materials. In fact, elevated readings associated with ceramic wall blocks and tiles were also observed elsewhere during the SEAD-12 building surveys (for example in Building 812, Room 20; Background Building 2104; and Background Building 118, among others). The identification of the other naturally occurring long-lived decay products such as Pb-210 and Th-228 also supports the conclusion that the elevated activity observed in the sink is naturally occurring. Refer to **Appendix O** for more information on the radionuclide identification process using gamma spectroscopy.

August 2002 Page 5-7

The presence of this localized elevated area did not prevent the survey area from meeting the release criteria. The data set for Building 819, Room 1, was not elevated above the $DCGL_W$ -adjusted background data set. In addition, there were no scanning measurements for Building 819, Room 1, that exceeded the $DCGL_{EMC/5}$ release criteria.

5.3.3 The crane in Building 819, Room 3

Elevated alpha and beta measurements were collected from the metal crane. There was no elevated gamma component as confirmed by the in-situ gamma spectroscopy and by the statistics indicating that the gamma measurements were not elevated above background. Smear samples collected at this location did not indicate the presence of removable contamination.

To further investigate the potentially elevated alpha and beta measurements, a paint sample was collected from the surface of the crane. This was done in order to determine if the source of the elevated measurements was from the metal of the crane or from the coat of paint covering the crane. Collection of the paint sample was difficult. Scraping was attempted but was extremely time consuming and produced an insufficient sample amount for any type of analysis. The paint sample was finally obtained by heating and scraping the coat of paint from the crane metal in the location of the elevated measurement. This method of collection produced enough sample volume to obtain a gross radiation result, but was insufficient to obtain isotopic results. The sample was sent to Radiation Safety Associates, Inc. for laboratory alpha spectroscopy analysis. The results are presented in **Appendix J**. The gross alpha concentration detected in the analysis was 17.55 +/- 4.13 pCi/g and the detected gross beta concentration was 23.13 +/- 3.33 pCi/g. These results were not as elevated as those noted in the field and no specific radionuclides were identified during the alpha spectroscopy analysis. However, after the paint sample was obtained, the exposed crane section was re-scanned and found to be at background levels, indicating that the source of the elevated levels was most likely contained in the paint.

Since alpha spectroscopy of the paint sample did not provide any specific radionuclide identification, it is possible that the use of the heat gun to melt or soften the paint before it was removed may have resulted in the volatilization of radioactive material within the paint.

When the measurement data from the room and the crane in Building 819, Room 3 were evaluated together as a whole, the room met the DCGL_W release criteria (i.e., the direct measurement data sets for the room were not elevated above the DCGL_W-adjusted background data set). Building 819, Room 3 only had two scanning measurements that exceeded the DCGL_{EMC/5}, one of which was from the crane.

For further investigation, Building 819 (room 3) was divided into two survey units: the room, and the large crane that is attached to two of the walls and runs across the ceiling. The alpha and beta direct measurement data from just the crane were evaluated and found to be statistically elevated above

August 2002

background when compared without the other data from Building 819, Room 3. WRS test results indicated that the alpha direct measurements from the crane were elevated above the DCGL_w-adjusted background, while the beta direct measurements were not (see **Figure 5-1**). The alpha and beta direct measurements including the additional discretionary "hotspot" measurements from the crane were compared to the DCGL_w-adjusted background data set as in **Section 4**, and both the alpha and beta measurements from the crane were found to be elevated above the DCGL_w-adjusted background (see **Figure 5-1**).

Since Building 819, Room 3 meets the release criteria, the room is suitable for release. However, to satisfy ALARA requirements, the elevated areas of paint on the crane will be removed.

5.3.4 Building 819, Room 12D (generator room)

Building 819, Room 12, contains an electrical generator that may be accessed by the KidsPeace organization, located on the northwest boundary of SEAD-12. Room 12D in Building 819 (a bathroom in the southwest corner of the room) was of concern after the Phase I surveys because the WRS test indicated that the Room 12 alpha survey measurements were elevated above background (although not above the DCGL_w-adjusted background) and Room 12D had the highest scanning (alpha/beta and gamma) measurements. During Phase II, a material sample was taken from the west wall of Room 12D. The results of both in-situ gamma spectroscopy and laboratory analysis of this material sample (with specific analysis performed for Pu-239 and Am-241) are presented in **Table 4-27**. As noted for sample 819-12D-C27, both Pu-239 and Am-241 were not detected in either the laboratory analysis or the in-situ gamma spectroscopy of the sample. As noted in **Table 5-5**, in-situ gamma spectroscopy of sampling location C27 detected Th-231, Ra-223, Th-228, Ac-228, and Th-234, which are all naturally occurring radionuclides. In-situ gamma spectroscopy at an additional sampling location in Room 12D (819-12D-C25) identified the presence of Th-234 and Pb-210, which are both members of the U-238 decay series, supporting the conclusion that the residual activity detected in Room 12D is naturally-occurring.

