U.S. ARMY ENGINEER DIVISION HUNTSVILLE, ALABAMA

SENECA ARMY DEPOT ACTIVITY (SEDA)

PEER REVIEW QUESTIONNAIRE PACKAGE SEAD-11 OLD CONSTRUCTION DEBRIS LANDFILL

U.S. Army Environmental Peer Review Program Installation Information Form

SITE SUMMARY QUESTIONNAIRE

SEAD-11 The Old Construction Debris Landfill

- 1. Summarize the basis for environmental concern at this site (i.e. Why was Preliminary Assessment (PA) performed?). Use a site-specific conceptual site model (CSM) similar to the generic example, to address the following questions for each contaminant source under investigation at the facility.
- 1) The basis for environmental concern are potential releases that may have occurred from land disposal of construction debris. The concern was from uncertainty regarding what may have been disposed of in the landfill since accurate disposal records were not kept and the contents of the landfill are unknown. The landfill may be a location where hazardous materials may have been disposed of since it operated during a time period, i.e.from pre-1954 to 1981, when environmental regulations did not adequately address disposal of such materials.

The site was not initially identified by US Army Toxic and Hazardous Materials Agency (USATHAMA) during the initial assessment of the Seneca facility, "Installation Assessment of Seneca Army Depot, Report No. 157 January of 1980". However, the Old Construction Debris Landfill site was identified as a site in the follow-up report to the initial assessment report. The follow-up report, titled "Update of the Initial Installation Assessment of Seneca Army Depot, NY", Report 157(U), August 1988, identified the Old Construction Debris Landfill as a Solid Waste Management Unit (SWMU) and named the site SEAD-11. The report identified this as a site where "hazardous materials had been stored or disposed of and could be releasing hazardous substances to the environment". The report also recommended that SEDA "coordinate the SWMU list with EPA, Region II, and NYSDEC and implement a sampling program, including SEAD SWMUs 3, 4, 6, 8, 11, 14, 16, 17, 18, 19, 23, 24, 25 and 26". The update report reviewed aerial photographs and toured each site but did not identify any problems associated with the tour. The report notes, however, that the tour was conducted when the site was covered in snow, and suggested that the visual inspection was not adequate for evaluation of the site. No historical analytical data were discovered for this SWMU.

As a result of the identification and classification of the site as a SWMU by USATHAMA, the site was included as a SWMU during the SWMU classification process that was performed during the RCRA Part B permit submittal. The process SWMU identification and classification was mandated by the EPA Region II and by NYSDEC, and the U.S. Army Corps of Engineers commissioned the "Solid Waste Management Unit (SWMU) Classification Report" at SEDA (ERCE 1991). This report was finalized by

Parsons ES on June 10, 1994. This work was performed to evaluate the effects of past solid waste management practices at identified SWMUs on the facility and to classify each SWMU as an area where "No Action is Required" or as an "Area of Concern" (AOC). Areas of Concern include both (a) SWMUs where releases of hazardous substances may have occurred and (b) locations where there has been a threat of a release into the environment of a hazardous substance or constituent. AOCs included landfill units, such as the Old Construction Debris Landfill area, that are known or suspected to have caused a release into the environment or whose integrity has not been verified. The 1994 Solid Waste Management Unit (SWMU) Classification Study identified the Old Construction Debris Landfill as a SWMU, designated as SEAD-11, and classified the SWMU as a moderate priority area of concern based on the suspected release of pollutants at the site. (ES, 1994). Based upon this classification a Preliminary Assessment, an Expanded Site Inspection (ESI), was performed in 1993 and documented in the report titled "Expanded Site Inspection (ESI) Report for Three Moderate Priority SWMUs, (May 1995).

The Old Construction Debris Landfill is located in the southwestern portion of SEDA immediately southwest of the intersection of Indian Creek Road and the SEDA railroad tracks. The site is located within the future conservation/recreational area. The landfill, which covers approximately 4 acres (590 feet by 300 feet), is currently abandoned and the surface is vegetated with grasses and weeds. The Site Location and Final Land Use Plan figure identifies the location of SEAD-11 at the depot and relative to other sites. The attached Figure 1.1-12 provides a closer view of the site. The is characterized by an area which exhibits a pronounced topographic high that defines its general kidney shape, see Figure 1.1-12. There are no developed portions of the site.

The site is bound to the east by SEDA railroad tracks beyond which is a steep upward scarp and a gently westward sloping field with grass and low brush. South of the site is dense low brush. West of the site is an open grass field that ends at the fenced SEDA boundary located approximately 700 feet west of the "toe" of the landfill. The site is bound to the north by Indian Creek Road beyond which is an open grass field which gives way to trees and low brush several hundred feet from the road.

The relief of the landfill is well defined on the generally west-sloping regional topography in the area. On the landfill surface the topography slopes mostly to the northwest. The apparent thicker fill in the southern and western portions of the landfill results in steep scarps on the south and southwestern sides of the landfill and more gently sloping hills on the north and northwestern sides. While the majority of the landfill surface is grass-covered, the southern perimeter of the landfill is vegetated with deciduous trees. The southern and southwestern scarps of the landfill are characterized by assorted construction debris including metal and wood.

Access to the site is provided via a dirt road which enters the site approximately 50 feet west of the intersection of Indian Creek Road and the SEDA railroad tracks. Within SEDA, pedestrian and vehicular

access to the site is currently restricted since the site is located within the ammunition storage area but this restriction will be eliminated as the depot is closed.

- a) Describe the potential sources of contamination at each site that are being evaluated.
- a) The potential sources of contamination includes residual materials deposited in the landfill. The range of components that could have been placed in the landfill could include waste materials from any of the activities that have been on-going at the depot since the 1940's.
- b) Describe the potential migration pathway and receptors for each pathway being evaluated in the CSM. Discuss the release mechanism, the transport media, the potential exposure being evaluated, and the data needed to characterize identified chemical migration pathways, i.e., from the source to the receptor.
- b) The attached Exposure Pathway Summary figure, Figure 11-1, presents the conceptual site model for the Old Construction Debris Landfill, (SEAD-11). Landfilling of wastes within the 4 acre landfill area is the source of the waste materials present. The wastes are expected to remain within or near the landfill area unless released to the surrounding environment due to runoff/erosion or leachate infiltration to subsurface soils or groundwater. Leachate can also breakout from the edges for the landfill and enter surface water through the drainage ditches that surround the landfill. The landfill is an elevated mound situated along the western slope of the depot and is subjected to erosion. Indian Creek, a Class C surface water body, is located to the west of the landfill along Indian Creek Road. Migration pathways and transport mechanisms have been identified as:
- Leaching of waste residues to subsurface soils due to dissolution with infiltrating rainfall;
- Leaching of waste residues to groundwater due to dissolution with infiltrating rainfall:
- Runoff to surface water and sediment due to erosion.

The site is currently fallow and landfilling is no longer a depot approved waste management technique. The site is occasionally visited by SEDA workers for mowing or security purposes. Future uses included recreational/conservation uses. Following BRAC closure, this site will be part of a large recreational/conservation area that will potentially be used for hiking, camping, etc. There is also a potential that the area could be a managed recreational area. Realistic future human exposure scenarios include: an adult site worker (ranger), an adult and child site visitor (camper) and a future construction worker. The potential for constructing a shower facility for campers and the site worker have been included, since the site may be used by the state in this manner. The actual future use of the facility has not been established with certainty, other than as a conservation recreational area, because discussions with the State of New York Fish and Wildlife Service regarding their willingness to accept this and other sites are still ongoing. Based upon the understanding that the site will be used for these purposes, the migration pathways for human health receptors, as shown in Figure 11-1, include the following:

Pathway 1

Receptors

Ingestion and dermal contact from subsurface soil from burrowing (ecological) and construction activities; Future Construction Worker, Terrestrial Biota

Inhalation, ingestion and

Future Site Worker, Future Adult/Child Site Visitor

' dermal contact to groundwater from drinking and showering;

et to Future Adult/Child Site Visitor, Terrestrial Biota

Ingestion and dermal contact to surface water and sediment during wading or swimming (ecological)

The release mechanisms for these pathways include;

Pathway	Release Mechanisms
Subsurface Soil	Direct deposition;
Groundwater	Infiltration and percolation;
Surface Water	Runoff and erosion.
and Sediment	

In order to completely evaluate these potential chemical migration pathways, data needs include the following;

Pathway	Data Needs
Subsurface Soil	Subsurface soil samples
Groundwater	Monitoring wells and ground water samples
Surface Water	Surface water and sediment samples
and Sediment	

c) Describe the potential contaminants of concern (COCs) for each source and chemical migration pathway.

- c) The source of COCs are the residuals that may exist within the landfill. The primary constituents of concern include:
- Volatiles,
- Semi-volatiles.
- Nitroaromatics (Explosives),
- Herbicides,
- Pesticides,
- Metals.

The chemical migration pathways have been described in Part b.

- 2. For each identified source, pathway, receptor combination, identify the decisions to be made using the data that have been (will be) collected. For each decision, identify the decision criteria to be used to make the decision. Please identify the specific criteria for making the decisions. Examples of Decision Criteria (D.C.) are shown below:
- Risk (human health or ecological)
- Applicable, Relevant, or Appropriate Requirements (ARARs)
- Technology, or
- Other (please specify)
- 2) Investigatory and remedial efforts have been performed in accordance with the decision process outlined in the Interagency Agreement (IAG), also known as the Federal Facility Agreement (FFA), the requirements of the Army, the New York State Department of Environmental Conservation (NYSDEC) and the U.S. Environmental Protection Agency, Region II (EPA). The IAG established an incremental agenda that began with an initial identification of each SWMU and culminates with a Record of Decision (ROD) for each SWMU. On-going clarifications, improvements and refinements have been incorporated into the decision process.

The overall decision process is depicted in Figure 11-2 titled "Seneca Army Depot Activity Decision Criteria Remediation Flowchart". A key aspect of the process is to allow for a site to exit the process, requiring no further action, if site conditions are shown to meet the decision criteria. In many instances exiting the process occurs prior to conducting a full RI/FS program. This was essential given the nature and extent of contamination at many of the sites and the number of sites that have been identified at SEDA that will required a final outcome decision.

The decision process involves implementing a series of baseline actions. Decisions are integrated into the baseline action process to justify the actions to be taken. Supplemental actions, such as collecting additional data, are conducted, where necessary, to provide support for the baseline actions. The final action for each SWMU or AOC involves preparation of either a completion report, a ROD or a closeout report. These reports provide documentation that site conditions have met the requirements of the decision process.

The process is divided into six (6) distinct phases. These include:

- 1. The Site Classification Phase.
- 2. The Preliminary Assessment Phase.
- 3. The Interim Remedial Measures (IRM) Phase,
- 4. The Remedial Investigation Phase (RI) Phase,
- 5. The Feasibility Study (FS) Phase and

6. The Remedial Design/Remedial Action (RD/RA) Phase.

Each phase is further divided into a series of actions that result from the decisions. As depicted in Figure 11-2, each decision is identified with a letter, whereas each action is identified with a number so that the status of each site can be identified. This provides an easy mechanism to understand what decisions have been made and what decisions need to be made. Each of the six phases of the process allow the site to exit the process. The effort involved in exiting the process is dependent upon the phase involved and the information required to document that conditions are within the required limits. In some cases this involves a comparison to an appropriate State and Federal Standard, Guideline and Criteria (SGC). In other instances, this will involve completion of a remedial action or an Interim Remedial Measure (IRM).

The first phase is the site classification phase. Site classification begins with an initial identification of a site and ends with a determination that the site has either impacted the environment or it has not, in which case no further action is required and unrestricted use is allowed. At SEDA, the list of potential sites were compiled, by SEDA staff, during the preparation of the RCRA Part B permit, that requires a listing of SWMUs. The list of SWMUs was developed from a variety of sources. Active, on-going depot operations involving waste generation and management were obvious candidates for SWMUs. Past operations and lesser known disposal practices were identified from interviews with current and former depot employees. The initial list of SWMUs identified in the Part B permit application was 72. Recently, as part of the BRAC closure process, the Environmental Baseline Survey (EBS) was prepared that involved additional interviews with former employees and field reconnaissance. These efforts identified an additional 25 potential SWMUs. The key decision point in this phase involves determining whether or not site conditions have impacted the environment. In many instances this decision was made from historical records or an understanding of the processes involved, without collecting additional field data. In other instances, this required some limited sampling. Twenty-four (24) SWMUs have been eliminated from further consideration during this phases as No-Action SWMUs, although some of the newly identified sites have not been evaluated yet. SWMUs that proceed further in the process are considered to be Areas of Concern (AOC).

The second phase is the Preliminary Assessment Phase. This phase begins with collection of data as part of an Expanded Site Inspection (ESI), as shown in Action 5 of Figure 11-2. The ESI data is then evaluated to determine whether a threat exists at the AOC. This determination is based upon direct comparisons of the site data to background or an appropriate State and/or Federal Standards. Guidelines and Criteria (SGC). Exceedances of an appropriate standard, guideline, or criteria is used to indicate that a threat exists. A quantitative risk analysis is not performed to quantify the threat. Professional judgments are also used to evaluate the significance of the exceedances and are incorporated into the recommendations for either no further action or additional evaluations, as shown in Decision No. C or Figure 11-2.

Each media have unique SGCs that are used for comparison. Soil data, collected during the ESI, are compared to background concentrations, or the TAGM value for soil. In some instances, in particular for metals in soil, the TAGM value is either background or a pre-determined value. In instances where the TAGM value is background the value chosen represents the 95th percentile of the background data set that has been accumulated at the SEDA. The 95th percentile of the background database was chosen to reduce the possibility of concluding that an exceedance had occurred from a release when the exceedance was from a site sample that represents the high end of background distribution in soil. If no exceedances are determined then the recommendation is for no further action (NFA). However, if exceedances of TAGMs or other media specific SGC are noted then further evaluation of the data is required to determine if exceedances over the Preliminary Remedial Goals (PRG)s, see Decision No. D of Figure 11-2.

As described in the attached letters, PRGs have not been accepted by the NYSDEC or EPA, Region 2. Although the approach of using, site-wide PRG values as a mechanism for determining if a site can be deemed a no further action site is not acceptable, PRGs have value as milestones for determining if conducting a screening risk assessment is worthwhile. PRGs have been developed for each Potential Chemical of Concern (PCOC) and for both human health and ecological protection. The process of developing PRGs has involved backcalculation of allowable soil concentrations from an acceptable risk level. For non-carcinogenic compound this is a Hazard Index (HI) of 1, for carcinogenic compounds this value was 1E-06. For human exposure to soil, ingestion was used as the only pathway as ingestion of soil is normally the pathway that governs all other pathways. PRG values for human exposure were developed for an industrial scenario, a recreational scenario and a construction scenario.

PRG values have also been developed for an ecological receptor. Ecological PRGs were calculated based on the toxicological response of the field mouse to chemicals in the soil. The field mouse has been identified as the ecological receptor for all of the ecological risk assessments that have been conducted at SEDA to date. The route of exposure was assumed to be ingestion with the mouse's diet being chemical containing plants, insects, and soil. The mouse is further assumed to have its entire range wholly contained in the site. The evaluation was conducted using an Ecological Quotient (EQ) approach, similar to the non-carcinogenic calculations performed for the human health evaluation. Ecological Quotients, representing quantitative expressions of risk, were calculated for each chemical of concern. The EQs assumed for this evaluation were 10.

If exceedances of a PRG are noted then it is almost certain that the mini-risk assessment will yield unacceptable risk and therefore there is no need to perform the screening risk assessment. In this instance the decision process enters the Interim Remedial Measures (IRM) phase which begins with performing a hot spot analysis. If on the other hand, if a PRG is not exceeded then performing the mini-risk assessment is a mechanism of documenting that the site conditions are acceptable and no further action is required. The mini-risk assessment is used to provide a quantitative risk value that can be supportive of a no further action decision. The mini-risk assessment utilizes identical procedures as what would be used for a

Baseline Risk Assessment (BRA) but uses the maximum detected concentration as the Exposure Point Concentration (EPC) instead of the Upper 95th Confidence Limit of the mean due to the uncertainties associated with evaluating a site with the smaller ESI database. If the results of the mini-risk assessment indicate acceptable risk, i.e. carcinogenic risks are less than 1E-04 or the HI is less than 1, then the site conditions meet the requirements for no further action. Otherwise the site conditions are not acceptable and the site enters the Interim Remedial Measure (IRM) phase, Decision No. E Figure 11-2.

The IRM phase involves evaluating whether the site can attain a no further action designation via implementation of an IRM. An IRM is most likely to be a non-time critical removal action and are generally considered appropriate if:

- The problems can be attributed to discrete soil or sediment "hot spots";
- The extent of soil or sediment to be excavated is less than 1000 Cys;
- The technologies are limited to "low tech" technologies such as off-site disposal or capping;
- The pollutants involved are amenable to such technologies such as off-site disposal or capping:
- Groundwater or surface water conditions are acceptable

If deemed appropriate, an IRM can be used to eliminate a site from further consideration by preparing an Engineering Evaluation/Cost Analysis (EE/CA). The EECA is the decision document that presents the goals and rational for implementing the IRM and discusses the evaluations that have been conducted in support of the IRM. After the removal action has been performed, confirmatory sampling is required to document the effectiveness of the IRM in attaining the IRM goals. This information is then documented in the project completion report and the ROD.

