

01599

Seneca Army Depot Activity Romulus, New York

US Army, Engineering & Support Center **USACE** - New York District

Huntsville, AL

Final 2015 Annual

Year 8 Report -

Abandoned Deactivation Furnace (SEAD-16) Active Deactivation Furnace (SEAD-17)

FINAL 2015 ANNUAL REPORT YEAR - 8

ABANDONED DEACTIVATION SENECA ARMY DEPOT ACTIVITY

ABANDONED DEACTIVATION FURNACE (SEAD-16)

FURNACE (SEAD-17)

Seneca Army Depot Activity

Contract No. W912DY-08-D-0003 EPA SITE ID# NY0213820830 NY Site ID# 8-50-006 Task Order No 15

PARSO

May 2017

delivering a better world

	·		

FINAL

ANNUAL REPORT 2015 - YEAR 8

FOR THE ABANDONED DEACTIVATION FURNACE (SEAD-16) AND THE ACTIVE DEACTIVATION FURNACE (SEAD-17) SENECA ARMY DEPOT ACTIVITY, ROMULUS, NY

Prepared for:

U.S. ARMY CORPS OF ENGINEERS, ENGINEERING AND SUPPORT CENTER, HUNTSVILLE, ALABAMA

U.S. ARMY, CORPS OF ENGINEERS, NEW YORK DISTRICT NEW YORK, NEW YORK

and

SENECA ARMY DEPOT ACTIVITY
ROMULUS, NY

Prepared by:

PARSONS 100 High Street Boston, MA 02110

Contract Number W912DY-08-D-0003 Task Order 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

PARSONS

100 High Street, 4th Floor: Boston, Massachusetts 02110 (617) 946-9400 Fax (617) 946-9777 www.parsons.com

May 03, 2017

Mr. Julio Vazquez USEPA Region II Superfund Federal Facilities Section 290 Broadway, 18th Floor New York, NY 10007-1866

Ms. Melissa Sweet
New York State Department of Environmental Conservation (NYSDEC)
Division of Environmental Remediation
625 Broadway, 12th Floor
Albany, NY 12233-7015

Mr. Mark Sergott Bureau of Environmental Exposure Investigation New York State Department of Health Empire State Plaza Corning Tower, Room 1787 Albany, NY 12237

SUBJECT:

Final Annual Report 2015 – Year 8 for the Abandoned Deactivation Furnance (SEAD-16) and the Active Deactivation Furnace (SEAD-17) at Seneca Army Depot Activity in Romulus, NY; EPA Site ID# NY0213820830 and NY Site ID# 8-50-006

Dear Mr. Vazquez/Ms. Sweet/Mr. Sergott:

On behalf of the Army, Parsons Federal (Parsons) is pleased to submit the Final Annual Report 2015 – Year 8 for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17) at the Seneca Army Depot Activity (SEDA) in Romulus, New York (USEPA Site ID# NY0213820830 and NY Site ID# 8-50-006). The report summarizes the results of the groundwater sampling event that took place in December 2015. Comments from the EPA dated October 2016 were addressed in the Final version.

Parsons appreciates the opportunity to provide you with the report for this work. Should you have any questions, please do not hesitate to call me at (617) 449-1405 to discuss them.

Sincerely,

Beth Badik Project Manager

Enclosures

cc: R. Battaglia, USACE-NY

B. Frazier, USACESCH

D. Pommerenck, USACESCH

Beth Bedure

K. Hoddinott, USACHPPM

100 High Street. 4th Floor Boston, Massachusetts 02110 · (617) 946-9400 · Fax (617) 946-9777 · www.parsons.com

May 04, 2017

Mr. Derek Pommerenck U.S. Army Corps of Engineers Engineering and Support Center, Huntsville Attn: CEHNC-ED-CS-P 4901 University Square #19 Huntsville, Alabama 35816-1822

SUBJECT:

Final Annual Report 2015 – Year 8 for the Abandoned Deactivation Furnance (SEAD-16) and the Active Deactivation Furnace (SEAD-17) at Seneca Army Depot Activity in Romulus, NY; Contract W912DY-08-D-0003, Task Order 0015

Dear Mr. Pommerenck:

Parsons Federal (Parsons) is pleased to submit the Final Annual Report 2015 – Year 8 for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17) at the Seneca Army Depot Activity (SEDA) in Romulus, New York. This report summarizes the results of the groundwater sampling event that took place in December 2015. Comments from the EPA dated October 2016 were addressed in the Final version.

This annual report was prepared in accordance with the Scope of Work (SOW) for Contract No. W912DY-08-D-0003, Task Order 0015.

Parsons appreciates the opportunity to provide you with the report for this work. Should you have any questions, please do not hesitate to call me at (617) 449-1565 to discuss them.

Sincerely,

Beth Badik

Project Manager

Enclosures

cc: R. Battaglia, USACE, NY District

Beth Bdr

B. Frazier, USACESCH

K. Hoddinott, USACHPPM

•	

TABLE OF CONTENTS

List of Exhibits		i
List of Tables		i
List of Figures		i
List of Appendices		i
1.0 INTRODUCTION	1-	- 1
2.0 SITE BACKGROUND	2-	- 1
2.1 Site Description	2-	-1
2.2 Site Hydrology	2-	-2
2.2.1 SEAD-16	2-	-2
2.2.2 SEAD-17	2-	-2
2.3 Pre-Remedial Action Soil and	Groundwater Conditions for SEAD-162-	-2
2.4 Pre-Remedial Action Soil and	Groundwater Conditions for SEAD-172-	-4
2.5 Remedial Action Summary	2-	.5
3.0 LONG TERM MONITORING R	ESULTS3-	-1
3.1 Year 8 LTM Event	3-	- 1
3.1.1 Year 8 Groundwater El	evations for SEAD-16 and SEAD-173-	- 1
3.1.2 Year 8 LTM Sample Co	ollection3-	- 1
3.1.3 Year 8 LTM Sample Fi	ltering3-	-2
3.1.4 Year 8 Groundwater Re	esults for SEAD-163-	-2
3.1.5 Year 8 Groundwater Re	esults for SEAD-173-	.3
3.1.6 LTM Groundwater Date	a Trends3-	.3
3.2 Routine Inspections of SEAD-	16 and SEAD-17 Monitoring Wells3-	-6
4.0 REMEDY EVALUATION	4-	. 1
5.0 CONCLUSIONS AND RECOM	MENDATIONS5-	-1
5.1 Conclusions	5-	.]
5.2 Recommendations	5-	. 1
6.0 REFERENCES	6-	. 1

LIST OF EXHIBITS

Exhibit 1.1 LTM and Inspection Summary

LIST OF TABLES

Table 1	SEAD-16 - Groundwater Table Elevations Summary
Table 2	SEAD-17 - Groundwater Table Elevations Summary
Table 3A	SEAD-16 - Year 8 Groundwater Analyses
Table 3B	SEAD-17 - Year 8 Groundwater Analyses

LIST OF FIGURES

Figure 1	Location Map
Figure 2	Location of SEAD-16 and SEAD-17 at Seneca Army Depot Activity
Figure 3	SEAD-16 Site Plan
Figure 4	SEAD-17 Site Plan
Figure 5	SEAD-16 and SEAD-17 Groundwater Flow Trend
Figure 6A	Concentration of Antimony Over Time at MW16-2, MW16-4, MW16-7 and MW17-2
Figure 6B	Concentration of Lead Over Time at MW16-2, MW16-4, MW16-7 and MW17-2
Figure 6C	Concentration of Iron Over Time at SEAD-16 Monitoring Wells
Figure 6D	Concentration of Iron Over Time at SEAD-17 Monitoring Wells

LIST OF APPENDICES

Appendix A	Pre-Remedial Action Monitoring Data
Appendix B	SEDA Background Groundwater Data Summary
Appendix C	Field Forms - Year 8 LTM Groundwater Sampling Activities
Appendix D	Post-Remedial Action Monitoring Results (Years 1 through 8)
Appendix E	Laboratory Analytical Report
Appendix F	Data Validation
Appendix G	Historical Groundwater Trends
Appendix H	Response to Comments

1.0 INTRODUCTION

This Draft Annual Report – Year 8 for the former Abandoned Deactivation Furnace (SEAD-16) and the former Active Deactivation Furnace (SEAD-17) sites at the Seneca Army Depot Activity (SEDA or the Depot) in Romulus, Seneca County, New York provides a review of annual groundwater monitoring data collected in December 2015, comparisons of the 2015 data to other pre- and post-remedial action (RA) groundwater sampling events, recommendations for future long-term monitoring (LTM) at SEAD-16 and SEAD-17, and the annual review of the effectiveness of the remedy implemented at the sites in 2007.

In accordance with the Record of Decision (ROD) for SEAD-16 and SEAD-17 (Parsons, 2006) and the Remedial Design Work Plan and Design Report (Parsons, 2007) (Final Work Plan), a RA was completed in August 2007 at SEAD-16 and SEAD-17 [the areas of concern (AOCs)]. The RA consisted of the excavation and disposal of soil, from both AOCs, which was contaminated with selected metals (antimony, arsenic, cadmium, copper, lead, mercury, thallium, and zinc) at levels above identified risk-based action levels. In addition, soil at SEAD-16 was also contaminated with polyaromatic hydrocarbons (PAHs) at concentrations in excess of risk-based action levels. The PAH impacted soil was excavated and was disposed of at a licensed landfill. The RA implemented at SEAD-16 and SEAD-17 is documented in the Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17) (Parsons, 2008). The RA at SEAD-16 involved the removal of approximately 1,862 cubic yards (cy) of soil which was impacted with metals and PAHs. The RA at SEAD-17 involved the removal of approximately 2,565 cy of metals-impacted soil.

The ROD for SEAD-16 and SEAD-17 also requires the implementation, maintenance, inspection, and periodic reporting of land use controls (LUCs) prohibiting use of the land at the AOCs for residential purposes and access to and use of groundwater until applicable cleanup standards are met. Applicable cleanup standards refer to the lowest enforceable standard associated with either the New York State Class GA (NYS Class GA) Ambient Water Quality Standards or United States Environmental Protection Agency (EPA) maximum contaminant levels (EPA MCLs). Once groundwater cleanup standards are achieved, the groundwater use restrictions may be eliminated upon approval of the EPA and the New York State Department of Environmental Conservation (NYSDEC). SEAD-16 and SEAD-17 are located within the Planned Industrial/Office Development and Warehousing (PID) area. The PID area has areawide LUCs that prohibit the development and use of the property for residential housing, elementary and secondary schools, childcare facilities, and playgrounds; and, prohibits access to and use of groundwater until concentrations have been reduced to levels that allow for unlimited exposure and unrestricted use.

The Land Use Control Remedial Design (LUC RD) Addendum #4 identifies and implements the LUCs required by the SEAD-16 and SEAD-17 ROD at the identified AOCs, as well as other AOCs (SEADs 1, 2, 5, 59, 71, 121C, and 121I) in the PID area. The LUC objectives for SEAD-16 and SEAD-17 are to prevent access to or use of groundwater until New York State GA groundwater standards are achieved, and to prohibit residential housing, elementary and secondary schools, child care facilities and playground activities at the sites. Implementation of the LUCs at SEAD-16 and SEAD-17 may include lease restrictions, an environmental easement, deed restrictions, zoning, periodic certification, and a five-year review as is defined in the *Final Land Use Control Design for SEAD-27*, 66, and 64A (Army, 2006). The

LUC RD for SEAD-27, 66 and 64A is also known as the LUC RD for the Planned Industrial/Office Development or Warehousing Area that proposed the establishment of an area-wide set of land use restrictions for the PID/Warehouse Area to simplify institutional control implementation by having a single set of land use restrictions for the PID/Warehouse Area, which are consistent with its anticipated industrial land use. The periodic certification will be submitted to the NYSDEC and EPA to document that the LUCs at SEAD-16 and SEAD-17 are unchanged and that no activities have occurred that impair or violate the ability of the LUCs to protect public health and the environment.

Long-term groundwater monitoring is being performed at SEAD-16 and SEAD-17 as part of the post-closure monitoring and maintenance (PCMM) operations in accordance with the ROD and as outlined in the Final Work Plan (Parsons, 2007). LTM results are summarized in annual reports beginning in December 2007 (Exhibit 1.1). No LTM sampling event was conducted in 2011 due to budgetary constraints. This Year 8 report presents and discusses the results for the Year 8 LTM event which was conducted in December 2015.

Exhibit 1.1 – LTM and Inspection Summary

Round Number	Event	Date	Report Title
1	LTM	December 2007	Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17) (Parsons, 2008).
2	LTM	December 2008	Final Annual Report - Year 2 (Parsons, 2009)
3	LTM	November 2009	Final Annual Report - Year 3 (Parsons, 2010)
4	LTM	December 2010	Draft Final Annual Report - Year 4 (Parsons, 2013)
5	LTM	December 2012	Final Annual Report – Year 5 (Parsons, 2014a)
6	LTM	December 2013	Draft Annual Report – Year 6 (Parsons, 2014b)
7	LTM	December 2014	Draft Annual Report – Year 7 (Parsons, 2015)
8	LTM	December 2015	Draft Annual Report – Year 8

2.0 SITE BACKGROUND

2.1 Site Description

SEDA, a 10,587-acre former military facility located in Seneca County near Romulus, New York, is located between Seneca Lake and Cayuga Lake in Seneca County, and is bordered by New York State Highway 96 to the east, New York State Highway 96A to the west, and sparsely populated farmland to the north and south. The facility was wholly owned by the United States Government and was operated by the Department of the Army between 1941 and 2000; since 2000, portions of the Depot have been transferred to other parties for reuse. The primary mission of SEDA was the receipt, storage, maintenance, and supply of military items. A location map of SEDA is presented as **Figure 1**.

SEAD-16 and SEAD-17 are located in the east-central portion of the SEDA within the former ammunition storage area in an area where vehicular and pedestrian access is restricted. SEAD-16 and SEAD-17 are located in the portion of SEDA where land is presently designated for future PID uses. The locations of SEAD-16 and SEAD-17 are shown in **Figure 2**.

Both AOCs were historically used for the demilitarization of various small arms munitions. The munitions deactivation process involved heating the munitions in a rotating steel kiln. The heat would cause the munitions to detonate once the detonation temperature was reached. The byproducts produced during this detonation were then either swept out of the kiln through the stack or expelled from the kiln as bottom ash or debris.

SEAD-16, the former Abandoned Deactivation Furnace, was used from approximately 1945 until the mid 1960s when its use ceased and the site was vacated. The site consisted of 2.6 acres of fenced land with grasslands in the north, east, and west; a storage area for empty boxes and wooden debris located to the west; and an unpaved roadway in the south. Building S-311, which previously housed the deactivation furnace, was located at the approximate center of this area, and was demolished as part of the RA at SEAD-16. Documentation of demolition activities is presented in the *Building Cleaning and Building Demolition Completion Report* (Parsons, 2008). Building S-366, known as the Process Support Building, is located to the northeast of former Building S-311, and is currently unused and vacant. In addition to Building S-366, two sets of SEDA railroad tracks and utilities are presently on-site.

SEAD-17, the former Active Deactivation Furnace, was constructed to replace the Abandoned Deactivation Furnace at SEAD-16. However, SEAD-17 was inactive after 1989 as a result of Resource Conservation and Recovery Act (RCRA) permitting issues. SEAD-17 formerly consisted of the deactivation furnace, associated air pollution control equipment, and a support building (Building S-367), which were demolished or dismantled during the RA. Details and results of the demolition are documented in the *Building Cleaning and Building Demolition Completion Report* (Parsons, 2008). The former SEAD-17 deactivation furnace facility and support building were surrounded by a crushed shale road, beyond which lie grasslands. An unpaved gravel road to the north permits vehicular access to SEAD-17.

2.2 Site Hydrology

The hydrogeologic setting of SEAD-16 and SEAD-17 is described in detail in Sections 3.1.6 and 3.2.6, respectively, of the *Final Remedial Investigation (RI) Report at the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17)* (Parsons, 1999). A brief summary of the hydrogeologic conditions and chemical impacts, as described in the RI Report, is presented below.

2.2.1 SEAD-16

Three groundwater monitoring wells (MW16-1, MW16-2, and MW16-3) were installed as part of the Expanded Site Investigation (ESI) conducted at SEAD-16 in 1993/1994. Four additional groundwater monitoring wells (MW16-4, MW16-5, MW16-6, and MW16-7) were installed during the RI. As summarized in the *Final Construction Completion Report for the Abandoned Deactivation Furnace* (SEAD-16) and Active Deactivation Furnace (SEAD-17) (Parsons, 2008), MW16-3 was destroyed during the RA construction activities, and was not replaced as groundwater conditions on the southwest side of Building S-311 are adequately characterized by MW16-2 and MW16-5. The locations of the six existing groundwater monitoring wells and the former MW16-3 are shown on Figure 3.

Prior to the completion of the RA in August 2007, depth to groundwater was measured at SEAD-16 three times (April 1994, August 1996, and December 1996). Groundwater flow generally trends to the west based on previous subsurface investigations conducted at SEDA. Data from previous investigations suggest that a groundwater divide exists near, and approximately parallel to, Route 96 near Romulus, New York, indicating that the groundwater in the SEAD-16 area flows west. Based on available groundwater elevation data, it appears that there may be a regional groundwater high southwest of former Building S-311, which may contribute to local fluctuations in groundwater flow for the Site.

Horizontal hydraulic conductivities were determined for five wells screened in the till/weathered shale zone at SEAD-16. The saturated thickness in the till/weathered shale aquifer measured less than 2 feet when tested in September 1996. Hydraulic conductivity values for the shallow till/weathered shale aquifer ranged from 2.8 x 10⁻³ cm/sec to 2.5 x 10⁻² cm/sec; the geometric mean was 7.3 x 10⁻³ cm/sec.

2.2.2 SEAD-17

Four groundwater monitoring wells (MW17-1, MW17-2, MW17-3, and MW17-4) were installed as part of the ESI conducted at SEAD-17. One additional groundwater monitoring well, MW17-5, was installed during the RI. The locations of the five groundwater monitoring wells installed at SEAD-17 are shown on **Figure 4**. Prior to the completion of the RA, depth to groundwater was measured at SEAD-17 in April 1994, August 1996, and December 1996 (the same time groundwater levels were measured at SEAD-16). Interpretation of groundwater elevation data indicates that groundwater flows to the southwest.

A horizontal hydraulic gradient of 0.01 ft/ft was calculated between monitoring wells MW17-1 and MW17-3. Hydraulic conductivities were found to range from 2.9×10^{-3} cm/sec to 1.4×10^{-2} cm/sec.

2.3 Pre-Remedial Action Soil and Groundwater Conditions for SEAD-16

Pre-Remedial Action Soil Conditions

The primary historic constituents of concern (COCs) at SEAD-16 for soil included arsenic, copper, lead,

and zinc. The highest concentrations of soil contamination resulted from operations that were performed within and in close proximity to the former Abandoned Deactivation Furnace Building (S-311) and the Process Support Building (Bld. 366). Carcinogenic PAHs were detected in soils found at discrete locations within the AOC, with the highest concentrations detected in the surface soil samples collected adjacent to the northwestern corner of the former Abandoned Deactivation Furnace Building. Metals (antimony, copper, lead, mercury, and zinc) were found at concentrations greater than the site-specific cleanup goals in soil located in portions of the surrounding man-made drainage ditches.

Pre-Remedial Action Groundwater Conditions

Prior to completion of the RA, three rounds of low-flow groundwater sampling were conducted at SEAD-16, including one round in April 1994 as part of the ESI investigation activities, and two rounds in August and December 1996 as part of the RI activities. Compounds detected in the ESI and RI groundwater samples are presented in **Appendix A** (refer to the RI Report for complete groundwater analyses). Total metals were detected above either the applicable NYS Class GA standards or EPA MCLs. Concentrations exceeding applicable standards were less than or close to SEDA background concentrations, except for the exceedances of sodium. A summary of SEDA background groundwater data providing summary statistics (including maximum and average concentrations, the standard deviation for the collected data, and the frequency of detection) is provided in **Appendix B**. The Final Work Plan summarized that although metals were detected in the groundwater above their respective standards during previous sampling events, the groundwater was not impacted by site activities (Parsons, 2007). This conclusion was based on a comparison of results to the background groundwater data collected from unaffected parts of SEDA.

ESI and RI Data

Review of SEAD-16 data presented in the RI Report indicated that one or more concentrations measured for 14 metals (including arsenic, antimony, barium, beryllium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, sodium, and thallium) in 19 unfiltered groundwater samples collected during the ESI (performed in 1993/1994) and/or the RI (performed in 1999) exceeded NYS Class GA or EPA MCL standards in effect at the time of analysis. Of the 39 total instances where groundwater concentrations exceeded NYS Class GA or EPA MCL standards, 22 exceedances were associated with samples collected with peristaltic pumps (e.g., for the ESI sampling event) while the remaining 17 exceedances were found in samples collected using low-flow sampling with a bladder pump. Sample turbidities recorded during the RI sampling events were significantly lower than those recorded during the ESI sampling event, and thus are believed to be more representative of the water quality located at the site prior to the RA. Examination of the RI groundwater data shows that six metals were detected at concentrations in excess of NYS Class GA or EPA MCL standards in effect at the time of analysis:

- antimony (detected 2 times);
- iron (detected 5 times);
- lead (detected 1 time);

3.0 LONG TERM MONITORING RESULTS

3.1 Year 8 LTM Event

The Year 8 post-RA LTM event was conducted at SEAD-16 and SEAD-17 from December 19, 2015 through December 21, 2015. Groundwater samples were collected at SEAD-16 from six monitoring wells (MW16-1, MW16-2, MW16-4, MW16-5, MW16-6, and MW16-7) and from five monitoring wells (MW17-1, MW17-2, MW17-3, MW17-4, and MW17-5) located at SEAD-17. Field forms completed for the Year 8 sampling event are included in **Appendix C**. Groundwater data results for each LTM event are presented in **Appendix D**, and the laboratory analytical report for Year 8 is included as **Appendix E**. A discussion of data validation results is presented in **Appendix F**.

3.1.1 Year 8 Groundwater Elevations for SEAD-16 and SEAD-17

Prior to the collection of groundwater samples from each of the monitoring wells, groundwater elevation measurements were collected at each of the wells to be sampled. Groundwater elevation data for the Year 8 LTM event and historic data from past events are presented in **Table 1** and **Table 2** for SEAD-16 and SEAD-17, respectively. Groundwater elevations were measured on December 19, 2015 at SEAD-16 and SEAD-17.

Groundwater elevation data collected during previous investigations indicate that groundwater generally flows to the southwest at SEAD-16; however, historical groundwater elevation data also indicate that localized variation in groundwater flow direction may be due to higher groundwater elevations observed to the northeast and southwest of the former Building S-311. During the most recent (Year 8) LTM event, and similar with Years 4, 5, 6, and 7 LTM groundwater flow observations at SEAD-16, groundwater elevation data suggest that there is a groundwater low in the vicinity of the former Building S-311 location. The higher groundwater elevations to the northeast and southwest of the apparent groundwater low in the vicinity of Building S-311 result in two apparent local groundwater flow directions (to the southwest and northeast, respectively) (**Figure 5**).

Based on the most recent elevation data (December 2015), groundwater at SEAD-17 appears to flow generally to the west-southwest, which is consistent with historical groundwater flow observations at SEAD-17 (**Figure 5**).

3.1.2 Year 8 LTM Sample Collection

Samples for the Year 8 LTM event were collected using low-flow sampling techniques. A peristaltic pump was used in place of a bladder pump to collect the groundwater samples during this event due to winter weather conditions, including standing air temperatures below 32 degrees Fahrenheit (0 degrees Celsius). A peristaltic pump is recommended for freezing conditions since the bladder pump recharge cycle sequence allows water to freeze in the exposed portion of the sample tubing, which may inhibit sample collection efforts due to ice plugs forming in the tubing.

Sample collection, handling and custody, holding times, and field parameter collection procedures were conducted in accordance with the Revised Final Sampling and Analysis Plan for Seneca Army Depot

May 2017

Activity (SAP) (Parsons, 2006c). Samples collected from the six SEAD-16 wells and the five SEAD-17 wells were submitted to TestAmerica (Savannah, GA) for the following analyses:

- Total Target Analyte List (TAL) metals, exclusive of mercury, by USEPA SW846 Method 6020;
 and
- Total mercury by USEPA SW846 7470A.

The TestAmerica Savannah, GA laboratory is certified by the Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP) and the NELAC National Environmental Laboratory Accreditation Program (NELAP) for the above analyses/analytical methods for both potable and non-potable water.

Quality control (QC) samples, including one duplicate and one matrix spike/matrix spike duplicate (MS/MSD) pair, were collected at MW16-7. In the field, pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), conductivity, temperature, and turbidity data were collected from each well during the purging cycle.

3.1.3 Year 8 LTM Sample Filtering

As documented in previous reports, there was the concern that elevated metal concentrations in SEAD-16 and SEAD-17 wells may be associated with higher groundwater turbidity values. With this in mind, both unfiltered and filtered samples were collected for the Year 3 through 7 LTM events: after the purging was complete, a sample was collected directly from the well as an unfiltered sample and then another sample was collected and filtered through a 0.45-micron membrane filter in the field and submitted as the filtered sample. Low turbidity values (< 5 Nephelometric Turbidity Units [NTU]) have been consistently observed in past rounds and during the Year 8 LTM event. As turbidity values were low (<5 NTU) during the Year 8 LTM event, filtered samples were determined to not be necessary (Appendix C).

3.1.4 Year 8 Groundwater Results for SEAD-16

A summary of metals detected in groundwater during the Year 8 LTM event for SEAD-16 is presented in **Table 3A**. Groundwater data results for each LTM event are presented in **Appendix D** and the laboratory analytical report for Year 8 is included as **Appendix E**. Data validation results are presented in **Appendix F**; sample 16LM20054 (MW16-7, parent sample) was found to be non-compliant for barium, calcium, potassium, magnesium, manganese, sodium, lead and antimony. When compared to the results from the duplicate sample taken at the same location, and to previous rounds, the concentrations are anomalously high. The concentrations of the parent sample were flagged as estimated during data validation and concentrations from the duplicate sample, instead of the parent sample, will be used in the analysis below. Data validation utilized the EPA Region 2 Standard Operating Procedures (SOPs) revised in March 2013.

Within SEAD-16, total concentrations of antimony, iron and sodium were detected above applicable NYS Class GA standards (**Table 3A**). Antimony (total) exceeded the NYS Class GA standard of 3 µg/L in one well (MW16-7). Antimony (total) was detected in four other wells (MW16-2, MW16-4, MW16-5, and MW16-6); however, the concentrations were estimated ("J" qualifier) and below the GA standard. Antimony was not detected in MW16-1.

Iron (total) exceeded the NYS Class GA standard (300 μ g/L) in two wells. The highest concentration was detected in well MW16-6 (4,000 μ g/L) and the other detection was in well MW16-5 (570 μ g/L). The iron concentrations in the other four wells were below the GA standard.

The concentrations (710 and 4,120 μ g/L) of the sum of iron and manganese (total) in wells MW16-5 and MW16-6 exceeded the combined NYS Class GA standard of 500 μ g/L with the primary contributing metal being iron (total) (570 and 4,000 μ g/L, respectively). Although manganese was detected in the groundwater samples collected from the SEAD-16 wells, it was not detected at concentrations above its NYS Class GA standard (300 μ g/L) during the Year 8 LTM event.

Sodium (total) was detected at concentrations above the NYS Class GA standard (20,000 μ g/L) in wells MW16-1, MW16-4, and MW16-7. The highest concentration was detected in well MW16-4 (250,000 μ g/L). Sodium (total) exceedances were also found in both well MW16-1 (62,000 μ g/L) and in well MW16-7 (23,000 J μ g/L, respectively).

In summary, concentrations (total) of two select metals (antimony and sodium) continue to be detected in the groundwater at SEAD-16 at levels that exceed NYS Class GA standards. Iron (total) exceeded its NYS Class GA standard in two wells.