Given these results, Building 819, Room 12 meets the release criteria. The data set from the entire survey area passed the comparison to the $DCGL_W$ -adjusted background. In addition, there were no elevated measurement locations. As such, Building 819, Room 12, is suitable for release.

5.4 SUMMARY OF FINDINGS

The purpose of this report was to document the completion of two phases of radiological surveys of the buildings at SEAD-12, Seneca Army Depot, New York. These surveys were conducted according to MARSSIM guidance. The following findings were made during the Phase I and II surveys and data analysis:

August 2002 Page 5-9

- The DCGL values calculated using RESRAD-BUILD and presented in Appendix A were adequate to ensure that the maximum exposure to on-site receptors would not exceed the NYSDEC TAGM of 10 mrem/yr.
- The survey design and number of samples collected were adequate to support compliance with the DCGLs.
- Statistical analyses of direct measurements demonstrated that all survey areas met the DCGLs for alpha and beta radiation.
- Statistical analyses of direct measurements demonstrated that 166 out of 178 survey areas were indistinguishable from background for gamma radiation.
- In-situ gamma spectroscopy measurements showed that the survey areas with above-background gamma measurements were the result of naturally elevated building materials and not radioactive contamination.
- The results of dry and wet smear sampling demonstrated that removable radioactive contamination above ANSI or NYSDOL standards was not present in any of the survey areas.
- Exposure rate measurements demonstrated that all personnel worked in radiologically safe conditions at all times.
- Of the four specific areas of concern (the metal shelf in Building 803, Room 6; the ceramic sink in Building 819, Room 1; the metal crane in Building 819, Room 3; and Building 819, Room 12D), all met the criteria for release.
- To satisfy ALARA, the elevated areas of paint on the crane in Building 819 will be removed and the metal shelf on Building 803, Room 6 will be disposed.

5.5 CONCLUSIONS

Based on the findings presented above, it is concluded that all areas within SEAD-12 meet the 10 mrem/year release criterion. Consequently, all survey units within the buildings in SEAD-12 demonstrate compliance with regulations based on results of the Final Status Survey completed.

Table 5-1 Summary of Phase I Direct Measurement Potential Exceedences SEAD-12 Building Report Seneca Army Depot Activity

	Survey	> Background	
Building	Room	Measurement	Instrument
803	1	Alpha	Phoswich
803	2	Alpha	Phoswich
		Alpha	Floor Monito
803	3	Alpha	Phoswich
803	4	Alpha	Phoswich
003	7	Alpha	Floor Monito
803	5	Alpha	Phoswich
803	3	100000000	
002	-	Alpha	Floor Monito
803	6	Alpha	Phoswich
002	-	Alpha	Floor Monito
803	7	Alpha	Phoswich
		Alpha	Floor Monito
804	1	Beta	Hand-Held
		Gamma	FIDLER
804	2	Alpha	Floor Monito
804	3	Alpha	Floor Monito
804	4	Alpha	Hand-Held
804	6	Alpha	Floor Monito
805	1	Beta	Hand-Held
		Gamma	FIDLER
810	1	Beta	Floor Monito
815	15	Beta	Floor Monito
816	10	Beta	Floor Monito
819	1	Beta	
			Floor Monito
819	2	Beta	Hand-Held
819	3	Alpha	Hand-Held
		Alpha	Floor Monito
		Beta	Floor Monito
819	4	Beta	Hand-Held
		Beta	Floor Monito
		Gamma	FIDLER
819	5	Beta	Floor Monito
		Gamma	FIDLER
819	6	Beta	Hand-Held
819	7	Beta	Hand-Held
		Beta	Floor Monito
		Gamma	FIDLER
819	8	Beta	Hand-Held
		Gamma	FIDLER
819	9	Beta	Hand-Held
012		Beta	Floor Monito
819	10	Beta	
819	-		Hand-Held
819	11	Alpha	Floor Monito
010		Beta	Floor Monito
819	12	Alpha	Floor Monito
		etionary > Backgr	
Building	Room	Measurement	Instrument
	6	Alpha	Floor Monito
803			
803		Alpha	Phoswich
804	3	Alpha	Floor Monito
	3		Floor Monito
804		Alpha	Floor Monito
804		Alpha Alpha Beta	Floor Monito Floor Monito Floor Monito
804 819	1	Alpha Alpha Beta Alpha	Floor Monito Floor Monito Floor Monito Floor Monito
804 819	1	Alpha Alpha Beta Alpha Alpha	Floor Monito Floor Monito Floor Monito Floor Monito Phoswich
804 819	1	Alpha Alpha Beta Alpha Alpha Beta	Floor Monito Floor Monito Floor Monito Floor Monito Phoswich Floor Monito
804 819 819	3	Alpha Alpha Beta Alpha Alpha Beta Beta	Floor Monito Floor Monito Floor Monito Floor Monito Phoswich Floor Monito Phoswich
804 819	1	Alpha Alpha Beta Alpha Alpha Beta	Floor Monito Floor Monito Floor Monito Floor Monito Phoswich Floor Monito