If the conditions of the site are such that the problems are not readily solveable via an IRM then the site moves into the RI phase. This phase is identical to the process described by CERCLA and involves a multi-media sampling effort and Baseline Risk Assessment (BRA). The results of the BRA may support a no further action if the risk conditions are below the EPA target limits for risk. Otherwise, the site enters the FS stage.

The FS phase involves an initial evaluation of presumptive remedies. Presumptive remedies includes a variety of technologies for both groundwater and soil such as bioventing, off-site disposal, capping or deed restriction for soils and alternative water supply, air sparging, zero-valence iron treatment or natural attenuation with monitoring for groundwater. If presumptive remedies are not appropriate then an FS is prepared.

The final phase is the preparation of a remedial design and implementation of the remedial action. Both the FS and the RD/RA will follow guidance provided by both the EPA and the NYSDEC.

3. Has a re-use plan been developed and agreed upon for the site? If so, please attach the plan and a corresponding map. Compare the current use to the planned re-use and explain how the relationship between contaminant sources and chemical transport from these sources was used to develop the planned re-use.

A reuse plan for the Seneca Army Depot was developed by RKG Associates, Inc. in December of 1996. This is shown the figure titled "Final Land Use Plan". The current use for this site is as a munitions destruction area. The proposed future use for this site is for conservation and recreational purposes. The proposed future use was not based upon a review of the present nature of potential contaminants at this site.

4. What COCs were identified for each source? Were COCs compared to risk-based screening criteria? Was planned reuse used to determine the future land use exposure scenarios for the risk assessment?

Soil samples collected indicate that a wide variety of COCs are present. To identify areas of the landfill to be sampled, a 39 point soil gas survey was conducted on the landfill. Following the soil gas survey, locations for sampling were identified. Fifteen (15) subsurface soil samples were collected from soil borings and test pits completed at SEAD-11. Lastly, four monitoring wells were installed and sampled as part of this investigation. Figure 2.3-3 shows the locations of these sampling points. The following describes the nature and extent of contamination identified at SEAD-11. A detailed comparison of the soil data and the NYSDEC TAGM criteria is presented in the attached Collapsed Data Summary and Summary Statistics tables.

Soil Gas Survey

The intent of the soil gas survey at the Old Construction Debris Landfill was to locate areas on and in the immediate vicinity of the landfill that have been impacted by volatile organic compounds. Soil gas samples were collected at 31 of 39 sample locations on the grid shown in Figure 2.3-2. At eight of the locations, collection of soil gas was precluded by the high water table which filled the soil gas sampling tube with groundwater after it was driven into the ground.

The results of the soil gas survey are summarized in Figure 4.1-1. Detector responses were expressed as TCE in parts per million by volume (ppmv). Figure 4.1-1 summarizes the range of concentrations obtained at each sampling point. The spatial distribution of the soil gas data is shown in Figure 4.1-1. The most noteworthy result is the presence of two areas on the landfill where elevated concentrations of volatiles in soil gas were detected. The highest of the two concentrations is located at point SG2-3 (14.6 ppmV as TCE). The next highest concentration is located at SG2-1 (6.6 ppmV as (TCE) which is approximately 100 feet west and hydrologically downgradient of SG2-3. Up to five individual compounds were identified in the two soil gas samples, although more peaks were present in the chromatograms. The identified

compounds, through peak matching, present in sample SG2-3 included vinyl chloride. 1.2-dichloroethene, trichloroethene, toluene, and ethylbenzene. Sample SG2-1 contained mostly 1,2-dichloroethene and trichloroethene. These two areas may be attributed to the same release, although at a sample point located midway between them no volatiles were detected. The areas impacted by elevated concentrations of volatiles in soil gas appear to be limited, as the surrounding data tend to show little or no volatile organics. To summarize, the west-central portion of the landfill appears to have been impacted by volatiles, however, the concentrations are relatively low and the extent of the impacts are limited.

Two test pits (TP11-3 and TP11-4) were excavated at soil gas sample points SG2-3 and SG2-1. The excavations uncovered mostly building materials including concrete blocks, wire, pipe, glass, and plastic in a clayer sand and gravel matrix. Neither excavation uncovered any material that could be pinpointed as a source for the volatiles detected at these locations. No volatiles were detected in the soils excavated from the pits using an OVM.

Surface Soils

Two VOCs were found in 3 of the surface soil samples collected at SEAD-11. None of these volatile organic compounds were detected at concentrations above the associated TAGM values. The compound trichloroethene, which was the most prevalent, was found in 66% of the surface soil samples, at a maximum concentration of 460 μ g/kg. The compound tetrachloroethane was found at a maximum concentration of 370 μ g/kg in surface soil sample TP11-3.1.

A total of 19 SVOCs were found at varying concentrations in the 5 surface soil samples analyzed. Figure 4.1-2 shows the total SVOC concentrations for the surface and test pit soil samples collected at SEAD-11.

With the exception of bis(2-ethylhexyl)phthalate, all of the semivolatile organic compounds detected were PAHs, which are likely derived from petroleum products. The PAHs were more widespread than the volatiles with most detected in 60 to 80% of the soil samples analyzed. All of the PAHs were found in the samples collected at the four test pit locations. None were detected in sample SB11-3.1 which was collected from the upgradient monitoring well location (MW11-1). Three surface soil samples exceeded the TAGM for benzo(a)anthracene, chrysene, benzo(b)fluoranthene, and benzo(k)fluoranthene. All four surface soil samples collected from within the Old Construction Debris Landfill exceeded the TAGM for benzo(a)pyrene and dibenz(a,h)anthracene.

Six pesticides were found in the surface soil samples collected from within the Old Construction Debris Landfill at SEAD-11. No pesticides were detected in the surface soil samples collected at SB11-3, the upgradient sampling location. The compound 4.4' DDT was reported in sample TP11-3.1 at a concentration of 4300J µg/kg. This was the only reported compound concentration in the surface soil samples that exceeded the TAGM value. The remaining pesticide detections were all reported at

concentrations below the associated TAGM value. No PCBs were detected in the surface soil sample analyzed. 2.4-DB was the only herbicide detected in the surface soil samples analyzed. It was found only in sample TP11-1.1 at a concentration of 75 µg/kg. There is no TAGM for 2.4-DB in soil.

A number of surface soil samples were found to contain various metals at concentrations that exceeded the associated TAGM values. Of the 22 metals reported, 17 of these were found in one or more of the surface soil samples at concentrations above the TAGM value. Several metals were identified at highly elevated concentrations and/or in a large number of samples above the TAGM value. Of particular note are the metals copper and zinc, where a large percentage of the surface soil samples exceed the TAGM value and where the concentrations of the exceedances are generally an order of magnitude or greater above the TAGM value. The maximum concentration of copper, 1090J mg/kg, was identified in the surface soil sample TP11-3.1 which was collected approximately in the center of the landfill. This sample also had an elevated concentration of zinc (1250 mg/kg). The maximum concentration of zinc, in surface soils, 3,600 mg/kg, was identified in the soil sample TP11-1.1. This test pit is located on the east side of the landfill.

No nitroaromatics were found in the surface soil samples analyzed. Nitrate/nitrite nitrogen and TPH were detected in all of the surface soil samples analyzed. Nitrate/nitrite nitrogen concentrations ranged from 0.27 to 0.81 mg/kg. The reported TPH concentrations ranged from 64 mg/kg (in sample SB11-3.1) to 2,700 mg/kg in sample TP11-1.1. Neither of these indicator compounds have associated TAGM values.

Subsurface Soils

A total of 6 VOCs were detected in the subsurface soil samples analyzed. None of these VOCs were detected at concentrations that exceeded their associated TAGM values. Trichloroethene was detected in 7 of the 10 subsurface soil samples at maximum concentration of 460 μ g/kg. The compounds tetrachloroethane, 1,2 dichloroethene, ethylbenzene, and xylene were found only in one or two samples each. Toluene was found in 3 samples at a maximum concentration of 3J μ g/kg.

The occurrence and distribution of PAHs which were observed in the subsurface soils of the Construction Debris landfill were similar to those observed in the surface soil samples analyzed. The 19 SVOs which were detected in the surface soils were also detected in the subsurface soil samples. One phthalate compound (biz(2ethylhexyl) phthalate) and 18 PAHs were detected in the subsurface soils in the collected form test pit excavations. No SVOs were detected in the upgradient subsurface soil boring samples.

Five subsurface samples had reported concentrations of benzo(a)anthracene, chrysene, benzo(b)fluoranthene and benzo(k)fluoranthene that exceeded their respective TAGM values by up to 2 orders of magnitude. Six subsurface soil samples exceeded the TAGM value of 14 µg/kg for dibenz(a,h)anthracene and seven subsurface soil samples exceeded the TAGM of 61 µg/kg for benzo(a)pyrene.

The sampling results indicated that high concentrations were present in the test pits, with almost all maximum concentrations found in soil sample TP11-2.2 collected on the west side of the landfill at a depth of approximately 8 feet.

Ten pesticides were found in the subsurface soil samples collected from the test pit excavation at SEAD-11. No pesticides were detected in the subsurface soil samples collected from SB11-3, the upgradient sampling location. The compound 4,4' DDT was reported in sample TP11-3.2 at a concentration of 2,400 µg/kg. This was the only reported pesticide concentration in the subsurface soil samples that exceeded its associated TAGM value. No PCBs were detected in the surface soil samples analyzed.

Three herbicides were detected in the subsurface soil samples collected at the site. No herbicides were found at concentrations above the associated TAGM values. Dalapon was detected in sample TP11-4.2 at a concentration of 2500 μ g/kg. 2,4-DB was detected in sample TP11-2.2 at a concentration 550 μ g/kg. The final herbicide detected, 2,4,5-T, was found in the subsurface soil sample TP11.3-2 at a concentration of 7.6 μ g/kg.

All of the subsurface soil samples were found to contain various metals at concentrations that exceeded their associated TAGM values. Of the 22 metals reported, 16 or these were found at concentrations above their respective TAGM values. In general, the distribution and concentrations of the elements found above TAGM in the subsurface soil samples were similar to those found in the surface soil sample collected from the same location. The exceptions were the subsurface soil samples collected from test pit TP11-4, only four metals were detected at concentrations which slightly exceeded their respective TAGM values where as ten metals exceeded TAGM values in the surface soil sample collected at this location. Of particular note are the metals copper and zinc, where a large percentage of the subsurface soil samples exceeded the TAGM values and where the concentrations of the exceedances were generally an order of magnitude or greater above the TAGM values. The highest concentration of copper, 642J µg/kg, was identified in the subsurface soil sample TP11-3.3. This sampling location (test pit TP11-3) also had the highest concentration of copper among all of the surface soil samples. The highest concentration of zinc, 7,980 mg/kg, was found in subsurface soil sample TP11-1.2. This sampling location (test pit TP11-1) also had the highest concentration of zinc among all of the surface soil samples.

Five nitroaromatic compounds were found at low concentrations in the subsurface soil samples collected at SEAD-11. Most were detected in only one sample, except for 2.4-dinitrotoluene which was detected in two samples. The four soil samples in which nitroaromatic compounds were found were TP11-1.3, TP11-2.2. TP11-3.2, and TP11-3.3.

Nitrate/nitrite nitrogen and TPH were detected in all of the subsurface soil samples analyzed. The reported concentrations of nitrate/nitrite nitrogen ranged from 0.02 mg/kg (in sample TP11-1.3) to 2.2 mg/kg (in

sample TP11-4.2). The reported concentrations of TPH ranged from 48 mg/kg (in sample TP11-2.3) to 6.000 mg/kg (in sample TP11-2.2) neither of these indicator compounds have associated TAGM values.

Summary of SEAD-11 Soils

The following compounds were found to exceed the NYSDEC TAGM screening guidelines for soils in SEAD-11:

Acenaphthene 4,4'-DDT Anthracene Aluminum Benzo[a]anthracene Antimony Benzo[a]pyrene Arsenic Barium Benzo[b]flouranthene Benzo[ghi]pervlene Beryllium Cadmium Benzo[k]flouranthene Calcium Chrysene Dibenz[a,h]anthracene Chromium Dibenzofuran Copper Fluoranthene Iron Lead Fluorene

Ideno[1,2,3-cd]pyreneMagnesiumNaphthaleneManganesePhenanthreneMercuryPyreneNickelPotassium

Silver Sodium Zinc

The soil data was also compared to Ecological and Recreational PRGs as shown in the attached Collapsed Data Summary and Summary Statistics tables. Five semivolatile compounds (benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, ideno[1,2,3-cd]pyrene, phenanthrene) and four metals (barium, copper. lead, and mercury) were found at concentrations which exceeded the Ecological PRGs. Five semivolatile compounds (benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, dibenz[a,h]anthracene, and ideno[1,2,3-cd]pyrene) were found in soil at SEAD-11 at concentrations in which exceeded the Recreational PRGs.

Groundwater

Four monitoring wells were installed and sampled as part of the SEAD-11 investigation. The summary results of the chemical analysis of these samples are presented in the attached Collapsed Data and Summary Statistics tables. The following sections describe the nature and extent of groundwater contamination identified at SEAD-11.

No VOCs were found in the four groundwater samples collected at SEAD-11.

The SVOC diethylphthalate was detected in two of the four groundwater samples analyzed. The maximum value, 0.5J µg/L, was reported in both monitoring wells MW11-1 and MW11-2. This concentration is well below the NYS AWQS criteria value of 50 µg/L for class GA water.

No pesticides or PCBs were found in the four groundwater samples collected at SEAD-11.

No herbicides were found in the four groundwater samples collected at SEAD-11.

The three metals arsenic, barium, and manganese, exceeded NYSDEC Class GA criteria. The exceedence of arsenic occurred in one well and the exceedances of barium and manganese occurred in all four wells.

The nitroaromatic compound, 2,4,6-trinitrotoluene was found in one sample collected from monitoring well MW11-4 at a concentration of 0.43J μ g/L, which is below the NYSDEC Class GA groundwater standard of 5 μ g/L. None of the four groundwater samples analyzed had nitrate concentrations above the criteria value of 10 mg/L. The maximum nitrate value detected was 0.8 mg/L.

The groundwater data at SEAD-11 was also compared to the Drinking Water PRGs. The three metals, arsenic, barium, and manganese, were found at concentrations which exceeded these guidelines. A summary of these results is presented in the attached Collapsed Data Summary and Summary Statistics tables for Drinking Water PRGs.

5. For each source area, identify the decisions that supported the need for additional investigation. Identify the data used to evaluate the alternative of additional investigation compared to a removal action option. Was this removal action considered? As part of the decision making process, were COC concentrations compared to risk-based criteria, either site-specific or generic screening level risk-based criteria?

The results of the ESI conducted at SEAD-11 indicate that impacts to the surface and subsurface soils have occurred at this site. Based upon the results of the ESI, it appears that the site soils have been impacted

primarily by the release of SVOCs and heavy metals. A total of 17 SVO compounds and 17 metals were detected in the soils analyzed at concentrations which exceeded their respective TAGM value. All of the SVO TAGM exceedances and all of the significant concentration of metals (i.e., present at highly elevated concentrations and/or in a large number of samples at concentrations above the TAGM value) were found in the samples collected from within the boundaries of the old construction debris landfill. In particular, the SVOCs benzo(a)anthracene, chrysene, benzo(a)pyrene, benzo(b)fluorenthene, benzo(k)fluoranthene and dibenz(a,h)anthracene were detected at concentrations above the associated TAGM values in at least 8 of the soil samples analyzed.

The results of the groundwater sampling program at SEAD-11 indicate that iron, lead, and sodium were present in individual downgradient wells at concentrations above criteria values.

The decision to perform a preliminary site assessment at SEAD-11 was based upon the number and variety of compounds detected in soil samples that included volatiles, semivolatile compounds, pesticides and metals. Based upon the results of the ESI conducted at SEAD-11 it appears that a threat due to SVOCs and heavy metals exists and that an RI/FS be conducted to fully define the impacts and the risks from site soils, groundwater, sediment, and surface water.

- 6. Was a site-specific risk assessment performed? Describe the results:
- a) Did site-specific current or potential future health risks exceed the acceptable carcinogenic risk range or Hazard Index (HI) level? Define these with respect to the site.
- b) If the answer to 6a is yes, please identify the media, pathway(s), and receptor(s) that had potentially unacceptable health risk. Identify any deviations from USEPA risk assessment guidance that were used to estimate potential risk.

An Expanded Site Inspection (ESI) has been completed at SEAD-11, however, no risk assessment has been performed.

7. Was an alternatives analysis performed (i.e. Feasibility Study/Corrective Measures Study (FS/CMS))? If so, describe the analysis and the selected alternative.

Only an Expanded Site Inspection (ESI) has been completed at SEAD-11. No Feasibility Study or Corrective Measures Study has been performed to date.

8. Identify and discuss the data used to support the decision that remediation to risk-based criteria was practicable.

- a) If remediation to risk-based criteria was practicable, was a remedial action (RA) completed? Describe the completed RA and the remedial alternatives considered.
- b) If remediation to risk-based criteria was not practicable, was an interim removal action (IRA) completed? Describe the completed IRA and any alternatives considered.

The work at SEAD-11 has not progressed to this point. While an Interim Removal Action (IRA) has not been completed, this step was evaluated as a possible recommendation of the ESI report.

9. What is the current site status? If applicable, provide a discussion of long-term monitoring requirements including frequency of monitoring, list of measured parameters, number of sample locations, and the criteria established to terminate or complete the monitoring program.