3.1.5 Year 8 Groundwater Results for SEAD-17

A summary of metals detected in the Year 8 groundwater samples event for SEAD-17 is presented in **Table 3B**. Groundwater analytical results for each LTM event are presented in **Appendix D** and the laboratory analytical report for Year 8 is included as **Appendix E**. A discussion of data validation results is presented in **Appendix F**; there were no non-compliance issues reported. Data validation utilized the EPA Region 2 SOPs revised in March 2013.

Antimony (total) did not exceed its NYS Class GA standard (3 μ g/L) in any of the wells sampled at SEAD-17. Iron (total) was detected at a concentration (360 μ g/L) above its NYS Class GA standard (300 μ g/L) in one well (MW17-1). No other metals exceeded applicable groundwater standards in Year 8 at SEAD-17 (**Table 3B**).

3.1.6 LTM Groundwater Data Trends

An examination of the data trends from the Year 1 to 8 LTM events is provided for SEAD-16 and SEAD-17 in the following discussions. The LTM trends were examined to determine if the LTM results show: 1) an overall decreasing trend; 2) overall compliance with groundwater standards; and 3) their similarity to SEDA background values. Summaries of metal exceedances detected during the Year 8 groundwater monitoring event for SEAD-16 and SEAD-17 are provided in **Tables 3A** and **3B**, respectively. The data results for the Year 1 through Year 8 LTM events are included as **Appendix D**.

3.1.6.1 LTM Groundwater Trends for SEAD-16

During the eight years of LTM sampling at SEAD-16, five metals have exceeded NYS Class GA or EPA MCL standards: antimony, iron, lead, manganese, and sodium. The full LTM data set is provided in

Appendix D. A comparison of pre-LTM trends to LTM trends of select metals is presented in **Appendix G**.

Groundwater at three wells (MW16-2, MW16-4 and MW16-7) frequently had detections of antimony (total) above the NYS Class GA standard of 3 µg/L. In the most recent event, antimony only exceeded the NYS Class GA standard in one well (MW16-7). A plot of antimony concentration versus time illustrates that at MW16-7 antimony was detected above the standard in each event at concentrations ranging from 9.58 µg/L to 19 J µg/L (**Figure 6A**). The concentrations of antimony (total) detected at MW16-2 have fluctuated from just above the standard to a maximum concentration of 7.1 µg/L (Event 5); and, concentrations of antimony (total) at MW16-4 have varied from non-detect to a maximum of 6.3 µg/L (Event 3) (**Figure 6A**). The maximum concentrations at both MW16-2 and MW16-4 are below the SEDA average background concentration of 8.2 µg/L and in the past three rounds were below, or approximately equal to, the NYS Class GA standard. Examination of **Figure 6A** illustrates that the elevated concentrations of antimony above background and above the standard are isolated to MW16-7.

Lead (total) is not a persistent COC in any of the wells at SEAD-16 (**Figure 6B**). Lead (total) has exceeded the EPA MCL twice during eight years of post-RA monitoring at MW16-7 during the first and second LTM sampling events. Since the last exceedance at MW16-7 in 2008, lead (total) concentrations have remained below the EPA MCL for the last six events. The plot in **Figure 6B** illustrates that with the exception of the noted spike of lead concentrations in events 1 and 2, the concentrations are below the standards, and lead is not a COC.

Exceedances of the NYS Class GA standard for iron (total) are predominantly in well MW16-5; however, all of the concentrations are below the SEDA background value (4,476 μg/L) (**Appendix B**). The highest concentrations of iron (total) detected in the groundwater at SEAD-16 are typically from well MW16-5. During Year 8, the iron (total) result at well MW16-6 was uncharacteristically higher than historical results from the wells at SEAD-16. This is interpreted as an anomaly in well MW16-5 for Year 8 and concentrations in this well are expected to return to historical averages. Iron concentrations over the course of LTM at SEAD-16 are presented on **Figure 6C**.

Manganese concentrations are historically below its NYS Class GA standard (300 μ g/L). One exceedance (631 μ g/L) of manganese was detected in well MW16-7 during Event 1.

Sodium is a persistent contaminant identified in SEAD-16 wells. It has been detected in every sample collected from the site. Sodium concentrations detected in the groundwater are currently higher than what was found prior to the RA. The concentrations are possibly affected by the known salt pile storage area that is operated by the Seneca County Highway Department (located approximately 1,000 feet upgradient to the east-northeast of SEAD-16). As identified on **Figure 5**, the groundwater east (upgradient) of SEAD-16 travels towards the southwest, from the salt pile storage area towards SEAD-16. In satellite photos of the area, the "Unnamed Dirt Road" that originates from the salt storage area and extends towards SEAD-16 appears to have a white coloration; the white coloration is likely due to salt residue from runoff emanating from the salt pile. Historically, the highest concentrations of sodium were found in well MW16-4; this well is the most directly in line with the suspected path of the salt. The location of the Seneca County Highway Department salt pile storage area is indicated on **Figure 5**. Sampling has not

been conducted at the salt pile, or immediately downgradient of it, as it is not a CERCLA release; the Army does not plan on conducting any sampling in this location.

The trend over time in the LTM data shows that there is no evidence of an area-wide or expanding plume at SEAD-16. Antimony is a COC at one well, MW16-7; at all other wells, it is below the SEDA site-wide average background concentration, and fluctuating close to or below the NYS Class GA standard.

Lead is not considered a COC as all concentrations have been below the EPA MCL for the last six events. Iron is not considered a COC, as iron concentrations are common in the groundwater at Seneca, and the SEAD-16 iron groundwater concentrations are below SEDA site-wide background values. Sodium concentrations are not related to site activities and are likely a result of salt pile operations; sodium is not considered a COC.

3.1.6.2 LTM Groundwater Trends for SEAD-17

During the eight years of LTM sampling, five metals have exceeded NYS Class GA or EPA MCL standards including antimony (total), iron (total), lead (total), manganese (total), and sodium (total) (**Appendix D**). Historically, lead (total) and manganese (total) exceeded their applicable screening levels once and twice, respectively; sodium (total) exceeded its screening criterion in three wells. None of these three metals exceeded their respective criteria in Event 8. Lead (total), manganese (total), and sodium (total) are not persistent COCs at SEAD-17 and are therefore not discussed below. A comparison of pre-LTM trends to LTM trends of select metals is presented in **Appendix G**.

Exceedances of the 3 μ g/L NYS Class GA standard for antimony (total) are limited to well MW17-2, as illustrated in **Figure 6A**. The maximum concentration (4.4 J μ g/L) reported for antimony (total) was detected in Year 5 from MW17-2. The concentrations of antimony (total) show a declining trend through time with detected concentrations from the last three monitoring events approximately equal to, or below, the NYS GA standard. All of the antimony concentrations detected during LTM have been below the SEDA background value for antimony (8.2 μ g/L) (**Appendix D**).

Lead (total) is not a persistent COC in any of the wells at SEAD-17 (**Figure 6B**). Lead (total) exceeded the EPA MCL once during eight years of post-RA monitoring at MW17-2 during the third LTM sampling event. Since the last exceedance, lead (total) concentrations have remained below the EPA MCL. The plot in **Figure 6B** illustrates that with the exception of the noted spike in concentration of lead in event 3, the concentrations are below the standards, and lead is not a COC.

Nine exceedances of the NYS Class GA standard for iron (total) were found in samples collected from four wells (MW17-1 with two exceedances, MW17-2 with two exceedances; MW17-3 with three exceedances; and MW17-4 with two exceedances) (**Appendix D**). The maximum concentration (25,500 J μ g/L) of iron (total) was detected in well MW17-2 during the Year 3 LTM event. Except for the maximum detected concentration, all of the concentrations of iron have been below the SEDA background (4,476 μ g/L). The concentrations of iron (total) during the course of the LTM is presented on **Figure 6D**.

Overall, post-RA LTM results indicate that groundwater quality at SEAD-17 is not impacted by historic operations conducted in this area. There are no trends associated with the elevated concentrations of

sodium at SEAD-17 (Appendix D). These concentrations are estimated and, in general, return to the historical baseline condition at each well. Typically, sodium concentrations at SEAD-17 are below the Seneca background (**Appendix B**).

The SEAD-17 Year 8 data continues to support that the groundwater at SEAD-17 has not been impacted by metals released from the former Active Deactivation Furnace site. The most recent concentrations of antimony were below the NYS Class GA standard.

3.2 Routine Inspections of SEAD-16 and SEAD-17 Monitoring Wells

Observation of the wells at SEAD-16 and SEAD-17 during the Year 8 LTM event indicates that the wells located on the site are in acceptable condition. No obstructions were encountered in the wells at SEAD-16 and SEAD-17 during the Year 8 sampling event.

4.0 REMEDY EVALUATION

As discussed above in **Section 2.5**, approximately 4,427 cy of metal and PAH impacted soil were removed from SEAD-16 and SEAD-17 during the RA conducted in the summer of 2007. The impacted soil was removed to minimize or eliminate the migration of hazardous contaminants from soil to groundwater. Soil that exceeded the site-specific cleanup standards, as based on the confirmatory soil data, was removed from SEAD-16 and SEAD-17.

The long-term groundwater monitoring performed over eight years following the completion of the 2007 RA shows that the soil removal remedy has been effective in minimizing the migration of select metals from soil to groundwater. Pre-RA groundwater quality concerns associated with arsenic, barium, beryllium, chromium, copper, iron, lead, mercury, nickel and thallium have been eliminated, as each of these metals, with the exception of iron and lead, have not been detected in the groundwater at SEAD-16 in excess of the applicable NYS Class GA or EPA MCL standards since the RA was completed. Lead was found twice at levels in excess of the applicable EPA MCL, but these exceedances were confined to a single well (MW16-7) during the Year 1 and Year 2 post-RA LTM sampling events; lead exceedances in MW16-7 have not been detected during subsequent sampling events. While iron and manganese concentrations in excess of NYS Class GA groundwater quality standards are still present, these results appear to be partially affected by turbidity issues or are attributable to the regional groundwater quality, and are not attributable to site activities. Noted sodium exceedances found in the groundwater at SEAD-16 appear to originate from the salt storage area located upgradient of SEAD-16 which is operated by the Seneca County Highway Department and are not attributable to site activities. Antimony continues to be detected at concentrations above the applicable NYS Class GA standard, but these exceedances appear to be predominantly limited to two wells (MW16-2 and MW16-7) where concentrations have remained generally consistent since the RA was completed.

The groundwater quality at SEAD-17 has improved since the completion of the RA. The few noted groundwater quality exceedances for metals other than iron and manganese appear to be limited to the initial Year 1 or Year 2 post-RA sampling events or to a sample where a turbidity impact is suspected (e.g., the sample collected from MW17-2 during the Year 3 LTM event) and where groundwater quality has improved since the exceedances were reported. Although the concentrations of iron were identified at concentrations above the applicable NYS Class GA standards and the results are greater than what has been observed historically at the site, there is not sufficient trend information to indicate that there a significant change in groundwater conditions. Iron exceedances reported for SEAD-17 are isolated and are most likely attributable to regional groundwater quality and are not attributable to site activities. Historically (Events 1, 3, 5, and 7) within SEAD-17, antimony has exceeded the NYS Class GA standard in one well (MW17-2) in both unfiltered and filtered samples. All of the exceedances have been less than 1.5 µg/L over the NYS Class GA standard and the last two exceedances, in Events 5 and 7, the concentrations were estimated. Antimony was not detected over the NYS Class GA standard in the latest LTM event. Although antimony has limited exceedances over the NYS Class GA standard, there is no trend in these data or evidence to suggest that these concentrations are different than background (Appendix B).

May 2017

The remedy for SEAD-16 and SEAD-17 includes the implementation and maintenance of LUCs consisting of:

- Prevention of residential housing, elementary and secondary schools, childcare facilities and playground activities; and
- Prevention of access to or uses of the groundwater until concentrations are below the NYS Class GA Groundwater or EPA MCL standards.

As part of the LTM program, SEAD-16 and SEAD-17 were inspected to determine if the LUCs are being maintained. During the Year 8 event, it was confirmed that no residential housing, elementary and/or secondary schools, childcare facilities, or playgrounds have been constructed or established in these AOCs, and no access to or use of groundwater, beyond that which is gained by the existing monitoring well network, was evident at either SEAD-16 or SEAD-17. Access to and use of the groundwater is restricted at the AOC under the terms of the ROD and is not being used as a potable water source. A non-groundwater sourced municipal water supply is available for the Depot and includes the PID area. The groundwater access/use restriction will remain in effect at the PID and SEAD-16/17 until select metal concentrations in groundwater have been reduced to levels below applicable NYS Class GA and EPA MCL standards and until data demonstrating acceptable groundwater quality in the AOC is provided to and approved by the applicable regulatory agencies.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

- The soil excavation remedy at SEAD-16 and SEAD-17 was an effective method for controlling, and in some cases eliminating, the migration of select metals from soil to groundwater based on the evaluation of the results of the eight post-RA LTM sampling events. Trends demonstrate that the remedial action performed did not adversely impact groundwater.
- There is no ongoing treatment process at either site to continue monitoring for concentration reductions.
- Post-remediation groundwater monitoring results indicate that there was a limited impact on the
 groundwater at SEAD-16/17. Iron, lead, and sodium were detected above groundwater standards
 in a limited number of wells; however, they currently are not considered COCs as they are below
 SEDA background levels and/or have not been detected above guidance values in the past several
 events.
- Antimony is a COC in one well, MW16-7; the concentrations at this well are stable.
- Antimony is not migrating, as evidenced by absence of increasing antimony concentrations in other wells.
- Groundwater use is prohibited by the area-wide LUC and an alternate potable water source is available. The land use and groundwater use restrictions imposed at SEAD-16 and SEAD-17 are maintained as part of both the approved RODs for SEAD 16/17 and the larger Planned Industrial/Office or Warehousing Area ("PID Area") (Parsons, 2004; 2006). There are no signs of unauthorized use or access to the AOCs.

5.2 Recommendations

Based on the current area-wide LUC prohibiting the use of groundwater within the PID Area (includes SEADs 16/17), the Army recommends concluding LTM at these sites because there is no planned future use of the groundwater. The wells will not be decommissioned at this time and sampling at these sites may take place in the future if the need arises (e.g., emerging contaminants, decisions during the 2021 5 Year Review). Annual LUC inspections will continue to insure that the groundwater is not accessed.

Based on this recommendation, agreement was reached between the EPA and Army via email dated 28 October 2016 to conduct the next round of groundwater sampling at SEAD-16/17 in 2019 (year 3 of the FYR cycle). This will allow for an additional round of sampling, if necessary, before the next 2021 five-year review.

6.0 REFERENCES

- Army, 2006. Final Land Use Control Remedial Design for SEAD-27, 66, and 64A, Seneca Army Depot, Romulus, New York. December 2006.
- Army, 2010. Addendum 4 Addressing SEAD 1, 2, 5, 16, 17, 59, 71, 121C, and 121I, Land Use Control Remedial Design for SEAD 27, 66, and 64A, Seneca Army Depot Activity, Romulus, New York. April 2010.
- EPA, 2002. Groundwater Sampling Guidelines for Superfund and RCRA Project Managers. Groundwater Forum Issue Paper. May 2002.
- EPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530/R-09-007, March 2009.
- EPA, 2013. Science and Ecosystem Support Division Operating Procedure, Groundwater Sampling. SESDPROC-301-R3. March 2013.
- NYSDEC, 1998 with 2000 and 2004 Addendum. Ambient Water Quality Standard and Guidance Values and Groundwater Effluent Limitations
- Parsons, 1995. Final Expanded Site Inspection, Seven High Priority SWMUs, SEAD 4, 16, 24, 25, 26, and 45. December 1995.
- Parsons, 1999. Final Remedial Investigation (RI) Report at the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17). March 1999.
- Parsons, 2004. Record of Decision. Site Requiring Institutional Controls in the Planned Industrial/Office Development or Warehousing Areas. Seneca Army Depot Activity. September 2004.
- Parsons, 2006. Record of Decision for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. March 2006.
- Parsons, 2006c. Revised Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP).
- Parsons, 2007. Remedial Design Work Plan and Design Report for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. July 2007.
- Parsons, 2008. Building Cleaning and Building Demolition Completion Report, SENECA Army Depot Activity, Romulus, New York, Draft Final. November 2008.
- Parsons, 2008. Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. September 2008.
- Parsons, 2009. Final Annual Report (Year 2) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2010. Final Annual Report (Year 3) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).

- Parsons, 2013. Draft Annual Report (Year 4) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2014a. Final Annual Report (Year 5) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2014b. Draft Annual Report (Year 6) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2015. Draft Annual Report (Year 7) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17). July, 2015.

TABLES

Table 1	SEAD-16 - Groundwater Table Elevations Summary
Table 2	SEAD-17 - Groundwater Table Elevations Summary
Table 3A	SEAD-16 - Year 8 Groundwater Analyses
Table 3B	SEAD-17 - Year 8 Groundwater Analyses

Table 1 SEAD-16 - Groundwater Table Elevations Summary Draft Annual Report - SEAD-16 and SEAD-17 Seneca Army Depot Activity

Pre-Remedial Action Groundwater Elevation Data

Top of PVC		April 4	4, 1994	August 27, 1996 De		Decembe	ecember 6, 1996	
Monitoring	Elevation (1)	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table	
Well		Water	Elevation	Water	Elevation	Water	Elevation	
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	
MW 16-1	735.54	3.52	732.02	6.45	729.09	3.25	732.29	
MW 16-2	734.56	3.65	730.91	4.50	730.06	3.71	730.85	
MW 16-3	735.48	4.60	730.88	5.43	730.05	4.64	730.84	
MW 16-4	733.93	NA	NA	4.83	729.10	2.93	731.00	
MW 16-5	733.40	NA	NA	4.76	728.64	2.20	731.20	
MW 16-6	733.56	NA	NA	4.54	729.02	2.90	730.66	
MW 16-7	734.42	NA	NA	5.06	729.36	4.23	730.19	

Post-Remedial Action Groundwater Elevation Data

	Top of PVC	Decembe	r 20, 2007	2008 Top of	Decembe	er 9, 2008	Novembe	er 13, 2009	Decembe	r 13, 2010
Monitoring	Elevation (1)	Depth to	Water Table	PVC	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table
Well	(feet)	Water	Elevation	Elevation (4, 5)	Water	Elevation (4,5)	Water	Elevation (5)	Water	Elevation (5)
	(leet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW 16-1	735.54	4.25	731.29	735.54	4.28	731.26	5.76	729.78	3.16	732.38
MW 16-2	734.56	4.20	730.36	733.48	4.20	729.28	4.35	729.13	4.08	729.40
MW 16-3	735.48	NA	NA	735.48	NA	NA	NA	NA	NA	NA
MW 16-4	733.93	3.00	730.93	733.93	3.42	730.51	3.91	730.02	2.78	731.15
MW 16-5	733.40	1.90	731.50	735.82	3.32	732.50	3.10	732.72	1.68	734.14
MW 16-6	733.56	2.66	730.90	733.56	3.47	730.09	3.68	729.88	2.53	731.03
MW 16-7	734.42	4.45	729.97	734.42	4.63	729.79	4.75	729.67	4.41	730.01

	2012 Top of	Decembe	December 10, 2012		December 9, 2013		December 15, 2014		December 19, 2015	
Monitoring	PVC	Depth to	Water Table	Depth to	Water Table		Water Table		Water Table	
Well	Elevation (6)	Water	Elevation (6)	Water	Elevation (6)	Depth to Water	Elevation (6)	Depth to Water	Elevation (6)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	
MW 16-1	735.53	3.15	732.38	2.94	732.59	2.96	732.57	3.69	731.84	
MW 16-2	734.86	4.08	730.78	4.18	730.68	3.8	731.06	3.33	731.53	
MW 16-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	
MW 16-4	734.51	2.71	731.80	2.64	731.87	2.66	731.85	3.03	731.48	
MW 16-5	735.36	1.63	733.73	2.26	733.10	1.64	733.72	2.2	733.16	
MW 16-6	734.25	2.37	731.88	2.65	731.60	2.33	731.92	2.68	731.57	
MW 16-7	734.96	4.28	730.68	4.38	730.58	4.08	730.88	3.52	731,44	

- (1) Elevations are relative to the North American Vertical Datum (NAVD) 1988.
- (2) April 4, 1994 data were collected as a part of the ESI and August 1996 and December 1996 were collected during the Remedial Investigation phase.
- (3) Monitoring well MW16-3 was destroyed during the remedial action conducted at SEAD-16.
- (4) PVC riser pipe for wells MW16-2 and MW16-5 was necessary to be cut during December 2008 sampling event due to the PVC preventing the metal casing lid from opening.
- (5) MW16-2 and MW16-5 were re-surveyed in Dec 2008 and this data was used for water table elevation calculations for December 9, 2008 through December 13, 2010. MW16-2 Top of PVC elevation is 733.48 ft, and MW16-5 Top of PVC elevation is 735.82 ft.
- (6) Wells were re-surveyed with GPS RTK equipment in November 2012. New ground surface and top of the PVC elevations were used for the December 2012 water table elevation calculation. NA = Not Available.

Table 2 **SEAD-17 - Groundwater Table Elevations Summary** Draft Annual Report - SEAD-16 and SEAD-17 Seneca Army Depot Activity

Pre-Remedial Action Groundwater Elevation Data

	2008 Top of	Top of PVC	April 4	4, 1994	August	29, 1996	December 6, 1996	
Monitoring	PVC	Elevation (1)	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table
Well	1 1		Water	Elevation	Water	Elevation	Water	Elevation
1	Elevation	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW 17-1		736.30	2.80	733.50	7.64	728.66	3.01	733.29
MW 17-2		733.75	3.19	730.56	7.24	726.51	3.45	730.30
MW 17-3	732.625	732.15	2.38	729,77	7.14	725.01	2.47	729.68
MW 17-4		734.59	3.00	731.59	7.23	727.36	3.13	731.46
MW 17-5		733.58	NA	NA	6.92	726.66	2.65	730.93

Post Remedial Action Groundwater Elevation Data

	Top of PVC	Decembe	December 19, 2007		December 9, 2008		November 11, 2009		December 13, 2010	
Monitoring Well	Elevation (1) (feet)		Water Table Elevation (feet)	2008 Top of PVC Elevation	Deptilito	Water Table Elevation (3,4) (feet)	Depth to Water (feet)	Water Table Elevation ⁽⁴⁾ (feet)	Depth to Water (feet)	Water Table Elevation (4) (feet)
MW 17-1	736.30	3.33	732.97	736.30	4.25	732.05	5.60	730.70	3.32	732.98
MW 17-2	733.75	3.31	730.44	733.75	4.07	729.68	5.27	728.48	2.2	731.55
MW 17-3	732.15	2.67	729.48	732.625	3.96	728.67	6.15	726.48	2.51	730.12
MW 17-4	734.59	3.40	731.19	734.59	4.05	730.54	5.75	728.84	3.4	731.19
MW 17-5	733.58	2.90	730.68	733.58	3.46	730.12	4.65	728.93	2.79	730.79

	2012 Top of	Decembe	r 10, 2012	Decembe	r 9, 2013	December	15, 2014	December	19, 2015
Monitoring	PVC	Depth to	Water Table	Depth to	Water Table		Water Table		Water Table
Well	Elevation (5)	Water	Elevation (5)	Water	Elevation (5)	Depth to Water	Elevation (5)	Depth to Water	Elevation (5)
	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW 17-1	736.39	3.19	733.20	3.52	732.87	3.26	733.13	3.55	732.84
MW 17-2	733.65	2.79	730.86	3.15	730.50	2.77	730.88	3.5	730.15
MW 17-3	732.05	2.4	729.65	2.73	729.32	2.38	729.67	3.73	728.32
MW 17-4	734.62	3.18	731.44	3.2	731.42	3.22	731.40	3.28	731.34
MW 17-5	734.12	2.64	731.48	2.79	731.33	2.64	731.48	2.96	731.16

- (1) Elevations are relative to the North American Vertical Datum (NAVD) 1988.
- (2) April 4, 1994 data were collected as a part of the ESI and August 1996 and December 1996 were collected during the Remedial Investigation Phase.
- (3) PVC riser pipe for MW17-3 was necessary to be cut during December 2008 sampling event due to the PVC preventing the metal casing lid from opening.
- (4) MW17-3 was re-surveyed in December 2008 and this data was used for water table elevation calculations for December 9, 2008 through December 13, 2010. MW17-3 Top of PVC elevation is 732.63 ft.
- (5) Wells were re-surveyed with GPS RTK equipment in November 2012. New ground surface and top of the PVC elevations were used for December 2012 water table elevation calculation. NA = Not Available.

Table 3A
SEAD-16 Detected Groundwater Compounds
Draft Annual Report - SEAD 16 and SEAD 17
Seneca Army Depot Activity

Area	a			SEAD-16						
Loc II				MW16-1	MW16-2	MW16-4	MW16-5	MW16-6	MW16-7	MW16-7
Matrix	K			GW						
Sample II				16LM20049	16LM20050	16LM20051	16LM20052	16LM20053	16LM20054	16LM20055
Sample Date	е			12/20/2015	12/19/2015	12/20/2015	12/19/2015	12/19/2015	12/19/2015	12/19/2015
QC Type	е			SA	SA	SA	SA	SA	SA	DU
Study II)			LTM						
Sample Round	d			8	8	8	8	8	8	8
Filtered	d			Total						
		Maximum	Criteria							
Parameter	Unit	Value	Level	Value Qual						
Aluminum	UG/L	2,400		44 J	58 J	18 U	31 J	2,400	140 J	36 J
Antimony	UG/L	120	3	0.5 U	2.1 J	2 J	0.75 J	1 J	120 J	19 J
Arsenic	UG/L	1.9	10	1.5 U	1.5 U	1.5 U	1.5 U	1.9 J	7.5 U	1.5 U
Barium	UG/L	600	1,000	81	94	140	41	73	600 J	130 J
Cadmium	UG/L	0.34	5	0.15 U	0.15 U	0.34 J	0.15 U	0.33 J	0.15 U	0.15 U
Calcium	UG/L	510,000		120,000	130,000	160,000	110,000	80,000	510,000 J	110,000 J
Chromium	UG/L	4.6	50	3 J	1.6 U	1.6 U	1.6 U	4.6 J	8 U	1.6 U
Cobalt	UG/L	1.6		0.12 J	0.68	0.28 J	0.12 U	1.6	0.6 U	0.12 J
Copper	UG/L	21	200	1.7 U	3 J	6.8	1.7 U	6.3	21 J	4.2 J
Iron	UG/L	4,000	300	68 J	,130	33 J	570	4,000	370 J	62 J
Iron+Manganese	UG/L	4,120	500	76.7 J	193	85 J	710	4120	396 J	69.4 J
Lead	UG/L	48	15	0.98 U	2.9	1.1 J	0.98 U	2.2 J	48 J	10 Ј
Magnesium	UG/L	98,000		19,000	13,000	25,000	10,000	8,300	98,000 J	20,000 J
Manganese	UG/L	140	300	8.7	63	52	140	120	26 J	7.4 J
Nickel	UG/L	5.1	100	3.8 J	2.6 J	3.7 J	2.3 J	5.1	9.5 U	1.9 U
Potassium	UG/L	15,000		1,000	1,900	1,900	2,500	2,600	15,000 J	3,600 J
Selenium	UG/L	1.1	10	1 U	1 U	1 U	1 U	1.1 J	5 U	1 U
Sodium	UG/L	250,000	20,000	62,000	11,000	250,000	1,800	10,000	89,000 J	23,000 J
Zinc	UG/L	18		9.6 U	17 J	16 J	9.6 U	18 J	48 U	9.6 U

Notes:

SA = Sample

DU = Duplicate Sample

The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)
 and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

^{2.} Shading indicates a concentration above the GA or MCL groundwater standard.

^{3.} A blank in the Criteria Level column indicates no standard established for that compound.