Summary of Phase I Scanning and Debris Sampling
Potential Exceedences
SEAD-12 Building Report
Seneca Army Depot Activity

	Room	Building	/sotobe/	Criteria		Site Condition/	
9		Class	Instrument	Reference	Level	Measurement	Comment
Scanning	Data (inch	uding discre	Scanning Data (including discretionary measurements)	rements)	cpm	com	
803	3	-	ABPH	DCGLemcis	854	006	4 floor measurements exceed criteria (all 000 cmm)
803	9	-	АВРН	DCGLeMC/S	854	2500	measurement exceeds criteria (a shaff racommanded for remaind)
804	т	-	ABHH	DCGLeMC/S	534	1000	5 measurements exceed criteria
804	ю	-	ABFM	DCGLeMCS	2807	3000	2 measurements agus or accord aritaria
804	ю	_	FIDLER	Background 95% UTL	19000	20000	4 measurements equal or exceed criteria
804	4	-	АВНН	DCGLeMC/S	534	009	2 measurements exceed criteria
805	_	_	FIDLER	Background 95% UTL	19000	20000	I measurement exceeds criteria
918	6	-	АВНН	DCGLEMCS	534	1000	measurement exceeds criteria
819	3	-	АВНН	DCGLemcis	534	950	2 measurements exceed criteria
Smear San	npling (in	cluding Duc	Smear Sampling (including Duct and Drain smear sampling)	icar sampling)			
	No Excee	sdences of eit	ther ANSI or N	No Exceedences of either ANSI or NYSDOL Standards ²			
Debris Sampling	npling				pCi/o	o/i/o	
804	3	_	Pb-210	ANSI	16.7	20.2	Estimated value array range = ± 19 4 -C:10
804	S	-	Bi-214	ANSI	5.2	5.2	Estimated value error range = ± 10.4 pc./g
804	2	_	Ra-226	ANSI	5.2	5.2	Estimated value arror range = + 11 20%
815	15		Pb-211	NNSI	12.9	16.3	Estimated value error rance = ± 4.1 ±C:2

Notes.

- ¹ DCGL_{EMC/S} DCLG_{EMC} (calculated using RESRAD-Build) and divided by 5 (assumes 5 elevated measurements). A room size of 5x12x4 m was used for RESRAD model.
 - ² No exceedences of the ANSI or NYSDOL criteria for smear/removeable radiation (See Table 4-11).
- ³ ANSI/HPS N13.12-19 Criteria for volume source (pCi/g) plus 95th percentile of soil background data.