An ESI has been completed at SEAD-11. This project is waiting to perform an RI/BRA.

Project Funding

- 1. Provide total past environmental restoration expenditures.
- 2. Provide total planned environmental restoration expenditures (with schedule).

Attachments

Maps: Location maps, boring maps with data, well maps with data, potentiometric surface maps. geologic maps, etc.

Data Tables: Tabular presentation of data that is considered to be a driver for additional work, risk, or clean-up.

Decision Criteria Flowchart

Decision Criteria Flowchart

SENECA ARMY DEPOT ACTIVITY
·
SEAD-11
SOIL
COLLAPSED DATA TABLES
AND
SUMMARY STATISTICS TABLES
· ·
·

Seneca Army Depot Activity SEAD-11 Soils Summary Statistics Comparison to NYSDEC TAGM 4046

PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Oetection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046
Volatile Organics									200
1.1.1-Trichloroethane	UG/KG	15	0	0 00%		0	36,850,961.54	957.110	800 600
1 1 2 2-Tetrachioroethane	UG/KG	15	0	0 00%		0	3,439,423.077		600
1.1 2-Trichloroethane	UG/KG	15	0	0.00%		0	1,206.815.115		200
1,1-Dichloroethane	UG/KG	15	0	0.00%			105,288,461.5		400.
1,1-Dichloroethene	UG/KG	15	0	0.00%		0	114,647.436 755,917.16		100
1,2-Dichloroethane	UG/KG	15	0	0.00%			755,917.10		100
1,2-Dichloroethene (total)	UG/KG	15	2	13.33%	4.	0	1.011.595.023		
1,2-Dichloropropane	UG/KG	15	0	0.00%		0	105,288,461.5	34,270.	200.
Acetone	UG/KG	15	0	0.00%		0	2.372.015.915	247,370.	60.
Benzene	UG/KG	15	0	0.00%		0	1,109,491.315	247.570.	00.
Bromogichloromethane	UG/KG	15	0	0.00%		0	8,707,400.195		
Bromoform	UG/KG	15	0	0.00%		0	105,288,461.5	53,000.	2,700
Carbon disulfide	UG/KG	15	0	0.00% 0.00%		0	529,142.012		600
Carbon tetrachlorioe	UG/KG.	15	0	0.00%		0	21,057,692.31		1,700
Chlorobenzene	UG/KG	15	0	0.00%		0	818,910.256		
Chlorodibromomethane	UG/KG	15 15	0	0.00%		0	421,153,846.2		1,900
Chloroethane	UG/KG	15	. 0	0.00%		0	10,528,846.15	194,610.	300
Chloroform	UG/KG	15	0	0.00%		0			
Cis-1,3-Dichloropropene	UG/KG	15	1	6.67%	3.		105,288,461.5	1,720,290.	5.500
Ethyl benzene	UG/KG	15	0	0.00%	-	0	1,505,625.		
Methyl bromide	UG/KG UG/KG	15	0	0.00%		0			
Methyl butyl ketone	UG/KG	15	0	0.00%		0	5,291,420.118		
Methyl chloride	UG/KG	15	0	0.00%		0		421,380.	300
Methyl ethyl ketone	UG/KG	15	0	0.00%		0	84,230,769.23		1,000
Methyl isobutyl ketone	UG/KG	15	0	0.00%		0	9,171,794.872	132,030.	100.
Methylene chloride	UG/KG	15	o	0.00%		0			
Styrene	UG/KG	15	3	20.00%	370.	0	1,322,855.03	6,454,550.	1,400
Tetrachloroethene	UG/KG	15	3	20.00%	3.	0	210,576,923.1	1,552,560.	1,500.
Toluene	UG/KG	15	1	6.67%	4.	0	2,105,769,231.	5,642,680.	1,200
Total Xylenes Trans-1,3-Dichloropropene	UG/KG	15	0	0.00%		0			700
Trichloroethene	UG/KG	15	10	66.67%	460.		6,253,496.503		700
Vinyl chloride	UG/KG	15	0	0.00%		0	36,204.453		200
Herbicides	000								1,900.
2.4.5-T	UG/KG	15	1	6.67%	7.6				700.
2.4.5-TP/Silvex	UG/KG	15	0	0.00%		0			500.
2.4-D	UG/KG	15	0	0.00%	-	0			300.
2,4-DB	UG/KG	15	2	13.33%	550.				
Dalapon	UG/KG	15	1	6.67%	2,500.			22,600.	
Dicamba	UG/KG	15	0	0.00% .		0		22,500.	
Dichloroprop	UG/KG	15	0	0.00%		0			
Dinoseb	UG/KG	15	0	0.00%		0			
MCPA	UG/KG	15	0	0.00%		0		818.180.	
MCPP	UG/KG	15	0	0.00%		0		010,100.	
Nitroaromatics				/		0	52,644.231		
1,3,5-Trinitrobenzene	UG/KG	15	0	0.00%	770		105,288.462		
1,3-Dinitrobenzene	UG/KG	15	1	6.67%	770.	0	526,442.308		
2.4.6-Trinitrotoluene	UG/KG	15	1	6.67%	130.		2,105,769.231	5,060.	
2.4-Dinitrotoluene	UG/KG	15	2	13.33%	440.	0	1,052,884.615	0,000.	1,000
2,6-Dinitrotoluene	UG/KG	15	1	6.67%	400.	0	1,002,004.010		
2-amino-4,6-Dinitrotoluene	UG/KG	15	1	6.67%	680.	0			
4-amino-2,6-Dinitrotoluene	UG/KG	15	0	0.00%		0			
HMX	UG/KG	15	0	0.00%		0			
RDX	UG/KG	15	0	0.00%		0			
Tetryl	UG/KG	15	0	0 00%		v			
Semivolatile Organics				0.000/		0	10,528,846.15	1,132,060	3,400
1,2,4-Trichlorobenzene	UG/KG	15	0	0 00%		0	94,759,615.38		7 900
1,2-Dichlorobenzene	UG/KG	15	0	0.00%		0	93,706,730.77		1,600
1,3-Dichlorobenzene	UG/KG	15	0	0.00%		0	2.866,185.897		8 500
1,4-Dichlorobenzene	UG/KG	15	0	0.00%		0	2,000,000		
2,2'-oxybis(1-Chloropropane)	UG/KG	15	0	0.00%		0	105,288,461.5		100
2.4.5-Trichlorophenol	UG/KG	15	0	0.00%		0 .	6,253,496.503		
2,4,6-Trichlorophenol	UG/KG	15	0	0 00% 0 00%		0	3,158.653.846		400
2.4-Dichlorophenol	UG/KG	15	0	0 00%		0	21,057,692.31		
	110 1/0	15	0	0.00%		~			
2.4-Dimethylphenol	UG/KG					0	2,105,769.231		200
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene	UG/KG UG/KG	15 15	0	0.00%		0	2,105,769.231 2,105,769.231	5.060	200

Seneca Army Depot Activity SEAD-11 Soils Summary Statistics Companson to NYSDEC TAGM 4046

							Recreational		NYSDEC
	UNIT	Number of	Number of	Frequency of	Maximum	Number of	PRG	Ecological PRG	TAGM 4046
PARAMETER	ONIT	Analyses	Detections	Detection	Value	Exceedances			
2.5.0	UG/KG	15	0	0 00%		0	1 052.884 615		1 000
2.6-Dinitrotoluene 2-Chloronaphthalene	UG/KG	15	0	0.00%		0			800
2-Chlorophenol	UG/KG	15	0	0.00%		0	5,264,423.077	83,200.	36 400
2-Methylnaphthalene	UG/KG	15	9	60.00%	28,000	0		962,620.	100
2-Methylphenol	UG/KG	15	0	0.00%		0	52.644.230.77		430.
2-Nitroaniline	UG/KG	15	0	0.00%		0	63,173.077		330.
2-Nitropnenol	UG/KG	15	0	0.00%		0	.50 000 040		330.
3.3'-Dichloropenzidine	UG/KG	15	0	0.00%		0	152,863.248		500
3-Nitroaniline	UG/KG	15	0	0.00%		0	3,158,653,846		500
4.6-Dinitro-2-methylphenol	UG/KG	15	0	0.00%		0	04 007 307 60		
4-Bromophenyl phenyl ether	UG/KG	15	0	0.00%		0	61,067,307 69		240
4-Chloro-3-methylphenol	UG/KG	15	0	0.00%		0	4 244 529 462		220.
4-Chloroaniline	UG/KG	15	0	0.00%		0	4,211,538.462		220
4-Chlorophenyl phenyl ether	UG/KG	15	0	0.00%		0			900.
4-Methylphenol	UG/KG	15	0	0.00%		0	2 450 652 946		
4-Nitroaniline	UG/KG	15	0	0.00%		0	3,158,653.846	18,680.	100.
4-Nitrophenol	UG/KG	15	0	0.00%		0	63,173,076.92	2,268,070.	50.000
Acenaphthene	UG/KG	15	9	60.00%	84,000.	1 '		33,460.	41,000
Acenaphthylene	UG/KG	15	0	0.00%		0	245 005 204 6	1,269,040.	50,000.
Anthracene	UG/KG	15	11	73.33%	150,000.	1	315,865,384 6	1,476,040.	224
Benzo[a]anthracene	UG/KG	15	11	73.33%	190,000.	8	94,230.769	562,720.	61
Benzo[a]pyrene	UG/KG	15	11	73.33%	140,000.	11	9,423.077	59,750.	1,100
Benzo(b)fluoranthene	UG/KG	15	11	73.33%	110,000.	8	94,230.769	76,250.	50.000
Benzo[ghi]peryiene	UG/KG	15	10	66.67%	53,000.	1		72,640.	1,100.
Benzo(k)fluoranthene	UG/KG	15	11	73.33%	130,000.	8	942,307.692	72,640.	1,100.
8is(2-Chloroethoxy)methane	UG/KG	15	0	0.00%		0			
Bis(2-Chloroethyl)ether	UG/KG	15	0	0.00%		0	62,534.965	20.250	50,000.
Bis(2-Ethylhexyl)phthalate	UG/KG	15	3	20.00%	67.		4,913,461.538	39,350.	50,000
Butylbenzylphthalate	UG/KG	15	0	0.00%		0	210,576,923.1		30,000
Carbazole	UG/KG	15	8	53.33%	81,000.	0	3,439,423.077	02.200	400.
Chrysene	UG/KG	15	11	73.33%	170,000.	8	9,423,076.923	93,300.	8,100
Di-n-butylphthalate	UG/KG	15	0	0.00%		0		94,697,730.	50,000
Di-n-octylphthalate	UG/KG	15	0	0.00%		0	21.057,692.31	£2.000	14
Dibenz(a,h)anthracene	UG/KG	15	10	66.67%	52,000.	10	9,423.077	53,680.	6,200:
Dibenzofuran	UG/KG	15	10	66.67%	60,000.	4	4,211,538.462	7.005.040	7,100.
Diethyl phthalate	UG/KG	15	0	0.00%		0	842,307,692.3	7,665,910.	2,000
Dimethylphthalate	UG/KG	15	0	0.00%		0	10,528,846,150.	7.040.000	50,000
Fluoranthene	UG/KG	15	12	80.00%	350,000.	5	42,115,384 62	7,849,900.	50,000.
Fluorene	UG/KG	15	10	66.67%	88,000.		42,115,384.62	1,755,510.	410.
Hexachlorobenzene	UG/KG	15	0	0.00%		0	42,992.788		410.
Hexachlorobutadiene	UG/KG	15	0	0.00%		0	210,576.923		
· Hexachlorocyclopentadiene	UG/KG	15	0	0.00%		0	7,370,192.308		
Hexachloroethane	UG/KG	15	0	0.00%		0	1,052,884.615	47.020	3,200
Indeno[1,2,3-cd]pyrene	UG/KG	15	11	73.33%	100.000.		94,230.769	47,630.	4,400
Isophorone	UG/KG	15	0	0.00%		0			4,400
N-Nitrosodiphenylamine	UG/KG	15	0	0.00%		0	14,038,461.54	4 454 550	
N-Nitrosodipropylamine	UG/KG	15	0	0.00%		0	9,826.923	1,454,550. 149,740.	13,000.
Naphthalene	UG/KG	15	10	66.67%	100,000.		42,115,384.62	143,740.	200.
Nitrobenzene	UG/KG	15	0	0.00%		0	526,442.308	1,415,560.	1,000
Pentachlorophenol	UG/KG	15	0	0.00%		0	573,237.18		50.000
Phenanthrene	UG/KG	15	11	73.33%	350,000.	4		325,820. 79,520.	30
Phenol	UG/KG	15	0	0.00%		0	631,730,769.2		50.000
Pyrene	UG/KG	15	11	73.33%	280,000	4	31,586,538,46	2,420,460.	00,000
Pesticides/PCBs							202 212 50	874,990.	2,900
4.4'-DDD	UG/KG	15	8	53.33%	1,400	0	286,618.59		2,100
4,4°-DDE	UG/KG	15	10	66 67%	1,800	. 0	202.319.005		2,100
4,4°-DDT	UG/KG	15	11	73.33%	4,300.	2	202,319.005		41
	UG/KG	15	0	0.00%		0	4,046.38	2,750	110
Aldrin	UG/KG	15	1	6.67%	24	0		440.000	110
Alpha-BHC	UG/KG	15	4	26 67%	, 190			142,090.	
Alpha-Chlordane	UG/KG	15	0	0.00%		0	73,701 923		
Aroclor-1016	UG/KG	15	ō	0.00%		0			
Aroclor-1221	UG/KG	15	0	0.00%		0			
Aroclor-1232	UG/KG	15	0	0 00%		Ο,		12,879,550.	
Aroclor-1242	UG/KG	15	0	0 00%		0	-		10.000
Aroclor-1248	UG/KG	15	0	0 00%		0	21,057 692		10,000
Aroctor-1254	UG/KG	15	0	0 00%		0	+	2,272,730.	10,000
Aroctor-1260	UG/KG UG/KG	15	0	0.00%		0		11,060.	200
Beta-BHC	00/10		-						

Seneca Army Depot Activity SEAD-11 Soils Summary Statistics Companson to NYSDEC TAGM 4046

							Recreational		NYSDEC
		Number of	Number of	Frequency of	Maximum	Number of	PRG	Ecological PRG	TAGM 4046
PARAMETER	UNIT	Number of Analyses	Detections	Detection	Value	Exceedances			
		Allalyses	Detections	5010011011					
	110/1/0	15	3	20.00%	15.	0			300
Delta-BHC	UG/KG	15	3	20.00%	29.	0	4,299,279		44
Dieldrin	UG/KG	15	0	0.00%		0	6,317,307.692	131,820.	900
Endosulfan I	UG/KG		6	40.00%	66	Ō	6.317.307.692		900
Endosulfan II	UG/KG	15	1	6.67%	2.5			15,820.	1,000
Endosulfan sulfate	UG/KG	15		26.67%	49.	_	315,865,385	240,910.	100.
Endrin	UG/KG	15	4		43.	0	315,865.385	6.350.	
Endrin aldehyde	UG/KG	15	0	0.00%		0	315,865,385	6,350.	
Endrin ketone	UG/KG	15	0	0.00%		ō	52,914,201	-,	60
Gamma-BHC/Lindane	UG/KG	15	0	0.00%		0	32,314.201	47,360.	540
Gamma-Chlordane	UG/KG	15	0	0.00%		0	15,286,325	28.620.	100
Heptachlor	UG/KG	15	0	0.00%		0	7,559,172	10	20
Heptachlor epoxide	UG/KG	15	0	0.00%		-		10	2.0
Methoxychior	UG/KG	15	0	0.00%		0	5,264,423.077		
Toxaphene	UG/KG	15	0	0.00%		0			
Metals									14,592,840.
Aluminum	UG/KG	15	15	100.00%	21,700,000.	4	1,052,884,615.	40 407 000	3,590.
Antimoriy	UG/KG	15	6	40.00%	285,000.	6	421,153.846	18,437,230.	
Arsenic	UG/KG	15	12	80.00%	23.200.	5	45,858.974	223,670.	7,500.
Banum	UG/KG	15	15	100.00%	1,090,000.	4	73,701,923.08	91,840.	300,000.
	UG/KG	15	15	100.00%	930.	3	15,997.317	6,570.	730
Beryllium	UG/KG	15	6	40.00%	16,000.	6	526,442.308	737,770.	1,000.
Cadmium	UG/KG	15	15	100.00%	103,000,000.	1			101.903.800.
Calcium	UG/KG	15	15	100.00%	242,000.	9	1,052,884,615.	850,430.	22,130.
Chromium	UG/KG	15	15	100.00%	27,500.	0	63,173,076.92		30,000.
Cobalt		15	15	100.00%	1,090,000.	10	42,115,384.62	827,810.	25,000
Copper	UG/KG	15	0	0.00%		0		13,636,360.	300.
Cyanide	UG/KG	15	15	100.00%	118.000.000.	11	315,865,384.6		26,626,650.
Iron	UG/KG	15	9	60.00%	4,050,000.	7		181,460.	21,860.
Lead	UG/KG		15	100.00%	44,600,000.	5			12,221,770.
Magnesium	UG/KG	15		93.33%	946,000.	4	24,216,346,15	8,821,860.	669,380.
Manganese	UG/KG	15	14	95.55% 86.67%	2,900.	7	315,865.385	1,710.	100.
Mercury	UG/KG	15	13		117,000.	5	21.057.692.31	2,833,820.	33,620
Nickel	UG/KG	15	15	100.00%		5	21,007,002.0	-,	1,761,480.
Potassium	UG/KG	15	15	100.00%	2,980,000.	0	5,264,423.077	193,140.	2,000.
Selenium	UG/KG	15	9	60.00%	740.	6	5,264,423.077		400-
Silver	UG/KG	15	6	40.00%	11,300.		3,204,423.077		103,740.
Sodium	UG/KG	15	14	93.33%	1,660,000.	11	84,230,769		280.
Thallium	UG/KG	15	0	0.00%		0			150,000
Vanadium	UG/KG	15	15	100.00%	31,800.		7,370,192.308		82,500.
Zinc	UG/KG	15	12	80.00%	7,980,000.	12	315,865,384.6		J2,500.
Other Analyses									
Nitrate/Nitrite	UG/KG	15	15	100.00%	2,200.	0			
Total Petroleum Hydrocarbons	UG/KG	15	15	100.00%	6,000.000.	0			
Total Fed Oledin Try Grocal Bons									