U = compound was not detected

J = the reported value is an estimated cocentration

Table 3B **SEAD 17 Detected Groundwater Compounds** Draft Annual Report - SEAD 16 and SEAD 17 Seneca Army Depot Activity

	Area			SEAD-17	SEAD-17	SEAD-17	SEAD-17	SEAD-17
	Loc ID			MW17-1	MW17-2	MW17-3	MW17-4	MW17-5
	Matrix			GW	GW	GW	GW	GW
	Sample ID			17LM20035	17LM20036	17LM20037	17LM20038	17LM20039
	Sample Date			17/EM20033 12/21/2015	12/20/2015	12/20/2015	12/21/2015	
h.	QC Type			12/21/2015 SA				12/20/2015
					SA	SA	SA	SA
0-	Study ID			LTM	LTM	LTM	LTM	LTM
Sa	mple Round			8	_ 8	8	- 8	8
	Filtered			Total	Total	Total	Total	Total
		Maximum	Criteria		-37 - 1	100		
Parameter	Unit	Value	Level	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Aluminum	UG/L	31		18 J	19 J	31 J	18 U	18 U
Antimony	UG/L	0.63	3	0.5 U	0.63 J	0.5 U	0.56 J	0.5 U
Barium	UG/L	86	1,000	70	66	51	29	86
Calcium	UG/L	160,000		98,000	160,000	100,000	80,000	100,000
Cobalt	UG/L	1.1		0.3 J	0.42 J	0.12 U	1.1	0.14 J
Copper	UG/L	2.4	200	1.7 U	2.4 J	1.7 U	1.7 U	1.7 U
Iron	UG/L	360	300	360	140	43 J	59 J	43 J
Iron+Manganese	UG/L	449	500	449	175	44.8 J	158 J	48.8 J
Lead	UG/L	1.5	15	0.98 U	0.98 U	0.98 U	1.5 J	0.98 U
Magnesium	UG/L	19,000		19,000	16,000	11,000	11,000	17,000
Manganese	UG/L	99	300	89	35	1.8 U	99	5.8
Nickel	UG/L	2.1	100	1.9 U	1.9 U	1.9 U	2.1 J	1.9 U
Potassium	UG/L	1,600		520 J	1,600	810 J	500 J	1,300
Sodium	UG/L	12,000	20,000	6,400	12,000	8,400	6,000	5,800
Zinc	UG/L	27		9.6 U	26	27	9.6 U	9.6 U

Notes:

- 1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998) and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 2. Shading indicates a concentration above the GA or MCL groundwater standard.
- 3. A blank in the Criteria Level column indicates no standard established for that compound.
- U = compound was not detected

J = the reported value is an estimated cocentration

SA = Sample

DU = Duplicate Sample

FIGURES

Figure 1	Location Map
Figure 2	Location of SEAD-16 and SEAD-17 at Seneca Army Depot Activity
Figure 3	SEAD-16 Site Plan
Figure 4	SEAD-17 Site Plan
Figure 5	SEAD-16 and SEAD-17 Groundwater Flow Trend
Figure 6A	Concentration of Antimony Over Time at MW16-2, MW16-4, MW16-7 and MW17-2
Figure 6B	Concentration of Lead Over Time at MW16-2, MW16-4, MW16-7 and MW17-2
Figure 6C	Concentration of Iron Over Time at SEAD-16 Monitoring Wells
Figure 6D	Concentration of Iron Over Time at SEAD-17 Monitoring Wells

Figure 6A

Concentration of Antimony Over Time at MW16-2, MW16-4, MW16-7, and MW17-2

SEAD 16/17 Annual Report

Seneca Army Depot Activity

Note: ND = not detected (MDL plotted).

Figure 6B

Concentration of Lead Over Time at MW16-2, MW16-4, MW16-7 and MW17-2

SEAD 16/17 Annual Report

Seneca Army Depot Activity

Note:

ND = not detected (MDL plotted).

Figure 6C
Concentration of Iron Over Time at SEAD 16 Monitoring Wells
SEAD 16/17 Annual Report
Seneca Army Depot Activity

Note:

ND = not detected (MDL plotted).

Figure 6D Concentration of Iron Over Time at SEAD 17 Monitoring Wells SEAD 16/17 Annual Report

Note:

ND = not detected (MDL plotted).

APPENDICES

Appendix A Pre-Remedial Action Monitoring Data

Appendix B SEDA Background Groundwater Data Summary

Appendix C Field Forms - Year 8 LTM Groundwater Sampling Activities

Post-Remedial Action Monitoring Results (Years 1 through 8) Appendix D

Appendix E Laboratory Analytical Report

Data Validation Appendix F

Appendix G Historical Groundwater Trends

Appendix H Response to Comments

		1

Appendix A
Pre-Remedial Action Groundwater Monitoring Results
Draft Annual Report - SEAD-16 and SEAD-17
Seneca Army Depot Activity

		LOC_ID: SAMP ID:		MW16-1 16101	MW16-1 16152	MW16-2 16102	MW16-2 16150	MW16-3 16110	MW16-3 16165	MW16-4 16105	MW16-4 16156	MW16-5 16162	MW16-6 16111	MW16-6 16155	MW16-7 16104	MW16-7 16158	MW16-7 16159
		QC CODE:		SA	SA	SA	\$A	SA	DU								
		STUDY ID:			RI ROUND2	RI ROUNDI	RI ROUND2	RI ROUNDI	RI ROUND2	RI ROUNDI	RI ROUND2	RI ROUND2	RI ROUNDI	RI ROUND2			RI ROUND2
		MATRIX:		GW													
		SAMPLE DATE	Ξ:	8/27/1996	12/7/1996	8/27/1996	12/6/1996	8/30/1996	12/10/1996	8/28/1996	12/7/1996	12/9/1996	9/3/1996	12/8/1996	8/28/1996	12/8/1996	12/8/1996
	ACTION					0.27.1330	12.0.1330	0.00.2330									
PARAMETER	LEVEL °	SOURCE (1)	UNIT	VALUE Q													
SEMIVOLATILE ORGANICS																	
3-Nitroaniline	5	GA	UG/L	26 UJ	25 U	26 U		25 U	25 U	25 U		25 U	25 U				
4-Chloroaniline	5	GA	UG/L	10 UJ	10 U		10 U	10 U	10 U		10 U	10 U					
Benzo[ghi]perylene			UG/L	10 UJ	10 U	10 U	10 U	1 J	10 U	10 U		10 U					
Dibenz[a,h]anthracene			UG/L	10 UJ	10 U	10 U	10 U	0.7 J	10 U	10 U		10 U	10 U	10 U		10 U	10 U
Diethyl phthalate			UG/L	10 UJ	10 U		10 U	10 U	10 U		10 U	10 U					
Indeno[1,2,3-cd]pyrene			UG/L	10 UJ	10 U	10 U	10 U	0.6 J	10 U								
OTHER ANALYSES															0.00	0.04	0.00
Nitrate/Nitrite Nitrogen	10	GA	MG/L	0.02	0.01 U	0.67	2	0.04	0.64	0.29	0.26	1.4	0.01 U	0.01 U		0.24	0.23
Percent Solids (Metals)				0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Petroleum Hydrocarbons			MG/L	0.44 U	0.4 U	0.4 U	0.36 U	0.41 U	1	0.41 U	0.42 U	0.91	0.89	0.73	0.41 U	0.46 U	1.3
NITROAROMATICS													0.04.77	006 11	0.00	0.06 11	0.26 11
1,3-Dinitrobenzene	5	GA	UG/L	0.26 U	0.26 U	1.8 J	0.26 U	0.26 U	0.26 U	0.26 U		0.26 U	0.26 U	0.26 U		0.26 U	0.26 U
2,4-Dinitrotoluene	5	GA	UG/L	0.26 U	0.68 J	0.26 U											
METALS				40.00			400			***	061.77	140 77	200	170 11	12.4	67.4 U	52.9 U
Aluminum		~.	UG/L	1850	143 U	1010	490	336	36.1 U	24.9	36.1 U	148 U	208	170 U 3 U		8.9 U	10 U
Antimony	3	GA	UG/L	2 U	3 U	2 U	3 U	7.5	5.3 U	2 U		3 U	2 U	4.4 U		4.4 U	4.4 U
Arsenic	10	MCL	UG/L	2.7 U	4.4 U	2.7 U	4.4 U	2.7 U	4.4 U	2.7 U		4.4 U	2.7 U 86.4	80.2 U		59.1 U	60.2 U
Barium	1,000	GA	UG/L	74.2	48.2 U	48.1	31.4 U	64.4	57.4 U	97.4	55.2 U	67.6 U	80.4 0.1 U	0.2 U	0.21	0.2 U	0.2 U
Beryllium Cadmium	4	MCL	UG/L	0.23	0.2 U	0.22	0.2 U	0.21	0.2 U	0.21	0.2 U 0.6 U	0.2 U 0.6 U	0.1 U	0.2 U		0.6 U	0.6 U
Calcium	3	GA	UG/L	0.3 U	0.6 U	0.3 U	0.6 U	0.3 U	0.6 U	0.3 U	158,000	90,000	44600	84,900	109,000	114.000	117,000
	50	CA	UG/L	157,000	116,000	193,000	164,000	99,800	85,500	130,000	,	90,000 1 U	1.5	1 U	,	1 U	1 U
Chromium Cobalt	50	GA	UG/L UG/L	2.7	1 U	2.3	1.1 U	1 U 1.2 U	1 U 1.3 U	1 U 1.2 U		1.3 U	1.2	1.3 U		1.3 U	1.3 U
Copper	200	GA	UG/L	2.1 4.9	1.3 U 1.9 U	1.5 7.9	1.3 U 2.9 U	19.2	11.4 U	3.6	1.1 U	1.5 U	4.4	1.1 U		1.4 U	2.1 U
Iron	300	GA	UG/L	2,400 J	296	1,720 J	923 J	432 J	77.8 U	38.2	126	211	273 J	290	23.4	174	160
Lead	15	MCL	UG/L	1.7 U	1.5 U	5.9	6.8	6.1	1.5 U	1.7 U		3 U	1.7 U	1.5 U		9.9	9.2
Magnesium	15	MCL	UG/L	23,300	17,600	23,700	20,900	11,600	10,000	17,700	22,900	11,800	6370	12,800	16,900	22,600	23,200
Manganese	300	GA	UG/L	210	64.2	129	65.2	130	5.9 U	132	66.9	51	545	1,380	85.7	43.2	44.3
Mercury	0.7	GA	UG/L	0.1 U		0.1 U											
Nickel	100	GA	UG/L	4.7	2.5 U	11	3.1 U	3	2.5 U	2.2	2.5 U	2.5 U	4.1	2.5 U	2.2	2.5 U	2.5 U
Potassium	100		UG/L	1670	998 U	4760	3410 U	2740	1900 U	4040	1660 U	18800	3530	2230 U		2090 U	2160 U
Selenium	10	GA	UG/L	2.4 U	4.7 UJ	2.4 U	4.7 UJ	2.4 U	4.7 UJ				2.4 U	4.7 U.		4.7 UJ	4.7 UJ
Sodium	20,000	GA	UG/L	8,750	3,870 U	19,100	17,000	9,480	7,660	17,200	12,300	49,500	396000	409,000	12,000	9,940	10,200
Thallium	2	MCL	UG/L	4.2 U	5.9 U	9,2	9.6 U	4.2 U	4.1 U	4.2 U	•	6.9 U	6.2	4.1 U		11	4.1 U
Vanadium	_		UG/L	3.3	1.6 U	2.9	1.6 U	1.2 U	1.6 U	1.2 U		1.6 U	2.9	1.6 U	1.2	1.6 U	1.6 U
Zinc			UG/L	15.6 R	5.8 U	37.4 R	13.5 U	32.4 R	42	4.5 R		6.3 U	13.2 R	10.5 U	2.9 R	2.2 U	7.3 U

Notes:

The criteria values are NYSDEC Class GA Groundwater Standards (TOGS 1.1.1, June 1998) and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

^{2.} Shading indicates a concentration above groundwater standard.

^{3.} A blank in the action level column indicates no Class GA and/or MCL standard or standard is a secondary value.

^{4.} Reported metals results are for total metals.

U = compound was not detected

J = the reported value is and estimated concentration

R = the compound was rejected

SA = Sample

DU = Duplicate

		-	

Appendix A
Pre-Remedial Action Groundwater Monitoring Results
Draft Annual Report - SEAD-16 and SEAD-17
Seneca Army Depot Activity

						D 411 4 4 1 1 1 1		, Deposition		- 3									
			LOC_ID: SAMP ID: QC CODE: STUDY ID: MATRIX: SAMPLE DATE:	MW17-1 16108 SA RI ROUNDI GW 8/29/1996		MW17-1 16109 DU RI ROUNDI GW 8/29/1996		MW17-1 16171 SA RI ROUND2 GW 12/11/1996		MW17-2 16163 SA RI ROUND2 GW 12/9/1996		MW17-3 16166 SA RI ROUND2 GW 12/10/1996		MW17-4 16169 SA RI ROUND2 GW 12/11/1996		MW17-5 16106 SA RI ROUNDI GW 8/29/1996		MW17-5 16170 SA RI ROUND: GW 12/11/1996	
DADAMETER.	ACTION	dorings (I)	I D IVE	*******	_	******	^	******	_	******	_	*****	_	TATIT	0	X/AZZIE	0	VALUE	0
PARAMETER SEMIVOLATILE ORGA		SOURCE (1)	UNIT	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Ų
Benzo[a]pyrene	MICS		UG/L	0.7	J	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Benzo[ghi]perylene			UG/L	2	J	10	J	10	U	10	U	10	U	10	U	10	U	10	U
Dibenz[a,h]anthracene			UG/L	1	J	0.9	J	10	U	10	U	10	U	10	U	10	U	10	Ü
Indeno[1,2,3-cd]pyrene			UG/L	2	J	1	J	10	U	10	IJ	10	U	10	U	10	U	10	Ū
OTHER ANALYSES			OGIL	2	,	1	,	10	O	10	0	10		10					
Nitrate/Nitrite Nitrogen	10	GA	MG/L	0.24		0.23		0.2		0.04		0.05		0.02		0.04		0.02	
Percent Solids (Metals)				0		0		0		0		0		0		0		0	
NITROAROMATICS																			
Tetryl			UG/L	0.26	U	0.26	U	0.26	U	0.26	U	0.26	U	0.26	U	0.26	U	0.26	U
METALS																			
Aluminum			UG/L	90.4		54.6		386		85.3	U	36.1	U	41.9	U	39.9		59	U
Antimony	3	GA	UG/L	2	U	2	U	3	U	3	U	3	U	3	U	2	U	3	U
Arsenic	10	MCL	UG/L	2.7	U	2.7	U	4.4	U	4.4	U	4.4	U	4.4	U	2.7	U	4.4	U
Barium	1,000	GA	UG/L	85		87		90.4	U	66.1	U	27.4	U	27.4	U	92.5		62.6	U
Beryllium	4	MCL	UG/L	0.26		0.21		0.2	U	0.2	U	0.2	U	0.2	U	0.23		0.2	U
Cadmium	5	GA	UG/L	0.3	U	0.31		0.6	U	0.6	U	0.6	U	0.6	U	0.3	U	0.6	U
Calcium		-	UG/L	108000		110000		104000		118000		108000		92000		108000		81100	
Chromium	50	GA	UG/L		U	1.5		1	U	1	U	1	U	1	U	1	U	1	U
Cobalt			UG/L	1.2	U	1.4		2	U	1.3	U	1.3	U	1.3	U	1.2	U	1.3	U
Copper	200	GA	UG/L	3.1		4.3	-	1.1	U	2.6	U	1.1	U	1.1 96.4	U	3.3 56.8		1.3 134	U
Iron Lead	300 15	GA MCL	UG/L UG/L	119 1.7	U	90.6 1.7	U	572	J _i	214 1.9	U	53.1 1.5	IJ	3	U	1.7	U	1.5	U
Magnesium	13	MCL	UG/L UG/L	22600	U	23000	U	22900	U	1.9	U	15200	U	14200	U	17700	U	13600	U
Manganese	300	GA	UG/L	21.3		2000		9.7	U	73.8		0.7	U	22.5		73.2		62	
Mercury	0.7	GA	UG/L		IJ	0.1	IJ	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Nickel	100	GA	UG/L	1.8	0	2.2	U	2.5	U	2.5	U	2.5	U	2.5	U	2.4	•	2.5	U
Potassium	100	On	UG/L	472		574		843	U	5320	0	772	U	1330	U	853		1070	U
Selenium	10	GA	UG/L	2.4	U	2.4	U		UJ		UJ	4.7	UJ	4.7	UJ	2.4	U	4.7	UJ
Silver	50	GA	UG/L	1.3	Ū	2.3	_	1.5	U	1.5	U	1.5	U	1.5	U	1.3	U	1.5	U
Sodium	20,000	GA	UG/L	9,290		9,620		8,190		18,700		30,100		22,300		11,700		8,970	
Thallium	2	MCL	UG/L	4.40		7.1		4.1	U	4.7	U	4.4	U	6.2	U	4.7		8.6	U
Vanadium			UG/L		U	1.4		1.6	U	1.6	U	1.6	U	1.6	U	1.2	U	1.6	U
Zinc			UG/L	2.5	R	3.2	R	14.4	U	63.9		7.7	U	8.3	U	6.2	R	4.4	U

Notes:

- The criteria values are NYSDEC Class GA Groundwater Standards (TOGS 1.1.1, June 1998) and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 2. Shading indicates a concentration above groundwater standard.
- 3. A blank in the action level column indicates no Class GA and/or MCL standard or standard is a secondary value.
- 4. Wells MW17-2, MW17-3, and MW17-4 were not sampled in August 1996 since they were dry.
- 5. Reported metals results are for total metals.
- U = compound was not detected
- J = the reported value is and estimated concentration
- R = the compound was rejected
- SA = Sample
- DU = Duplicate

		•

APPENDIX C

FIELD FORMS - YEAR 8 LTM GROUNDWATER SAMPLING ACTIVITIES

	9
PAGE	OF

PARSO	NS			CLIENT:				DATE: 12/16/15
PROJECT:	5-16/17							PROJECT NO: INSPECTOR: BBC / DD
MONITORING INSTRUMENT	EQUIPMENT: DECTECTOR	BGD	TIME	REMARKS	WATER LEV	EL INDICATOR MENT		COMMENTS: SUCCEST, LINES 5-10 SU 7NE
WELL	TIME	DEPT WATER	H TO WALL	CORRECTED WATER LEVEL	MEASURED POW	INSTALLED POW	PRODUCT SPEC. GRAV.	WELL STATUS / COMMENTS [Lock" Well 8", Surface Disturbance", Roser marked", Condition of, 1747, concrete, princetive cassing, etc. 1
17-2	1450	3.80	6.10					locked,
17-3	1453	4.40	7,49					I an lock al
17-4	1456	3.40	8.20					locked, no well cap
17-5	1458	3.09	10.18					locked
17-1	1503	3.59	9.95					locked, nouse nest senound
6-5	1511	2.02	5.09					PVC 1: And, well are constraints PVC tape, to
16-7	1513	3.60	6.78					lichal
16-1	1516	3 93	745					locked, Pic record on mehlcelland
16-6	1521	2.70	6.85					locked
16-4	1523	3.18	7.08		1			locked
6-6								unable to open local
								· ·

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

Section No. Appendix C
Revision No. 0
Date: 6/15/2005
Page C-23
Total ADD C Field FormelAnn C5-17 XLS GW ELEVATION

			(GROUN	DWA7	TER E	LEVAT	TION	REPORT
PARSC				CLIENT:					DATE: 12/19/15
PROJECT: LOCATION:	SEAD+	16/17	LTM R	emal 10)		-		PROJECT NO: INSPECTOR: T3Bo / DD
MONITORING INSTRUMENT	DECTECTOR	BGD	TIME	REMARKS	WATER LEV	EL INDICATOR MENT		ON FACTOR	comments: It show show
WELL	TIME	DEP1 WATER	TH TO Depth	CORRECTED WATER LEVEL	MEASURED POW	INSTALLED POW	PRODUCT SPEC_GRAV.	ļ.	WELL STATUS / COMMENTS nck?, Well 6", Surface Disturbance", Riser murked", Condition of riser, concrete, protective costing, etc. 1
17-1	1135	3.55	9.95					· Meio	e let recort
17-5	1 E - Em	- 56	10.18						
17-4	1145	3.28	8.20						
17-3	1147	3,73							
17-2	1149	3,45-		6.10	1				
16-2	1155	3.33	5.65						
16-5	1157	2.20	5.09						
16-7	1128	3.52	6.78						
16-1	1200	3.69	7.95						
16-4	1202	3.03	7.08						
16-6	1203	2.68	6.85						
		* Se	e 12/11	6/15 60	e Surve	y form	2	well	condution comments.

(ALL DEPTH MEASUREMENTS FROM MARKED LOCATION ON RISER)

Section No. Appendix C
Revisition 0. 0
Date: 1005
Page 3-23

5	SAMPLING RECORD - GROUNDWATER												
SENECA	ARMY I	DEPOT ACTIVITY	7			PAF	1 50 1	15		WELL #: 1	6-2		
PROJECT: LOCATION		SEAD-16/17 L			water S .US, N		g - Roun	d 8		DATE: 12/19/15 INSPECTORS: BBO PUMP #: Parson Perick Fre			
WEATHER	R/ FIELD	CONDITIONS CHEC	KLIS	r	(R	ECORD	MAJOR	CHAN	IGES)	SAMPLE ID #:			
				EL.	WIN				15	16 LM 200			
TIME (24 HR)	(APPRX)	WEATHER (APPRX)	1	IDITY EN)	(APP		DIRECTION SURFACE (0 - 360) CONDITIONS			INSTRUMENT	TORING DETECTOR		
1212	305	overous +		2211)			PNE	COMB	TTOMS	THE TRUIT OF THE THE	DEFECTOR		
WELL VOLUME CALCULATION FACTORS DIAMETER (INCHES): 0.25 1 2 3 4 6 GALLONS / FOOT: 0.0026 0.041 (1.60 0.367 0.654 1.47 LITERS/FOOT 0.010 0.151 0.617 1.389 2.475 5.564													
		DEPTH TO POINT OF WELL			, OF LH 10	SCREEN LENGTH		WFLL EVELOPM	ENT	WELL DEVELOPMENT	WTLL DEVELOPMENT		
HISTORIC I	DATA	5.65		SCREE	N (10C)	(FT)		TURBIDH	Y	pH	SPEC. COND		
DATA COLLEC WELL ST		PID READING (OPENING WELL)		WAI	DEPTH T STATIO ER LEVE	-		DEPTH TO STABILIZE FR LEVEL	:D	DEPTH TO PEMP INTAKE (TOC)	PUMPING START TIME		
					5.3								
RADIATION SCI DATA	REENING	PUMP PRIOR TO SAMPLING (eps)						UMP AFT MPLING (
		ITORING DATA		LLEC		DUR			NG OPI	ERATIONS			
TIME WATER (min) LEVEL R	PUMPING IATE (ml/min)	CUMULATIVE VOL (GALLONS)	l .	NGEN (#		TEMP (C)	1	COND hos)	pH	ORP (mV)	TURBIDITY (NTU)		
1222 3,31	YSI	muell		Y5.	t	YSI	Her	67	Henler	Horolog	LaMotto		
1222	Perist	the pump 51	ertz.	1									
1232 334	114			3.7	5	8.5	0.3	99	7.5	2 93	33.8		
12373.34				,56		8.4	0.41	14	7.40	103	20.1		
1242 3.34			0	.98		3.5	0.4	55	7.35		9.85		
1247 3.34	~120	20.5 gals	1	.60		8.6	0.4	76	7.32	101	87.7		
1252 "			0	76	•	7.6	0.5		7.29	91	25,1		
1257 "		~1.0gal	C	.61		8.7	0.5	54	7.25	80	10.31		
1302 "			0.50)	8.7	0.50	25	7.22	70	4.79		
1307 11		~1.25 sali	0	.40		8.6	0.5	73	7.21	63	3.06		
1312/1		~1.552/5	0.	34		8.7	0.5	78	7.21	58	2.40		
13(7-3!54		21.65als	0	.31		8.7	0.5	83	7.22	57	2.44		
	,	Collected			۰۷		Nedel		unf.H				
1323 Re	started	Purp to Coll	ret-	Pos	-5	yle	Collec	, 6	= Pavs				
1328 3.34		~ 1.9 gals		.20		8.7		12	7,21	57	7.60		
									<u> </u>				

		SAM	PLING R	E	CO	RI) -	GR	Ol	JND	W	ATE	R	
S	ENEC	A ARMY I	DEPOT ACTIVITY	′			PAF	250h	15		WE	ELL #: M	w16.	5
	ROJEC CATIC		SEAD-16/17 L		Ground OMUL			g - Roun	d 8	-		DATE: PECTORS: 4P#:	12/19 Pecis	715 20 staltie
W	EATH	ER/ FIELD	CONDITIONS CHEC		T EL.	(RI		MAJOR		GES) ND/SITE	SAN	4P#: 4PLE ID #:	164.1	1120052
	IME	ТЕМР	WEATHER	нем	HDITY	VELOC	CITY DI	RECTION	SUR	FACE		MONIT		
12	IIR) 15	(APPRX)	OVERCEST, WINTY	(G	EN)	(APP)		0 - 360) 5 5 4 /	COND	ITIONS /e /	INS	TRUMENT	DE	TECTOR
		WELL VOL	J'ME CALCULATION FAC	TODE			Lav				4.7.4	ILIZED WATER I		
G/		(INCHES): /FOOT:	0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	0.367 1.389	4 0.654	6 1.47 5.564	Jos.	E WELL VO				ILIZED WATER I		
1	HSTORIC	· DATA	DEPTH TO POINT OF WELL (FOC)		101	IH TO POF N (TOC)	SCREEN LENGTE (FT)	D)	WELI EVELOPMI TURBIDH	3	DF	WFLL VELOPMENT pH	1	WELI FLOPMENT EC COND
	<u> </u>		5.09											
DAT	A COLL	ECTED AT SITE	PID READING (OPENING WELL)		WAT	DEPTH T STATIC ER LEVE	: L (TOC)		DEPTH IC STABILIZI ER LEVEI	T)	DEP	TH TO PUMP INTAKE (FOC)	PUMI	'ING STAR'I TIMI:
RAD	IATION 5	CREENING	PUMP PRIOR TO		<u> </u>	2.1	/	1 1	PUMP AFT	FR				
	DAI	Α	SAMPLING (cps)						MPLING	(cps)				
TIME	WATER	MON PUMPING	CUMULATIVE VOL		LLEC		DUR TEMP		COND	NG OP	ERA	ORP ORP	Т	TURBIDITY
(min) 1220	2.17	RATE (ml/min)	Installed	0.9	YS.		(C) YSI		ihos)	pl1	-	(mV)	1	elotto
1225	7 7	170		0	.55		6.9		446	6.97		733		13.20
1230					.38		7.2	0,1	143	5.63		134	\top	
1735		120			.33		7,3	0.	440	6.81		77		
1740	3.45				.30		7.4	0.4		6.81		72	_	3.90
1245					2,26		7.6	0,4		6.83		-5-	+	
1250					2.24		7,7	0.4		6.77	-	- 28		
1300	3 % (120			2.18		7.8	0.4		6.77		-40 -55	+	153
1300	0.03	. 80			2.16		4.0	0.40		6.72		-62	+	1.53
1310	4.15	120	- 2.0 ga/s		7.14		8.2	0.45	<u> </u>	6.69		-74	+	1.94
1315	C	ollected			700	52								
13.13	Co		oost sampling				640	paran	neter:	1				
1370		120		C	.11		8.1	0.43	3	6.75	+	-81		0.94
											+		+	
														J