Table 5-3
Summary of Phase II Direct Measurement Potential Exceedences
SEAD-12 Building Report
Seneca Army Depot Activity

	Su	rvey > Background	
Building	Room	Measurement	Instrument
807	6	Alpha	Floor Monitor
809	1	Beta	Floor Monitor
810	5	Alpha	Phoswich
810	8	Alpha	Floor Monitor
		Beta	Floor Monitor
810	9	Gamma	FIDLER
810	10	Gamma	FIDLER
810	11	Gamma	FIDLER
810	12	Gamma	FIDLER
810	21	Alpha	Floor Monitor
812	9	Gamma	FIDLER
812	20	Beta	Phoswich
		Gamma	FIDLER
815	10	Alpha	Floor Monitor
815	11	Alpha	Floor Monitor
815	13	Alpha	Floor Monitor
	Survey plus	Discretionary > Backgro	und
Building	Room	Measurement	Instrument
810	10	Gamma	FIDLER
810	12	Gamma	FIDLER
812	20	Beta	Phoswich
		Gamma	FIDLER

Table 5-4
Summary of Phase II Scanning Potential Exceedences
SEAD-12 Building Report
Seneca Army Depot Activity

	Comment	I measurement exceeds criteria	1 measurement exceeds criteria	3 measurements exceed criteria	2 measurements exceed criteria	2 measurements exceed criteria (associated material is coromic block)	3 measurements exceed criteria (associated material is ceramic tile and klock)	9 measurements exceed criteria (associated material is ceramic tile and block)
Site Condition/	Measurement	20000	20000	21000	20000	20000	24000	26000
	Level	19000	19000	19000	19000	19000	19000	19000
Criteria	Reference	Background 95% UTL	Background 95% UTL	Background 95% UTL				
lue	Instrument	FIDLER	FIDLER	FIDLER	FIDLER	FIDLER	FIDLER	FIDLER
Scanning Results > Flag Value	Measurement	Gamma	Gamma	Gamma	Gamma	Gamma	Gamma	Gamma
Scanning	Room	<u>س</u>	2	10	12	6	17	20
	Building	810	810	810	810	812	812	812

Table 5-5
Summary of Gamma Spectroscopy Potential Exceedences
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Grid	Gamma Spec Location ID	Radionuclides Identified	Upper Bound Peak Activity (dpm/100 cm²) ™	Upper Bound Peak Activity (dpm/100 cm²) " (dpm/100 cm²) b/	Upper Bound Activity Exceeds DCGL?	Conclusion
804	1	13	C10	U-235	219	145	Yes	The U-235 measurement is below the DCGL _{1ARC} of 233 dpm/100cm ² for U-235, direct alpha and beta measurements for the survey area are within DCGL _{WS} , there are no scanning exceedences associated with the survey area. This evidence suggests that the elevated U-235 activity is naturally occurring.
				Pb-210	1717	No DCGL	NA d	Background associated with U-238 decay series.
804	,	¥	8	Th-234	849	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
	1	•	3	U-235	81	145	ON	Background associated with U-235 decay series
				Pb-210	478	No DCGL	NA	Background associated with U-238 decay series.
804	,2	c	5	T1-208	610	No DCGL	NA	Background associated with Th-232 decay series.
	3	,	,	Th-234	599	152	Å	Naturally-occuring elevated background associated with the U-238 decay series.
				Ra-223	114	No DCGL	NA	Background associated with U-235 decay series
				Th-228	3706	No DCGL	NA	Background associated with Th-232 decay series.
804	ŝ	1	٤	Pb-210	1003	No DCGL	NA	Background associated with U-238 decay series.
	!	**	3	Th-234	1188	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
				U-235	36	145	No	Background associated with U-235 decay series
				Pb-210	1895	No DCGL	NA	Background associated with U-238 decay series.
208	-	1.1	5	Th-228	445	No DCGL	NA	Background associated with Th-232 decay series.
7000			5	Th-234	662	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
				Th-228	6406	No DCGL	NA	Background associated with Th-232 decay series.
805	-	20	CQ	Th-234	1599	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series.