STUDY ID	ESI	ESI	ESI
	SEAD-11	SEAD-11	SEAD 11
	MW11-1	MW11 1	IP11 1
	BACKGROUND	BACKGROUND	SITE
	SB11-3-2	SB11 3 6	IP11 1 1
	SA	SA	SA
	2	10	0
	4	12	0 8
	SOIL	SOIL	SOII
	02-Nov-93	03-Nov 93	20 Nov 93

						01 1101 0D	02-1400-93	03-Nov 93	20 Nov 93
		Number of	Recreational						
PARAMETER	זואט	Exceedances	PRG	Factor ODO	NYSDEC TAGM				
	01111	Exceodances	FRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q	VALUE
Acenaphthene	UG/KG	1		2,268,070	50,000				***************************************
Anthracene	UG/KG	1	315,865,384 6			410 U	370 UR	350 UR	380
Benzo[a]anthracene	UG/KG	8	94,230 769	1,200,010	50,000 224	410 U	370 UR	350 UR	53
Berizo[a]pyrene	UG/KG	11	9,423 077	., 0,0 10		410 U	370 UR	350 UR	150
Benzo[b]fluoranthene	UG/KG	8 .	94,230 769		61	410 U	370 UR	350 UR	210.
Benzo[ghi]perylene	UG/KG	1	54,250 703	76,250	1,100	410 U	370 UR	350 UR	230
Benzo[k]fluoranthene	UG/KG	8	942,307 692		50,000	410 U	370 UR	350 UR	81
Chrysene	UG/KG	8	9,423,076 923		1,100	410 U	370 UR	350 UR	190
Dibenz[a,h]anthracene	UG/KG	10	9,423,070 923	,	400	410 U	370 UR	350 UR	320
Dibenzofuran	UG/KG	4	4,211,538 462	,	14	410 U	370 UR	350 UR	60.,
Fluoranthene	UG/KG	5	42,115,384 62		6,200	410 U	370 UR	350 UR	23
Fluorene	UG/KG	1	42,115,384 62		50,000	410 U	370 UR	350 UR	450
Indeno[1,2,3-cd]pyrene	UG/KG	6	94,230 769	.,,	50,000	410. U	370 UR	350 UR	21
Naphthalene	UG/KG	3		,	3,200	410 U	370 UR	350 UR	140
Phenanthrene	UG/KG	4	42,115,384 62		13,000	410 U	370 UR	350 UR	23
Pyrene	UG/KG	4	24 500 500 40	325,820	50,000	410 U	370 UR	350 UR	230
4 4 DDT	UG/KG	2	31,586,538 46	2,420,460	50,000	410 U	370 UR	350 UR	420
Aluminum	UG/KG	4	202,319 005	8,870	2,100	4 1 U	35 U	30 U	12
Antimony	UG/KG	,	1,052,884,615		14,592,840 :	17,600,000.	6,330,000	10,900,000	13,300,000
Arsenic	UG/KG	6 5	421,153 846	, ,	3,590	10,800 UJ	8,000 UJ	7,600 UJ	
Banum	UG/KG	-	45,858 974	,	7,500	5,600 R	3,400 R	6,000 R	285,000,
Beryllium	UG/KG	4	73,701,923 08	1 - 1 -	300,000	113,000	57,400	62,700	15,500.
Cadmium		3	15,997 317	-,	730 <u>L</u>	850.3 J	340 J	470 J	1,090,000.
Calcium	UG/KG	6	526,442 308	737,770	1,000	670 U	500 U	480 U	630
Chromium ,	UG/KG UG/KG	1			101,903,800	4,950,000	91,300,000	48,600,000	2,300.
Copper -		9	1,052,884,615	850,430	22,130 i	24,000,	11,100	18,600	30,300,000
Iron	UG/KG	10	42,115,384 62		25,000	20,000	12,200	21,700	67,200.
l.ead	UG/KG	11	315,865,384 6		26,626,650	27,200,000.	13,200,000	28,300,000.	492,000.
Magnesium	UG/KG	7		181,460	21,860	27,900.	11,400	10,100	\$3,600,000.
Manganese	UG/KG	5			12,221,770	4,160,000	12,900,000.	10,100,000	4,050,000,
*	UG/KG	4	24,216,346 15		669,380	674,000.	356,000	434,000	6,760,000
Mercury Nickel	UG/KG	7	315,865 385	1,710	100	50 J	40 U	30 U	801,000.
	UG/KG	5	21,057,692 31	2,833,820	33,620	28,300	16,700		70
Polassium	UG/KG	5			1,761,480	2,110,000,	1,110,000	29,500	70,100.
Silver	UG/KG	6	5,264,423 077		400	1,400 UJ	1,000 UJ	1,230,000	1,810,000.
Sodium	UG/KG	11			103,740	66,300 J	136,000. J	970 UJ	2,400.
Zinc	UG/KG	12	315,865,384 6		82,500	83,200 R	65,000 R	146,000. J	288,000,
			7			,	. OJ,000 R	77,300 R	3,600,000.

fi lenglsenecalpeer0498IS11s xls

ESI

Seneca Army Depot Activity SEAD-11

STUDY ID

SITE

Collapsed Data Summary Comparison to NYSDEC TAGM 4046

ESI

ESI

					SITE		SEAD-11	CEAD 44	E91
					LOC ID		TP11-1	SEAD:11	SEAD 11
					LOC TYPE			TP11-1	1911.2
					SAMP_ID		SITE	SITE	SITE
					QC CODE		TP11-1 2	TP11 1-3	TP11 2 1
							SA	SA	SA
					SAMP DETH TOP		3 3	4 2	0
				5	SAMP DEPTH BOT		3 3	4 2	0 /
					MATRIX		SOIL	SOIL	SOIL
					SAMP DATE		20-Nov-93	20-Nov-93	19 Nov-93
		Number of	Recreational		NYSDEC TAGM				
PARAMETER	UNIT	Exceedances	PRG	Ecological PRG		0			
			1110	Ecological FRG	4046	Q	VALUE Q	VALUE Q	VALUE Q
Acenaphthene	UG/KG	1		2.268.070	50,000	11	400		
Anthracene	UG/KG	1	315,865,384 6		50,000		400 U	400 U	630 J
Benzo[a]anthracene	UG/KG	8	94,230 769	1,476,040			42 J	400 U	1,100 J
Benzo[a]pyrene	UG/KG	11	9,423 077		224		160 J	400 U	4,200,
Benzo[b]fluoranthene	UG/KG	8		562,720	61	_	130, J	400 U	3,800.
Benzo(ghi)perylene	UG/KG	1	94,230 769	59,750	1,100		200 J	400 U	4,700.
Benzo[k]fluoranthene	UG/KG			76,250	50,000	J	400 U	400 U	1,000 J
Chrysene		8	942,307 692	,	1,100	J	140 J	400 U	
,	UG/KG	8	9,423,076 923	93,300	400	J	230 J	400 U	3,000.
Dibenz[a,h]anthracene	UG/KG	10	9,423 077	53,680	14 .	J	37. J	400 U	4,500.1
Dibenzofuran	UG/KG	4	4,211,538 462		6,200	J	25 J		t,100, J
Fluoranthene	UG/KG	5	42,115,384 62	7,849,900	50,000		340 J	400 U	250 J
Fluorene	UG/KG	1	42,115,384 62	1,755,510	50,000	1	20 J	21 J	9,800
Indeno[1,2,3-cd]pyrene	UG/KG	6	94,230 769		3,200			400 U	510 J
Naphthalene	UG/KG	3	42,115,384 62	149,740	13,000		66 J	400 U	2,800
Phenanthrene	UG/KG	4	,,	325.820	50,000		. 39 J	400 U	220 J
Pyrene	UG/KG	4	31,586,538 46	2,420,460	50,000	J	260 J	400 U	5 800
4.4 DDT	UG/KG	2	202,319 005	8.870	2,100		260 J	400 U	8 500
Aluminum	UG/KG	4	1,052,884,615	0,070			35 J	290 J	140 J
Antimony	UG7KG	6	421,153 846	18,437,230	14,592,840		12,200,000	11,100,000	15,300,000
Arsenic	UG/KG	5	45.858 974	223,670	3,590	J	118,000, J	8,100 UJ	9 400 UJ
Barium	UG/KG	4	73,701,923 08		7,500		11,800.	4,700	23,200, J
Beryllium	UG/KG	3		91,840	300,000		953,000.	106,000	96,900
Cadmium	UG/KG	6	15,997 317	6,570	730	J	590 J	540 J	760 1
Calcium	UG/KG		526,442 308	737,770	1,000		i 3,900.	510 U	590 U
Chromium		1			101,903,800		41,700,000	54,100,000	
	UG/KG	9	1,052,884,615	850,430	22,130		53,900,	18,700	18,600,000
Copper	UG/KG	10	42,115,384 62	827,810	25,000		374,000.	32,400.	23,900.
iron	UG/KG	11	315,865,384 6		26,626,650		42,000,000.		35,500,
tead	UG/KG	7		181,460	21,860		2,090,000.	22,700,000	29,200,000.
Magnesium	UG/KG	5			12,221,770		10,800,000	193,000.	84,100.
Manganese	UG/KG	4	24,216,346 15	8,821,860	669.380		611,000	10,100,000	11,300 000
Mercury	UG/KG	7	315,865 385	1,710	100	1		637,000	446,000 R
Nickel	UG/KG	5	21,057,692 31	2,833,820	33,620	5	2,900.	2 700.	500. J
Potassium	UG/KG	5	,, 01	2,000,020	1,761,480		56,500.	25,200	30,600
Silver	UG/KG	6	5,264,423 077				1,620,000	1,280,000	1,430,000
Sodium	UG/KG	11	0,207,720 077		400		} 1,500. J	1,000 U	1,200 U
Zinc	UG/KG	12	315,865,384 6		103,740	J	296,000. J	111,000. J	75 100 J
	00/10	12	313,003,384 6		82,500		7,980,000.	377,000.	139,000.
									127,000.

ESI	ESI	ESI	STUDY ID.
	SEAD-11	SEAD-11	SITE
SEAD-11		TP11-2	LOC ID.
TP11-3			LOC TYPE
SITE			
TP11-3-1	TP11-2-3		SAMP_ID.
SA	SA	SA	QC CODE:
	5	5	SAMP, DETH TOP:
2	5	5	SAMP, DEPTH BOT:
2	_	SOIL	MATRIX
			SAMP DATE:
14-Dec 93	20-Nov-93	20-1104-33	
		SITE SITE TP11-2-3 TP11-3-1 SA SA 5 0 5 2 SOIL SOIL	SITE SITE SITE SITE TP11-2-2 TP11-2-3 TP11-3-1 SA SA SA 5 5 5 0 5 5 2 SOIL SOIL SOIL

								14-066 93	14-Dec-93
PARAMETER	UNIT	Number of	Recreational		NYSDEC TAGM				
CONSTITUTE	UNII	Exceedances	PRG	Ecological PRG	4046	VALUE Q	VALUE Q	. VALUE Q	VALUE
Acenaphthene	UG/KG	1		, 2,268,070.	50,000				AVIOF
Anthracene	UG/KG	1	315,865,384 6		50,000 f	84,000.	1,400	28,000 J	14.000
Benzo(a)anthracene	UG/KG	8	94,230 769			150,000.	2,800	· 49,000 J	27,000
Benzo[a]pyrene	UG/KG	11	9,423 077		224	190,000	4,600	1's 110,000. J	67,000.
Benzo[b]fluoranthene	UG/KG	8	94,230 769		61.	140,000	43,400.	110,000. J	60,000.
Benzo[ghi]perylene	UG/KG	1	04,200703	76,250	1,100 § 50,000.	99,000.	2,900	, 110,000. J	67,000,
Benzo[k]fluoranthene	UG/KG	8	942,307 692			32,000 J	630 J	\$3,000. J	11,000
Chrysene	UG/KG	8	9,423,076 923		1,100	130,000.	3,7002	94,000. J	48,000.
Dibenz(a,h)anthracene	UG/KG	10	9,423 077		400	170,000,	4,300.	110,000, J	64,000.
Dibenzofuran	UG/KG	4	4,211,538 462		6,200.	52,000.	1,200 J	16,000. J	9,300.
Fluoranthene	UG/KG	5	42,115,384 62		50,000.	60,000.	1,000. J	18,000. J	7,900.
Fluorene	UG/KG	1	42,115,384.62		50,000.	to the state of th	11,000	320,000. J	150,000.
Indeno[1,2,3-cd]pyrene	UG/KG	6	94,230 769		3,200.	88,000	1,600	27,000 J	14,000
Naphthalene	UG/KG	3	42,115,384 62		13,000	100,000.	2,300	60,000. J	37,000.
Phenanthrene	UG/KG	4	,	325,820	50,000	100,000.	1,700	19,000. J	8,600
Pyrene	UG/KG	4	31,586,538 46		50,000	350,000	9,200.	210,000, J	110,000.
4 4 -DDT	UG/KG	2	202.319 005		2,100.	280,000	7,800	1,0000,1	120,000.
Aluminum	UG/KG	4	1,052,884,615	0,010	14,592,840	3 9 U 8,720,000.	11 J	4,300, J	2,400
Antimony	UG/KG	6	421,153 846	18,437,230.	3,590.	12,300 UJ	14,000,000	21,700,000	12,100,000
Arsenic	UG/KG	5	45,858 974	, ,	7,500	6,400.	10,600 UJ	8,600. J	4,000,
Barium	UG/KG	4	73,701,923 08	,	300,000	68,600	6,400	\$,200.	6,900
Beryllium	UG/KG	3	15,997 317		730	450. J	119,000	415,000	133,000
Cadmium	UG/KG	. 6	526,442 308		1,000.	770 U	710 J	600 J	550
Calcium	UG/KG	1	,	101,110.	101,903,800	83,700,000	660 U	9,200,	3,000.
Chromium	UG/KG	9	1.052.884.615	850,430.	22,130.	15,500	9,090,000.	73,600,000	85,300,000
Copper *	UG/KG	10	42,115,384 62			121,000	19,500	78,200. J	41,400,
Iron	UG/KG	11	315,865,384 6		26,626,650	19,100,000	25,700	1,090,000. J	225,000.
Lead	UG/KG	7		181,460			27,400,000	34,800,000.	30,200,000
Magnesium	UG/KG	5		101,100	12,221,770.	82,500, 21,100,000, 480,000	44,900	1,170,000 R	474,000
Manganese	UG/KG	4	24,216,346 15	8,821,860	669,380.	480,000	6,010,000.	6,860,000	12,700,000.
Mercury	UG/KG	7	315,865 385		100.	70. J	868,000.	648,000.	512,000.
Nickel	UG/KG	5	21,057,692 31	.,	33,620.	20,400	80. J	1 - 400.	400.
Potassium	UG/KG	5		2,0,020	1,761,480.	1,080,000. J	30,100	45,200,	41,300.
Silver	UG/KG	6	5,264,423 077		400	1,600 U	1,220,000.	2,980,000.	2,380,000,
Sodium	UG/KG	11	,			226,000, J	1,300 U	10,800.	5,200.
Zinc	UG/KG	12	315,865,384,6		82,500.	167.000	102,000 J	1,660,000	315,000
			,,		02,300.	153,000	1- data 111,0003	1,250,000.	777,000.