		SAM	PLING F	RE	CO	RI	•	- GI	ROI	JND	WA	TE	R		
S	ENEC	CA ARMY	DEPOT ACTIVITY	′			PA	RSOI	NS		WEL	L #: ^ ?	w 16	-7	
PI	ROJEC	T:	SEAD-16/17 I	.TM (Fround	water	Samp	ling - Roui	nd 8		D	ATE:	12	19/15	1
Lo	CATIO	ON:		R	OMUL	.US, N	Y			_		CTORS:	1	20	
13	EATH	ED / EIEI D	CONDITIONS CHEC	KLIS	т	(R	ECOL	RD MAJOI	S CHAN	JGES)	PUMP	#: F ID #:	11/1	M. 20054/	h./
	EATH	ER7 FIELD	CONDITIONS CHEC		EL.	WI				ND/SITE	D	uplicate.	-162	M 20055	
Т	IME	ТЕМР	WEATHER	нем	HDITY	VELO		DIRECTION	1	RFACE		MONIT			
	HR)	(APPRX)	,	(C	EN)		RX)			DITIONS	INSTR	UMENT	DI	ETECTOR	-
17	145	203	duescost, windy	ļ		10-3	20:	WSW	6100	18/			┼		-
G/	METER ALLONS LITERS	(INCHES): FOOT:	UME CALCULATION FAC 0.25 i 2 0.0026 0.041 0.163 0.010 0.151 0.617	3	4 0 654	6 1.47 5.564		ONE WELL VO		AL) = (POW WELL DIAM))	
	HSTORIC	· DATA	DEPTH TO POINT OF WELL (TOC)		10	1H TO P OF N (1OC)	SCRI LENC (F)	3H [WELL DEVELOPM TURBIDI		DEVEL	ELL OPMENT pH	1	WTTL A FLOPMENT PLC, COND	
			6.78												
DA1	A COLL	ECTED AT SITE	PID READING (OPENING WELL)		WAT	DEPTH STATE ER LEVI	(.)WA	DEPTH 1 STABILIZE TER LEVE	ED	INI	TO PUMP TAKE (OC)	PUN	MPING START TIME	
						3.48	3								
RAD	IATION S DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)						PUMP AFI AMPLING						
			ITORING DATA			TED				NG OP	ERAT				
TIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	(GALLONS)		DISSOLV. (YGEN (#		TEA (C		nhos)	pH		ORP (mV)		TURBIDITY (NTU)	
1345	3.48	15I	Installed		YSI		45	I Har	.6-	Her. 6	2	touba		Lo Mote	
1350		140		-	3.23		9.1		485	7.14		-57		43.2	
1355				-	3.01		9.	3 0.	473	7.05		- 56			
1400	4.00				3.09		9,1	1 0.	480	6.76		35			
1405		160		2	7.77	,	9.3	3 0.	485	6.98		30		5.36	
1410				9	1.07		9,1	1 0.	492	6.94		- 21			
1415		152		1	.62		9.6	0.	499	6.11		15			
1420					1.44		9.7		512	6.74	-	11			
1425		155			1.35		9.8	? C.	524	6.71	_	5		2.17	
.430					1,70		9,8		534	6.94		3			
1435	4.03				1.27		9.0	8 0.	544	6.92		Į.		1,52	
1440		llected	Sample #5	166	Ma	005	+								
			1			054	_	5							
				166	M 20	0 55	(Duplica	+0)	Time	= 15	00			
	١,	ollected	post sample	Geo	pora	net	11	read to		<u> </u>					
1445			~ 2.5 gals		1.17		7.8	0.	595	6.10		14		1,92	
			•												
													T		

		PLING R											1/ /
SENECA	ARMY I	DEPOT ACTIVITY	,	<u></u>		PAF	150h	15		WI	ELL#: N	_	
PROJECT:		SEAD-16/17 L					g - Roun	d 8	.		DATE: 127		
LOCATION:			R	OMUL	US, NY	<u> </u>				PUN	PECTORS: B	Per	c State
WEATHER	/ FIELD	CONDITIONS CHEC	KLIS	Г	(RE	CORD	MAJOR	CHAN	GES)	SAN	MPLE ID #:		
				EL.	WIN		FROM)	1	13	16	LM 200		
TIME (24 HR)	TEMP (APPRX)	WEATHER (APPRX)	1	IDITY EN)	VELOC (APPI		RECTION 0 - 360)	COND	FACE	INS	MONIT		TECTOR
1460		arrast	10		10-2		J->NE	COME		1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DIAMETER (IN GALLONS / FO	CHES): OOT:	0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3 0.367 1.389	4 0.654 2.475	6 1.47 5.564			XX		ETER I	BILIZED WATER L FACTOR (GAL/FT)	1	[= Z.o
THE LEAST OF		DEPTH TO POINT OF WELL	12.07	DI-b	TH TO	SCREEN		WELL FVELOPME	X1	DI	WFLL VELOPMENT	I)E	WFLI VELOPMENT
HISTORIC DA	ΛΤΑ	(TOC)		ı	N (TOC)	(FI)	1	TURBIDIT			pH		PEC. COND
		6.85											
DATA COLLECT	ED AT	PID READING			DEPTH T			DEPTH TO STABILIZE		DEI	PTH TO PUMP INTAKE	PUN	IPING START TIME
WELL SIT	Ε	(OPENING WELL)			ER LFVE		WAT	ER LFVEL	(TOC)		(10C)		
RADIATION SCR	FENING	PUMP PRIOR TO			.69	<u>8</u>	1	PUMP AFTE	FR				
DATA	CENTAG .	SAMPLING (cps)					S/	AMPLING (cps)				-
The Tarrel	MON!	CUMULATIVE VOL		LLEC		DUR		COND	VG OP	ERA	ATIONS	_	TURBIDITY
(min) LEVEL R/	YUMPING VTE (mVmin)	(GALLONS)	ı	YGEN (n	1	(C)	(un	thos)	pH		(mV)		(NTU)
HO 2.59	45I	Etuber not	Ma	<u>.//_`</u>	(SI	YSI	Her	.64	Herik	٢	Heriba	\perp	Latobe
1910	eris	He Pup S	are	1_						\perp		\perp	
	94	· · · · · · · · · · · · · · · · · · ·		2,1	0	9.1	+	587	7.4		105	_	7.67
1419 3,72	102		2			7.1		385	7.4		108	_	6.21
424 8.95			2	10	3	9.1		386	7.3		103	_	4.18
429 4.1				110		9.2		86	7.34		98	_	3.86
434 4,24				84			0.3		7.3	_	88	_	2,75
439 4.35		0.5 gals		66			0.		7.3		68	_	2,03
	118		1	.65		1.3	0.3		7.3		51	_	1.39
449 4.54				75		7,3			7.31		41	_	1.18
4544.63		1.0326		71			0.3		7,31	4	36	_	1.13
459 4.73				71			0.3		7.3	5	33	_	0.87
	122	~ 1.25 sels		76			0.3		7.30	0	26	_	0.91
509 4.95				, 68			0.3		7.35		11		1.09
514 5.05		~1.5321		, 2		1.4	0.3		7.3		-13	_	1.34
	10		1	13	7	9.4	0.3		7.3	$\overline{}$	-27	_	1.39
5245.23		2.03els	1	,6		1.5	0.4	00	7.3	1	-33	_	1.86
	ample		1 _×	Pl.	s he	z f	1	etels	Un.	2/	find	1	
531 100	- Sangle	GerParn, Pa	Ap.	Stor		4. 5				_	7-	_	F 45
5365.43	'	2.25		40		9.6	0.40	5	7.2	1	-30		5.43

1410

		SAM	PLING F	RE	CO	RI	- (GR	ROU	ND	WATE	R
S	ENEC	A ARMY I	DEPOT ACTIVITY	Y			PAF	1501	45		WELL #: A	11×16-4
	ROJEC OCATIO	-	SEAD-16/17		Ground OMUL			g - Roun	d 8		DATE: INSPECTORS: PUMP #:	12-20-15 DRD Per: 3tal+2
W	EATH	ER / FIELD	CONDITIONS CHE		T EL.	(RI			CHANG		SAMPLE ID #:	16LM 2005
	IME	TEMP	WEATHER	HUN	HDITY	VELOC	CITY DIF	RECTION	SURF	FACE		ITORING
07	55	(APPRX)	P/Cloudy	(6	EN)	(APP		0 - 360) NNW	CONDI		INSTRUMENT	DETECTOR
G	METER ALLONS LITERS/	(INCHES): / FOOT:	UME CALCULATION FA 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617) 3	4 0.654	6 1.47 5.564				ELL DIAM	- STABILIZED WATER ETER FACTOR (GAL)	
	HISTORIC		DEPTH TO POINT OF WELL (TOC)	1107	DEP'	TH TO P OF N (TOC)	SCREEN LENGTH (FI)	D	WELL EVELOPME TURBIDITY	NT	WELL DEVELOPMENT pH	WELL DEVELOPMENT SPEC, COND
DAT	TA COLLI WELL	ECTED AT SITE	PID READING (OPENING WELL)			DEPTH 1 STATIC ER LEVE			DEPTH TO STABILIZED ER LEVEL)	DEPTH TO PUMP INTAKE (TOC)	PUMPING START TIME
RAD	IATION S DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)			3.13			PUMP AFTE AMPLING (c			
			ITORING DATA		LLEC		-		URGIN		ERATIONS	LoMote
(min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	07	OISSOLVI XYGEN (n	ed YS	TEMP (C)	(un	COND (- Haril	(mV)	TURBIDITY (NTU)
0800	3.25	150	I Installed	\vdash	0.81		8.6	1.3		6.99	239	3.55
0810	2.23	100			0.49		8.5	1,4.		6.88		5.55
0815	3,26	160			0.38		8.5	1.5		6.84		1,27
0830				(0.35		8.4	1.6	3	6.82	234	
0875	3.25	160	-	(0.27		8.4	1.69	7	6.81	233	
0830				(0.26		8.4	1.7	4	6.80	232	
	3.26		1 2.5 gals	_	7.27		8.4	1.73		6.79	23/	1.19
0840			ed Sample #		M 20			1.				
0845	3.26	Collecting	post sample		para.	metei	8.4	dings 1.8		6.82	233	0.87
,,,,	2.00							172				

SAMPLING RECORD - GROUNDWATER WELL #: 4616-1 PARSONS SENECA ARMY DEPOT ACTIVITY DATE: 12/20/15 SEAD-16/17 LTM Groundwater Sampling - Round 8 PROJECT: INSPECTORS: BBO LOCATION: ROMULUS, NY PUMP #: laver Peristalfue SAMPLE ID #: WEATHER / FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGES) 16 LM20049 REL. WIND (FROM) GROUND / SITE SURFACE MONITORING TEMP WEATHER HUMIDITY VELOCITY DIRECTION TIME INSTRUMENT DETECTOR (24 HR) (APPRX) (APPRX) (GEN) (APPRX) (0 - 360)CONDITIONS 305 5-71 902534 742 6-5 ONE WELL VOLUME (GAL) = [(POW - STABILIZED WATER LEVEL) WELL VOLUME CALCULATION FACTORS X WELL DIAMETER FACTOR (GAL/FT) | DIAMETER (INCHES): 0.25 (0.163) 0.367 0.0026 0.041 0.654 1,47 GALLONS / FOOT: Ixwell vol = C. 66 ses .90945 3x=1 LITERS/FOOT 0.010 0.151 0.617 1 389 2 475 5.564 DEPTH TO POINT DEPTH TO SCREEN 6 DEVELOPMENT LENGTH DEVELOPMENT DEVELOPMENT OF WELL TOP OF TURBIDITY SPEC. COND (TOC) SCREEN (TOC) pH HISTORIC DATA (FT) 9 DEPTH TO PUMP PUMPING START DEPTH TO DEPTH TO TIME DATA COLLECTED AT PID READING STATIC STABILIZED INTAKE 0.78 diff between 100 WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC) (OPENING WELL) 3,9 PUMP AFTER SAMPLING (cps) RADIATION SCREENING PUMP PRIOR TO TOR MONITORING DATA COLLECTED DURING PURGING OPERATIONS TOC TURBIDITY PUMPING CUMULATIVE VOL DISSOLVED TEMP SPEC. COND WATER TIME (C) (NTU) RATE (ml/min (GALLONS) OXYGEN (mg/L) (umhos) pił (mV) (min) LEVEL YSI YSI Le.Metto 409 4.71 y we Herika Pun Stever 7 U 95 7.42 213 7,98 0.608 4.79 10 1.40 819 15.5 0.816 218 824 8.04 C.827 208 ~ 118 829 16 C. 824 206 98 734 4.3 0.826 839 126 3.38 4.8 212 0.826 844 4.8 0.830 849 2,53 7.08 200 482 1.0 2,34 0.832 854 132 0.85 7.07 8 4.87 0.832 859 0.65 7.04 8 0.834 7.02 904 4.8 0,37 0.836 1.60 909 4.8 134 7.00 34 20 0.836 914 4.81 7.00 1.09 3 919 4,81 0. 0.836 7.00 ~ 2.0 5als 1.02 74 924 4.8 Con 927 x Mastec 979 479 Pos angle Seo Para 98 0.92 0.32 0.8 4.8

1.89

	SAM	PLING	R	E	CO	RD) -	GR	OL	JND	WA'	TE	R	
ENEC.	A ARMY I	DEPOT ACTI	VITY				PAF	1501	15		WELL	#: MU	117	1-2
	-	SEAD-	16/17 L					g - Roun	d 8	-	INSPEC	TORS:	D	20-15 RD 11:54014:C
EATHE	R/ FIELD	CONDITIONS	CHEC											
ME	TEMP	WEATHE	R				-			F	1,1112-1,-	MONIT	OR	ING
HR)	(APPRX)	(APPRX)				(APPI	RX) (0	0 - 360)	COND	ITIONS	INSTRU		T	ETECTOR
30	305	Clear				0-5	- 2	NNW	Gran	3/6/24				
LLONS	(INCHES): / FOOT:	UME CALCULATI 0.25 1 0.0026 0.041 0.010 0.151	0.617	TORS 3 0.367 1.389	4 0.654 2.475	6 1.47 5.564			X	WELL DIAM				L)
ISTORIC	DATA	OF WE	LL)		TOP	OF	SCREEN LENGTH (FT)			_	DEVELOP	PMENT		WELL EVELOPMENT SPEC. COND
		6.10	ָרָי י											
					WATE	STATIC ER LEVE	L (TOC)		STABILIZE	D	INTA	KE	PU	MPING START TIME
· TION 6		NULAR DRIV	on TO			3,65			WILLIAM ACT					
								SA	AMPLING	(cps)				
WATER										NG OP	ERATIO		_	TURBIDITY
LEVEL	RATE (ml/min)	(GALLONS)		OX	YGEN (mg	g/L)	(C)	(ип	nhos)	pH	1	(mV)		(NTU)
2.58	-	I Probe	12740			27	_	-		-			_	Lattette
11/5								+						11.25
														3.20
	1 . 6						8.8			-	_			
	120						8.9			6.90		11		
5.80	112			U	.36		8.9	0.75	28	6.88				1.38
				0	.29		9.0	0.7	55	6.98	_			
							9.0				_			1.41
								-	very	lose to	9000	day	7	3 vols
$\overline{}$	ollected	post son	nelin			0141				1 00		7		
5.93				0,	27		7.0	0,7	50	6.78	-	3		0.79
			-						-					
						_							_	
			\rightarrow								-		-	
-			-			-								
	ENEC. CATIO CATIO EATHE ME HR) 30 METER (LLONS) LITERS/I MATION SI DAI/ WATER LEVEL 3.58 4.65 4.75 5.45	ENECA ARMY I COJECT: CATION: EATHER / FIELD ME TEMP (APPRX) 30 305 WELL VOL METER (INCHES): LICHES/FOOT: IISTORIC DATA A COLLECTED AT WELL SITE ATION SCREENING DAIA MON WATER PUMPING RATE (INUMIN) 3.58 15: 180 4.65 160 4.15 112 5.45 120 5.80 112 6.88 108	ENECA ARMY DEPOT ACTI OJECT: SEAD- CATION: EATHER / FIELD CONDITIONS ME TEMP WEATHE HR) (APPRX) (APPRX) O 305 Clear WELL VOLUME CALCULATI (APPRX) 0.025 0.041 LITERS / FOOT: 0.0026 0.041 LITERS / FOOT: 0.0026 0.041 INTERS / FOOT: 0.0026 0.041 INTERS / FOOT: 0.0026 0.041 INTERS / FOOT: 0.0026 0.041 OF WELL SITE (OPENING MONITORING DEPTH TO OF WE LEVEL SITE (OPENING MONITORING D WATER PUMPING CUMULATIVE (GALLONS) 3.58 75 Foote 180 4.65 160 4.75 112 5.45 120 5.80 112 6.88 109 Collected Sample 4 Ollected Sample 4 Ollected Post Sam	ENECA ARMY DEPOT ACTIVITY OJECT: SEAD-16/17 L CATION: EATHER/ FIELD CONDITIONS CHEC ME TEMP WEATHER (APPRX) (APPRX) OJECTER (INCHES): 0.25 1 (2) LICONS/ FOOT: 0.0026 0.041 (0.163) LITERS/FOOT 0.010 0.151 0.617 DEPTITION OF WELL (TOC) A COLLECTED AT WELL SITE (OPENING WELL) ATION SCREENING PUMP PRIOR TO SAMPLING (cps) MONITORING DATA WATER PUMPING (OPENING WELL) ATION SCREENING PUMP PRIOR TO SAMPLING (cps) MONITORING DATA WATER PUMPING (COMPLICATIVE VOL. (GALLONS) 3.58 15 Probe 1254 120 5.45 120 5.45 120 5.45 120 6.80 112 6.80 112 6.80 112	ENECA ARMY DEPOT ACTIVITY OJECT: SEAD-16/17 LTM G CATION: RE EATHER / FIELD CONDITIONS CHECKLIST ME TEMP WEATHER HUMI HR) (APPRX) (APPRX) (GI SETER (INCHES): 0.25 1 2 3 LLONS / FOOT: 0.0026 0.041 0.163 0.367 LITERS/FOOT: 0.0010 0.151 0.617 1.389 DEPTH TO POINT OF WELL (TOC) A COLLECTED AT WELL SITE (OPENING WELL) ATION SCREENING PUMP PRIOR TO SAMPLING (cps) MONITORING DATA COI WATER PUMPING (GALLONS) OX 3.58 15 Febe in 54 lled 180 4.65 160 0 4.65 160 0 4.65 160 0 5.80 112 0 6.22 102 0 6.23 102 0 6.24 1.5 2 a 15 0 6.25 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	ENECA ARMY DEPOT ACTIVITY GOJECT: SEAD-16/17 LTM Groundy ROMUL EATHER / FIELD CONDITIONS CHECKLIST ME TEMP WEATHER HUMIDITY HR) (APPRX) (APPRX) (GEN) GEN) WELL VOLUME CALCULATION-EACTORS ACTER (INCHES): 0.25 1 2 3 4 LLONS / FOOT: 0.0026 0.041 (0.163) 0.367 0.654 LITERS/FOOT 0.010 0.151 0.617 1.389 2.475 DEPTH TO POINT OF WELL (TOC) SCREEN A COLLECTED AT WELL SITE (OPENING WELL) ATION SCREENING PUMP PRIOR TO SCREEN MONITORING DATA COLLECT WATER PUMPING CUMILATIVE VOI. DISSOLVE (GALLONS) 3.58 75 I PENDE ANAPLING (PRIOR TO SCREEN (GALLONS) WATER PUMPING CUMILATIVE VOI. DISSOLVE (GALLONS) 3.58 75 I PENDE ANAPLIED (APPRICATE OF SCREEN (GALLONS) 4.65 160 0.95 1.27 C.196 5.80 112 0.36 6.88 108 0.27 C.196 C.197 C.198 C.198 C.199 C.1	ENECA ARMY DEPOT ACTIVITY COJECT: SEAD-16/17 LTM Groundwater SECATION: ROMULUS, NY EATHER / FIELD CONDITIONS CHECKLIST (RI ME TEMP WEATHER HUMIDITY VELOC (APPRX) (APPRX) (GEN) (APPRX) O 305 Clear 0-5 WELL VOLUME CALCULATION-EACTORS METER (INCHES): 0.25 1 2 3 4 6 LLONS/FOOT: 0.0026 0.041 0.163 0.367 0.654 1.47 ITERS/FOOT 0.010 0.151 0.617 1.389 2.475 5.564 DEPTH TO FOINT OF WELL (TOC) SCREEN (TOC) A COLLECTED AT PID READING (OPENING WELL) A COLLECTED AT (OPENING WELL) MONITORING DATA COLLECTED WATER PUMPING (GALLONS) DISSOLVED OXYGEN (mg/L) 3.58 15 Probe 12 2 4 5 5 1 1.27 WATER PUMPING (GALLONS) OXYGEN (mg/L) 3.58 15 Probe 12 2 4 1.27 1.20 0.36 4.1.5 gal 5 0.27 Collected Sample # 174M 20036 Oxidented Post Sampling Geo 2019 14	ENECA ARMY DEPOT ACTIVITY COJECT: CATION: SEAD-16/17 LTM Groundwater Samplin ROMULUS, NY EATHER / FIELD CONDITIONS CHECKLIST ME TEMP WEATHER HUMIDITY VELOCITY DID (APPRX) (APPRX) (GEN) (APPRX) (GEN) GETER (INCHES): LLONS / FOOT: 0.0026 0.041 0.163 0.367 0.654 1.47 LLONS / FOOT: 0.010 0.151 0.617 1.389 2.475 5.564 ESTER (INCHES): LLONS / FOOT: 0.010 0.151 0.617 0.892 2.475 5.564 ESTER (INCHES): 1	ENECA ARMY DEPOT ACTIVITY PARSON OJECT: SEAD-16/17 LTM Groundwater Sampling - Roun ROMULUS, NY EATHER / FIELD CONDITIONS CHECKLIST (RECORD MAJOR ME TEMP WEATHER HUMIDITY VELOCITY DIRECTION (APPRX) (APPRX) (GEN) (APPRX) (0 - 360) 30 305 Clear 0-5 WAW WELL VOLUME CALCULATION-EACTORS (APPRX) 0.025 1 2 3 4 6 (LLONS) FOOT: 0.0026 0.041 0.163 0.367 0.654 1.47 LITERS/FOOT 0.010 0.151 0.617 1.389 2.475 5.564 LICON SCREEN (TOC) WAIT A COLLECTED AT WELL SITE (OPENING WELL) TOP OF STATIC WATER LEVEL (TOC) WAIT A COLLECTED AT WELL SITE (OPENING WELL) WATER LEVEL (TOC) WAIT A COLLECTED AT WATER PUMPING (OPENING WELL) DISSOLVED TEMP PRIOR TO SAMPLING (GR) WATER PUMPING COMMITTING DATA COLLECTED DURING POSSESS OF SAMPLING (GALLONS) ONCYGEN (mig/L) (C) (mig/L) 3.65 15 T Probe in Stalled For SPEC. 4.15 12 0.82 9.8 0.7 5.45 12 0.36 8.9 0.75 5.45 0.27 0.75 5.45 0.27 0.75 5.46 0.27 9.0 0.75 6.47 0.36 8.9 0.75 6.48 100 0.27 9.0 0.75 Callected Sample # 1744 20034	ENECA ARMY DEPOT ACTIVITY PARSONS OJECT: SEAD-16/17 LTM Groundwater Sampling - Round 8 ROMULUS, NY EATHER / FIELD CONDITIONS CHECKLIST ME TEMP WEATHER HUMIDITY VELOCITY DIRECTION SUR HR) (APPRX) (APPRX) (GEN) (APPRX) (0 - 360) COND 300 305 C (Cap	CATION: SEAD-16/17 LTM Groundwater Sampling - Round 8	ENECA ARMY DEPOT ACTIVITY PARSONS WELL OJECT: SEAD-16/17 LTM Groundwater Sampling - Round 8 ROMULUS, NY EATHER / FIELD CONDITIONS CHECKLIST RECORD MAJOR CHANGES) ME TEMP WEATHER HOMIDITY (APPRX) (APPRX) (GEN) (GEN) APPRX) (GEN) BELL WIND (APPRX) (GON) (APPRX) (O-360) CONDITIONS INSTRUCTORS (APPRX) (O-360) INSTRUCTORS (APPRX) (O-360) INSTRUCTORS (APPRX) (O-36	SEAD-16/17 LTM Groundwater Sampling - Round 8 DATE: INSPECTORS: ROMULUS, NY SEAD-16/17 LTM Groundwater Sampling - Round 8 DATE: INSPECTORS: PUMP #: SAMPLE ID #: SAMPL	DATE: 13-

SAMPLING RECORD - GROUNDWATER WELL #: 1417-5 SENECA ARMY DEPOT ACTIVITY PARSONS DATE: 12/20/15 PROJECT: SEAD-16/17 LTM Groundwater Sampling - Round 8 LOCATION: ROMULUS, NY INSPECTORS: TOBO PUMP #: Parson / Kristalta WEATHER / FIELD CONDITIONS CHECKLIST SAMPLE ID #: (RECORD MAJOR CHANGES) 17LM 20039 REL. WIND (FROM) GROUND/SITE TEMP WEATHER MONITORING TIME HUMIDITY VELOCITY DIRECTION SURFACE (24 HR) (APPRX) (APPRX) (GEN) (APPRX) (0 - 360)CONDITIONS INSTRUMENT DETECTOR 1 - 5 SU-ZIVE 949 30€ 554554 SUHAV WELL VOLUME CALCULATION FACTORS ONE WELL VOLUME (GAL) = [(POW - STABILIZED WATER LEVEL) DIAMETER (INCHES): X WELL DIAMETER FACTOR (GAL/FT) | (2) 3 4 (0.163 0.367 0.654 GALLONS / FOOT: 0.0026 0.041 1.47 5.49 5015 1xwell = 1.16 526 3 x = LITERS/FOOT 0.151 0.617 1.389 2 475 5.564 DEPTH TO POINT DEPTH TO DEVELOPMENT TOP OF LENGTH DEVELOPMENT DEVELOPMENT HISTORIC DATA (TOC) SCREEN (TOC) TURBIDITY SPEC. COND (FT) pH 10.18 DEPTH TO DEPTH TO DEPTH TO PUMP PUMPING START DATA COLLECTED AT PID READING STATIC STABILIZED INTAKE TIME WELL SITE (OPENING WELL) WATER LEVEL (TOC) WATER LEVEL (TOC) (TOC) 3,05 PUMP PRIOR TO SAMPLING (cps) PUMP AFTER SAMPLING (cps) RADIATION SCREENING MONITORING DATA COLLECTED DURING PURGING OPERATIONS TIME WATER PUMPING CUMULATIVE VOL DISSOLVED TEMP SPEC. COND TURBIDITY (GALLONS) OXYGEN (mg/L) (min) LEVEL RATE (ml/min (C) (umhos) (mV) (NTU) 959 YSI 9 YSI Lottotto 3.05 to low Her. C.+ m wel YSI terit a Her. K. Pump 1000 0.53 9.7 0.543 7.40 1004 3.15 65 126 3.28 1009 3,16 7.9 0.539 7.22 3.42 0.44 185 1.31 1014 3.18 0.34 9.9 158 6.536 1019 3.19 0.30 C. 535 0.0 1,28 1024 3.18 20.75506 9.7 0.529 0.90 C.30 4 7.19 10293.18 0.28 9.8 0.527 0.92 128 1034 3.17 9.7 147 21.05013 2.24 0.525 7.20 109 1.38 1039 3.16 9.8 C.25 C. 525 0.75 7.22 88 044 9.8 0.525 315 0.25 84 1.06 10493,17 126 0.524 0,21 7.25 76 10.6 0.64 68 17.0 52/2 0,19 26 0.525 0.81 1054 5,16 10.1 0.523 059 3,15 0,19 63 0.63 0.1 7.26 0.521 22,35413 57 0.67 1104 3.16 0.18 10. 1109 1.28 0.521 52 0.63 3.16 10.1 22,6505 3.16 0,19 0.520 7.28 0.98 148 10.1 45 0.519 0.71 3,15 47 0.18 10.1 7.28 23.05413 0.70 3.16 0.12 10.1 C.519 7.28 40 122 124 3.17 0.519 39 0.09 7.28 0.69 29 23,2505 10.6 0.08 37 7.28 1134 3.16 10.1 36 0.519