Table 5-5
Summary of Gamma Spectroscopy Potential Exceedences
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Room	Grid	Gamma Spec Location ID	Radionuclides Identified	Upper Bound Peak Activity (dpm/100 cm²) "/	DCGLw (dpm/100 cm²) ^{b/}	Upper Bound Activity Exceeds DCGL?	Conclusion
				Th-228	4736	No DCGL	ΥN	Background associated with Th-2.32 decay series.
810	-	81	8	Th-234	1059	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series.
				Ac-228	557	No DCGL	V.N.	Background associated with Th-232 decay series.
818	5	5	ε	Pb-212	112	No DCGL	<n></n>	Background associated with Th-232 decay series.
		:	3	Th-234	1030	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series.
	200			Th-234	\$66	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
816	01	6	2	U-235	5	145	oN	Background associated with U-235 decay series.
				Th-231	1183	No DCGL	ΥN	Background associated with U-235 decay series.
				Pb-210	192	No DCGL	VV	Background associated with U-238 decay series.
918	01	o	C4°	Pb-210	924	No DCGL	NA.	Background associated with U-238 decay series.
	:			Th-234	789	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
816	8	19	90	Th-234	832	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series.
				U-235	64	145	No	Background associated with U-235 decay series.
816	8	v.	ט	Th-234	192	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
				Pb-210	1776	No DCGL	٧٧	Background associated with U-238 decay series.
		3		Th-234	586	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series.
819	=	16	75	TI-208	602	No DCGL	NA	Background associated with Th-232 decay series.
				Bi-211	401	No DCGL	NA	Background associated with U-235 decay series.
				Pb-214	140	No DCGL	V.V.	Background associated with U-238 decay series.

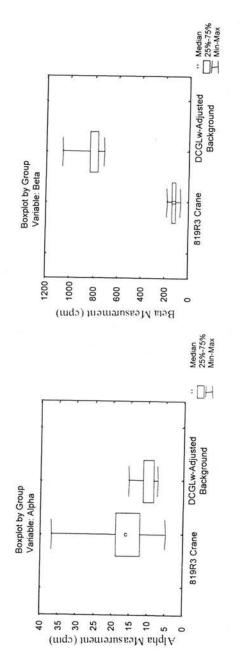
Table 5-5
Summary of Gamma Spectroscopy Potential Exceedences
SEAD-12 Building Report
Seneca Army Depot Activity

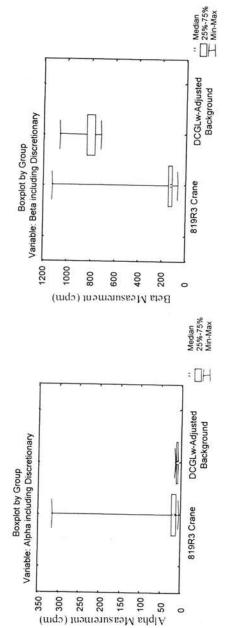
			,					
Building	Room	Grid	Spec Location ID	Radionuclides Identified	Upper Bound Peak Activity (dpm/100 cm²) "	Upper Bound PCGLw Peak Activity (dpm/100 cm²) ^ω	Upper Bound Activity Exceeds DCGL?	Conclusion
				Ra-226	5388	1210	Yes	Although the Ra-226 measurement is greater than both the DCGL _w and DCGL _{1MC} of 2080 dpm/100cm², direct alpha measurements for the room do not exceed the DCGLs. The presence of another member of the U-238 decay chain (Pb-214) suggests that the elevated Ra-226 activity is naturally-occurring.
819	12	23	C28	U-235	328	145	Yes	Although the U-235 measurement is greater than both the DCGL _w and DCGL _{t-MC} of 233 dpm/100cm ² , direct alpha measurements for the room do not exceed the DCGLs. The presence of another member of the U-235 decay chain (Bi-211) suggests that the elevated U-235 activity is naturally-occurring.
				Bi-211	538	No DCGL	NA	Background associated with U-235 decay series.
				Pb-214	187	No DCGL	NA	Background associated with U-238 decay series.
				Th-231	545	No DCGL	NA	Background associated with U-235 decay series.
				Ra-223	107	No DCGL	NA	Background associated with U-235 decay series.
9.0	40.	•		Th-228	3493	No DCGL	NA	Background associated with Th-232 decay series.
818	120	7	7	Ac-228	1002	No DCGL	NA	Background associated with Th-232 decay series.
				Th-234	1575	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series.
				Ac-228	225	No DCGL	VV	Background associated with Th-232 decay series.
				Pb-210	515	No DCGL	NA	Background associated with U-238 decay series.
819	4	ĸ	ర	Th-234	468	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
				U-235	88	145	No	Background associated with U-235 decay series.
				U-235	140	145	No	Background associated with U-235 decay series.
				Th-228	2747	No DCGL	NA	Background associated with Th-232 decay series.
819	v	15	E	Pb-210	879	No DCGL	NA	Background associated with U-238 decay series.
				Th-234	9611	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
				Pb-210	1038	No DCGL	NA	Background associated with U-238 decay series.
819	ĸ	10	CI2	Th-234	1044	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
				T1-208	2084	No DCGL	NA	Background associated with Th-232 decay series.
				Ac-228	663	No DCGL	ΥN	Background associated with Th-232 decay series.