•					STUDY ID.		ESI	ESI	ESI
					SITE.		SEAD-11	SEAD-11	SEAD 11
					LOC ID.		TP11-3	TP11-4	TP11-4
					LOC TYPE.		SITE	SITE	SITE
					SAMP_ID.		TP11-3-3	TP11-4-1	TP11 4-2
					QC CODE		SA	SA	
					SAMP DETH TOP		4	. 30	SA
				5	SAMP DEPTH BOT		6	2	2
					MATRIX		SOIL		4
					SAMP DATE		14-Dec-93	SOIL	SOIL
							14-060-33	14-Dec-93	16-Dec-93
		Number of	Recreational		NYSDEC TAGM				
PARAMETER	UNIT	Exceedances	PRG	Ecological PRG		Q	VALUE Q		
Accepthene						4	VALUE Q	VALUE Q	VALUE Q
Acenaphthene	UG/KG	1		2,268,070	50,000	j	25,000. J	4,100 J	4 400 4
Anthracene	UG/KG	1	315,865,384 6	1,269,040.	50,000	j	44,000 J	7,700	1,100 J
Benzo(a)anthracene	UG/KG	8	94,230 769	1,476,040.	224		79,000.	20,0004	2,200
Benzo[a]pyrene	UG/KG	11	9,423.077	562,720	61		73,000		6,600.
Benzo(b)fluoranthene	UG/KG	8	94,230.769	59,750	1,100		68,000,	19,000.	6,100.
Benzo(ghi)perylene	UG/KG	1		76,250	50,000	j	39,000 J	26,000.	8,400.
Benzo[k]fluoranthene	UG/KG	8	942,307.692	72,640.	1,100		1 66,000 s	9,100	2,900
Chrysene	UG/KG	8	9,423,076 923	93,300	400		74,000.	10,000	3,000.
Dibenz(a,h)anthracene	UG/KG	10	9,423.077		14	1		22,600	6,900.
Dibenzofuran	UG/KG	4	4,211,538 462		6,200	_	12,006. J	13,500. J	1,000, J
Fluoranthene	UG/KG	5	42,115,384 62		50,000	3	16,000_J	2,200 J	520 J
Fluorene	UG/KG	1	42,115,384 62	.,,	50,000		230,000.	\$4,000.	14,000
Indeno[1,2,3-cd]pyrene	UG/KG	6	94,230 769		3,200.	J	24,000 J	3,300 J	1,000 J
Naphthalene	UG/KG	3	42,115,384 62	**,	13,000		45,000. J	11,000.	3,700.
Phenanthrene	UG/KG	4	,,	325,820	50,000	J	21,000. J	2,500 J	400 J
Pyrene	UG/KG	4	31,586,538 46		50,000		180,000	40,000	9,700
44 DDT	UG/KG	2	202,319 005		2,100		140,000,	38,000	12,000
Aluminum	UG/KG	4	1,052,884,615	0,070			1,500	72	17
Antimony	UG/KG	6	421,153 846	18,437,230	14,592,840		12,300,000	9,660,000	15,000,000,
Arsenic	UG/KG	5	45,858 974	-1 1	3,590	J	11,300, J	25,300. J	5,200 UJ
Barium	UG/KG	4	73,701,923 08	,_	7,500		6,900	12,400.	5,700
Beryllium	UG/KG	3	15,997 317	,	300,000		477,000.	244,000	131 000
Cadmium	UG/KG	6		-1	730	1	380 J	480. J	930. J
Calcium	UG/KG	1	526,442 308	737,770	1,000		16,000.	5,600,	510 U
Chromium	UG/KG	9	4.050.004.045	***	101,903,800		41,300,000	95,300,000	4,340,000
Copper		-	1,052,884,615	850,430	22,130		172,000, J	242,000, J	21,300 J
lron	UG/KG	10	42,115,384 62		25,000	j	642,000. J	154,000. J	22,900 J
Lead	UG/KG	11	315,865,384 6		26,626,650		118,000,000.	27,100,000	28,300,000,
Magnesium	UG/KG	7		181,460	21,860	R	1,330,000 R	1,890,000 R	27,300 R
	UG/KG	5			12,221,770		9,190,000	44,600,000.	
Manganese	UG/KG	4	24,216,346 15	-,,	669,380		946,000.	440,000	3,710,000 602,000
Mercury	UG/KG	7	315,865 385	.,	100		410.	370.,	
Nickel	UG/KG	5	21,057,692 31	2,833,820	33,620		117,000.	33.000	40 J
Polassium	UG/KG	5			1,761,480		2,040,000.	1,450,000	25,000
Silver	UG/KG	6	5,264,423 077		1,761,480		11,300.		1,530,000
Sodium	UG/KG	11			103,740.	J	508,000. J	1,300. J	1,000 U
Zinc	UG/KG	12	315,865,384 6		82,500		1,720,000.	236,000. J	48,000 U
					-2,000		E a Til (Talano.	632,000.	99,700.

ESI	STUDY ID
SEAD-11	SITE
TP11-4	LOC ID
SITE	LOC TYPE.
TP11-4-3	SAMP_ID
SA	QC CODE.
4	SAMP DETH TOP.
6	SAMP DEPTH BOT
SOIL	MATRIX.
16-Dec-93	SAMP DATE

PARAMETER UNIT Exceedances PRG Ecological PRG 4046 VALUE (_
	ų
Acenaphthene UG/KG 1 2,268,070 50,000 27	
Anthracene UG/KG 1 315,865,384 6 1,269,040 50,000 49	-
Bunzo[a]anthracene UG/KG 8 94,230 769 1,476,040 224 160 224	-
Bunzolalpyrene LIG/KG 11 0.422.077 FGG.700	-
Benzo[b]fluoranthene UG/KG 8 94,230 769 59,750 1,100 220	
Benzo[ghi]perylene UG/KG 1 76,250 50,000 160	-
Benzo[k](luoranthene UG/KG 8 942,307 692 72,640 1,100 94	-
Chrysene UG/KG 8 9,423,076,923 93,300. 400 180 .	-
Dibenz[a,h]anthracene UG/KG 10 9,423 077 53,680 14 370 t	-
Dibenzofuran UG/KG 4 4,211,538.462 6,200 370 (_
Fluoranthene UG/KG 5 42,115,384 62 7,849,900 50,000 400	U
Fluorene HC/KC 4 42445 004 00	
Indepoil 2 3-cdlovrene LIGIKG 6	
Nachthalene HC/VC 3 42.445.004.00	
Phenanthrene UC/KC 4	_
Pyrene HCIVC 4 04 500 500 15	-
4.4.DDT 110/40 30,000 340 .	
Aluminum Alging 4 1050 201015	J
Antimony 11G/K/2 6 421 152 045 10 107 000	
Arsenic 11C/KG 5 15.050.071	UJ
Barium 11G/KG 4 73.704.033.00 7,300 5,700	
Beryllum 1101/0 300,000 44,100	
Cadmum 110/40 6 500 110 00 730 390 .	_
Calcium 110/40 400 (
Chromina 110/RG 9 1 053 854 645 050 100	
Copper 11Cacc 10 121150701 22,130 22,130 22,130 21,	
Iron 116/KG 114 245,000 19,400.	J
Lead UC/KC 7 20,626,650 15,100,000	_
Magnesium LIC/KC 5	
Mangagese 11C/VC 4 24.246.246.45	
Mercury 11G/KG 7 2345 805 205 609,380. 420,000	
Nickel 100 20 .	J
Potassium 110/40 5	
Silver 11C/KG 6 5 204 400 077	
Sodium 400 810 (
103,740 (\$50.000, 156,000, 1	
2315,865,384 6 82,500 £ 22,400;	

Companson to Ecological PRG									
									NYSDEC TAGM
PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	4046
Volatile Oceanics									
Volatile Organics 1 1.1-Trichloroethane	UG/KG	15	0	0.00%		0	36 850.961.54	957.110.	300
1.1 2.2-Tetrachloroethane	UG/KG	15	0	0.00%		o	3,439,423.077		600
1.1 2-Trichloroethane	UG/KG	15	0	0 00%		0	1,206,815,115		200
1,1-Dichloroethane	UG/KG	15	0	0.00%		0	105,288,461 5 114,647 436		400
1 1-Dichloroethene	UG/KG	15	0	0.00%		0	755,917 16		100
1,2-Dichloroethane	UG/KG	15	0	0.00%	4	0	733.517 10		
1.2-Dichloroethene (total)	UG/KG	15	2	13.33%	4	0	1,011,595.023		
1.2-Dichloropropane	UG/KG	15	0	0.00% 0.00%		0	105,288,461 5	34.270.	200
Acetone	UG/KG	15 15	0	0.00%		0	2.372,015.915	247.370.	60
Benzene	UG/KG UG/KG	15	0	0.00%		0	1,109,491 315		
Bromodichloromethane	UG/KG	15	0	0.00%		0	8,707,400.195		
Bromoform Carbon disulfide	UG/KG	15	0	0.00%		0	105.288.461.5	53.000	2.700
Carbon tetrachlonde	UG/KG	15	0	0.00%		0	529,142.012		600
Chlorobenzene	UG/KG	15	0	0.00%		0	21,057,692,31		1,700.
Chlorodibromomethane	UG/KG	15	0	0.00%		0	818,910.256		1.900
Chloroethane	UG/KG	15	0	0.00%		0	421,153,846 2	194,610.	300.
Chloroform	UG/KG	15	0	0.00%		0	10.528,846.15	194,010.	300.
Cis-1,3-Dichloropropene	UG/KG	15	0	0.00%		0	105.288.461.5	1,720,290.	5,500.
Ethyl benzene	UG/KG	15	1	6.67%	3.	0	1,505,625.	1,720,230.	3,500
Methyl bromide	UG/KG	15	0	0.00%		0	1,505,625.		
Methyl butyl ketone	UG/KG	15	0	0.00%		0	5.291.420.118		
Methyl chlonde	UG/KG	15	0	0.00%		0	5,291,420.110	421,380.	300
Methyl ethyl ketone	UG/KG	15	0	0.00%		0	84,230,769.23		1,000
Methyl isobutyl ketone	UG/KG	15	0	0.00% 0.00%		0	9,171,794.872	132,030.	100
Methylene chlonde	UG/KG	15	0	0.00%		0	9,11,11,1		
Styrene	UG/KG	15 15	3	20.00%	370.	0	1,322,855.03	6,454.550.	1,400
Tetrachloroethene	UG/KG	15	3	20.00%	3.	0	210.576.923.1	1,552,560.	1,500.
Toluene	UG/KG UG/KG	15	1	6.67%	4.	0	2,105,769.231.	5.642.680.	1,200
Total Xylenes	UG/KG	15	0	0.00%		0			
Trans-1,3-Dichloropropene Trichloroethene	UG/KG	15	10	66.67%	460.	0	6,253,496,503		700
Vinyl chlonde	UG/KG	15	0	0.00%		0	36,204.453		200
Herbicides	00,,,,								1.000
2,4,5-T	UG/KG	15	1	6.67%	7 6	0			1,900. 700.
2,4,5-TP/Silvex	UG/KG	15	0	0.00%		0			500.
2.4-D .	UG/KG	15	0	0.00%		0			3 00.
2.4-DB	UG/KG	15	2	13.33%	550.	0			
Dalapon	UG/KG-	15	1	6.67%	2,500.	0		22,600.	
Dicamba	UG/KG	15	0	0.00%		0		22,000.	
Dichloroprop	UG/KG	15	0	0.00%		0			
Dinoseb	UG/KG	15	0	0.00% 0.00%		0			
MCPA	UG/KG	15	0	0.00%		0		818,180.	
MCPP	UG/KG	15	U	0.0070		_			
Nitroaromatics	UG/KG	15	0	0.00%		0	52,644 231		
1,3.5-Trnntrobenzene	UG/KG	15	1	6.67%	770.	0	105,288.462		
1,3-Dinitrobenzene 2,4,6-Trnitrotoluene	UG/KG	15	1	6.67%	130	0	526.442.308		
2.4-Dinitrotoluene		'~ 15	2	13.33%	440	0	2,105,769.231	5,060.	
2,6-Dinitrotoluene	UG/KG	15	1	6.67%	400.	0	1,052,884.615		1.000
2-amino-4,6-Dinitrotoluene	UG/KG	15	1	6.67°6	680	0			
4-amino-2.6-Dinitrotoluene	UG/KG	15	0	0.00%		0			
HMX	UG/KG	15	0	0.00%		0			
RDX	UG/KG	15	0	0.00%		0			
Tetryl	UG/KG	15	0	0.00%		0			
Semivolatile Organics						•	10,528,846.15	1,132,060.	3,400
1.2,4-Trichlorobenzene	UG/KG	15	0	0.00%		0	94,759,615.38	1,752,555	7,900
1.2-Dichlorobenzene	UG/KG	15	0	0.00%		0	93,706,730.77		1 600
1.3-Dichlorobenzene	UG/KG	15	0	0 00%		0	2,866.185.897		8.500
1.4-Dichlorobenzene	UG/KG	15	0	0.00%		0	2,000,000,00		
2.2'-oxybis(1-Chloropropane)	UG/KG	15	0	0 00%		0	105,288,461.5		1 CO
2.4.5-Tricnlorophenol	UG/KG	15	0	0.00% 0.00%	_	0	6.253.496.503		
2.4 6-Tricnlorophenol	UG/KG	15	0	0.00%	,	0	3.158.653.846		400
2.4-Dichlorophenol	UG/KG	15 15	0	0.00%		0	21.057.692.31		
2.4-Dimethylphenol	UG/KG	15	0	0.00%		0	2,105.769.231		200
2.4-Dinitrophenol	UG/KG UG/KG	15	0	0.00%		0	. 2.105.769.231	5,060.	
2,4-Dinitrotoluene	UG/KG	15	0	0.00%		0	1,052.884 615		1 000
2.6-Dinitrotoluene	UG/KG	15	0	0.00%		0		#	800
2-Chloronaphthalene 2-Chlorophenol	UG/KG	15	0	0.00%		0	5.264.423.077	83,200.	36.400
2-Methylnaphthalene	UG/KG	15	9	60.00%	28,000	0		962,620.	36.400
E-mony.neproraisine									

Companson to Ecological PRG									
PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046
		•					52.644 230.77		100
2-Methylphenol	UG;KG	15	0	0.00%		0	63.173.077		430
2-Nitroaniline	UG/KG	15	0	0.00%		0	03.173.077		330
2-Nitrophenol	UG/KG	15	0	0.00% 0.00%		0	152,863.248		
3.3'-Dichloropenzidine	UG/KG	15	0	0.00%		0	3,158,653,846		500
3-Nitroaniine	UG/KG	15 · 15	0	0.00%		0			
4 6-Cinitro-2-methylphenol	UG/KG UG/KG	15	0	0.00%		0	61.067.307.69		
4-Bromopnenyl phenyl ether 4-Chloro-3-methylphenoi	UG/KG	15	0	0.00%		0			240
4-Chloroaniline	UG/KG	15	0	0.00%		0	4,211,538,462		220
4-Chlorophenyl pnenyl ether	UG/KG	15	0	0.00%		0			200
4-Methylphenol	UG/KG	15	0	0.00%		0			900
4-Nitroaniline	UG/KG	15	0	0.00%		0	3,158,653,846	18,680.	100
4-Nitrophenol	UG/KG	15	0	0.00%		0	63.173.076.92	2,268,070	50 000
Acenaphthene	UG/KG	15	9	60.00%	84,000.	0		33,460.	41,000
Acenaphthylene	UG/KG	15	0	0.00%	450,000	0	315.865,384.6	1,269,040	50,000
Anthracene	UG/KG	15	11	73.33%	150,000.	0	94.230.769	1,476,040	224
Benzo(a)anthracene	UG/KG	15	11	73.33%	190,000. 140.000.	0	9,423.077	562,720.	61
Benzo(a)pyrene	UG/KG	15	11	73.33% 73.33%	110,000.	4	94.230.769	59,750.	1,100
Benzo(b)fluoranthene	UG/KG	15	11	66.67%	53,000.	0		76.250.	50.000
Benzo[ghi]perylene	UG/KG	15	10 11	73.33%	130,000.	2	942,307 692	72,640.	1,100
Benzo(k)fluoranthene	UG/KG	15	0	0.00%	100,000.	0			
Bis(2-Chloroethoxy)methane	UG/KG	15 15	0	0.00%		0	62,534,965		
Bis(2-Chloroethyl)ether	UG/KG	15	3	20.00%	67.	0	4,913,461,538	39,350.	50,000
Bis(2-Ethylhexyl)phthalate	UG/KG	15	0	0.00%		0	210.576.923.1		50.000
Butyibenzyiphthalate	UG/KG UG/KG	15	8	53.33%	81.000.	0	3,439,423.077		
Carbazole	UG/KG	15	11	73.33%	170,000.	2	9,423,076,923	93,300.	400
Chrysene Or a hundahthalate	UG/KG	15	0	0.00%		0		94,697,730.	8.100
Di-n-butylphthalate Di-n-octylphthalate	UG/KG	15	0	0.00%		0	21.057,692.31		50,000
Dibenz(a,h)anthracene	UG/KG	15	10	66.67%	52.000.	0	9.423.077	53,680.	14 6,200.
Dibenzofuran	UG/KG	15	10	66.67%	60,000.	0	4,211,538.462	7 005 040	7 100.
Diethyl phthalate	UG/KG	15	0	0.00%		0	842,307,692.3	7,665,910.	2,000.
Dimethylphthalate	UG/KG	15	0	0.00%		0	10,528.846.150.	7,849,900.	50.000
Fluoranthene	UG/KG	15	12	80.00%	350.000.	0	42,115,384.62 42,115,384.62	1,755,510	50.000
Fluorene	UG/KG	15	10	66.67%	88,000.	0	42,115,364.62	1,733,310	410.
Hexachlorobenzene	UG/KG	15	0	0.00%		0	210,576.923		
Hexachlorobutadiene	UG/KG	15	0	0.00%		0	7,370,192,308		•
Hexachlorocyclopentadiene	UG/KG	15	0	0.00%		0	1.052,884.615		
Hexachloroethane	UG/KG	15	0	0.00% 73.33%	100,000.	2	94,230.769	47,630.	3.200
Indeno[1.2,3-cd]pyrene	UG/KG	15	11	0.00%	100,000.	0			4,400.
Isophorone	UG/KG	15	0	0.00%		0	14,038,461.54		
N-Nitrosodiphenylamine	UG/KG	15 15	0	0.00%		0	9,826.923	1,454,550.	
N-Nitrosodipropylamine	UG/KG	15	10	66.67%	100,000.	0	42,115,384.62	149,740.	13,000
Naphthalene	UG/KG UG/KG	15	0	0.00%		0	526,442.308		200.
Nitrobenzene	UG/KG	15	0	0.00%		0	573,237.18	1,415,560.	1,000
Pentachlorophenol Phenanthrene	UG/KG	15	11	73.33%	350,000.	1		325,820.	50,000 30.
Phenol	UG/KG	15	0	0.00%		0	631,730,769.2	79,520.	50.000
Pyrene	UG/KG	15	11	73.33%	280,000.	0	31,586,538.46	2,420,460.	50.000
Pesticides/PCBs							200 040 50	874,990	2,900
4.4°-DDD	UG/KG	15	8	53.33%	1,400.	0	286,618.59	86,590.	2.100
4.4°-DDE	UG/KG	15	10	66 67%	1,800.	0	202.319.005 202.319.005	8,870.	2,100
4.4 -DDT	UG/KG	15	11	73.33%	4.300.	0	4,046.38	2,750.	41
Aldnn	UG/KG	15	0	0.00%	24.	0	1,010.00		110
Alpha-BHC	UG/KG	15	1	6.67%	190.	0		142,090.	
Alpha-Chlordane	UG/KG	15	4	26.67%	130.	0	73,701 923		
Aroclor-1016	UG/KG	15	0	0.00% 0.00%		0			
Aroclor-1221	UG/KG	15	0	0.00%		0			
Aroctor-1232	UG/KG	15 15	0	0.00%		0		12,879,550.	
Aroclor-1242	UG/KG	15	0	0.00%		0			
Aroclor-1248	UG/KG	15 15	0	0.00%		0	21.057.692	3.925.000	*0,000
Aroclor-1254	UG/KG	15	0	0.00%		0		2,272,730	10 000
Aroclor-1260	UG/KG UG/KG	15	0	0.00%	*.	0		11,060.	200
Beta-BHC	UG/KG UG/KG	15	3	20 00%	15.	0			300
Delta-BHC	UG/KG	15	3	20.00%	29.	0	4,299.279		44 90 0
Dieldnn Endosulfan I	UG/KG	15	0	0.00%		0	6.317.307.692	131,820.	900
Endosuiran II	UG/KG	15	6	40.00%	66	0	6.317,307 692	45 020	1,000
Endosulfan sulfate	UG/KG	15	1	6.67%	2.5		0.0000000	15,820 240,910.	100
Endon	UG/KG	15	4	26 67%	49.	0	315.865.385	6,350.	.55
Endnn aldehyde	UG/KG	15	0	0.00%		0	315.865.385 315.865.385	6,350	
Endnn ketone	UG/KG	15	0	0.00%		0	313,003,363	2.200	