1137 Sample Collected

1139 Restarted Pump For Post-Scaple Collected Geo Paraters

C:\Users\C0010112\Documents\Field Forms\Field Forms for OB & S-25 GW.xls

1443.15

23.753els

0.08

10.1 C.519

7.27

36

12/13/2015

SAMPLING RECORD - GROUNDWATER WELL #: MW17-3 SENECA ARMY DEPOT ACTIVITY PARSONS 12-20-15 DATE: PROJECT: SEAD-16/17 LTM Groundwater Sampling - Round 8 DRI INSPECTORS: ROMULUS, NY LOCATION: PUMP#: Perishaltic SAMPLE ID #: 17LM 20037 WEATHER / FIELD CONDITIONS CHECKLIST (RECORD MAJOR CHANGES) (FROM) GROUND/SITE WIND WEATHER VELOCITY DIRECTION SURFACE MONITORING TIME TEMP HUMIDITY CONDITIONS INSTRUMENT (0 - 360)DETECTOR (24 HR) (APPRX) (APPRX) (GEN) (APPRX) Clear NNW 1045 309 0.5 Grass/Dra WELL VOLUME CALCULATION FACTORS ONE WELL VOLUME (GAL) = |(POW - STABILIZED WATER LEVEL) DIAMETER (INCHES): X WELL DIAMETER FACTOR (GAL/FT) | 0.041 (0.165 0.367 0.654 GALLONS / FOOT: 0.0026 1.47 Well Vol. = 0,584 LITERS/FOOT 0.010 0.151 0.617 1.389 DEPTH TO POINT WELL WELL OF WELL LENGTH DEVELOPMENT DEVELOPMENT DEVELOPMENT TOP OF (TOC) SCREEN (TOC) TURBIDITY SPEC. COND HISTORIC DATA (FT) pH 7.49 DEPTH TO DEPTH TO DEPTH TO PUMP PUMPING START DATA COLLECTED AT PID READING STATIC STABILIZED INTAKE TIME WATER LEVEL (TOC) WATER LEVEL (TOC) WELL SITE (OPENING WELL) (TOC) 3.84 RADIATION SCREENING PUMP PRIOR TO PUMP AFTER SAMPLING (cps) SAMPLING (cps) COLLECTED DURING PURGING OPERATIONS MONITORING DATA PUMPING CUMULATIVE VOL DISSOLVED TEMP SPEC. COND TURBIDITY WATER TIME RATE (ml/min) LEVEL (GALLONS) OXYGEN (mg/L) (C) (umhos) pH (mV) (NTU) Heritag Probe Ins. ESI Her. Con LoMetto alled YSI Herilia 1050 3.75 9.1 27 5.18 0.514 7.17 1055 4.86 9.0 33 47.1 0.508 7.19 1100 407 120 8.9 4.89 54 108 0.504 7.00 1105 5.18 6.94 65 4.56 9.0 0.501 5,25 5.35 1110 6.86 1115 4.14 9.0 0.502 77 5.44 112 6.84 82 4.30 0.503 1120 6.79 88 4.05 1125 5.56 0.504 110 6.78 95 3.54 9.2 0.504 3.58 1130 181 95 5.70 116 3,50 1135 92 0.504 6.78 18 3.72 9.2 0.505 1140 2.95 9.3 6.82 98 0.89 5.82 0.506 1145 112 6.78 103 9.3 2.58 0.505 1150 6.75 5.93 2.30 9.3 0.506 106 1155 2.06 7.3 6,77 0.506 106 1200 118 9.3 1.81 108 1.76 2.0 90/3 0,507 1205 6.06 Sample 17LM 20037 Collected > 3 Well V0/9 1210 VE WOKE ellected 003+ 600 Daramesell 1.87 1.83 9.4 6.82 0.536 07 1215

	SAMPLING RECORD - GROUNDWATER													
S	ENEC	A ARMY I	DEPOT ACTIVITY	,			PAF	1501	JS		W	ELL #: Ml	U	17-1
ŀ	ROJEC		SEAD-16/17 L			water S .US, NY		g - Roun	d 8			DATE: (2/ SPECTORS: MP#:	_î	/15 20 2541410
W	EATH	ER/ FIELD	CONDITIONS CHEC	KLIS	T	(RI		MAJOR				MPLE ID #:		-
				R	EL.	WIN			-1	D/SITE	1+	-LMZ00		
	IME	TEMP	WEATHER		HDITY			RECTION	1	FACE	ENT	MONIT STRUMENT		ING ETECTOR
	4HR) 45	(APPRX)	OVERCAST	(6	EN)	(APPI		0 - 360) 55 W	+	Brush	IIN	STRUMENT	ע	ETECTOR
	13	100	000.000			1	- '		1	27.45				
G,		(INCHES): / FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389	4	6 1.47 5,564	ON		X '		ETER	BILIZED WATER I FACTOR (GAL/FT		.)
			DEPTH TO POINT OF WELL			TH TO POF	SCREE!		WELL	(N1	п	WELL DEVELOPMENT	D	WELL EVELOPMENT
	HISTORIC	DATA	(TOC)			N (TOC)	(F1)	1	TURBIDIT			pH		SPEC. COND
			9,95							ĺ				
DAT	TA COLL WELL	ECTED AT SITE	PID READING (OPENING WELL)		+	DEPTH T STATIC TER LEVE		WA	DEPTH TO STABILIZE LER LEVEL	D	DI	EPTH TO PUMP INTAKE (TOC)	PU	MPING START TIME
	LATION 6	WINDER TO SERVICE OF THE SERVICE OF	DUILAD BRIGH TO			1.60		1	PUMP AFT	C.P.				
KAD	DAT	CREENING A	PUMP PRIOR TO SAMPLING (cps)		<u> </u>				AMPLING (
		MON	ITORING DATA	CO	LLEC	TED	DUR	ING F	URGI	NG OP	ER	ATIONS		
TIME (min)	WATER	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)		DISSOLV (YGEN ()		TEMP (C)	1	(COND nhos)	рН		ORP (mV)		TURBIDITY (NTU)
0150	3.54		13I Probe ins											
0755					.17		10.4	0.	438	7.72		20-7		
5800		150		0	13		10.5	0.4	130	7.46		181		9.47
0805	4.16			0	.09		10.5	0.4	141	7.35	5	61		
0810		160		0	.08		10.5	0.4	137	7.33	5	17		
0815	4,23			C	,07		10.6	0.4	59	7.31		-16		4.99
0826		160		C	2.06		10.6	0.4	80	7.28		-30		
0815				0	.06		10.6	0.48	39	7.25		-35		3.45
0830				0	.06		10.6	0.50	00	7.23		-39		
0835	и. 29			0	.05		10.6	0.5	12	7.22		-42		
0840		164		0.	05		10.6	0.50	23	7.22		-44		2.06
0845				0.	05		10.7	0.5	14	7.22		- 46		
0850		170	11.2.5 gals	0.	05		10.7	0.5	14	7.23		-47		1,36
0855	Co	llected	Sample # 17	LM	200	35								
	Co	llected	Post Sample Go	0 20	FAM	excr:	f							
0900				0	04		10.7	0.53	34	7.26		-51		1.61
					- Additional of the Additional									
											\neg		\neg	
											\neg			

0

	SAMPLING RECORD - GROUNDWATER SENECA ARMY DEPOT ACTIVITY PARSONS WELL*#: 7-14													
S	ENEC	CA ARMY	DEPOT ACTIVITY	7		*	PAF	1501	1S		WE	LL#: 17	1	1
	ROJEC		SEAD-16/17 I			water Sa US, NY		g - Roun	d 8	-	INSP	DATE: 17 PECTORS: 1 IP#: 1/6×5×1	3 [3	C
"	EATH	ER/ FIELD	CONDITIONS CHEC	KLIS	Т	(RE		MAJOR			SAM	IPLE ID #:		
		m.c		1	EL.	WIN				ND/SITE	171	1200		
1	TME 4 HR)	TEMP (APPRX	WEATHER (APPRX)		HDITY EN)	(APPR		RECTION (= 360)		FACE ITIONS	INST	MONIT FRUMENT	· · · · ·	ETECTOR
	45	30	Cye(4.)	10	2.1)	5-10		っんこ	-21 15		INDI	KOMENI		LILCION
G.		(INCHES): 7 FOOT:	0.25 1 2 0.0026 0.041 0.63 0.010 0.151 0.617	0.367	4 0 654 2.475	6 1.47 5,564	1		\.\ \ \ = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			LIZED WATER L ACTOR (GAL/FT)) [1634
			DEPTH 10 POINT OF WITE		105	OF	SCREEN LENGTH	1	WELL EVELOPM		DLV	WELL VELOPMENT		WFLL EVELOPMENT
	HISTORIC	DAIA	7.2.0		SCREE	N (10C)	(F1)		1 URBIDIT	Y		Hq		SPEC. COND
DA	TA COLL WELL	ECTED AT SITE	PID READING (OPENING WELL)		WAII	DEPTR TO STATIC ER LEVEL	(TOC)		DEPTH TO STABILIZE FR LEVEL	:D		HE TO PUMP INTAKE (TOC)	PU	MPING START TIME
					ز	33								
RAD	BATION S DAT	A A	PUMP PRIOR TO SAMPLING (cps)						UMP AFI MPLING (
			ITORING DATA		LLEC			NG P		NG OP	ERA	TIONS		
FIME (min)	WATER LEVEL	PUMPING RATE (ml/min)	CUMULATIVE VOL (GALLONS)	ļ	VGEN (m	- 1	TEMP (C)	1	COND hos)	pН		ORP (mV)		TURBIDITY (NTU)
752	3.50	YSIY	tules ment								\perp			
752		Pary 5	todai								\perp			
800	5,6%	100		2	36.		6.6	0.4		7.63	,	205		3,09
805	3.69	114		1,	36		7.2	C. 4	34	7.55	-	211		2.74
710	3.79			1.	41		T. L	0.4		7.54		115		2,26
	3,8.4	110		1.	25		7.2	(1.41	 	7.49		215		7,39
720			~ C. Sgal	Ć'	64			0,4	4.7	7.4		197	_	2.18
865					. 56		811	(4		7.35		160	_	2.56
	397	110			. J.C		7.3	C. 4		7.3	3	109		1.42
735			21.000		42		7.3	¢, 4		7.28		77	_	1.78
			~1.25941		.38		5.1	0.4		7.20		6:6	\perp	0.97
245		102			.3 <i>c</i>		50	0,01		7.23		43	\perp	1.26
750			ali byals	()			ê (·	11,4	5 4	7.20	_	30		699
755			-1.75 -11		, 34		8.1	0,4		7.16		7	\perp	0.97
100	400	11(,	A 2.0 5015		46		7.0	04		7.13	\perp	L-{	\perp	100
105					43		7.0	0.41		7.16	\perp	-12	\bot	(99
110	1.14		22.25-42		44		T.C.	(1.44	-	7.13		- 'j	_	1.54
115	4.17			(*)	1.5		F. C.	114		7.13		- ¿. Z		C. +3
720	4.15		Section 1	0	37.		7. ^	04	39	7112		- 27	\perp	1.20
"icc	ر. ٠.		retail	7. (\perp	
726	_	ing to set	Pary Lander				1	(,+,						
[7]	4.17		75-15	٢)	心子		? (("	38	7.12		- 33		· 47

APPENDIX D

POST-REMEDIAL ACTION MONITORING RESULTS (YEARS 1 THROUGH 8)

Appendix D

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 8)

Annual Report - SEAD 16 and SEAD 17 Seneca Army Depot Activity

									,,	,					
	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-16 MW16-1 GW 16LM20000 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-1 GW 16LM20001 12/20/2007 DU LTM 1 Total	SEAD-16 MW16-1 GW 16LM20013 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-1 GW 16LM20014FIL 11/13/2009 SA LTM 3 Dissolved	SEAD-16 MW16-1 GW 16LM20014UNFIL 11/13/2009 SA LTM 3 Total	SEAD-16 MW16-1 GW 16LM20021FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-16 MW16-1 GW 16LM20021UNF 12/16/2010 SA LTM 4 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics															
Aluminum		UG/L	2,400				36	91	61.4 J	91.6 J	148 J	24 U	45 J	23 U	50 U
Antimony		UG/L	120	GA	3	42	53	91	1 U	1.02	0.95 J	1 U	1 U	2.3 U	2 U
Arsenic		UG/L	2.7	MCL	10	0	9	91	4.2 U	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U
Barium		UG/L	600	GA	1,000	0	91	91	60.4	59	125	105	104	110	97 J
Beryllium		UG/L	0	MCL	4	0	0	91	0.27 U	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U
Cadmium		UG/L	0.46	GA	5	0	6	91	0.36 U	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U
Calcium		UG/L	510,000				91	91	107,000 J	105,000 J	176,000	111,000 J	110,000 J	140.000	130,000
Chromium		UG/L	4.6	GA	50	0	7	91	0.84 U	0.84 U	0.88 ∪	0.9 U	0.9 U	2.5 U	2.5 U
Cobalt		UG/L	2				37	91	0.89 U	0.89 U	1.1 U	1.1 U	1.1 U	1.1	1.1
Copper		UG/L	34.7	GA	200	0	69	91	1.3 U	1.3 U	1.3 U	1.6 J	1.6 J	1.1 U	1.1 U
Iron		UG/L	4,000	GA	300	24	65	91	35.8 J	68.3	93.3	19 UJ	19 UJ	77 J	100 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	39 J	73	105	1 J	2.4 J	131	152
Lead		UG/L	88.6	MCL	15	3	42	91	2.9 U	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U
Magnesium		UG/L	98,000				88	88	16,100 J	15,900 J	25,800	18,000	17,900	21,000	20,000 J
Manganese		UG/L	631	GA	300	1	85	91	3.3	5	11.8	1 J	2.4 J	54	52
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.12 U	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	54	91	1.2 U	1.2 U	1 U	1.8 J	1.2 J	2.8 J	2.7 J
Potassium		UG/L	15,000				85	85	886 R	907 R	1,340 J	1,110	1,100	1,200	1,100
Selenium		UG/L	1.1	GA	10	0	1	91	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	91	1 U	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0,18 U
Sodium		UG/L	550,000	GA	20,000	56	89	89	24,200 J	25,300 J	182,000	8,000 J	8,000 J	170,000 J	160,000 J
Thallium		UG/L	0.03	MCL	2	0	1	91	0.03 U	0.03 U	0.09 U	0.2 U	0.2 U	0.5 U	0.25 U
Vanadium		UG/L	2.3				7	91	0.78 U	0.78 ∪	0.98 ∪	1 U	1 U	3.8 U	3.2 U
Zinc		UG/L	34.4				36	91	4.4 J	7.8 J	5.8 J	3.6 U	3.6 U	8.3 U	8.8 J

Notes:

- The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

Appendix D Post-Remedial Action Groundwater Monitoring Results (Years 1 through 8) Annual Report - SEAD 16 and SEAD 17 Seneca Army Depot Activity

SEAD-16

MW16-1

91

91

91

36

0.5 UJ

3.8 UJ

8.3 UJ

Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered

X								GW						
D								16LM20028F	16LM20028U	16LM20035F	16LM20035U	16LM20042F	16LM20042U	16LM20049
e								12/15/2012	12/15/2012	12/17/2013	12/17/2013	12/21/2014	12/21/2014	12/20/2015
e								SA						
D								LTM						
d								5	5	6	6	7	7	8
d					Number	Number	Number	Dissolved	Total	Dissolved	Total	Dissolved	Total	Total
		Maximum	Criteria	Criteria	of	of Times	of Samples							
	Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual						
	UG/L	2,400				36	91	23 UJ	50 UJ	23 UJ	50 UJ	23 U	50 U	44 J
	UG/L	120	GA	3	42	53	91	2.3 UJ	2 UJ	2.3 UJ	2 UJ	2.3 ∪	2 U	0.5 U
	UG/L	2.7	MCL	10	0	9	91	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	1.3 U	1.3 U	1.5 U
	UG/L	600	GA	1,000	0	91	91	78 J	78 J	63 J	69 J	99	94	81
	UG/L	0	MCL	4	0	0	91	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.17 U
	UG/L	0.46	GA	5	0	6	91	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U	0.13 U	0.15 U
	UG/L	510,000				91	91	120,000 J	120,000 J	140,000 J	130,000 J	160,000	150,000	120,000
	UG/L	4.6	GA	50	0	7	91	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 ∪	2.5 U	3 J
	UG/L	2				37	91	0.15 UJ	0.16 J	0.9 J	0.94 J	0.15 U	0.12 U	0.12 J
	UG/L	34.7	GA	200	0	69	91	5.2 J	5 UJ	1.2 J	1.1 UJ	1.3 J	1.9 J	1.7 ∪
	UG/L	4,000	GA	300	24	65	91	33 UJ	44 UJ	260 J	280 J	33 U	79 J	68 J
	UG/L	1,430	GA	500	20	78	84	34 U	46 U	352 J	378 J	11	91	76.7 J
	UG/L	88.6	MCL	15	3	42	91	0.2 UJ	0.5 UJ	0.2 UJ	0.5 UJ	0.2 U	0.5 U	0.98 U
	UG/L	98,000				88	88	18,000 J	18,000 J	22,000 J+	22,000 J	25,000	24,000	19,000
	UG/L	631	GA	300	1	85	91	1 UJ	2 UJ	92 J	98 J	11	12	8.7
	UG/L	0.507	GA	0.7	0	3	91	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.08 U
	UG/L	5.5	GA	100	0	54	91	2.3 J	2 UJ	3.6 J	2 UJ	2 J	2 U	3.8 J
	UG/L	15,000				85	85	900 J	870 J	810 J	790 J	950	890 J	1,000
	UG/L	1.1	GA	10	0	1	91	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U	1 U
	UG/L	0	GA	50	0	0	91	0.25 UJ	0,18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U	0.1 U
	UG/L	550,000	GA	20,000	56	89	89	63,000 J	62,000 J	57,000 J	60,000 J	63,000	63,000	62,000

0.25 UJ

3.2 UJ

8.4 UJ

SEAD-16

MW16-1

SEAD-16

MW16-1

0.5 UJ

3.8 UJ

8.3 UJ

SEAD-16

MW16-1

0.25 UJ

3.2 UJ

8.4 UJ

SEAD-16

MW16-1

0.5 U

3.8 U

8.3 U

SEAD-16

MW16-1

0.25 U

3.2 U

8.4 U

SEAD-16

MW16-1

0.49 U

5.3 U

9.6 U

Zinc Notes:

Sodium

Thallium

Vanadium

Parameter Inorganics Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Iron+Manganese Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

UG/L

UG/L

UG/L

0.03

2.3

34.4

MCL

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

Appendix D Post-Remedial Action Groundwater Monitoring Results (Years 1 through 8) Annual Report - SEAD 16 and SEAD 17 Seneca Army Depot Activity

	•														
	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered					Number	Number	Number	SEAD-16 MW16-2 GW 16LM20002 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-2 GW 16LM20007 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-2 GW 16LM20015FIL 11/11/2009 SA LTM 3 Dissolved	SEAD-16 MW16-2 GW 16LM20015UNFIL 11/11/2009 SA LTM 3 Total	SEAD-16 MW16-2 GW 16LM20022FIL 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-2 GW 16LM20022UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-2 GW 16LM20023FiL 12/15/2010 DU LTM 4 Dissolved
			Maximum	Criteria	Criteria	of	of Times	of Samples							
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics															
Aluminum		UG/L	2,400				36	91	98.8 J	97.1 J	24 U	205	23 U	50 U	23 U
Antimony		UG/L	120	GA	3	42	53	91	3.36	5.53	3.6	3.6	6.1	6.6	6.1
Arsenic		UG/L	2.7	MCL	10	0	9	91	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 U
Barium		UG/L	600	GA	1,000	0	91	91	64.6	69.7	71.9	72.7	68	77 J	67
Beryllium		UG/L	0	MCL	4	0	0	91	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 U
Cadmium		UG/L	0.46	GA	5	0	6	91	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 U
Calcium		UG/L	510,000				91	91	143,000 J	138,000	118,000 J	117,000 J	100,000 J	110,000 J	96,000
Chromium		UG/L	4.6	GA	50	0	7	91	0.84 U	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 U
Cobalt		UG/L	2				37	91	0.89 U	1.1 U	1.1 U	1,1 U	0.15 U	0.12 U	0.15 U
Copper		UG/L	34.7	GA	200	0	69	91	4.5 J	4 J	3.4 J	5.1 J	4.4 J	5.9	4.5 J
Iron		UG/L	4,000	GA	300	24	65	91	49.5 J	26.1 J	19 UJ	197 J	33 U	89 J	33 U
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	53 J	27	39.5	260.7 J	12	105	12
Lead		UG/L	88.6	MCL	15	3	42	91	2.9 U	2.9 U	2.9 U	2.9 U	0.21 J	1.3 J	0.2 U
Magnesium		UG/L	98,000				88	88	15,600 J	15,700	12,600	12,300	12,000	14,000 J	11,000
Manganese		UG/L	631	GA	300	1	85	91	3.4	0.84 J	39.5	63.7	12	16	12
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.12 U	0.148 J	0.1 U	0.1 U	0.091 U	0.091 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	54	91	1.2 U	1.6 J	2.2 J	2.6 J	2 U	2 J	2.2 J
Potassium		UG/L	15,000				85	85	2,050 R	2,410 J	3,170	3,140	2,300 J	2,500 J	2,200 J
Selenium		UG/L	1.1	GA °	10	0	1	91	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 U
Silver		UG/L	0	GA	50	0	0 ;	91	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 U
Sodium		UG/L	550,000	GA	20,000	56	89	89	49,600 J	63,500	19,500 J	18,800 J	33,000 J	34,000 J	31,000 J
Thallium		UG/L	0.03	MCL	2	0	1	91	0.03 U	0.09 U	0.2 U	0.2 U	0.5 U	0.25 U	0.5 U
Vanadium		UG/L	2.3				7	91	0.78 U	0.98 U	1 U	1 U	3.8 U	3.2 U	3.8 U
Zinc		UG/L	34.4				36	91	8.2 J	10.2	11.1	11.3	11 J	14 J	12 J

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Fittered		Maximum			Number of	Number of Times			SEAD-16 MW16-2 GW 16LM20029F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-2 GW 16LM20029U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-2 GW 16LM20036F 12/16/2013 SA LTM 6 Dissolved	SEAD-16 MW16-2 GW 16LM20036U 12/16/2013 SA LTM 6 Total	SEAD-16 MW16-2 GW 16LM20043F 12/21/2014 SA LTM 7 Dissolved	SEAD-16 MW16-2 GW 16LM20043U 12/21/2014 SA LTM 7 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	value Qual	varue Quai	value Qual
Inorganics Aluminum		UG/L	2,400				36	91	50 U	23 UJ	50 UJ	23 UJ	50 UJ	23 U	50 U
Antimony		UG/L	120	GA	3	42	53	91	6 1	7.8 J	7.1 J	3.6 J	3.2 J	4.8 J	4.8 J
Arsenic		UG/L	2.7	MCL	10	0	9	91	1.3 U	1.3 UJ	1,3 UJ	1.3 UJ	1.3 UJ	1.3 U	1.3 U
Barium		UG/L	600	GA	1.000	n	91	91	69 J	65 J	62 J	70 J	66 J	72	68
Bervilium		UG/L	0	MCL	4	Ô	0	91	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U
Cadmium		UG/L	0.46	GA	5	Ö	6	91	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U	0.13 U
Calcium		UG/L	510,000	0,1	•		91	91	100,000	110,000 J	100,000 J	120,000 J	100,000 J	110,000	100,000
Chromium		UG/L	4.6	GA	50	0	7	91	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U
Cobalt		UG/L	2				37	91	0.12 U	0.15 UJ	0.12 UJ	0.23 J	0.23 J	0.15 U	0.12 U
Copper		UG/L	34.7	GA	200	0	69	91	5.1	4.5 J	5 J	4 J	4.7 J	3.3 J	4.2 J
Iron		UG/L	4.000	GA	300	24	65	91	63 J	33 UJ	44 UJ	33 UJ	44 UJ	33 J	44 U
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	76	34 U	46 U	19 J	19 J	34 U	46 U
Lead		UG/L	88.6	MCL	15	3	42	91	0.97 J	0.24 J	0.66 J	0.38 J	1.1 J	0.2 U	0.87 J
Magnesium		UG/L	98,000				88	88	12,000 J	13,000 J	11,000 J	14,000 J+	13,000 J	12,000	11,000
Manganese		UG/L	631	GA	300	1	85	91	13	1 UJ	2 UJ	19 J	19 J	1 U	2 U
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	54	91	2.2 J	2.2 J	2 UJ	2 UJ	2 UJ	2.2 J	2.3 J
Potassium		UG/L	15,000				85	85	2,200 J	2,200 J	1,900 J	1,800 J	1,700 J	1,500	1,400
Selenium		UG/L	1.1	GA	10	0	1	91	1.1 U	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	91	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U 11,000	0.18 U 9.900
Sodium		UG/L	550,000	GA	20,000	56	89	89	32,000 J	20,000 J	17,000 J	22,000 J	21,000 J 0.25 UJ	0.5 U	9,900 0.25 U
Thallium		UG/L	0.03	MCL	2	0	1	91	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	3.2 UJ	3.8 U	3.2 U
Vanadium		UG/L	2.3				7	91	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ 12 J	3.8 U 13 J	3.2 U 12 J
Zinc		UG/L	34.4				36	. 91	12 J	9.5 J	8.8 J	24 J	12 J	13 J	12 J

Notes:

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample Date QC Type Study ID Sample Round Filtered		Maximum			Number of	Number of Times		SEAD-16 MW16-2 GW 16LM20050 12/19/2015 SA LTM 8 Total	SEAD-16 MW16-4 GW 16LM20003 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-4 GW 16LM20008 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-4 GW 16LM20009 12/9/2008 DU LTM 2 Total	SEAD-16 MW16-4 GW 16LM20016FIL 11/17/2009 SA LTM 3 Dissolved	SEAD-16 MW16-4 GW 16LM20016UNFIL 11/17/2009 SA LTM 3 Total	SEAD-16 MW16-4 GW 16LM20024FIL 12/16/2010 SA LTM 4 Dissolved
Parameter Inorganics		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	vanue Quai	Value Qual
Aluminum		UG/L	2,400				36	91	58 J	167 J	104 J	101 J	24 U	68 J	23 U
Antimony		UG/L	120	GA	3	42	53	91	2.1 J	5.11	2.89	2.94	8	6.3	2.3 U
Arsenic		UG/L	2.7	MCL	10	0	9	91	1.5 U	4.2 U	3.7 U	3.7 U	3.7 U	3.7 U	1.3 U
Barium		UG/L	600	GA	1,000	0	91	91	94	44.5	290	279	129	123	220
Beryllium		UG/L	0	MCL	4	0	0	91	0.17 U	0.27 U	0.33 U	0.33 U	0.3 U	0.3 U	0.25 U
Cadmium		UG/L	0.46	GA	5	0	6	91	0.15 U	0.36 U	0.33 U	0.33 U	0.3 U	0.3 U	0.095 U
Calcium		UG/L	510,000				91	91	130,000	87,100 J	275,000	267,000	130,000 J	125,000 J	210,000
Chromium		UG/L	4.6	GA	50	0	7	91	1.6 U	1 J	0.88 U	0.88 U	0.9 U	0.9 U	2.5 U
Cobalt		UG/L	2				37	91	0.68	0.89 U	1.1 U	1.1 U	1.8 J	2 J	0.7
Copper		UG/L	34.7	GA	200	0	69	91	3 J	5.4 J	4.4 J	4.2 J	2.4 J	6.2 J	1.4 J
Iron		UG/L	4,000	GA	300	24	65	91	130	95.4	57 J	38.4 J	329 J	419 J	130 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	193	127	65	46 J	417.7 J	513.5 J	260
Lead		UG/L	88.6	MCL	15	3	42	91	2.9	2.9 U	2.9 U	2.9 U	2.9 U	2.9 U	0.7 J
Magnesium		UG/L	98,000				88	88	13,000	9,440 R	35,200	34,500	16,800	16,000	31,000
Manganese		UG/L	631	GA	300	1	85	91	63	31.2	7.7	8	88.7	94.5	130
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.08 U	0.12 U	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	54	91	2.6 J	1.2 U	2.2 J	1.9 J	1.7 J	1.4 J	2.2 J
Potassium		UG/L	15,000			_	85	85	1,900	1,300 R	3,830 J	3,690 J	3,270	3,270	2,600 J
Selenium		UG/L	1.1	GA	10	0	1	91	1 U	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	1 U
Silver		UG/L	0	GA	50	0	0	91	0.1 U	1 U	1.3 U	1.3 U	1.3 U	1.3 U	0.25 U
Sodium The Ware		UG/L	550,000	GA	20,000	56	89	89	11,000	40,800 J	434,000	419,000	380,000 J	363,000 J	540,000 J
Thallium Vanadium		UG/L UG/L	0.03	MCL	2	0	1	91 91	0.49 U	0.03 U 0.78 U	0.09 U 0.98 U	0.09 U 0.98 U	0.2 U 1.1 J	0.2 U 1.1 J	0.5 U 3.8 U
							26		5.3 U						
Zinc		UG/L	34.4				36	91	17 J	5.3 J	14.6 J	9.8 J	3.6 U	3.6 U	9.2 J