Table 5-5
Summary of Gamma Spectroscopy Potential Exceedences
SEAD-12 Building Report
Seneca Army Depot Activity

Building	Коош	Grid	Gamma Spec Location ID	Radionuclides Identified	Upper Bound Peak Activity (dpm/100 cm²) ™	Upper Bound PCGLw Peak Activity (dpm/100 cm²) ^ω	Upper Bound Activity Exceeds DCGL?	Conclusion
618	vo	П	CI3	Ra-226	1281	1210	Yes	The Ra-226 measurement is below the DCGLEMC of 2080 dpm/100 cm ² for Ra-226, direct alpha measurements for the survey area are within background, and direct beta measurements are within DCGLs; there are no scanning exceedences associated with the survey area. This evidence suggests that the elevated Ra-226 activity is naturally-occurring.
				U-235	114	145	No	Background associated with 11-235 documents
				Pb-210	1303	No DCGI.	VV	Background accompted with 11 239 4
				Ac-228	37	No DCGL	V.V.	Background associated with Th-232 decay series
								The Ra-226 measurement is below the DCGI FMC of 2080 dom/100 cm ² for B., 326. diseased all the
			1	Ra-226	1764	1210	Yes	measurements for the survey area are within background, and direct beta measurements are within DCGLs; there are no comming expendences associated with the
819	v.	12	C14					members of the U-238 decay chain (Pb-214, Pb-21b) have been identified. This evidence suggests that the elevated Ra-236 activity is naturally, occurring
	. 1			U-235	108	145	No	Backeround associated with 11.23s doors owing
				Bi-211	211	No DCGL		Background associated with U-235 decay series
				Pb-214	7.3	No DCGL	AN	Background associated with U-238 decay series
				Th-228	173	No DCGL	NA	Background associated with Th-232 decay series
				Th-234	14	152	No	Background associated with U-238 decay series.
				Pb-210	1480	No DCGL	NA	Background associated with U-238 decay series.
910	,			Th-228	4358	No DCGL	NA	Background associated with Th-232 decay series.
618		×	6	Th-234	1504	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
				Ac-228	951	No DCGL	VA	Background associated with Th-232 decay series.
				Pb-210	262	No DCGL	NA	Background associated with U-238 decay series.
819	œ	7	CI9	Th-234	214	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
				Ra-223	102	No DCGL	AN	Background associated with U-235 decay series
				Th-228	3339	No DCGL	ΥN	Background associated with Th-232 decay series.
				Ac-228	136	No DCGL	NA	Background associated with Th-232 decay series.

Table 5-5
Summary of Gamma Spectroscopy Potential Exceedences
SEAD-12 Building Report
Seneca Army Depot Activity


Building	Room	Grid	Spec Location ID	Radionuclides Identified	Upper Bound Peak Activity (dpm/100 cm²) ™	Upper Bound Peak Activity (dpm/100 cm²) ^ы (dpm/100 cm²) ^ы	Upper Bound Activity Exceeds DCGL?	Conclusion
819	1210	4	7.25	Pb-210	399	No DCGL	NA	Background associated with U-238 decay series.
				Th-234	602	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
				Pb-210	713	No DCGL	VΑ	Background associated with U-238 decay series.
2104	Bkgd Material	X	Ą	Th-234	350	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.
	Sample			U-238	360	152	Yes	Naturally-occuring elevated background associated with the U-238 decay series, confirmed by the identification of Pb-210.


 $^{\prime\prime}$ dpm/100cm 2 = disintegrations per minute per 100 square centimeters; the upper bound peak activity is a conservative estimate of the surficial activity for the identified radionuclide based on the energy peak activity determined by the analysis software plus 50 percent.

^b DCGLw = Derived Concentration Guideline Level; from Table 4-1.

o' NA = not applicable.

Box-and-Whisker Plots for Building 819, Room 3, Metal Crane (Alpha and Beta Measurements) Seneca Army Depot Activity SEAD-12 Building Report Figure 5-1