Seneca Army Depot Activity SEAD-11 Soils Summary Statistics Companson to Ecological PRG

									NYSDEC TAGM
PARAMÉTÉR	UNIT	Number of	Number of	Frequency of	Maximum	Number of	Recreational PRG	Ecological PRG	4046
		Analyses	Detections	Detection	Value	Exceedances			
Gamma-BHC/Lindane	UG/KG	15	0	0.00%		0	52,914.201		60
Gamma-Chlordane	UG/KG	15	0	0.00%		0		47,360.	540
Heptachlor	UG/KG	15	0	0.00%		0	15,286.325	28,620.	100
Heptachlor epoxide	UG/KG	15	0	0.00%		0	7,559.172	10.	20
Methoxychlor	UG/KG	15	0	0.00%		0	5,264,423.077		
Тохарлепе	UG/KG	15	0	0.00%		0			
Metals									
Aluminum	UG/KG	15	15	100.00%	21,700,000.	0	1,052,884,615.		14.592.840
Antimony	UG/KG	15	6	40.00%	285,000.	0	421,153.846	18,437,230.	3,590.
Arsenic	UG/KG	15	12	80.00%	23,200.	0	45,858.974	223,670.	7,500
8anum	UG/KG	15	15	100.00%	1,090,000.	11	73,701,923.08	91,840.	300,000
Beryllium	UG/KG	15	15	100.00%	930.	0	15,997.317	6,570.	730.
Cadmium	UG/KG	15	6	40.00%	16,000.	0	526,442.308	737,770.	1,000.
Calcium	UG/KG	15	15	100.00%	103,000,000.	0			101,903.800.
Chromium	UG/KG	15	15	100.00%	242,000.	0	1.052,884,615.	850,430.	22,130
Cobalt	UG/KG	15	15	100.00%	27,500.	0	63,173,076.92		30,000.
Copper	UG/KG .	15	15	100.00%	1,090,000.	1	42,115,384.62	827,810.	25,000.
Cyanide	UG/KG	15	0	0.00%		0		13,636,360	300.
Iron	UG/KG	15	15	100.00%	118,000,000.	0	315,865,384.6		26,626,650.
Lead	UG/KG	15	9	60.00%	4,050,000.	3		181,460.	21,860.
Magnesium	UG/KG	15	15 .	100.00%	44,600,000.	0			12,221,770.
Manganese	UG/KG	15	14	93.33%	946.000.	0	24,216,346.15	8,821,860.	669.380.
Mercury	UG/KG	15	13	86.67%	2,900.	1	315,865.385	1,710.	100.
Nickel	UG/KG	15	15	100.00%	117,000.	0	21,057,692.31	2,833,820.	33.620.
Potassium	UG/KG	15	15	100.00%	2,980,000.	0			1,761,480.
Selenium	UG/KG	15	9	60.00%	740.	0	5,264,423.077	193,140.	2,000.
Silver	UG/KG	15	6	40.00%	11,300.	0	5,264,423.077		400.
Sodium	UG/KG	15	14	93.33%	1,660,000.	0			103,740.
Thallium	UG/KG	15	0	0.00%		0	84,230.769		280.
Vanadium	UG/KG	15	15	100.00%	31,800.	0	7,370,192.308		150,000.
Zinc	UG/KG	15	12	80.00%	7,980.000.	0	315,865,384.6		82,500.
Other Analyses									
Nitrate/Nitrite	UG/KG	15	15	100.00%	2,200.	0			
Total Petroleum Hydrocarbons	UG/KG	15	15	100.00%	6,000,000.	0			

Seneca Army Depot Activity SEAD 11 Soils Collapsed Data Summary Comparison to Ecological PRG

E 51	ESI	ESI	ESI	STUDY ID
St AD 11	SEAD 11	SEAD 11	SEAD-11	SITE
1P11-1	MW11 1	MW11 1	MW11-1	L OC ID
SHŁ.	BACKGROUND	BACKGROUND	BACKGROUND	LOC TYPE
TP11-1-1	SB11 3 6	SB11 3 2	SB11-3-1	SAMP_ID
SA	SA	SA	SA	QC CODE
()	10	2	0	SAMP DETH TOP
UB	12	4	2	SAMP DEPTH BOT
SOIL	SOIL	SOIL.	SOIL	MATRIX
20 Nov 93	03-Nov 93	02-Nov 93	02-Nov-93	SAMP DATE

PARAMETER	UNIT	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046	VALUE Q	VALUE Q	VAI UE Q	VALUE Q
Benzo[b]fluoranthene	UG/KG	4	94,230 769	59,750	1,100	410 U	370 UR	350 UR	230 J
Benzo[k]fluoranthene	UG/KG	2	942,307 692	72,640	1,100	410 U	370 UR	350 UR	190 J
Chrysene	UG/KG	2	9,423,076 923	93,300	400	410 U	370 UR	350 UR	320 J
Indeno[1,2,3-cd]pyrene	UG/KG	2	94,230 769	47,630	3,200	410 U	370 UR	350 UR	140 J
Phonanthrene	UG/KG	1		325,820	50,000	410 U	370 UR	350 UR	230 J
Barium	UG/KG	11	73,701,923 08	91,840	300,000	113,000.	57,400	62 700	1,090,000.
Copper	UG/KG	1	42,115,384 62	827,810	25,000	20,000	12,200	21 700	492,000
Lead	UG/KG	3		181,460	21,860	27,900	11,400	10 100	4,050,000,
Mercury	UG/KG	1	315,865 385	1,710	100	50 J	40 U	30 U	70 J

h leng/sener alpeer0498/1

Seneca Army Depot Activity SEAD-11 Soils Collapsed Data Summary Comparison to Ecological PRG

					STUDY ID.	ESI	ESt	ESI	ESI
					SITE	SEAD-11	SEAD-11	SEAD 11	SEAD 11
					LOC ID	TP11-1	1P11-1	TP11 2	1P11.2
					LOC TYPE	SITE	SILE	SITE	SILE
					SAMP_ID	TP11-1-2	TP11 1 3	TP11.2.1	1P11 2 2
					QC CODE	SA	SA	SA	SA
				SAM	MP DETH TOP	33	4 2	0	5
				SAM	P DEPTH BOT	3 3	4 2	0.7	5
					MATRIX	SOIL	SOIL	SOIL	SOIL
					SAMP DATE	20-Nov-93	20-Nov 93	19-Nov-93	20 Nov 93
PARAMETER	UNIT	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Benzo(b)fluoranthene	UG/KG	4	94,230 769	59,750	1,100	200 J	400 U	4,700	. 99,000,
Benzo[k]fluoranthene	UG/KG	2	942,307 692	72,640	1,100	140 J	400 U	3,000	130,000.
Chrysene	UG/KG	2	9,423,076 923	93,300	400	230 J	400 U	4,500	170,000.
Indeno[1,2,3-cd]pyrene	UG/KG	2	94,230 769	47,630	3,200	66 J	400 U	2,800	100,000.
Phenanthrene	UG/KG	1		325,820	50,000	260 J	400 U	5,800	350,000.
Barium	UG/KG	11	73,701,923 08	91,840	300,000 .	953,000.	106,000.	96,900.	68 600
Copper	UG/KG	1	42,115,384 62	827,810	25,000	374,000	32,400	35,500	121,000
l ead	UG/KG	3		181,460	21,860 5	2,090,000.	193,000.	84,100	82,500
Mercury	UG/KG	1	315,865 385	1,710	100 🛓	2,900.	700	500 J	/O J

Seneca Army Depot Activity SEAD-11 Soils Collapsed Data Summary Comparison to Ecological PRG

					STUDY ID	ESI		ESI	ESI	ESI
					SITE	SEAD 11		SEAD 11	SEAD 11	SEAD 11
					I OC ID	TP11 2		1P11 3	1P11 3	IP11 3
					LOC TYPE	SITE		SHE	SHE	5111
					SAMP_ID	TP11 2-3		TP11 3 1	TP11.3.2	IP11.3.3
					QC CODE	SA		SA	SA	SA
				SA	MP DETH TOP-	5		0	2	4
				SAM	P DEPTH BOT	5		2	4	G
					MATRIX	SOIL		SOIL	SOIL	SOIL
					SAMP DATE	20 Nov-93		14-Dec-93	14-Dec 93	14 Dec 93
					,					
		Number of			NYSDEC TAGM					
PARAMETER	TINU	Exceedances	Recreational PRG	Ecological PRG	4046	VALUE Q		VALUE Q	VALUE Q	VALUE Q
Benzo[b]fluoranthene	UG/KG	4	94,230 769	59,750	1,100	2,900	,	110,000,4J	67,000,	68,000,
Benzo[k]fluoranthene	UG/KG	2	942,307 692	72,640	1,100	3,700		94,000. J	48,000	66 000
Chrysene	UG/KG	2	9,423,076 923	93,300	400	4,300		110,000. J	64,000	74,000
Indeno[1,2,3-cd]pyrene	UG/KG	2	94,230 769	47,630	3,200	2,300		60,000. J	37,000	45,000 J
Phenanthrene	UG/KG	1		325,820	50,000	9,200		210,000 J	110,000	180 000
Barium	UG/KG	11	73,701,923 08	91,840	300,000	119,000.		415,000.	133,000.	477,000.
Copper	UG/KG	1	42,115,384 62	827,810	25,000	25,700		1,090,000. J	225,000 J	642 000 J
Lead	UG/KG	3		181,460	21,860	84,900		1,170,000 R	474,000 R	1,330 000 R
Mercury	UG/KG	1	315,865 385	1,710	100	80 J		400	400	410

h len j/sener.a/pear0498/3

Seneca Army Depot Activity SEAD 11 Suits Collapsed Data Summary Comparison to Ecological PRG

ESI	ESI	ESI	STUDY ID
SEA() 11	SEAD 11	SEAD 11	SITE
TP11-4	IP11-4	TP11-4	LOC ID
SHE	SITE	SITE	LOC TYPE
TP11 4 3	TP11 4 2	TP11 4-1	SAMP ID
SA	SA	SA	QC CODE
4	2	0	SAMP DETH TOP
6	4	2	SAMP DEPTH BOT
SOIL	SOIL	SOIL	MATRIX
16-Dec-93	16-Dec 93	14-Dec-93	SAMP DATE

		Number of			NYSDEC TAGM			
PARAMETER	UNIT	Exceedances	Recreational PRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q
Benzo[b]fluoranthene	IJG/KG	4	94,230 769	59,750	1,100	26,000	8 400	220 J
Benzo[k]fluoranthene	UG/KG	2	942,307 692	72,640	1,100	10 000	000,6	94 J
Chryserie	UG/KG	2	9,423,076 923	93,300	400	22,000	6,900	180 J
Indeno[1,2,3-cd]pyrene	UG/KG	2	94,230 769	47,630	3,200	11,000	3,700	120 J
Phenanthrene	UG/KG	1		325,820	50,000	40,000	9,700	240 J
Barium	UG/KG	11	73,701,923 08	91,840	300,000	244,000.	131,000.	44,100
Copper	UG/KG	1	42,115,384 62	827,810	25,000	154,000 J	22,900 J	19,400 J
Lead	UG/KG	3		181,460	21,860	1,890,000 R	27,300 R	161,000 R
Mercury	UG/KG	1	315,865 385	1,710	100	370	40 J	20 J

Seneca Army Depot Activity SEAD-11 Soils Summary Statistics Companson to Recreational PRG

Companson to Recreational PRG										
PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046	
Volatile Organics									200	
1 ! 1-Trichloroethane	JG KG	15	0	0 00%		0	36,850,961 54	957 110	008 006	
1 1.2 2-Tetrachiorcethane	JG.KG	15	0	0 00%		0	3,439 423.077		500	
1 1 2-Trichloroethane	JG KG	15	0	0 00%		0	1,206.815.115		200	
1.1-Dichicrcethane	JG.KG	15	0	0.00%		0	105,288,461 5		400	
1 1-Dichtorcethene	JG.KG	15	0	0 00%		0	114,647 436 755,917 16		100	
1 2-Dichicroethane	UG/KG	15	0	0 00%	4	0	755,917 10			
1 2-Dichlcroethene (total)	UG.KG	15	2	13 33%	4	0	1,011,595.023			
1,2-Dichloropropane	UG/KG	15	0	0.00% 0.00%		0	105,288,461.5	34,270.	200	
Acetone	UG/KG	15 15	0	0.00%		o	2,372,015.915	247,370	60	
Benzene	UG'KG	15	0	0.00%		0	1,109,491,315			
Bromodichioromethane	UG/KG UG/KG	15	0	0.00%		0	8,707,400.195			
Bromoform Carbon disuifide	UG/KG	15	0	0.00%		0	105,288,461.5	53,000	2,700	
Carbon tetrachloride	UG/KG	15	0	0.00%		0	529,142.012		600	
Chloropenzene	UG/KG	15	0	0.00%		0	21,057,692.31		1,700	
Chlorodibromomethane	UG/KG .	15	0	0.00%		0	818,910.256		1 900	
Chloroethane	UG/KG	15	0	0.00%		0	421,153,846.2	104 610	300	
Chloroform	UG/KG	15	0	0.00%	-	0	10,528,846.15	194,610.	300	
Cis-1,3-Dichloropropene	UG/KG	15	0	0.00%		0	105 300 461 5	1,720,290.	5,500	
Ethyl benzene	UG/KG	15	1 -	6.67%	3.	0	105,288,461.5 1,505,625.	1,720.230.	3,500	
Methyl bromide	UG,KG	15	0	0.00%	-	0	1,303,623.			
Methyl butyl ketone	UG/KG	15	0	0.00%		0	5,291,420.118			
Methyl chloride	UG/KG	15	0	0.00% 0.00%	-	0		421,380.	300	
Methyl ethyl ketone	UG/KG	15 15	0	0.00%		o	84,230,769.23		1,000	
Methyl isoputyl ketone	UG/KG	15	0	0.00%		0	9,171,794 872	132,030.	100.	
Methylene chlonde	UG,KG UG,KG	15	0	0.00%		0				
Styrene Tetrachioroethene	UG/KG	15	3	20.00%	370.	0	1,322,855.03	6,454,550	1,400	
Toluene	UG/KG	15	3	20.00%	3.	0	210,576.923.1	1,552,560.	1,500	
Total Xylenes	UG/KG	15	1	6.67%	4.	0	2,105,769.231.	5,642.680.	1,200	
Trans-1.3-Dichloropropene	UG/KG	15	0	0.00%		0			700	
Tricnloroethene	UG/KG	15	10	66.67%	460.	0	6,253,496.503		200	
Vinyl chloride	UG/KG	15	0	0.00%		0	36,204.453		200	
Herbicides									1 900	
2,4,5-T	UG/KG	15	1	6.67%	7.6	0			700	
2,4,5-TP/Silvex	UG/KG	15	0	0.00%		0			500	
2.4-D	UG/KG	15	0	0.00%	550.	0				
2,4-DB	UGiKG	15	2	13.33%	2,500.	0				
Dalapon	UG/KG	15	1 0	6.67% 0.00%	2,500.	0		22,600.		
Dicamba	UG/KG	15 15	0	0.00%		0				
Dichloroprop	UG/KG	15 15	0	0.00%		0				
Dinoseb	UG/KG UG/KG	15	0	0.00%		0				
MCPA	UG/KG	15	o	0.00%		0		818,180.		
MCPP Nitroaromatics	UG/NG	15								
1,3,5-Trindrobenzene	UG/KG	15	0	0.00%		0	52,644 231			
1,3-Dinitrobenzene	UG/KG	15	1	6 67%	770.	0	105,288,462			
2.4.6-Trinitrotoluene	UG/KG	15	1	6.67%	130.	0	526,442.308	5.000		
2,4-Dinitrotoluene	UG,KG	15	2	13.33%	440	0	2,105,769.231	5,060.	1 000	
2.6-Dinitrotoluene	UG/KG	15	1	6.67%	400	0	1,052.884.615		1 000	
2-amino-4 6-Dintrotoluene	UGIKG	15	1	6.67%	680	0				
4-amino-2.5-Dinitrotoluene	UG/KG	15	0	0.00%		0				
HMX	UG/KG	15	0	0 00%		0				
RDX	UG,KG	15	0	0 00%		0				
Tetryl	UG/KG	15	0	0.00%		0				
Semivolatile Organics		4.5	0	0 00%		0	10,528.846.15	1,132,060	3 400	
1 2,4-Trichloropenzene	UG,KG	15	0	0.00%		0	94,759,615,38		7 900	
1 2-Dichlorobenzene	UG/KG	15 15	0	0.00%		Ö	93,706,730.77		1 600	
1,3-Dichloropenzene	UG/KG	15 15	0	0 00%		o	2,866.185.897		8 500	
1,4-Dichloropenzene	UG/KG	15	0	0.00%		ō				
2.2'-oxypis(1-Chloropropane)	UGIKG	15	0	0.00%		0	105,288,461.5		100	
2.4.5-Trichlorophenol	UG:KG UG:KG	15	0	0 00%		0	6.253,496 503			
2,4,6-Trichlorophenol	UG/KG UG/KG	15	0	0 00%		0	3,158,653,846		400	
2.4-Dichlorophenol	UG/KG	15	0	0.00%		0	21,057,692,31		200	
2.4-Dimethylphenol 2.4-Dinitrophenol	UG,KG	15	0	0.00%		0	2.105.769 231		200	
2.4-Dinitrophenoi	UG,KG	15	0	0.00°%		0	2,105.769.231	5,060.	1 202	
2.6-Dinitrotoluene	UG,KG	15	0	0 00%		0	1,052.884 615		1 303	
2-Chloronaphthalene	UG/KG	15	0	0 00%		0	5 00 / 100 077	92.200	300	
2-Chlorophenol	UG.KG	15	0	0 00°5		0	5,264,423.077	83.200	300	
•										