Notes:

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
 J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value.
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum			Number of	Number of Times	Number of Samples	SEAD-16 MW16-4 GW 16LM20024UNF 12/16/2010 SA LTM 4 Total	SEAD-16 MW16-4 GW 16LM20030F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-4 GW 16LM20030U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-4 GW 16LM20037F 12/17/2013 SA LTM 6 Dissolved	SEAD-16 MW16-4 GW 16LM20037U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-4 GW 16LM20044F 12/21/2014 SA LTM 7 Dissolved	SEAD-16 MW 16-4 GW 16LM20044U 12/21/2014 SA LTM 7 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics			0.400				••		50.11	00.111	50.111	00 111	FO 111	00.11	50.11
Aluminum		UG/L	2,400	0.4	•	40	36 53	91 91	50 U 2 U	23 UJ 4 J	50 UJ 3.9 J	23 UJ 2.3 UJ	50 UJ 2 UJ [23 U 3.3 J	50 U 3.2 J
Antimony Arsenic		UG/L UG/L	120 2.7	GA MCL	3 10	42 ·	9	91	1.3 U	1.5 J	1.3 J	1.3 UJ	1.3 UJ	1.3 U	1.3 U
Barium		UG/L	600	GA	1.000	0	91	91	240 J	240 J	230 J	140 J	150 J	170	160
Beryllium		UG/L	0	MCL	4	0	0	91	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U
Cadmium		UG/L	0.46	GA	5	0	6	91	0.13 U	0.095 UJ	0.13 J	0.095 UJ	0.15 J	0.11 J	0.13 U
Calcium		UG/L	510.000	GA.	3	O	91	91	210.000	230.000 J	220,000 J	210,000 J	190,000 J	220,000	210,000
Chromium		UG/L	4.6	GA	50	0	7	91	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	3.6 J	2.5 U	2.5 U
Cobalt		UG/L	2	0.7	50	•	37	91	0.71	1.9 J	1.9 J	1 J	0.94 J	1.1	1.1
Copper		UG/L	34.7	GA	200	0	69	91	2.8 J	4.1 J	11 J	1.2 J	1,5 J	4.3 J	5.8
Iron		UG/L	4.000	GA	300	24	65	91	150 J	130 J	140 J	350 J	380 J	170	290
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	290	270 J	280 J	580 J	590 J	370	490
Lead		UG/L	88.6	MCL	15	3	42	91	3	0.2 UJ	3.4 J	0.28 J	0.65 J	0.27 J	1.5
Magnesium		UG/L	98,000				88	88	32,000 J	34,000 J	32,000 J	33,000 J+	31,000 J	33,000	32,000
Manganese		UG/L	631	GΑ	300	1	85	91	140	140 J	140 J	230 J	210 J	200	200
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	54	91	2.3 J	2.6 J	3.2 J	3.3 J	2.9 J	4 J	3.5 J
Potassium		UG/L	15,000				85	85	2,600 J	3,200 J	3,100 J	2,500 J	2,400 J	2,000	1,900
Selenium		UG/L	1.1	GA	10	0	1	91	1.1 U	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	91	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U
Sodium		UG/L	550,000	GA	20,000	56	89	89	550,000 J	340,000 J	310,000 J	290,000 J	270,000 J	300,000	300,000
Thallium		UG/L	0.03	MCL	2	0	1	91	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U
Vanadium		UG/L	2.3				7	91	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U
Zinc		UG/L	34.4				36	91	13 J	12 J	11 J	8.3 UJ	8.4 UJ	14 J	12 J

Notes:

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

Appendix D

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 8)

Annual Report - SEAD 16 and SEAD 17

Seneca Army Depot Activity

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round								SEAD-16 MW 16-4 GW 16LM20051 12/20/2015 SA LTM 8	SEAD-16 MW 16-5 GW 16LM20004 12/20/2007 SA LTM 1	SEAD-16 MW16-5 GW 16LM20010 12/10/2008 SA LTM 2	SEAD-16 MW16-5 GW 16LM20017FIL 11/16/2009 SA LTM 3	SEAD-16 MW16-5 GW 16LM20017UNFIL 11/16/2009 SA LTM 3	SEAD-16 MW16-5 GW 16LM20025FIL 12/15/2010 SA LTM 4	SEAD-16 MW16-5 GW 16LM20025UNF 12/15/2010 SA LTM 4
	Filtered		A decidences	~	04-4-	Number	Number	Number	Total	Total	Total	Dissolved	Total	Dissolved	Total
Decomptes		Unit	Maximum			of	of Times		Makes Over	Makes Ovel	Value Ovel	Value Ovel	Velue Ouel	Value Ouel	Value Ouel
Parameter Inorganics		Unit	Value	Source	Level	Exceedances	Detected:	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Quai
Aluminum		UG/L	2,400				36	91	18 U	160 J	563	24 U	184 J	23 U	160
Antimony		UG/L	120	GA	3	42	53	91	2 J	1,82	4.23	1 U	1 U	2.3 U	2 U
Arsenic		UG/L	2.7	MCL	10	0	9	91	1.5 U	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U
Barium		UG/L	600	GA	1,000	0	91	91	140	38.9	22	42.6	42	34	33 J
Beryllium		UG/L	0	MCL	4	0	0	91	0.17 U	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U
Cadmium		UG/L	0.46	GA	5	Ô	6	91	0.34 J	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U
Calcium		UG/L	510,000	OA	0	· ·	91	91	180.000	89,000 J	53,100	115,000 J	110,000 J	90,000	86,000
Chromium		UG/L	4.6	GA	50	0	7	91	1.6 U	1.1 J	1.2 J	0.9 U	0,9 U	2.5 U	2,5 U
Cobalt		UG/L	2	0,1	00	v	37	91	0.28 J	0.89 U	1.1 U	1.1 U	1.1 U	0.15 U	0.12 U
Copper		UG/L	34.7	GA	200	0	69	91	6.8	3.1 J	10.6	1.3 U	1.3 U	1.1 U	1.1 U
Iron		UG/L	4,000	GA	300	24	85	91	33 J	1,200	699	800 J	1.150 J	480 J	660 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	85 J	1,238	731	970 J	1,323 J	680	820
Lead		UG/L	88.6	MCL	15	3	42	91	1.1 J	2.9 U	10.1	2.9 U	2.9 U	0.2 U	0.77 J
Magnesium		UG/L	98,000				88	88	25,000	9,380 R	6,050	12,200	11,600	10,000	9,700 J
Manganese		UG/L	631	GA	300	1	85	91	52	37.6	32.4	170	173	200	160
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.08 U	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	54	91	3.7 J	1.2 U	2.6 J	1.8 J	2 J	2 U	2 U
Potassium		UG/L	15,000				85	85	1,900	4,420 R	2,610 J	2,370	2,380	2,200 J	2,100 J
Selenium		UG/L	1.1	GA	10	0	1	91	1 U	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	91	0.1 U	1 U	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U
Sodium	,	UG/L	550,000	GA	20,000	56	89	89	250,000	8,410 R	2,180	2,700 J	2,800 J	1,800 J	1,800 J
Thallium		UG/L	0.03	MCL	2	0	1	91	0.49 U	0.03 U	0.09 U	0.2 U	0.2 U	0.5 U	0.25 U
Vanadium		UG/L	2.3				7	91	5.3 U	1.2 J	2.3 J	1 U	1.1 J	3.8 U	3.2 U
Zinc		UG/L	34.4				36	91	16 J	34.4	10.3	3,6 U	3.6 U	8.3 U	8.4 U

Notes:

- The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

Data validation qualifier.
[empty cell] = data is not qualified.

- U = compound not detected at concentration listed
 J = the reported value is an estimated concentration
 J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-16 MW16-5 GW 16LM20031F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-5 GW 16LM20031U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-5 GW 16LM20038F 12/16/2013 SA LTM 6 Dissolved	SEAD-16 MW16-5 GW 16LM20038U 12/16/2013 SA LTM 6 Total	SEAD-16 MW16-5 GW 16LM20039F 12/17/2013 DU LTM 6 Dissolved	SEAD-16 MW16-5 GW 16LM20039U 12/17/2013 DU LTM 6 Total	SEAD-16 MW16-5 GW 16LM20045F 12/20/2014 SA LTM 7 Dissolved
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics															
Aluminum		UG/L	2,400				36	91	23 UJ	50 UJ	23 UJ	50 UJ	23 UJ	50 UJ	23 U
Antimony		UG/L	120	GA	3	42	53	91	2.3 UJ	2 UJ	2.3 UJ	2 UJ	2.3 UJ	2 UJ	2.3 U
Arsenic		UG/L	2.7	MCL	10	0	9	91	2.6 J	2.7 J	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	1.8 J
Barium		UG/L	600	GA	1,000	0	91	91	34 J	39 J	40 J	38 J	41 J	41 J	49 J
Beryllium		UG/L	0	MCL	4	0	0	91	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U
Cadmium		UG/L	0.46	GA	5	0	6	91	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U
Calcium		UG/L	510,000				91	91	97,000 J	96,000 J	100,000 J	88.000 J	110,000 J	95,000 J	110,000
Chromium		UG/L	4.6	GA	50	0	7	91	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U
Cobalt		UG/L	2				37	91	0.22 J	0.23 J	0.15 UJ	0.12 UJ	0.15 UJ	0.12 UJ	0.15 U
Copper		UG/L	34.7	GA	200	0	69	91	1.1 J	5 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1_U
Iron		UG/L	4,000	GA	300	24	65	91	1,100 J	1,300 J	440 J	510 J	490 J	530 J	360 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	1,230 J	1,430 J	670 J	680 J	710 J	720 J	520 J
Lead		ŲG/L	88.6	MCL	15	3	42	91	0.2 UJ	0.5 UJ	0.2 UJ	0.5 UJ	0.22 J	0.5 UJ	0.2 U
Magnesium		UG/L	98,000				88	88	9,900 J	9,800 J	10,000 J+	9,500 J	11,000 J+	10,000 J	11,000
Manganese		UG/L	631	GA	300	1	85	91	130 J	130 J	230 J	170 J	220 J	190 J	160 J
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.1 J	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U
Nickel		UG/L	5.5	GA	100	0	54	91	2.1 J	2 UJ	2 UJ	2 UJ	2 UJ	2 UJ	2.1 J
Potassium		UG/L	15,000				85	85	2,100 J	2,100 J	2,300 J	1,900 J	2,300 J	2,100 J	3,500 J
Selenium		UG/L	1.1	GA	10	0	1	91	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 U
Silver		UG/L	0	GA	50	0	0	91	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U
Sodium		UG/L	550,000	GA	20,000	56	89	89	1,600 J	1,500 J	1,400 J	1,300 J	1,400 J	1,300 J	1,900
Thallium		UG/L	0.03	MCL	2	0	1	91	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U
Vanadium		UG/L	2.3				7	91	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U
Zinc		UG/L	34.4				36	91	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ	8.3 U

Notes:

- The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html
- is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

SEAD-16

91

91

3.2 U

8:4 U

MW16-5

Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered

Unit	Maximum Value	Criteria Source		Number of Exceedances	Number of Times Detected		GW 16LM20045U 12/20/2014 SA LTM 7 Total	GW 16LM20052 12/19/2015 SA LTM 8 Total	GW 16LM20005 12/20/2007 SA LTM 1 Total	GW 16LM20011 12/9/2008 SA LTM 2 Total	GW 16LM20018FIL 11/17/2009 SA LTM 3 Dissolved	GW 16LM20018UNFIL 11/17/2009 SA LTM 3 Total	GW 16LM20026FiL 12/15/2010 SA LTM 4 Dissolved Value Qual
UG/L	2,400				36	91	53 J	31 J	168 J	189 J	107 J	442	23 U
UG/L	120	GA	3	42	53	91	2 U	0.75 J	1 U	0.92 J	0.9 J	1 U	2.3 U
UG/L	2.7	MCL	10	0	9	91	1.3 J	1.5 U	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U
UG/L	600	GA	1.000	ő	91	91	40 J	41	31.8	39.1	78.5	80.2	44
UG/L	0	MCL	4	0	n	91	0.15 U	0.17 U	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U
UG/L	0.46	GA	5	0	6	91	0.13 U	0.15 U	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U
UG/L	510,000	0/1	•	•	91	91	92,000	110,000	80,400 J	84,300	112,000 J	112,000 J	68,000
UG/L	4.6	GA	. 50	0	7	91 -	2.5 U	1.6 U	0.84 U	0.88 U	0.9 U	0.9 U	2.5 U
UG/L	2		, 00		37	91	0.12 U	0.12 U	0.89 U	1.1 U	1.1 U	1.1 U	0.15 U
UG/L	34.7	GA	200	0	69	91	3.1 J	1.7 U	3.4 J	2.1 J	1.9 J	2.5 J	1.5 J
UG/L	4,000	GA	300	24	65	91	280 J	570	418	153	. 55 J	440 J	33 U
UG/L	1,430	GA	500	20	78	84	410 J	710	441	158	153.4 J	515 J	2.1 J
UG/L	88.6	MCL	15	3	42	91	0.5 U	0.98 U	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U
UG/L	98,000				88	88	9,000	10,000	7,100 R	7,380	9,970	9,950	6,600
UG/L	631	GA	300	1	85	91	130 J	140	23.3	4.8	98.4	75	2.1 J
UG/L	0.507	GA	0.7	0	3	91	0.091 U	0.08 U	0.12 U	0.12 U	0.1 U	0.1 U	0.091 U
UG/L	5.5	GA	100	0	54	91	2.3 J	2.3 J	1.2 U	1 U	1.2 J	2.6 J	2 U
UG/L	15,000				85	85	.2,800 J	2,500	2,690 R	2,310 J	2,380	2,580	1,500
UG/L	1.1	GA	10	0	1	91	1.1 U	1 U	6.1 U	6.1 U	6.1 U	6.1 U	1 U
UG/L	0	GA	50	0	0	91	0.18 U	0.1 U	1 U	1.3 U	1.3 U	1.3 U	0.25 U
UG/L	550,000	GA	20,000	56	89	89	1,600	1,800	6,110 R	9,200	22,000 J	20,600 J	7,600 J
UG/L	0.03	MCL	2	0	1	91	0.25 U	0.49 U	0.03 U	0.09 U	0.008 U	0.008 U	0.5 U
									0.00	0.00 11	4 11	421	2011

5.3 U

9.6 U

0.86 J

5.5 J

SEAD-16

MW16-5

SEAD-16

MW16-6

SEAD-16

MW 16-6

0.98 U

3.7 J

1 U

3.6 U

1.3 J

3.6 U

SEAD-16

MW16-6

SEAD-16

MW16-6

SEAD-16

MW16-6

Zinc Notes:

Thallium

Vanadium

Parameter Inorganics Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Iron+Manganese Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

2.3

34.4

UG/L

UG/L

2.Data validation qualifier.

[empty cell] = data is not qualified

- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value.
 - SA = Sample
 - DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

3.8 U

8.3 U

Appendix D Post-Remedial Action Groundwater Monitoring Results (Years 1 through 8) Annual Report - SEAD 16 and SEAD 17

Seneca Army Depot Activity

	Area Loc ID Matrix Sample ID Sample Date OC Type Study ID Sample Round Filtered	11-7	Maximum			Number of	Number of Times	Number of Samples	SEAD-16 MW16-6 GW 16LM20026UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-6 GW 16LM20032F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-6 GW 16LM20032U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-6 GW 16LM20040F 12/17/2013 SA LTM 6 Dissolved	SEAD-16 MW16-6 GW 16LM20040U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-6 GW 16LM20046F 12/21/2014 SA LTM 7 Dissolved	SEAD-16 MW16-6 GW 16LM20046U 12/21/2014 SA LTM 7 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics Aluminum		UG/L	2.400				36	91	61 J	23 UJ	300 J	23 UJ	50 UJ	23 U	140
Antimony		UG/L	120	GA	3	42	53	91	2 U	2.3 UJ	2 UJ	2.3 UJ	2 UJ	2.3 U	2 U
Arsenic		UG/L	2.7	MCL	10	0	9	91	1.3 U	1.3 UJ	1.3 J	1.3 UJ	1.3 UJ	1.3 U	1.3 U
Barium		UG/L	600	GA	1.000	0	91	91	50 J	41 J	45 J	53 J	58 J	58	58
Beryllium		UG/L	0	MCL	4	0	0	91	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U
Cadmium		UG/L	0.46	GA	5	ñ	6	91	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 U	0.13 U
Calcium		UG/L	510,000	0,,		Ü	91	91	78,000	70,000 J	74,000 J	92,000 J	84,000 J	83,000	83,000
Chromium		UG/L	4.6	GA	50	0	7	91	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U
Cobalt		UG/L	2			_	37	91	0.12 U	0.18 J	0.43 J	0.35 J	0.34 J	0.15 U	0.12 U
Copper		UG/L	34.7	GA	200	0	69	91	2 J	4.5 J	5 UJ	1.1 UJ	1.1 UJ	2.3 J	2.8 J
Iron		UG/L	4.000	GA	300	24	65	91	110 J	33 J	790 J	180 J	210 J	57 J	140
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	113.5 J	43 J	816 J	340 J	360 J	58.8 J	148.4
Lead		UG/L	88.6	MCL	15	3	42	91	0.5 U	0.2 UJ	0.5 UJ	0.2 UJ	0.54 J	0.2 U	0.5 U
Magnesium		UG/L	98,000				88	88	7,600 J	7,200 J	7,600 J	9,500 J+	9.500 J	8,300	8,500
Manganese		UG/L	631	GA	300	1	85	91	3.5 J	10 J	26 J	160 J	150 J	1.8 J	8.4
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U
Nickel		UG/L	5.5	GA	100	0	54	91	2 U	2 UJ	2 J	2 UJ	2 UJ	2.2 J	2 U
Potassium		UG/L	15,000				85	85	1,800	2,400 J	2,400 J	1,900 J	1,800 J	2,100	2,000
Selenium		UG/L	1.1	GA	10	0	1	91	1.1 U	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U
Silver		UG/L	0	GA	50	0	0	91	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U
Sodium		UG/L	550,000	GA	20,000	56	89	89	8,400 J	8,700 J	8,000 J	14,000 J	13,000 J	8,500	8,300
Thallium		UG/L	0.03	MCL	2	0	1	91	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U
Vanadium		UG/L	2.3				7	91	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U
Zinc		UG/L	34.4				36	91	8.4 U	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ	8.3 U	8.4 U

- The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
 R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-16 MW16-8 GW 16LM20053 12/19/2015 SA LTM 8 Total	SEAD-16 MW16-7 GW 16LM20006 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-7 GW 16LM20012 12/10/2008 SA LTM 2 Total	SEAD-16 MW16-7 GW 16LM20019FIL 11/12/2009 SA LTM 3 Dissolved	SEAD-16 MW16-7 GW 16LM20019UNFIL 11/12/2009 SA LTM 3 Total	SEAD-16 MW16-7 GW 16LM20020FIL 11/12/2009 DU LTM 3 Dissolved	SEAD-16 MW16-7 GW 18LM20020UNFIL 11/12/2009 DU LTM 3 Totai
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics		•													
Aluminum		UG/L	2,400				36	91	2,400	45.9 J	577	32 J	182 J	25 J	116 J
Antimony		UG/L	120	GA	3	42	53	91	1 J	9.58	13.6	15.2	15.7	13.9	16.3
Arsenic		UG/L	2.7	MCL	10	0	9	91	1.9 J	4.2 U	3.7 U	3.7 U	3.7 U	3.7 U	3.7 U
Barium		UG/L	600	GA	1,000	0	91	91	73	170	122	83.6	81.6	83.9	80.3
Beryllium		UG/L	0	MCL	4	0	0	91	0.17 U	0.27 U	0.33 U	0.3 U	0.3 U	0.3 U	0.3 U
Cadmium		UG/L	0.46	GA	5	0	6	91	0.33 J	0.46 J	0.33 U	0.3 U	0.3 U	0.3 U	0.3 U
Calcium		UG/L	510,000				91	91	60,000	194,000	133,000	85,000 J	84,600 J	81,900 J	82,800 J
Chromium		UG/L	4.6	GA	50	0	7	91	4.6 J	0.84 U	1.6 J	0.9 U	0.9 U	0.9 U	0.9 U
Cobalt		UG/L	2				37	91	1.6	1.6 J	1.1 J	1.1 U	1.1 U	1.1 U	1,1 U
Copper		UG/L	34.7	GA	200	0	69	91	6.3	34.7	20.2	3.1 J	5 J	3.5 J	4.1 J
Iron		UG/L	4,000	GA	300	24	65	91	4,000	29.2 J	770	19 UJ	135 J	19 UJ	61 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	4,120	680 J	990	136	244 J	152	168 J
Lead		UG/L	88.6	MCL	15	3	42	91	2.2 J	26.5	88.6	4.4 J	12.1	4.9 J	9.4
Magnesium		UG/L	98,000				88	88	8,300	32,000 J	25,100	15,900	16,500	14,800	16,200
Manganese		UG/L	631	GA	300	1	85	91	120	631	220	136	109	152	107
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.08 U	0.507	0.12 U	0.1 U	0.1 U	0.1 U	0.1 U
Nickel		UG/L	5.5	GA	100	0	54	91	5.1	5.5 J	2.6 J	1.9 J	1.7 J	, 2 J	1.1 J
Potassium		UG/L	15,000				85	85	2,600	5,480 J	5,670 J	6,520	5,780	7,010	5,630
Selenium		UG/L	1.1	GA	10	0	1 1	91	1.1 J	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	91	0.1 U	1 U	1.3 U	1,3 U	1,3 U	1,3 U	1.3 U
Sodium		UG/L	550,000	GA	20,000	56	89	89	10,000	68,400 J	74,900	52,100 J	47,100 J	55,900 J	46,100 J
Thallium		UG/L	0.03	MCL	2	0	1	91	0.49 U	0.03 J	0.09 U	0.2 U	0.2 U	0.2 U	0.2 U
Vanadium		UG/L	2.3				7	91	5.3 U	0.78 U	0.98 U	1 U	1 U	1 U	1 U
Zinc		UG/L	34.4				36	91	18 J	3.6 U	8.6 J	3.6 U	3.6 U	3.6 U	3.6 U

Notes:

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed
J = the reported value is an estimated concentration

J+= result is an estimated quantity, blased high R = the result was rejected due to QA/QC considerations UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

s\Projects\Seneca Army Depot\SEAD-1617\Yr8\SEAD-16_17 GW LTM R1-8.xlsx

Appendix D Post-Remedial Action Groundwater Monitoring Results (Years 1 through 8) Annual Report - SEAD 16 and SEAD 17

Seneca Army Depot Activity

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-16 MW16-7 GW 16LM20027FIL 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-7 GW 16LM20027UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-7 GW 16LM20033F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-7 GW 16LM20033U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-7 GW 16LM20034F 12/15/2012 DU LTM 5 Dissolved	SEAD-16 MW16-7 GW 16LM20034U 12/15/2012 DU LTM 5 Total	SEAD-16 MW16-7 GW 16LM20041F 12/17/2013 SA LTM 6 Dissolved
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics															
Aluminum		UG/L	2,400				36	91	23 U	50 U	23 UJ	50 UJ	23 UJ	50 UJ	23 UJ
Antimony		UG/L	120	GA	3	42	53	91	15	16	13 J	13 J	13 J	14 J	16 J
Arsenic		UG/L	2.7	MCL	10	0	9	91	1.3 U	1.3 U	1.3 J	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ
Barium		UG/L	600	GA	1,000	0	91	91	69	71 J	100 J	100 J	99 J	100 J	100 J
Beryllium		UG/L	0	MCL	4	0	0	91	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 UJ
Cadmium		UG/L	0.46	GA	5	0	6	91	0.095 U	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 UJ
Calcium		UG/L	510,000				91	91	82,000	86,000	110,000 J	100,000 J	100,000 J	110,000 J	120,000 J
Chromium		UG/L	4.6	GA	50	0	7	91	2 .5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ
Cobalt		UG/L	2				37	91	0.15 U	0.12 U	0.23 J	0.22 J	0.24 J	0.24 J	0.19 J
Copper		UG/L	34.7	GA	200	0	69	91	1.8 J	2.7 J	4.1 J	8.3 J	1.7 J	5.6 J	3.4 J
Iron		UG/L	4,000	GA	300	24	65	91	33 U	45 J	33 UJ	44 UJ	33 UJ	44 UJ	33 UJ
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	35	79	92 J	90 J	98 J	91 J	16 J
Lead		UG/L	88.6	MCL	15	3	42	91	1 J	6.3	1.3 J	2.5 J	2.3 J	2.6 J	1.9 J
Magnesium		UG/L	98,000				88	88	18,000	19,000 J	21,000 J	21,000 J	20,000 J	22,000 J	26,000 J+
Manganese		UG/L	631	GA	300	1	85	91	35	34	92 J	90 J	98 J	91 J	16 J
Mercury		UG/L	0.507	GA	0.7	0	3	91	0.091 U	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ
Nickel		UG/L	5.5	GA	100	0	54	91	2 U	2 U	2 UJ	2.2 J	2 UJ	2.4 J	2 UJ
Potassium		UG/L	15,000				85	85	2,800 J	2,700 J	5,300 J	5,200 J	5,100 J	5,400 J	3,100 J
Selenium		UG/L	1.1	GA	10	0	1	91	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 UJ
Silver		UG/L	0	GA	50	0	0	91	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ	0.18_UJ	0.25_UJ
Sodium		UG/L	550,000	GA	20,000	56	89	89	29,000 J	28,000 J	35,000 J	32,000 J	33,000 J	32,000 J	28,000 J
Thallium		UG/L	0.03	MCL	2	0	1	91	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 UJ
Vanadium		UG/L	2.3				7	91	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 UJ
Zinc		UG/L	34.4				36	91	8.3 U	8.4 U	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ	8.3 UJ
Thallium Vanadium		UG/L UG/L	0.03 2.3			56 0	7	91 91	0.5 U 3.8 U	0.25 U 3.2 U	0.5 UJ 3.8 UJ	0.25 UJ 3.2 UJ	0.5 UJ 3.8 UJ	0.25 UJ	0.: 3.i

Notes:

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.

 3. Shading indicates a concentration above the identified criteria value.
- SA = Sample
 DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

Appendix D

Post-Remedial Action Groundwater Monitoring Results (Years 1 through 8)

Annual Report - SEAD 16 and SEAD 17 Seneca Army Depot Activity

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-16 MW16-7 GW 16LM20041U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-7 GW 16LM20047F 12/20/2014 SA LTM 7 Dissolved	SEAD-16 MW16-7 GW 16LM20047U 12/20/2014 SA LTM 7 Total	SEAD-16 MW16-7 GW 16LM20048F 12/20/2014 DU LTM 7 Dissolved	SEAD-16 MW16-7 GW 16LM20048U 12/20/2014 DU LTM 7 Total	SEAD-16 MW16-7 GW 16LM20054 12/19/2015 SA LTM 8 Total	SEAD-16 MW16-7 GW 16LM20055 12/19/2015 DU LTM 8 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics												00.11	50.11	440 1	20.1
Aluminum		UG/L	2,400				36	91	50 UJ	29 J	50 U	23 U	50 U	140 J 120 J	36 J 19 J
Antimony		UG/L	120	GA	3	42	53	91	15 J	16	15	15	1.3 U	7.5 U	1.5 U
Arsenic		UG/L	2.7	MCL	10	0	9	91	1.3 UJ	1.3 U	1.3 U	1.3 U 110	1.3 U	600 J	1.5 U
Barium		UG/L	600	GA	1,000	0	91	91	100 J	110	95			0.85 U	0.17 U
Beryllium		UG/L	0	MCL	4	0	0	91	0.15 UJ	0.25 U	0.15 U	0.25 U	0.15 U	0.85 U 0.15 U	0.17 U
Cadmium		UG/L	0.46	GA	5	0	6	91	0.13 UJ	0.095 U	0.13 U	0.095 U	0.13 U		
Calcium		UG/L	510,000				91	91	110,000 J	110,000	100,000	110,000	110,000	510,000 J	110,000 J
Chromium		UG/L	4.6	GA	50	0	, ,	91	2.5 UJ	2.5 U	2.5 U	2.5 U	2.5 U	8 U	1.6 U
Cobalt		UG/L	2				37	91	0.2 J	0.25 J	0.12 U	0.15 U	0.12 U	0.6 U	0.12 J 4.2 J
Copper		UG/L	34.7	GA	200	0	69	91	2.5 J	3.2 J	3.6 J	3.3 J	3.8 J	21 J	
Iron		UG/L	4,000	GA	300	24	65	91	44 UJ	52 J	44 U	33 U	44 U	370 J	62 J
Iron+Manganese		UG/L	1,430	GA	500	20	78	84	15 J	80 J	23 J	38 J	33 J	396 J 48 J	69.4 J 10 J
Lead		UG/L	88.6	MCL	15	3	42	91	6 J	1.8	4.2	1.8	4.1	98,000 J	20,000 J
Magnesium		UG/L	98,000	-	000		88	88	27,000 J	23,000	22,000 23 J	23,000 38 J	21,000 33 J	26 J	7.4 J
Manganese		UG/L	631	GA	300	1	85	91	15 J	28 J	0.091 U	0.091 U	0.091 U	0.08 U	0.08 U
Mercury		UG/L	0.507	GA GA	0.7	0	3	91	0.091 UJ 2 UJ	0.091 U	2.4 J	0.091 U	2 U	9.5 U	1.9 U
Nickel		UG/L	5.5	GA	100	U	54	91		3.2 J	3,500	4,600	3,900	15,000 J	3,600 J
Potassium		UG/L	15,000		40	•	85	85	2,900 J	3,700		4,600 1 U	1.1 U	5 U	1 U
Selenium		UG/L	1.1	GA	10	. 0	0	91	1.1 UJ	1 U	1.1 U 0.18 U	0.25 U	0.18 U	0.5 U	0.1 U
Silver Sodium		UG/L UG/L	0	GA	50	0 56	89	91 89	0,18 UJ 27,000 J	0.25 U 30,000	29,000	36,000	33,000	89,000 J	23,000 J
Thallium		UG/L	550,000	GA MCL	20,000	0	89	91		0.5 U	0.25 U	0.5 U	0.25 U	2.5 U	0.49 U
			0.03	MCL	2	0	7	91 91	0.25 UJ		3.2 U	3.8 U	3.2 U	2.5 U	5.3 U
Vanadium		UG/L	2.3 34.4				36		3.2 UJ	3.8 U	8.4 U	8.7 J	8.4 U	48 U	9.6 U
Zinc		UG/L	34.4				36	91	8.4 UJ	8.3 U	8.4 U	8.7 3	6.4 U	40 U	9.0 U

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

0	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered	Unit	Maximum Value	Criteria Source		Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	SEAD-17 MW17-1 GW 17LM20000 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-1 GW 17LM20005 12/11/2008 SA LTM 2 Total	SEAD-17 MW17-1 GW 17LM20010FIL 11/18/2009 SA LTM 3 Dissolved	SEAD-17 MW17-1 GW 17LM20010UNFIL 11/18/2009 SA LTM 3 Total	SEAD-17 MW17-1 GW 17LM20016FIL 12/17/2010 SA LTM 4 Dissolved	SEAD-17 MW17-1 GW 17LM20016UNF 12/17/2010 SA LTM 4 Total	SEAD-17 MW17-1 GW 17LM20020F 12/11/2012 SA LTM 5 Dissolved
Parameter		Unit	value	Source	Level	Exceedances	Detected	Апануzео	value Qual	value Qual	value Qual	value Qual	value Qual	value Qual	value Qual
Inorganics Aluminum		UG/L	19,600				25	65	204	219	37 J	59 J	23 U	50 U	23 UJ
Antimony		UG/L	4.4	GA	3	6	16	65	1 U	1 U	1 U	1 U	2.3 U	2 U	2.3 UJ
Arsenic		UG/L	7.8	MCL	10	0	2	65	4.2 U	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 UJ
Barium		UG/L	251	GA	1,000	n	65	65	70	79	99.1	99	61	63 J	28 J
Beryllium		UG/L	1.2	MCL	4	n	1	65	0.27 U	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 UJ
Cadmium		UG/L	1.7	GA	5	Ö	4	65	0.36 U	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0.095 UJ
Calcium		UG/L	195,000	0, 1	•	•	65	65	98,300 J	95,600	109,000 J	108,000 J	96,000	100,000	53,000 J
Chromium		UG/L	37.2	GA	50	0	4	65	0.84 U	0.88 U	0.9 U	0.9 U	2.5 U	2.5 U	2.5 UJ
Cobalt		UG/L	10.5	-		-	43	65	0.89 U	1.1 U	1.1 U	1.1 U	0.15 U	0.3 J	0.32 J
Copper		UG/L	46.7	GA	200	0	33	65	1.3 U	1.3 U	1.3 U	1.3 U	1.1 U	1.1 J	4.7 J
ltau		UG/L	25,500	GA	300	15	51	65	106	126	19 UJ	42 J	33 U	270 J	47 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	119	141	38.9	67.6 J	4.2 J	312	54.2 J
Lead		UG/L	103	MCL	15	1	11	65	2.9 U	2.9 U	2.9 U	2.9 U	0.2 U	0.5 U	0.2 UJ
Magnesium		UG/L	27,300				62	62	21,800 J	20,600	24,300	24,000	19,000	20,000 J	7,200 J
Manganese		UG/L	911	GA	300	2	60	65	13.2	14.9	38.9	25.6	4.2 J	42	7.2 J
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.12 U	0.12 U	0.1 U	0.1 ∪	0.091 U	0.091 U	0.14 J
Nickel		UG/L	34	GA	100	0	22	65	1.2 U	1.3 J	1 U	1 U	2 U	2 U	2 UJ
Potassium		UG/L	7,810				59	60	614 R	462 J	260 J	254 J	690	690 J	380 J
Selenium		UG/L	0	GA	10	0	0	65	6.1 U	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 UJ
Silver		UG/L	0	GA	50	0	0	65	1 U	1.3 U	1.3 ∪	1.3 U	0.25 U	0.18 U	0.25 UJ
Sodium		UG/L	366,000	GA	20,000	4	61	61	7,790 R	8,380	7,300 J	7,400 J	6,000 J	6,200 J	2,400 J
Thallium		UG/L	0.08	MCL	2	0	2	65	0.03 U	0.09 U	0.008 U	0.008 U	0.5 U	0.25 U	0.5 UJ
Vanadium		UG/L	32.8				2	65	0.78 U	0.98 U	1 U	1 U	3.8 U	3.2 U	3.8 UJ
Zinc		UG/L	935				35	65	4.7 J	4 J	3.6 ∪	3.6 U	8.3 U	8.4 U	8.3 UJ

Notes:

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

^{1.} The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-17 MW17-1 GW 17LM20020U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-1 GW 17LM20025F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-1 GW 17LM20025U 12/15/2013 SA LTM 6 Total	SEAD-17 MW17-1 GW 17LM20030F 12/20/2014 SA LTM 7 Dissolved	SEAD-17 MW17-1 GW 17LM20030U 12/20/2014 SA LTM 7 Total	SEAD-17 MW17-1 GW 17LM20035 12/21/2015 SA LTM 8 Total	SEAD-17 MW17-2 GW 17LM20001 12/20/2007 SA LTM 1 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics															
Aluminum		UG/L	19,600				25	65	50 UJ	23 UJ	50 UJ	23 U	50 U	18 J	110 J
Antimony		UG/L	4.4	GA	3	6	16	65	2.7 J	2.3 UJ	2 UJ	2.3 U	2 U	0.5 U	3.44
Arsenic		UG/L	7.8	MCL	10	0	2	65	1.3 UJ	1.3 J	1.3 UJ	1.3 U	1.3 ∪	1.5 U	4.2 U
Barium		UG/L	251	GA	1,000	0	65	65	28 J	60 J	56 J	44	41	70	58.8
Beryllium		UG/L	1.2	MCL	4	0	1	65	0.15 UJ	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.17 U	0.27 U
Cadmium		UG/L	1.7	GA	5	0	4	65	0.44 J	0.095 UJ	0.13 UJ	0.095 U	0.13 U	0.15 U	0.36 U
Calcium		UG/L	195,000				65	65	55,000 J	120,000 J	91,000 J	81,000	77,000	98,000	110,000 J
Chromium		UG/L	37.2	GA	50	0	4	65	2.5 UJ	2.5 UJ	2.5 UJ	2.5 U	2.5 U	1.6 U	0.84 U
Cobalt		UG/L	10.5				43	65	0.37 J	0.34 J	0.29 J	0.19 J	0.16 J	0.3 J	0.89 U
Copper		UG/L	46.7	GA	200	0	33	65	5.4 J	1,1 UJ	1.1 UJ	3.5 J	3.6 J	1.7 U	6.2 J
Iron		UG/L	2 5 ,500	GA	300	15	51	65	90 J	800 J	680 J	190	79 J	360	140
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	98.1 J	897 J	765 J	199.6	87.7	449	160
Lead		UG/L	103	MCL	15	1	11	65	1.1 J	0.2 UJ	0.5 UJ	0.23 J	0.5 U	0.98 U	2.9 ∪
Magnesium		UG/L	27,300				62	62	7,700 J	24,000 J+	19,000 J	14,000	13,000	19,000	11,000 R
Manganese		UG/L	911	GA	300	2	60	65	8.1 J	97 J	85 J	9.6	8.7	89	20.5
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.091 UJ	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.08 U	0.12 U
Nickel		UG/L	34	GA	100	0	22	65	2 UJ	2 UJ	2 UJ	2.5 J	2 U	1.9 U	1.2 U
Potassium		UG/L	7,810				59	60	410 J	500 J	400 J	280 J	330 U	520 J	1,690 R
Selenium		UG/L	0	GA	10	0	0	65	1.1 UJ	1 UJ	1.1 UJ	1 U	1.1 U	1 U	6.1 U
Silver		UG/L	0	GΑ	50	0	0	65	0.18 UJ	0.25 UJ	0.18 UJ	0.25 U	0.18 U	0.1 U	1 U
Sodium		UG/L	366,000	GA	20,000	4	61	61	2,500 J	6,000 J	4,800 J	3,700	3,500	6,400	6,620 R
Thallium		UG/L	0.08	MCL	2	0	2	65	0.25 UJ	0.5 UJ	0.25 UJ	0.5 U	0.25 U	0.49 U	0.03 U
Vanadium		UG/L	32.8				2	65	3.2 UJ	3.8 UJ	3.2 UJ	3.8 U	3.2 U	5.3 U	0.78 U
Zinc		UG/L	935				35	65	8.4 UJ	8.3 UJ	8.4 UJ	12 J	9 J	9.6 U	72 J

Notes

- The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)
 or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html
 is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Critoria	Criteria	Number of	Number of Times	Number of Samples	SEAD-17 MW17-2 GW 17LM20006 12/10/2008 SA LTM 2 Total	SEAD-17 MW17-2 GW 17LM20011FIL 11/17/2009 SA LTM 3 Dissolved	SEAD-17 MW17-2 GW 17LM20011UNFIL 11/17/2009 SA LTM 3 Total	SEAD-17 MW17-2 GW 17LM20015FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-2 GW 17LM20015UNF 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-2 GW 17LM20021F 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-2 GW 17LM20021U 12/11/2012 SA LTM 5 Total
Parameter		Unit	Value	Source		Exceedances		Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
inorganics		07111		000.00	2010	2110004411000		7 11 10 17 10 10	70,00 0,00						
Aluminum		UG/L	19,600				25	65	142 J	88 J	19,600	23 U	51 J	23 UJ	50 UJ
Antimony		UG/L	4.4	GA	3	6	16	65	2.76	2.2	3.7	2.3 U	2 ∪	4 J	4.4 J
Arsenic		UG/L	7.8	MCL	10	0	2	65	3.7 ∪	3.7 U	7.8 J	1.3 U	1.3 U	1.3 UJ	1.3 UJ
Barium		UG/L	251	GA	1,000	0	65	65	51.8	82.3	251	54	58 J	69 J	68 J
Beryllium		UG/L	1.2	MCL	4	0	1	65	0.33 U	0.3 U	1.2 J	0.25 U	0.15 U	0.25 UJ	0.15 UJ
Cadmium		UG/L	1.7	GA	5	0	4	65	0.33 U	0.3 U	1.7	0.095 U	0.13 U	0.095 UJ	0.13 UJ
Calcium		UG/L	195,000				65	65	112,000	154,000 J	195,000 J	140,000	150,000	120,000 J	120,000 J
Chromium		UG/L	37.2	GA	50	0	4	65	2.9 J	0.9 U	37.2	2.5 U	2.5 U	2.5 UJ	2.5 UJ
Cobalt		UG/L	10.5				43	65	1.1 U	1.1 U	10.5	0.32 J	0.46 J	0.39 J	0.42 J
Copper		UG/L	46.7	GA	200	0	33	65	4.4 J	2.9 J	46.7	1.5 J	1.9 J	7.7 J	7.8 J
Iron		UG/L	25,500	GA	300	15	51	65	115	19 UJ	25,500 J	33 U	130 J	33 UJ	44 UJ
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	121	1.5 J	25,929 J	23	173	12 J	14 J
Lead		UG/L	103	MCL	15	1	11	65	2.9 U	2.9 U	103	0.2 U	0.6 J	0.2 UJ	0.99 J
Magnesium		UG/L	27,300				62	62	11,200	18,200	23,300	18,000	19,000 J	12,000 J	12,000 J
Manganese		UG/L	911	GA	300	2	60	65	6.1	1.5 J	429	23	43	12 J	14 J
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0.091 UJ	0.091 UJ
Nickel		UG/L	34	GA	100	0	22	65	2.8 J	1.2 J	34	2 U	2 U	2 UJ	2 UJ
Potassium		UG/L	7,810				59	60	1,260 J	2,390	7,810	1,300 J	1,300	2,500 J	2,500 J
Selenium		UG/L	0	GA	10	0	0	65	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 UJ	1.1 UJ
Silver		UG/L	0	GA	50	0	0	65	1.3 ∪	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ
Sodium		UG/L	366,000	GA	20,000	4	61	61	7,860	19,800 J	20,300 J	14,000 J	14,000 J	8,400 J	8.400 J
Thallium		UG/L	0.08	MCL	2	0	2	65	0.09 U	0.008 ∪	0.2 Ú	0.5 ∪	0.25 U	0.5 UJ	0.25 UJ
Vanadium		UG/L	32.8				2	65	0.98 U	1 U	32.8	3.8 ∪	3.2 U	3.8 UJ	3.2 UJ
Zinc		UG/L	935				35	65	27.6	28.6	935	17 J	21	24 J	26 J

Notes: 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum			Number of	Number of Times	Number of Samples	SEAD-17 MW17-2 GW 17LM20026F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-2 GW 17LM20026U 12/15/2013 SA LTM 6 Total	SEAD-17 MW17-2 GW 17LM20031F 12/20/2014 SA LTM 7 Dissolved	SEAD-17 MW17-2 GW 17LM20031U 12/20/2014 SA LTM 7 Total	SEAD-17 MW17-2 GW 17LM20036 12/20/2015 SA LTM 8 Total	SEAD-17 MW17-3 GW 17LM20002 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-3 GW 17LM20007 12/10/2008 SA LTM 2 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	value Quar	value Qual
Inorganics Aluminum		UG/L	19,600				25	65	23 UJ	50 UJ	23 U	50 U	19 J	108 J	386
Antimony		UG/L	4.4	GA	3	6	16	65	2.3 UJ	2 UJ [3.2 J	3.3 J	0.63 J	1 U	1 U
Antimony		UG/L	7.8	MCL	10	0	2	65	1.3 UJ	1.3 UJ	1.3 U	1.3 U	1.5 U	4.2 U	3.7 U
Barium		UG/L	251	GA	1,000	0	65	65	46 J	47 J	63	57	66	39	29.3
Bervilium		UG/L	1.2	MCL	1,000	0	1	65	0.25 UJ	0.15 UJ	0.25 U	0.15 U	0.17 U	0.27 U	0.33 U
Cadmium		UG/L	1.7	GA	5	0	4	65	0.095 UJ	0.13 UJ	0.12 J	0.14 J	0.15 U	0.36 U	0.33 U
Calcium		UG/L	195,000	GA	5	U	65	65	180,000 J	150,000 J	130,000	120,000	160,000	69.000 J	67,200
Chromium		UG/L	37.2	GA	50	0	4	65	2.5 UJ	2.5 UJ	2.5 U	2.5 U	1.6 U	0.84 U	0.88 U
Cobalt		UG/L	10.5	GA	50	U	43	65	0.44 J	0.38 J	0.15 U	0.13 J	0.42 J	0.89 U	1.1 U
		UG/L	46.7	GA	200	0	33	65	1.1 UJ	1.1 UJ	6.4	6.3	2.4 J	2.6 J	2.8 J
Copper		UG/L	25,500	GA	300	15	51	65 [520 J	470 J	33 U	46 J	140	133	1,300
iron		UG/L	25,929	GA	500	13	56	60	594 J	534 J	2 J	50.1 J	175	170	1,573
iron+Manganese Lead		UG/L	103	MCL	15	1	11	65	0.2 UJ	0.5 UJ	0.2 U	0.5 U	0.98 U	2.9 U	2.9 U
Magnesium		UG/L	27,300	IVICL	13	'	62	62	24.000 J+	22,000 J	13,000	11.000	16,000	7,560 R	7,400
Manganese		UG/L	911	GA	300	2	60	65	74 J	64 J	2 J	4.1 J	35	36.7	273
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.091 UJ	0.091 UJ	0.091 U	0.091 U	0.08 U	0.12 U	0,12 U
Nickel		UG/L	34	GA	100	0	22	65	2 UJ	2 UJ	2 U	2.2 J	1.9 U	1.2 U	1.8 J
		UG/L	7.610	GA	100	U	59	60	1,100 J	1,000 J	1,600	1.600	1,600	2,620 R	1.840 J
Potassium			. ,	0.4	40	0	0	65	1,100 J	1.1 UJ	1 U	1.1 U	1 U	6.1 U	6.1 U
Selenium		UG/L UG/L	0	GA GA	10 50	0	0	65	0.25 UJ	0.18 UJ	0.25 U	0.18 U	0.1 U	1 U	1.3 U
Silver		UG/L	366,000	GA	20,000	4	61	61	16.000 J	14.000 J	8.800	7.800	12,000	4,550 R	5,500
Sodium Thallium		UG/L	0.08	MCL	20,000	4	2	65	0.5 UJ	0.25 UJ	0.5 U	0.25 U	0.49 U	0.03 U	0.09 U
				MCL	2	U	2	65	3.8 UJ	3.2 UJ	3.8 U	3.2 U	5.3 U	0.78 U	0.98 U
Vanadium		UG/L	32.8				35	65	11 J	9.3 J	28 J	40 J	26	27 J	14.2
Zinc Notes:		UG/L	935				35	60	11 3	9.5 J	, 200	40 3	20	2, 3	17.2

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#Inorganic.html is used. A blank cell indicates no criteria value available.

2.Data validation qualifier.

[empty cell] = data is not qualified
U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum	Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-17 MW17-3 GW 17LM20012FIL 11/18/2009 SA LTM 3 Dissolved	SEAD-17 MW17-3 GW 17LM20012UNFIL 11/18/2009 SA LTM 3 Total	SEAD-17 MW17-3 GW 17LM20017FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-3 GW 17LM20017UNF 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-3 GW 17LM20022F 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-3 GW 17LM20022U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-3 GW 17LM20027F 12/15/2013 SA LTM 6 Dissolved
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics															
Aluminum		UG/L	19,600				25	65	141 J	1,550 J	23 U	50 U	23 UJ	50 UJ	23 UJ
Antimony		UG/L	4.4	GA	3	6	16	65	1 U	1.5	2.3 U	2 U	2.3 UJ	2 UJ	2.3 UJ
Arsenic		UG/L	7.8	MCL	10	0	2	65	3.7 U	3.7 U	1.3 U	1.3 U	1.3 UJ	1.3 UJ	1.3 UJ
Barium		UG/L	251	GA	1,000	0	65	65	49.4	54.5	37	38 J	37 J	36 J	52 J
Beryllium		UG/L	1.2	MCL	4	0	1	65	0.3 U	0.3 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ
Cadmium		UG/L	1.7	GA	5	0	4	65	0.3 U	0.3 U	0.095 U	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ
Calcium		UG/L	195,000				65	65	99,400 J	95,900 J	90,000	93,000	74,000 J	67,000 J	130,000 J
Chromium		UG/L	37.2	GA	50	0	4	65	0.9 U	5.2	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ
Cobalt		UG/L	10.5				43	65	1.5 J	1.7 J	0.63	0.7	0.15 UJ	0.12 UJ	0.31 J
Copper		UG/L	46.7	GA	200	0	33	65	2.5 J	7.9 J	1.1 U	1.1 U	3.3 J	5 UJ	1.3 J
Iron		UG/L	25,500	GA	300	15	51	65	827 J	2,690 J	730 J	770 J	33 UJ	44 UJ	33 UJ
Iron+Manganese		UG/L	25,929	GA	500	13	56	60 [968 J	2,858 J	890	940	34 U	46 U	2.3 J
Lead		UG/L	103	MCL	15	1	11	65	2.9 U	8.6	0.2 U	0.5 U	0.24 J	0.78 J	0.35 J
Magnesium		UG/L	27,300				62	62	9,850	9,170	9,900	10,000 J	6,100 J	5,800 J	15,000 J+
Manganese		UG/L	911	GA	300	2	60	65	141	168	160	170	1 UJ	2 UJ	2.3 J
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.1 U	0.1 ∪	0.091 U	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ
Nickel		UG/L	34	GA	100	0	22	65	3.1 J	4.5 J	2 U	2 U	2 ŲJ	2 UJ	2 UJ
Potassium		UG/L	7,810				59	60	1,290	1,590	1,200 J	1,200	1,800 J	1,700 J	870 J
Selenium		UG/L	0	GA	10	0	0	65	6.1 U	6.1 U	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ
Silver		UG/L	0	GA	50	0	0	65	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ
Sodium		UG/L	366,000	GA	20,000	4	61	61	7,500 J	6,200 J	6,000 J	6,100 J	3,300 J	3,100 J	11,000 J
Thallium		UG/L	0.08	MCL	2	0	2	65	0.008 U	0.008 U	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ
Vanadium		UG/L	32.8				2	65	1 U	1.7 J	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ
Zinc		UG/L	935				35	65	21.1	45.7	8.3 ∪	12 J	29 J	26 J	35 J

Notes:

[empty cell] = data is not qualified

Page 18 of 23

The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

^{2.}Data validation qualifier.

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high
R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

^{3.} Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

^{4.} Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered					Northern	Marshar	Marka	SEAD-17 MW17-3 GW 17LM20027U 12/15/2013 SA LTM 6	SEAD-17 MW17-3 GW 17LM20032F 12/20/2014 SA LTM 7	SEAD-17 MW17-3 GW 17LM20032U 12/20/2014 SA LTM 7 Total	SEAD-17 MW17-3 GW 17LM20037 12/20/2015 SA LTM 8 Total	SEAD-17 MW17-4 GW 17LM20003 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-4 GW 17LM20008 12/10/2008 SA LTM 2 Total	SEAD-17 MW17-4 GW 17LM20013FIL 11/17/2009 SA LTM 3
	Filtered		Maximum	Critorio	Critoria	Number of	Number of Times	Number of Samples	Total	Dissolved	lotai	lotai	rotai	lotai	Dissolved
Parameter		Unit	Value	Source		Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Inorganics		Offic	Value	agaice	Level	EXCEBUAITCES	Defected	Allalyzeu	Value Qual	Value Qual	Value Quai	Value Qual	Value Qual	Agine (209)	Value Qua
Aluminum		UG/L	19,600				25	65	50 UJ	23 U	180	31 J	50.2 J	125 J	28 J
Antimony		UG/L	4.4	GA	3	6	16	65	2 UJ	2.3 U	2 U	0.5 U	1 U	0.62 J	1 U
Arsenic		UG/L	7.8	MCL	10	Õ	2	65	1.3 UJ	1.3 U	1.3 U	1.5 U	4.2 U	3.7 U	3.7 U
Barium		UG/L	251	GA	1.000	ő	65	65	53 J	41	38	51	32.5	35.9	36.3
Beryllium		UG/L	1.2	MCL	4	ō	1	65	0.15 UJ	0.25 U	0.15 U	0.17 U	0.27 ∪	0.33 U	0.3 U
Cadmium		UG/L	1.7	GA	5	0	4	65	0.13 UJ	0.095 U	0.13 U	0.15 U	0.36 U	0.33 U	0.3 U
Calcium		UG/L	195,000			•	65	65	110,000 J	73,000	69,000	100,000	74,900 J	74,700	96,600 J
Chromium		UG/L	37.2	GA	50	0	4	65	2.5 UJ	2.5 U	2.5 U	1.6 U	1 J	0.88 U	0.9 U
Cobalt		UG/L	10.5				43	65	0.3 J	0.15 U	0.12 J	0.12 U	0.89 U	2.4 J	1.5 J
Copper		UG/L	46.7	GA	200	0	33	65	1.1 J	13	15	1.7 U	1.8 J	1.8 J	1.3 U
Iron		UG/L	25,500	GA	300	15	51	65	110 J	33 U	160	43 J	45,4 J	1.760	60 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	112 J	5.1	166.1	44.8 J	59 J	2,671	258 J
Lead		UG/L	103	MCL	15	1	11	65	0.5 UJ	0.2 U	1.1 J	0.98 U	2.9 U	2,9 U	2.9 U
Magnesium		UG/L	27,300				62	62	15,000 J	5,800	5,600	11,000	10,400 R	10,200	12,900
Manganese		UG/L	911	GA	300	2	60	65	2 J	5.1	6.1	1.8 U	13.7	911	198
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.091 UJ	0.091 U	0.091 U	0.08 U	0.12 U	0.12 U	0.1 U
Nickel		UG/L	34	GA	100	0	22	65	2 UJ	2.6 J	2 J	1.9 U	1.2 U	2.6 J	2,2 J
Potassium		UG/L	7,810				59	60	840 J	1,400	1,500	810 J	838 R	1,190 J.	844
Selenium		UG/L	. 0	GA	10	0	0	65	1.1 UJ	1 U	1.1 U	1 U	6.1 U	6.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	65	0.18 UJ	0.25 U	0.18 U	0.1 U	1 U	1.3 U	1.3 U
Sodium		UG/L	366,000	GA	20,000	4	61	61	10,000 J	1,900	1,900	8,400	28,500 J	15,500	10,400 J
Thallium		UG/L	0.08	MCL	2	0	2	65	0.25 UJ	0.5 U	0.25 U	0.49 U	0.03 U	0.09 U	0.008 U
Vanadium		UG/L	32.8				2	65	3.2 UJ	3.8 U	3.2 U	5.3 U	0.78 U	0.98 U	1 U
Zinc		UG/L	935				35	65	33 J	42 J	44 J	27	5.1 J	6.7 J	3.6 U
Notes:															

^{1.} The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html
is used. A blank cell indicates no criteria value available.