Seneca Army Depot Activity SEAD-11 Soils Summary Statistics Companson to Recreational PRG

				Comparison to	Recreational	PRG			
PARAMETER	TINU	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046
			0	60.00%	28.000	0 .		962,520	36 400
2-Methylnaontnalene	UG/KG	15	9	60 00% 0 00%	_0.000	o	52,644 230 77		100
2-Methylphenol	UG/KG	15	0	0.00%		0	63 173 077		430
2-Nitroaniline	UG,KG	15 15	0	0.00%		0			330
2-Nitrophenoi	UG/KG UG/KG	15	o	0 00%		0	152,863 248		
3 3'-Dichloropenzidine	UG/KG	15	0	0.00%		0	3,158,653 846		500
3-Nitroaniline 4 6-Dinitro-2-methylphenol	UG/KG	15	0	0 00%		0			
4-Bromopnenyl phenyl ether	UG/KG	15	0	0 00%		0	61,067,307 69		
4-Chloro-3-methylpnenol	UGiKG	15	0	0.00°%		0			240
4-Chloroaniline	UG/KG	15	0	0.00%		0	4 211,538 462		220
4-Chlorophenyl pnenyl ether	UG/KG	15	0	0.00%		0			900
4-Methylphenol	UG/KG	15	0	0.00%		0			900
4-Nitroaniline	UG/KG	15	0	0.00%		0	3 158.653 846	18,680.	100
4-Nitrophenoi	UG/KG	15	0	0.00%	24.000	0	63.173 076.92	2,268 070	50.000
Acenapnthene	UG/KG	15	9	60 00%	84,000.	0		33.460.	41 000
Acenaphthylene	UG/KG	15	0	0.00%	150,000.	0	315.865 384 6	1,269,040	50 000
Anthracene	UG/KG	15	11	73.33%	190,000.	2	94,230.769	1,476,040	224
Benzo[a]anthracene	UG/KG	15	11	73.33%	140.000.	5	9,423.077	562,720.	61
Benzo(a)pyrene	UG/KG	15	11	73.33% 73.33%	110,000.	2 -	94.230.769	59,750	1,100
Benzo(b)fluoranthene	UG/KG	15	11	66 67%	53,000.	0	34.200.100	76,250.	50 000
Benzo(ghi)perylene	UG/KG	15	10 11	73.33%	130,000	0	942,307 692	72,640.	1,100.
Benzo(k)fluoranthene	UG/KG	15	0	0.00%	130,000	0			
Bis(2-Chloroethoxy)methane	UG/KG	15 15	0	0.00%		0	62,534,965		
Bis(2-Chloroethyl)ether	UG/KG	15	3	20.00%	67.	0	4,913,461 538	39,350	50,000
Bis(2-Ethylhexyl)phthalate	UG/KG	15	0	0.00%		0	210,576,923.1		50.000
Butylbenzylphthalate	UG/KG	15	8	53.33%	81,000	0	3,439,423.077		
Carbazole	UG/KG UG/KG	15	11	73.33%	170,000.	0	9.423,076.923	93.300.	400
Chrysene	UG/KG	15	0	0.00%		0		94,697,730.	8.100
Di-n-butyiphthalate	UG/KG	15	0	0.00%		0	21,057,692,31		50 000.
Di-n-octylphthalate	UG/KG	15	10	66 67%	52.000.	3	9,423,077	53,680.	14
Dibenz(a.n)anthracene Dibenzofuran	UG/KG	15	10	66.67%	60,000	0	4,211,538.462		6.200
Diethyl phthalate	UG/KG	15	0	0.00%		0	842,307,692.3	7,665,910.	7,100
Dimethylphthalate	UG/KG	15	0	0.00%		0	10.528,846,150.		2.000
Fluoranthene	UG/KG	15	12	80 00%	350,000.	0	42,115,384.62	7,849.900.	50.000
Fluorene	UG/KG	15	10	66.67%	88,000	0	42,115,384 62	1,755,510.	50,000
Hexachlorobenzene	UG/KG	15	0	0.00%		0	42,992.788		410
Hexachlorobutadiene	UG/KG	15	0	0.00%		Ο.	210,576,923		
Hexachlorocyclopentadiene	UG/KG	15	0	0.00%		0	7.370.192.308		
Hexachloroethane	UG/KG	15	0	0.00%		0	1,052,884,615	47,630	3 200
Indeno(1 2,3-cd)pyrene	UG/KG	15	11	73.33%	100,000	1	94,230.769	47,030.	4,400.
Isophorone	UG/KG	15	0	0.00%		0	44 020 461 54		4,400.
N-Nitrosodiphenylamine	UG/KG	15	0	0.00%		0	14.038.461.54 9.826.923	1,454,550.	
N-Nitrosodipropylamine	UG/KG	15	0	0.00%	100.000	0	42,115,384 62	149,740.	13.000
Naphthalene	UG/KG	15	10	66 67%	100,000	0	526.442.308		2 0 0
Nitrobenzene	UG/KG	15	0	0 00%		0	573,237.18	1,415,560.	1,300
Pentachiorophenol	UG/KG	15	0	0.00%	350.000	0	373,237.10	325,820.	50 000
Phenanthrene	UG/KG	15	11	73.33%	330.000	0	631,730,769 2	79,520.	30
Phenol	UG/KG	15	0	0.00% 73 33%	280,000.	o	31.586.538.46	2,420,460.	50 000
Pyrene	UG/KG	15	11	73 3370	200,050.	Ü			
Pesticides/PCBs	110:140	15	8	53 33%	1,400	0	286.618 59	874,990.	2 900
4,4°-DDD	UG/KG	15	10	66 67%	1,800.	0	202.319.005	86,590.	2,100
4.4'-DDE	UG/KG	15	11	73 33%	4,300	0	202,319.005	8.870	2 100
4 4'-DDT	UG/KG UG/KG	15	0	0.00%		0	4,046 38	2,750	. 41
Aldrin	UG/KG	15	1	6 67°%	24	a			113
Alpha-BHC	UG/KG	15	4	26 67°5	190	0		142.090	
Alpha-Chlordane	UG/KG	15	0	0.00%		0	73,701.923		
Arocior-1016 Arocior-1221	UG/KG	15	0	0 00%		0			
Aroclor-1232	UG/KG	15	0	0.00%		0			
Aroclor-1242	UG/KG	15	0	0.00%		0		12,879,550	
Aroclor-1248	UG/KG	15	0	0 00%		0		2 005 000	10 363
Aroctor-1254	UG/KG	15	0	0 00°5	,	0	21 057 692	3,925.000	10 000
Aroclor-1260	UGiKG	15	0	0 00°5		0		2,272,730	200
Beta-BHC	UG/KG	15	0	0.00%		0		11,060.	300
Deita-BHC	UG/KG	15	3	20 00°%	15	0			44
Dieldrin	UG/KG	15	3	20 00°5	29	0	4,299 279	404 000	900
Endosulfan I	UG/KG	15	0	0.00%		0	6 317.307 692	131,820.	900
Endosulfan II	UG/KG	15	6	40 00°5	66	0	6 317,307 692	15.820.	. 303
Endosuifan suifate	UG/KG	15	1	6 67%	2 5	0	315.865 385	240,910.	100
Endrin	UG/KG	15	4	26 67°5	49	0	313.863 383	240,510.	

Seneca Army Depot Activity SEAD-11 Soils Summary Statistics Companson to Recreational PRG

									NYSDEC TAGM
PARAMETER	UNIT	Number of	Number of	Frequency of		Number of	Recreational PRG	Ecological PRG	4046
		Analyses	Detections	Detection	Value	Exceedances			
Endrin aldehyde	UG,KG	15	0	0.00%		0	315.865 385	6.350.	
Endrin ketone	UG/KG	15	0	0 00%		0	315,865.385	6.350	
Gamma-BHC/Lindane	JG/KG	15	0	0 00%		0	52.914 201		60
Gamma-Chlordane	UG/KG	15	0	0.00%		0		47,360	540
Heptachlor	UG/KG	15	0	0 00%		0	15.286.325	28.620	100
Heptachlor epoxide	UG,KG	15	0	0.00%		0	7,559.172	10	20
Methoxychlor	UG/KG	15	0	0.00%		0	5,264,423 077		
Toxaphene	UG/KG	15	0	0 00%		0			
Metals									
Aluminum	UG/KG	15	15	100 00%	21,700,000.	0	1,052,884,615.		14,592,340
Antimony	UG/KG	15	6	40.00%	285,000	0	421,153.846	18,437,230	3,590
Arsenic	UG/KG	15	12	80.00%	23.200.	0	45,858.974	223,670.	7,500
Barium	UG/KG	15	15	100.00%	1,090,000.	0	73,701.923.08	91,840	300,000
Beryllium	UG/KG	15	15	100.00%	930.	0	15,997 317	6,570	730.
Cadmium	UG/KG	15	6	40.00%	16,000.	0	526,442,308	737,770.	1,000
Calcium	UG/KG	15	15	100.00%	103,000.000.	0			101.903 800
Chromium	UG/KG	15	15	100.00%	242,000.	0	1,052,884,615.	850,430	22,130
Cobalt	UG/KG	15	15	100.00%	27,500.	0	63,173,076.92		30,000
Copper	UG/KG	15	15	100.00%	1,090,000.	0	42,115,384.62	827,810.	25.000
Cyanide	UG/KG	15	0	0.00%		0		13,636,360.	300
iron	UG/KG	15	15	100.00%	118,000,000.	0	315,865,384 6		26,626,650
Lead	UG/KG	15	9	60.00%	4,050,000.	0		181,460.	21,860
Magnesium	UG/KG	15	15	100.00%	44,600,000.	0			12,221,770
Manganese	UG/KG	15	14	93.33%	946,000.	0	24,216,346.15	8,821,860	669.380
Mercury	UG/KG	15	13	86.67%	2,900.	0	315,865.385	1,710.	100
Nickel	UG/KG	15	15	100.00%	117,000.	0	21,057,692.31	2,833,820.	33,620.
Potassium	UG/KG	15	15	100.00%	2,980,000.	0			1,761,480.
Selenium	UG/KG	15	9	60.00%	740.	0	5.264,423.077	193,140	2.000
Silver	UG/KG	15	6	40.00%	11,300.	0	5,264,423.077		400
Sodium	UG/KG	15	14	93.33%	1,660,000.	0			103.740
Thallium	UG/KG	15	0	0.00%		0	84,230 769		280
Vanadium	UG/KG	15	15	100.00%	31,800.	0	7,370,192.308		150,000
Zinc	UG/KG	15	12	80.00%	7,980,000.	0	315,865,384.6		82.500
Other Analyses									
Nrtrate/Nitrite	UG/KG	15	15	100.00%	2,200.	0			
Total Petroleum Hydrocarbo	ons UG/KG	15	15	100.00%	6,000.000.	0			
•									

Seneca Army Depot Activity SEAD-11 Soils Collapsed Data Summary Comparison to Recreational PRG

ESI	ESI	ESI	ESI	STUDY ID
SEAD 11	SEAD-11	SEAD-11	SEAD-11	SITE
TP11.1	MW11-1	MW11 1	MW11-1	FOC ID
SILE	BACKGROUND	BACKGROUND	BACKGROUND	LOC TYPE
TP11 1 1	SB11-3 6	SB11 3 2	SB11-3-1	SAMP_ID
SA	SA	SA	SA	QC CODE
U	10	2	. 0	SAMP DETH TOP
0.8	12	4	2	SAMP DEPTH BOT
SUIL	SOIL	SOIL	SOIL	MATRIX
20 Nov 93	03-Nov-93 ,	02-Nov-93	02-Nov-93	SAMP DATE

PARAMETER	UNIT	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Benzo(alanthracene	UG/KG	2	94,230 769	1,476,040	224	410 U	370 UR	350 UR	150 J
Benzolalpyrene	UG/KG	5	9,423 077	562,720	61	410 U	370 UR	350 UR	210 J
Benzo[b]fluoranthene	UG/KG	2	94,230 769	59,750	1,100	410 U	370 UR	350 UR	230 J
Dibenzia hlanthracene	UG/KG	3	9,423 077	53,680	14	410 U	370 UR	350 UR	60 J
Indenol1 2 3-cdlpyrene	UG/KG	1	94,230 769	47,630	3,200	410 U	370 UR	350 UR	140 J

Seneca Army Depot Activity SEAD-11 Soils Collapsed Data Summary Comparison to Recreational PRG

				Compari	son to Recreational PRO	3		
				STUDY ID	ESI	ESI	ESI	ESI
				SITE	SEAD-11	SEAD-11	SEAD 11	SEAD 11
				LOC ID	TP11-1	TP11-1	TP11-2	IP11-2
				LOC TYPE	SITE	SITE	SITE	SHE
				SAMP_ID	TP11-1-2	TP11-1-3	TP11 2-1	TP11.2.2
				QC CODE	SA	SA	SA	SA
			SAM	MP DETH TOP	3 3	4 2	0	5
			SAM	P DEPTH BOT	3 3	4 2	0 /	5
				MATRIX	SOIL	SOIL	SOII.	SOIL
				SAMP DATE	20-Nov-93	20-Nov 93	19-Nov 93	20 Nov 93
	Number of		,	NYSDEC TAGM				
UNIT		Recreational PRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q
UG/KG	2	94,230 769	1,476,040.	224	160 J	400 U	4,200	190,000.
UG/KG	5	9,423 077	562,720	61	130 J	400 U	3,800	140,000.
UG/KG	2	94,230 769	59,750	1,100	200 J	400 U	4,700	99,000.
UG/KG	3	9,423 077	53,680	14	37 J	400 U	1,100 J	52,000.
UG/KG	1	94,230 769	47,630	3,200	66 J	400 U	2,800	100,000.
	UG/KG UG/KG UG/KG UG/KG	UG/KG 2 UG/KG 5 UG/KG 2 UG/KG 3	UG/KG 2 94,230 769 UG/KG 5 9,423 077 UG/KG 2 94,230 769 UG/KG 2 94,230 769 UG/KG 3 9,423 077	Number of Exceedances Recreational PRG Ecological PRG	Company Comp	STUDY ID ESI SEAD-11 LOC ID TP11-1 LOC ID TP11-1 LOC TYPE SITE SAMP_ID TP11-1-1 SAMP_ID TP11-1-2 QC CODE SA SAMP_DETH_TOP 3 3 SAMP_DETH_TOP 3 3 SAMP_DETH_BOT 3 3 MATRIX SOIL SAMP_DATE 20-Nov-93 SAMP_DATE 20-Nov-93 SAMP_DATE QC CODE SA SAMP_DATE SAMP_DATE SAMP_DATE CONSTRUCTION CONSTRUCT	STUDY ID ESI ESI SEAD-11 SEAD-11 SEAD-11 LOC ID TP11-1 TP	STUDY ID ESI ESI ESI ESI ESI SITE SEAD-11 SEAD-1