2.Data validation qualifler.

[empty cell] = data is not qualified

U = compound not detected at concentration listed
J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading Indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum			Number of			SEAD-17 MW17-4 GW 17LM20013UNFIL 11/17/2009 SA LTM 3 Total	SEAD-17 MW17-4 GW 17LM20018FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-4 GW 17LM20018UNF 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-4 GW 17LM20023F 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-4 GW 17LM20023U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-4 GW 17LM20028F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-4 GW 17LM20028U 12/15/2013 SA LTM 6 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics			40.000				0.5	0.5	70	22.11	50 U	23 UJ	50 UJ	23 UJ	50 UJ
Aluminum		UG/L	19,600	0.4		6	25 16	65	70 J 1 U	23 U 2.3 U	2 U	2.3 UJ	2 UJ	2.3 UJ	2 UJ
Antimony		UG/L UG/L	4.4 7.8	GA MCL	3 10	0	2	65 65	3.7 U	1.3 U	1.3 U	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ
Arsenic		UG/L	7.8 251	GA	1.000	0	65	65	36.6	27	28 J	65 J	67 J	20 J	23 J
Barium Beryllium		UG/L	1.2	MCL	1,000	0	1	65	0.3 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ
Cadmium		UG/L	1.7	GA	-4 -5	0	4	65	0.3 U	0.095 U	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ
Calcium		UG/L	195,000	GA	3	0	65	65	97,600 J	90,000	88,000	83,000 J	87.000 J	96.000 J	93,000 J
Chromium		UG/L	37.2	GA	50	0	4	65	0.9 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ
Cobalt		UG/L	10.5	GA	30	U	43	65	1.3 J	0.96	1.1	0.21 J	0.25 J	1 J	1.1 J
		UG/L	46.7	GA	200	0	33	65	1.3 U	1.1 U	1.1 U	1.1 J	5 UJ	1.1 UJ	1.1 UJ
Copper		UG/L	25,500	GA	300	15	51	65	1.3 U 142 J	240 J	260 J	33 UJ	72 J F	810 J	810 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	355 J	370	400	9.5 J	83 J	1,090 J	1,090 J
Lead		UG/L	103	MCL	15	1	11	65	2.9 U	0.2 U	0.5 U	0.2 UJ	0.5 UJ	0.2 UJ	0.5 UJ
Magnesium		UG/L	27,300	IVICE	13	'	62	62	13,000	13,000	13,000 J	15,000 J	15,000 J	15,000 J+	15.000 J
Manganese		UG/L	911	GA	300	2	60	65	213	130	140	9.5 J	11 J	280 J	280 J
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.1 U	0.091 U	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ
Nickel		UG/L	34	GA	100	0	22	65	2.4 J	2 U	2 U	2 UJ	2.1 J	2 UJ	2 UJ
Potassium		UG/L	7,810	07	100	0	59	60	866	540	530 J	750 J	780 J	450 J	430 J
Selenium		UG/L	0	GA	10	0	0	65	6.1 U	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ	1.1 UJ
Silver		UG/L	0	GA	50	0	0	65	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ
Sodium		UG/L	366,000	GA	20,000	4	61 '	61	10.500 J	12,000 J	12,000 J	8,900 J	8,600 J	7,800 J	7,800 J
Thallium		UG/L	0.08	MCL	2	0	2	65	0.008 U	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ
Vanadium		UG/L	32.8		-	•	2	65	1 U	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ
Zinc		UG/L	935				35	65	3.6 U	8.7 J	8.4 U	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ

- Notes:

 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

Parameter	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered	Unit	Maximum			Number of			SEAD-17 MW17-4 GW 17LM20033F 12/20/2014 SA LTM 7 Dissolved	SEAD-17 MW17-4 GW 17LM20033U 12/20/2014 SA LTM 7 Total	SEAD-17 MW17-4 GW 17LM20038 12/21/2015 SA LTM 8 Total	SEAD-17 MW17-5 GW 17LM20004 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-5 GW 17LM20009 12/11/2008 SA LTM 2 Total	SEAD-17 MW17-5 GW 17LM20014FiL 11/17/2009 SA LTM 3 Dissolved	SEAD-17 MW17-5 GW 17LM20014UNFIL 11/17/2009 SA LTM 3 Total
Inorganics		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Aluminum		UG/L	19,600				25	65	23 U	50 U	18 U	98.5 J	125 J	29 J	98 J
Antimony		UG/L	4.4	GA	3	6	16	65	2.3 U	2 U	0.56 J	1 U	0.56 J	1	1
Arsenic		UG/L	7.8	MCL	10	0	2	65	1.3 U	1.3 U	1.5 U	4.2 U	3.7 U	3.7 U	3.7 U
Barium		UG/L	251	GA	1.000	0	65	65	27	27	29	86.7	82.9	166	168
Beryllium		UG/L	1.2	MCL	4	n	1	65	0.25 U	0.15 U	0.17 U	0.27 U	0.33 U	2 U	2 U
Cadmlum		UG/L	1.7	GA	5	0	À	65	0.095 U	0.13 U	0.15 U	0.38 U	0.33 U	0.3 U	0.3 U
Calcium		UG/L	195,000			•	65	65	80.000	75.000	80.000	97,100 J	97,300	184,000 J	185,000 J
Chromium		UG/L	37.2	GA	50	0	4	65	2.5 U	2.5 U	1.6 U	0.84 U	0.88 U	0.9 U	0.9 U
Cobalt		UG/L	10.5	•		•	43	65	0.31 J	0.24 J	1.1	0.89 U	1.1 U	1.1 U	1.1 U
Copper		UG/L	46.7	GA	200	0	33	65	2.3 J	2.8 J	1.7 U	1.3 U	1.5 J	1.3 U	1.3 U
Iron		UG/L	25,500	GA	300	15	51	65	120	130	59 J	91.7	76	19 UJ	34 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	260	250	158 J	128	85	24.3	61.4 J
Lead		UG/L	103	MCL	15	1	11	65	0.2 U	0.5 U	1.5 J	2.9 U	2.9 U	2.9 U	2.9 U
Magnesium		UG/L	27,300				62	62	12,000	11,000	11,000	15.800 J	15.600	27,100	27,300
Manganese		UG/L	911	GA	300	2	60	65	140	120	99	36.5	8.9	24.3	27.4
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.091 U	0.091 U	0.08 U	0.12 U	0.12 U	0.1 U	0.1 U
Nickel		UG/L	34	GA	100	0	22	65	3 J	2 J	2.1 J	1.2 U	1.2 J	1.7 J	1.8 J
Potassium		UG/L	7,810			-	59	60	480 J	420 J	500 J	972 R	824 J	1,920	1,960
Selenium		UG/L	0	GA	10	0	0	65	1 U	1.1 U	1 U	6.1 U	6.1 U	6.1 U	6.1 U
Silver		UG/L	0	GA	50	0	0	65	0.25 U	0.18 U	0.1 U	1 U	1.3 U	1.3 U	1.3 U
Sodium		UG/L	366,000	GA	20,000	4	61	61	7,700	7,300	6,000	7,950 R	7,360	364,000 J	366,000 J
Thallium		UG/L	0.08	MCL	2	0	2	65	0.5 U	0.25 U	0.49 U	0.03 U	0.09 U	0.08 J	0.08 J
Vanadium		UG/L	32.8		_	-	2	65	3.8 U	3.2 U	5.3 U	0.78 U	0.98 U	1 U	1 U
Zinc		UG/L	935				35	65	8.3 U	8.4 U	9.6 U	4.7 J	41.6	3.6 U	3.6 U
Notes:														*** *	

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value avallable.

2.Data validation qualifier.

[empty cell] = data is not qualified U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

s\Projects\Seneca Army Depot\SEAD-1617\Yr8\SEAD-16_17 GW LTM R1-8.xisx C:\Users\P0091241

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Maximum		Criteria	Number of		Number of Samples	SEAD-17 MW17-5 GW 17LM20019FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-5 GW 17LM20019UNF 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-5 GW 17LM20024F 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-5 GW 17LM20024U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-5 GW 17LM20029F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-5 GW 17LM20029U 12/15/2013 SA LTM 6 Total
Parameter		Unit	Value	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics														
Aluminum		UG/L	19,600				25	65	23 U	50 U	23 UJ	50 UJ	23 UJ	50 UJ
Antimony		UG/L	4.4	GA	3	6	16	65	2.3 U	2 U	2.3 UJ	2 UJ	2.3 UJ	2 UJ
Arsenic		UG/L	7.8	MCL	10	0	2	65	1.3 U	1.3 U	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ
Barium		UG/L	251	GA	1,000	0	65	65	81	82 J	24 J	26 J	75 J	86 J
Beryllium		UG/L	1.2	MCL	4	0	1	65	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ
Cadmium		UG/L	1.7	GA	5	0	4	65	0.095 U	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ
Calcium		UG/L	195,000				65	65	100,000	110,000	68,000 J	75,000 J	110,000 J	100,000 J
Chromium		UG/L	37.2	GA	50	0	4	65	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ
Cobalt		UG/L	10.5				43	65	0.17 J	0.19 J	0.31 J	0.31 J	0.2 J	0.22 J
Copper		UG/L	46.7	GA	200	0 ,	33	65	1.1 U	1.1 U	3.7 J	5 UJ _	1,1 UJ	1.1 UJ
Iron		UG/L	25,500	GA	300	15	51	65	83 J	110 J	44 J	160 J	350 J	140 J
Iron+Manganese		UG/L	25,929	GA	500	13	56	60	118	145	82 J	219 J	374 J	167 J
Lead		UG/L	103	MCL	15	1	11	65	0.2 U	0.5 U	0.2 UJ	0.5 UJ	0.2 UJ	0.5 UJ
Magnesium		UG/L	27,300				62	62	17,000	18,000 J	9,900 J	11,000 J	18,000 J+	17,000 J
Manganese		UG/L	911	GA	300	2	60	65	35	35	38 J	59 J	24 J	27 J
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.091 U	0.091 U	0.12 J	0.091 UJ	0.091 UJ	0.091 UJ
Nickel		UG/L	34	GA	100	0	22	65	2 U	2 U	2 UJ	2 UJ	2 UJ	2 UJ
Potassium		ŲG/L	7,810				59	60	1,600 J	1,600	460 J	460 J	1,200 J	1,100 J
Selenium		UG/L	0	GA	10	0	0	65	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ	1.1 UJ
Silver		UG/L	0	GA	50	0	0	65	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ
Sodium		UG/L	366,000	GA	20,000	4	61	61	8,200 J	8,300 J	9,400 J	9,100 J	5,400 J	5,300 J
Thallium		UG/L	0.08	MCL	2	0	2	65	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ
Vanadium		UG/L	32.8				2	65	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ
Zinc		UG/L	935				35	65	20	8.4 U	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ

Notes:

2.Data validation qualifier.

[empty cell] = data is not qualified

- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value.
 - SA = Sample
 - DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

Parameter	Area Loc ID Matrix Sample Date QC Type Study ID Sample Round Filtered	Unit	Maximum Value	î Criteria Source	Criteria Level	Number of Exceedances	Number of Times	Number of Samples Analyzed	SEAD-17 MW17-5 GW 17LM20034F 12/20/2014 SA LTM 7 Dissoived	SEAD-17 MW17-5 GW 17LM20034U 12/20/2014 SA LTM 7 Total	SEAD-17 MW17-5 GW 17LM20039 12/20/2015 SA LTM 8 Total
Inorganics		OINL	value	Source	Level	Exceedances	Detected	Allelyzeu	value Qual	value Qual	value Qual
Aluminum		UG/L	19,600				25	65	23 U	50 U	18 U
Antimony		UG/L	4.4	GA	3	6	16	65	2.3 U	2 U	0.5 U
Arsenic		UG/L	7.8	MCL	10	ŏ	2	65	1.3 U	1.3 U	1.5 U
Barium		UG/L	251	GA	1.000	ő	65	65	83	92	86
Beryllium		UG/L	1.2	MCL	4	ő	1	65	0.25 U	0.15 U	0.17 U
Cadmium		UG/L	1.7	GA	5	0	4	65	0.095 U	0.13 U	0.15 U
Calcium		UG/L	195,000				65	65	91.000	100.000	100,000
Chromium		UG/L	37.2	GA	50	0	4	65	2.5 U	2.5 U	1.6 U
Cobalt		UG/L	10.5				43	65	0.15 U	0.12 U	0.14 J
Copper		UG/L	46.7	GA	200	0	33	65	1.1 U	2.6 J	1.7 U
Iron		UG/L	25,500	GA	300	15	51	65	33 U	55 J	43 J
iron+Manganese		UG/L	25,929	GA	500	13	56	60	34 U	46 U	48.8 J
Lead		UG/L	103	MCL	15	1	11	65	0.2 U	0.5 U	0.98 U
Magnesium		UG/L	27,300				62	62	14,000	15,000	17,000
Manganese		UG/L	911	GA	300	2	60	65	1 U	2 U	5.8
Mercury		UG/L	0.14	GA	0.7	0	2	65	0.091 U	0.091 U	0.08 U
Nickel		UG/L	34	GA	100	0	22	65	2.8 J	2 U	1.9 U
Potassium		UG/L	7,810				59	60	810	860 J	1,300
Selenium		UG/L	0	GA	10	0	0	65	1 U	1.1 U	1 U
Silver		UG/L	0	GA	50	0	0	65	0.25 U	0.18 U	0.1 U
Sodium		UG/L	366,000	GA	20,000	4	61	61	4,900	4,900	5,800
Thallium		UG/L	0.08	MCL	2	0	2	65	0.5 U	0.25 U	0.49 U
Vanadium		UG/L	32.8				2	65	3.8 U	3.2 U	5.3 U
Zinc		UG/L	935				35	65	8.3 U	8.4 U	9.6 U
Notes:											

1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html

is used. A blank cell indicates no criteria value available. 2.Data validation qualifier.

[empty cell] = data is not qualified

U = compound not detected at concentration listed
J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations UJ = detection limit is estimated.

3. Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

4. Rejected values are not included in the number of samples analyzed.

C:\Users\P0091241 .\Projects\Seneca Army Depot\SEAD-1617\Yr8\SEAD-16_17 GW LTM R1-8.xlsx

APPENDIX E

LABORATORY ANALYTICAL REPORT

Laboratory Reports are provided on the CD version of this report.

P:JP11Projects/Huntsville Cont wys12D7-de-D-dougs110#10 - E11M alia EUU/SEAD 10 alia 17 E11M/mouna 0 Deu

APPENDIX F

DATA VALIDATION

PROJECT NAME/NO.

USACE - Seneca Army Depot SEAD-16/17 LTM Round 8

LAB: SDG: TestAmerica

FRACTION:

680-120341-1 Metals (SW846 6020A)

MEDIA:

Groundwater

12

NUMBER OF SAMPLES:

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Matrix Spike/Matrix Spike Duplicates	No	MS/MSD: 1 per 20 project samples or each preparation batch. Recoveries within lab limits. MS/MSD %RPDs <= 20%. Spike Recovery limits 75- 125%	Sample 16LM20054 was designated for MS/MSD analysis. All precision and accuracy results were acceptable with the exception of potassium (-146%R/-140%R) and antimony (-87%R/-96%R). The post digestion spike also experienced low recoveries for potassium (-18%R) and antimony (13%R). Therefore, the positive potassium and antimony results for the parent sample were considered estimated, possibly biased low, and qualified "J-".	Yes
ICP Interference Check Sample (ICS)	Yes	ICS results within 80-120%.	All concentrations detected in all samples within the ICP Linear Range. No action was taken.	No
ICP Tune Analysis	Yes	RSD < 5%	All isotopes of each analyte had a RSD < 5%.	No
Internal Standard	Yes	Intensity within 60-125%	IS had %RI within acceptance limits.	No
Serial Dilution	No	Performed on samples of a similar matrix or 1 per 20 samples. %D ≤ 10% conc ≥ 25xDL (7470A/7471A) and 10x IDL (6010B) for 5-fold dilution.	Serial dilution was conducted on sample 16LM20054 with all results considered compliant with the exception of the serial dilution results for barium (80%D), caclcium (79%D), potassium (78%D), magnesium (80%D), sodium (79%D), and antimony (80%D). Therefore, positive results for these analytes were considered estimated and qualified "J" for the parent sample	Yes
Total/Dissolved Comparison	Yes	%RPD less than 20%	Samples were collected for total analysis.	No
Field Duplicate Precision	No	%RPD less than 30%	Sample 16LM20055 was collected as the field duplicate sample of 16LM20054. Precision results were considered acceptable with the exception of barium (129%RPD), calcium (129%RPD), potassium (123%RPD), magnesium (132%RPD), manganese (111%RPD), sodium (118%RPD), lead (131%RPD), and antimony (145%RPD). Results for these analytes for samples 16LM20054 and its duplicate16LM20055 were considered estimated and qualified "J" based upon field duplicate precision outliers.	Yes

RT = Reterrition Time; %D = Percent Deviation; %RPD = Relative Percent Difference; %RSD = Percent Relative Standard Deviation; RRF = Relative Response Factor; CCV = Continuing Calibration Verification TCL = Target Compound List; MS = Matrix Spike; MSD = Matrix Spike Duplicate;

PROJECT NAME/NO. USACE - Seneca Army Depot SEAD-16/17 LTM Round 8

 LAB:
 TestAmerica

 SDG:
 680-120341-1

 FRACTION:
 Metals (SW846 7470A)

MEDIA: Groundwater

NUMBER OF SAMPLES: 12

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Preservation	Yes	Cooler temp < 10 C. Holding Time Hg < 28 days, all other metals < 180 days from collection.	Coolers were received at 1.2-1.6°C by the laboratory. All samples were received in good condition based on the laboratory login report. Samples were properly preserved and had pH < 2.	No
Calibration	Yes	r^2 ≥ 0.995 CCV every 10 samples or 2 hours ICV/CCV %R btw 80-120% (specific to Hg)	Calibrations available, taken every ten samples, and within recovery limits (80-120%).	No
Blanks (prep blank, ICB, CCB)	Yes	Method blanks: 1 per 20 project samples.	ICB, CCB, and preparation blanks did not contain mercury.	No
CRDL Standard	Yes	CRDL results btw 70-130%	CRDL analyses for Hg conducted at the beginning and end of the analysis. All met requirements.	No
Laboratory Control Sample	Yes	LCS/LCSD: 1 per 20 project samples or each preparation batch. LCS limits within 80-120%.	All LCSs within QC limits.	No
Duplicates	Yes	RPD < 20% or Absolute Diff < RL when samp/dup value < 5x RL	All laboratory duplicate results were within criteria for mercury.	No
Matrix Spike/Matrix Spike Duplicates	Yes	MS/MSD: 1 per 20 project samples or each preparation batch. Recoveries within lab limits. MS/MSD %RPDs <= 20%. Spike Recovery limits 75-125%		No
ICP Interference Check Sample (ICS)	Yes	ICS results within 80-120%.	ICP Interference Check was performed and all recoveries were within acceptance limits.	No
Serial Dilution	NA	Performed on samples of a similar matrix or 1 per 20 samples. %D ≤ 10% conc ≥ 25xDL (7470A/7471A) and 10x IDL (6010B) for 5-fold dilution.		NA
Total/Dissolved Comparison	Yes	%RPD less than 20%	All samples were collected for total analysis.	No
Field Duplicate Precision	Yes	%RPD less than 30%	Sample 16LM20055 was collected as the field duplicate of 16LM20054. Mercury was not detected in either sample.	No

APPENDIX G HISTORICAL GROUNDWATER TRENDS

Note:
Black markers - Antimony was not detected (MDL plotted).

	·	

SEAD 17 Concentration Antimony Over Time

SEAD 16/17 Annual Report Seneca Army Depot Activity

Black markers - Antimony was not detected (MDL plotted).

SEAD 16 Concentration of Iron Over Time

SEAD 16/17 Annual Report Seneca Army Depot Activity

Black markers - Iron was not detected (MDL plotted).

SEAD 17 Concentrat, of Iron Over Time

SEAD 16/17 Annual Report Seneca Army Depot Activity

Black markers - Iron was not detected (MDL plotted).

SEAD 16 Concentration of Lead Over Time

SEAD 16/17 Annual Report Seneca Army Depot Activity

Note:

Black markers - Lead was not detected (MDL plotted).

SEAD 17 Concentrati of Lead Over Time SEAD 16/17 Annual Report

Seneca Army Depot Activity

Black markers - Lead was not detected (MDL plotted).

SEAD 16 Concentration of Manganese Over Time

SEAD 16/17 Annual Report Seneca Army Depot Activity

Note:
Black markers - Manganese was not detected (MDL plotted).

SEAD 17 Concentration . Manganese Over Time

SEAD 16/17 Annual Report Seneca Army Depot Activity

Black markers - Manganese was not detected (MDL plotted).

SEAD 16 Concentration of Thallium Over Time

SEAD 16/17 Annual Report Seneca Army Depot Activity

Note:
Black markers - Thallium was not detected (MDL plotted).

SEAD 17 Concentratio. I Thallium Over Time

SEAD 16/17 Annual Report Seneca Army Depot Activity

Note:

Black marker - Thallium was not detected (MDL plotted).

	0

Army's Response to Comments from the United States Environmental Protection Agency

Subject: Draft 2016 Year 8 Annual Report, SEAD-16/17 Seneca Army Depot Activity Romulus, New York

Comments Dated: October 18, 2016

Date of Comment Response: February 21, 2017

Army's Response to Comments

General Comment: Presented below are review comments for the subject document dated August 2016 (Annual Report). EPA recommends a modification to the sampling frequency as response to your sampling discontinuing recommendation. We recommend two additional rounds of sampling within the next five years, but prior to the next five-year review. One round should be done during Spring and the other one during Autumn.

Response: Agreement was reached between the EPA and Army via email dated 28 October 2016 to conduct the next round of groundwater sampling at SEAD-16/17 in 2019 (year 3 of the FYR cycle). This will allow for an additional round of sampling, if necessary, before the next 2021 five-year review. This decision was documented in the Recommendations section of the Annual Report.

Comment 1: All monitoring wells were sampled during 1996 before the RA. The results of the sampling should be included on "time lines" for each well so that a comparison can be readily made with the results from post RA monitoring. It is noted that additional constituents were analyzed for as part of the RI.

Response 1: Plots for each well at SEAD-16 and SEAD-17 are presented in Appendix G. The plots present the pre-LTM and LTM groundwater data for analytes (antimony, iron, lead, manganese, and thallium) that had more than 2 exceedances in the RA. Sodium was not included as it is not a site-related COC. In general, concentrations of all analytes have decreased after the RA.

Comment 2: Tables 1 and 2 provide information regarding the monitoring well measuring point elevations and the measurements used to establish groundwater table elevations. A review of the survey data reveals issues with the accuracy and precision of the elevation survey data. As an example, Monitoring Well MW16-7 was assigned a top of PVC elevation of 734.42 feet (NAVD 88) – the survey date is not provided, and a re-survey using GPS RTK equipment in Nov 2012 identified the top of PVC casing elevation as 732.96 feet. This is a difference of over half a foot. Similarly, the revised measuring point elevation for MW16-4 from the two surveys also exceeds half a foot. Note that the revisions are not consistent for each well. The tables indicate previous instances where a specific monitoring well elevation was re-surveyed due to damage. These factors are mentioned as there appears to be an uncertainty regarding the actual groundwater table and flow directions, (Figure 5 and text). The water table groundwater gradient appears very "flat" in this area and a need for better accuracy, precision and number of measuring points is apparent. I suggest the installation of piezometers be considered so that more representative water level measurements can be obtained for use on the LTM program. Further, it appears the specific well water levels were measured as part of each well purging and

		,

Army's Response to USEPA Comments on Draft 2016 Year 8 Annual Report, SEAD 16/17 Seneca Army Depot Activity Page 2 of 3

sampling event. For better accuracy, it would be appropriate to take a synoptic round of water level measurements at all wells and then initiate and conduct the purging and sampling event.

Response 2: Prior to sampling, a synoptic round of water level measurements are collected from all of the SEAD-16 and SEAD-17 monitoring wells (e.g., Table 1, Appendix C). The differences in the change in elevation between wells are a result of the different amounts of frost heave each well experiences during the winter. The elevations of the wells were remeasured using GPS. The groundwater flow direction has been consistent over the length of LTM and the most current elevations agree with historical groundwater flow directions. With the limited amount of events remaining (i.e., one to two) no additional information is expected to be gained by resurveying the wells.

Comment 3: It is noted that the monitoring well network age exceeds 20 years. I suggest it is time to redevelop the wells to remove potential silt and materials to ensure good connection between the screen and aquifer.

Response 3: Agreed. The wells associated with LTM at SEAD-16/17 will be redeveloped prior to the next sampling event in 2019.

Comment 4: There have been a number of exceedances reported for more than one constituent of concern at both SEAD 16 and SEAD 17, with only a limited database available to enable long term trends and monitoring of the groundwater quality to conclude LTM. The discussion on increasing sodium concentrations is noted, but the impacted area should be provided on a map with the suspected source located. An additional monitoring point may be appropriate between the SEAD areas and the source to provide a more technical foundation for the allegation of the DOT as the source.

Response 4: As discussed in the report, Section 3.1.6.1, the source of the elevated sodium concentrations is most likely the nearby highway department salt storage pile (noted in Figure 5). Sampling has not been conducted at the salt pile, or immediately downgradient of it, as it is not a CERCLA release; the Army does not plan on conducting any sampling in this location.

SPECIFIC COMMENTS

Comment 1: Figure 6C, Concentration of Iron Over Time at SEAD 16, and Figure 6D, Concentration of Iron Over Time at SEAD 17: The Y-axis on the graphs presented in these figures is labeled "Lead Concentration (ug/L)." However, these figures should present iron results. Revise these figures to include "Iron Concentration (ug/L)" as the label on the Y-axis.

Response 1: The Y-axis of Figure 6C was corrected to reflect that it represents the concentration of iron.

Comment 2: Annual Report Appendix F, Data Validation: The data validation report for metals analysis by SW846 Method 6020A indicates that only the parent sample was impacted due to exceedances of matrix spike/matrix spike duplicate (MS/MSD) recovery limits for potassium and antimony. The data validation report for metals analysis by SW846 Method 6020A also indicates that only the parent sample was impacted due to exceedances of serial dilution recovery limits for barium, calcium,

Army's Response to USEPA Comments on Draft 2016 Year 8 Annual Report, SEAD 16/17 Seneca Army Depot Activity Page 3 of 3

potassium, magnesium, sodium, and antimony. However, the MS/MSD and serial dilution are batch quality control (QC) samples, and all associated samples within the analytical batch should be qualified when recoveries of metals MS/MSDs and serial dilutions exceed the acceptance criteria, since the accuracy of each sample is not checked for metals analyses. Revise the Annual Report to qualify all samples within the analytical batch due to these metals QC exceedances, or provide sufficient justification to clarify how it was determined that only the parent sample was impacted.

Response 2: According to the USEPA Region 2 SOP for reviewing metals data, it is stated that

"For a Matrix Spike that does not meet the technical criteria, apply the action to only the field sample used to prepare the Matrix Spike sample."

and

"For a serial dilution that does not meet the technical criteria, apply the action to only the field sample used to prepare the serial dilution sample."

Comment 3: Annual Report Appendix F, Data Validation: The data validation report for metals analysis by SW846 Method 6020A indicates that precision results for sample 16LM20055 (the field duplicate sample of 16LM20054) were considered acceptable with the exception of barium, calcium, potassium, magnesium, manganese, sodium, lead, and antimony, and that the results for these analytes were considered estimated and qualified "J". However, the data validation report does not indicate which samples were qualified. Revise the data validation report to clarify that only the sample (16LM20054) and the associated field duplicate (16LM20055) were qualified as estimated.

Response 3: The data validation report will be revised to clarify that only the sample 16LM20054 and its field duplicate sample 16LM20055 were qualified as estimated based upon field duplicate precision outliers.