Seneca Army Depot Activity SEAD-11 Soils Collapsed Data Summary Comparison to Recreational PRG

	Comparison to Recreational PRG										
					STUDY ID	ESI	ESI	ESI	ESI		
					SITE	SEAD-11	SEAD 11	SEAD 11	SEAD 11		
					LOC ID	TP11-2	TP11-3	IP11-3	TP113		
					LOC TYPE	SITE	SITE	SITE	SILE		
					SAMP_ID	TP11-2-3	TP11 3 1	TP11 3 2	1911 3 3		
					QC CODE	SA	SA	SA	SA		
				SAM	IP DETH TOP.	5	0	2	4		
				SAME	DEPTH BOT	5	2	4	ម		
					MATRIX	SOIL	SOIL	SOIL	SOIL		
					SAMP DATE	20-Nov-93	14-Dec-93	14-Dec-93	14 Dec 93		
		Number of		N	YSDEC TAGM						
PARAMETER	UNIT		Recreational PRG		4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q		
Benzo{a]anthracene	UG/KG	2	94,230 769	1,476,040	224	4,600	110,000, J	67,000	79,000		
Benzo[a]pyrene	UG/KG	5	9,423 077	562,720	61	3,400	110,000. J	60,000.	73,000.		
Benzo[b]fluoranthene	UG/KG	2	94,230 769	59,750	1,100	2,900	110,000. J	67,000	68,000		
Dibenz[a,h]anthracene	UG/KG	3	9,423 077	53,680	14	1,200 J	16,000. J	9,300 J	12,000. J		
Indeno[1,2,3-cd]pyrene	UG/KG	1	94,230 769	47,630	3,200	2,300	60,000 J	37,000	45,000 J		

h lenglsenecalpeer0498IS11s kls

Seneca Army Depot Activity SEAD-11 Soils Collapsed Data Summary Comparison to Recreational PRG

ESI	ESI	ESI	STUDY ID
SEAD 11	SEAD-11	SEAD-11	SITE
TP11 4	TP11-4	TP11-4	LOC ID
SITE	SITE	SITE	LOC TYPE.
TP11 4-3	TP11-4 2	TP11-4-1	SAMP_ID
SA	SA	SA	QC CODE.
4	2	0	SAMP DETH TOP
6	4	2	SAMP DEPTH BOT.
SOIL	SOIL	SOIL	MATRIX
16-Dec-93	16 · Dec · 93	14-Dec-93	SAMP DATE

PARAMETER	UNIT	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046	VALUE Q	VALUE Q	VALUE Q
Benzo[a]anthracene	UG/KG	2	94,230 769	1,476,040	224	20,000	6,600	160 J
Benzo(a)pyrene	UG/KG	5	9,423 077	562,720.	61	19,000	6,100	160 J
Benzo[b]fluoranthene	UG/KG	2	94,230 769	59,750	1,100	26,000	8,400	220 J
Dibenz(a.h)anthracene	UG/KG	3	9,423 077	53,680	14	3,500 J	1,000 J	370 U
Indenol 1 2 3-cdlpyrene	UG/KG	1	94,230,769	47,630	3,200	11,000	3,700	120 J

1

ſ	SENECA ARMY DEPOT ACTIVITY		
	School Allin School Allin School	•	~
	OF AT 11		
	SEAD-11		
	GROUNDWATER		
	COLLAPSED DATA TABLES		
	AND		
	SUMMARY STATISTICS TABLES		,
		• R	•
		•	
- 1			
100 July 100			
	,		
	,		
	,		

Seneca Army Depot Activity SEAD-11 Summary Statistics - Groundwater NYS Class GA Standard

			NY	'S Class GA Sta	ndard			
PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Drinking Water PRG	NYS Class GA Standard
Volatiles							700 5 10	5
1,1,1-Trichloroethane	UG/L	5	0	0.00%		0	792.549	
1.1.2.2-Tetrachloroethane	UG/L	5	0	0.00%		0	521	5.
1.1.2-Trichloroethane	UG/L	5	0	0 00%		0	188	
1.1-Dicnoroethane	UG/L	5	0	0.00%		0	811 742	5.
	UG/L	5	0	0 00%		0	044	5.
1.1-Dichloroethene	UG/L	5	0	0.00%		0	116	5
1 2-Dichlorcethane		5	0	0.00%		0		5.
1 2-Dichloroethene (total)	UG/L					0	989	5
1,2-Dichtoropropane	UG/L	5	0	0.00%		0	3,650.	J
Acetone	UG/L	5	0	0.00%		_		7
Senzene	UG/L	5	0	0.00%		0	364	1
Bromodicnioromethane	UG/L	5	0	0.00%		0	1.084	
Bromoform	UG/L	5	0	0.00%		0	2.354	
	UG/L	5	0	0.00%		0	1,042.857	
Carbon disulfide		5	0	0.00%		0	.163	5.
Carbon tetrachloride	UG/L		0	0.00%		0	39.431	5.
Chloropenzene	UG/L	5	-			0	8	3.
Chlorodibromomethane	UG/L	5	0	0.00%		-		
Chloroethane	UG/L	5	0	0.00%		0	8,591.77	5.
Chloroform	UG/L	5	0	0.00%		0	.153	7.
Cis-1,3-Dichloropropene	UG/L	5	0	0.00%		0		5.
	UG/L	5	0	0.00%		0	1,328.117	5.
Ethyl benzene		5	o	0.00%		0	8.699	
Methyl bromide	UG/L	-				o		
Methyl butyl ketone	UG/L	5	0	0.00%		-	1,436	5
Methyl chlonde	UG/L	5	0	0.00%		0	1.436	
Methyl ethyl ketone	UG/L	5	0	0.00%		0		50.
Methyl isobutyl ketone	UG/L	5	0	0.00%		0	158.118	
,	UG/L	5	0	0.00%		0	4.124	5.
Methylene chloride	UG/L	5	0	0.00%		0		
Styrene			0	0.00%		0	1.069	5.
Tetrachloroethene	UG/L	5	-			0	747.038	5.
Toluene	UG/L	5	0	0.00%		-		5.
Total Xylenes	UG/L	5	0	0.00%		0	73,000	
Trans-1,3-Dichloropropene	UG/L	5	0	0.00%		0		5.
Trichloroethene	UG/L	5	0	0.00%		0	1.556	5.
	UG/L	5	0	0.00%		0	.019	2.
Vinyl chloride	00/2	•	•					
Herbicides		_	0	0.00%		0		35.
2,4,5-T	UG/L	5				0		26
2.4.5-TP/Silvex	UG/L	5	0	0.00%				4.4
2,4-D	UG/L	5	0	0.00%				4.4
2.4-DB	UG/L	5	0	0.00%		0		
Dalapon .	UG/L	5	0	0.00%		0		50.
•	UG/L	5	0	0.00%		0		.44
Dicamba	· UG/L	5	0	0.00%		0		
Dichloroprop		5	o	0.00%		0		1.
Dinoseb	UG/L					0		.44
MCPA	UG/L	5	0	0.00%	,	0		
MCPP	UG/L	5	0	0.00%		U		
Nitroaromatics								
1.3.5-Trintrobenzene	UG/L	5	0	0.00%		0	1.825	5.
1.3-Dinitrobenzene	UG/L	5	0	0.00%		0	3.65	5.
	UG/L	5	1	20.00%	43	0	2.241	5.
2.4.6-Trinitrotoluene	UG/L	5	0	0.00%		0	73.	5.
2.4-Dinitrotoluene		5	o	0.00%		0	36.5	5.
2,6-Dinitrotoluene	UG/L					0		5.
2-amino-4.6-Dinitrotoluene	UG/L	5	0	0.00%		0		5.
4-amino-2,6-Dinitrotoluene	UG/L	5	0	0.00%				3.
HMX	UG/L	5	0	0.00%		0		
RDX	UG/L	5	0	0.00%		0		_
Tetryl	UG/L	5	0	0.00%		0		5.
,	00/2	*						
Semivolatile Organics	1104	5	0	0.00%		0	194,599	5.
1,2,4-Trichlorobenzene	UG/L			0.00%		0	268 163	4 7
1,2-Dichlorobenzene	UG/L	5	0			0	3,248.5	5.
1,3-Dichlorobenzene	UG/L	5	0	0.00%		_		4.7
1,4-Dichlorobenzene	UG/L	5	0	0.00%		0	2.802	4.7
2.2'-oxybis(1-Chloropropane)	UG/L	5	0	0.00%		0		
2.4.5-Trichlorophenol	UG/L	5	0	0 00%		0	3,650.	
	UG/L	5	o	0 00%		0	967	
2.4 6-Trichlorophenol			0	0.00%		0	109.5	
2,4-Dichloropnenol	UG/L	5			,	0	730.	5.
2.4-Dimethylphenol	UG/L	5	0	0.00%			73.	
2,4-Dinitrophenol	UG/L	5	0	0.00%		0	73. 73.	5
2.4-Dinitrotoluene	UG/L	5	0	0 00%		0		5
2,6-Dinitrotoluene	UG/L	5	0	0.00%		0	36.5	5
2-Chloronaphthalene	UG/L	5	0	0.00%		0		
	UG/L	5	0	0 00%		0	182.5	
2-Chlorophenol			0	0.00%		0		
2-Methylnaphthalene	UG/L	5				0	1,825.	5.
2-Methylphenol	UG/L	5	0	0 00%		5	.,	

Seneca Army Depot Activity SEAD-11

Summary	Statis	tics	 Groundwat
NYS	Class	GΑ	Standard

			NY	'S Class GA Star	ndard			
PARAMETER	TINU	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Dnnking Water PRG	NYS Class GA Standard
2-Nitroaniline	UG/L	5	0	0.00%		0	35	
2-Nitrophenol	UG/L	5	0	0.00%		0		
	UG/L	5	0	0 00%		0	149	
3,3'-Dichlorobenzidine	UGiL	5	0	0.00%		0	109 5	
3-Nitroaniline	UG/L	5	0	0.00%		0		5
4 6-Dinitro-2-methylphenol		5	0	0.00%		0	2.117.	
4-Bromophenyi phenyi ether	UG/L		0			o		
4-Chloro-3-methylphenol	UG/L	5		0.00%		0	146	5.
4-Chloroaniline	UG/L	5	0	0.00%		0	140	J.
4-Chlorophenyi phenyi ether	UG/L	5	0	0.00%				
4-Methylphenol	UG/L	5	0	0.00%		0		5.
4-Nitroaniline	UG/L	5	0	0.00%		0	109.5	5.
4-Nitrophenol	UG/L	5	0	0.00%		0	2,190.	
	UG/L	5	0	0.00%		0		
Acenaphthene		5	0	0.00%		0		
Acenaphthylene	UG/L		o	0.00%		0	10,950.	
Anthracene	UG/L	5				ō	017	
Benzo[a]anthracene	UG/L	5	0	0.00%		-	002	10.
Benzo(a)pyrene	UG/L	5	0	0.00%		0		10.
Benzo(b)fluoranthene	UG/L	5	0	0.00%		0	017	
Benzo(ghi)perylene	UG/L	5	0	0.00%		0		
	UG/L	5	0	0.00%	,	0	.168	
Benzo(k)fluoranthene	UG/L	5	0	0.00%		0		
Bis(2-Chloroethoxy)methane		5	o	0.00%		0	.009	
Bis(2-Chloroethyl)ether	UG/L			0.00%		o	4.803	50.
Bis(2-Ethylhexyl)phthalate	UG/L	5	0			0	7,300.	
Butylbenzylphthalate	UG/L	5	0	0.00%		-		
Carbazole	UG/L	5	0	0.00%		0	3.362	
Chrysene	UG/L	5	0	0.00%		0	1.679	
•	UG/L	5	0	0.00%		0		50.
Di-n-butylphthalate	UG/L	5	0	0.00%		0	730.	
Di-n-octylphthalate			0	0.00%		0	.002	
Dibenz(a.h)anthracene	UG/L	5				0	146.	
Dibenzofuran	UG/L	5	0	0.00%		-	29,200.	
Diethyl phthalate	UG/L	5	2	40.00%	.5			
Dimethylphthalate	UG/L	5	0	0.00%		0	365,000.	
Fluoranthene	UG/L	5	0	0.00%		0	1,460.	
	UG/L	5	0	0.00%		0	1,460.	
Fluorene	UĠ/L	5	0	0.00%		0	.007	.35
Hexachlorobenzene			0	0.00%		0	.137	
Hexachlorobutadiene	UG/L	5				0	.146	
Hexachlorocyclopentadiene	UG/L	5	0	0.00%		0	.754	
Hexachloroethane	UG/L	5	0	0.00%				
Indeno[1,2,3-cd]pyrene	UG/L	5	0	0.00%		0	.017	
Isophorone	UG/L	5	0	0.00%		0		
N-Nitrosodiphenylamine	UG/L	5	0	0.00%		0	13.722	
	UG/L	5	0	0.00%		0	.01	
N-Nitrosodipropylamine		5	o	0.00%		0	1,460.	
Naphthalene	UG/L		0	0.00%		0	3,393	
Nitrobenzene	UG/L	5				0	.56	1
Pentachlorophenol	UG/L	5	0	0.00%			.50	•
Phenanthrene	UG/L	5	0	0.00%		0	24 222	4
Phenol	UG/L	5	0	0.00%		0	21,900.	1.
Pyrene	UG/L	5	0	0.00%		0	1,095.	
	00							
Pesticides/PCBs	UG/L	5	0	0.00%		0	.28	.1
4.4 -DDD		5	o	0.00%		0	.198	.1
4.4`-DDE	UG/L			0.00%		0	.031	.1
4,4°-DDT	UG/L	5	0			ō	.001	.055
Aldrin	UG/L	5	0	0.00%			.001	
Alpha-BHC	UG/L	5	0	0.00%		0		5.
Alpha-Chlordane	UG/L	5	0	0.00%		0		J.
Aroclor-1016	UG/L	5	0	0.00%		. 0	2.555	
	UG/L	5	0	0.00%		0		
Aroclor-1221	UG/L	5	0	0.00%		0		
Aroclor-1232				0.00%		0		
Aroclor-1242	UG/L	5	0			0		
Aroclor-1248	UG/L	5	0	0.00%			.73	1
Aroclor-1254	UG/L	5	0	0.00%		0	.73	
Aroclor-1260	UG/L	5	0	0.00%		0		1
Beta-BHC	UG/L	5	0	0.00%		0		5.
	UG/L	5	0	0.00%		0		
Delta-BHC		5	Ö	0.00%		0	001	.1
Dieldr:n	UG/L		0	0.00%	,	o	219	
Endosulfan I	UG/L	5				ō	219.	
Endosulfan II	UG/L	5	0	0.00%			2.10.	
Endosulfan sulfate	UG/L	5	0	0.00%		. 0	40.05	1
Endrin	UG/L	5	0	0.00%		0	10 95	
Endrin aldehyde	UG/L	5	0	0.00%		0	10.95	5.
-	UG/L	5	0	0.00%		0	10.95	5.
Endrin ketone		5	o	0.00%		0	.052	5.
Gamma-BHC/Lindane	UG/L		0	0.00%		0		
Gamma-Chlordane	UG/L	5	U	0.0070		•		

Seneca Army Depot Activity SEAD-11 Surnmary Statistics - Groundwater NYS Class GA Standard

NYS Class GA Standard										
PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Drinking Water PRG	NYS Class GA Standard		
	UG/L	5	0	0.00%		0	002	05		
Heptachlor	UG/L	5	0	0.00%		0	001	05		
Heptachlor epoxide	UG/L	5	o	0.00%		0	182.5	35.		
Methoxycntor		5	0	0.00%		0				
Toxaphene	UG/L	5	0	0.0070						
Metals		5	5	100.00%	254	0	36,500.			
Aluminum	UG/L	5	0	0.00%	20.	0	14 6			
Antimony	UG/L		1	20.00%	1.1		007	25.		
Arsenic	UG/L	5	5	100.00%	53 4		1 043	1,000		
Barium	UG/L	5	0	0.00%	33 4	0	001			
Beryllium	UG/L	5	0	0.00%		0	002	10		
Cadmium	UG/L	5	-	100,00%	223.000	Ö				
Calcium	UG/L	5	5		223,000	0	004	50		
Chromium	UG/L	5	0	0.00%	7 2	_	2,190.	30		
Cobalt	UG/L	5	2	40.00%	12	0	1,460.	200.		
Copper	UG/L	5	0	0.00%		_	1,400.	100.		
Cyanide	UG/L	5	0	0.00%	250	0	10,950.	300		
Iron	UG/L	5	5	100.00%	653.	0	10,950.	25.		
Lead	UG/L	5	3	60.00%	33.7	0		25.		
Magnesium	UG/L	5	5	100.00%	41,900	0	.104	300.		
Manganese	UG/L	5	5	100.00%	281.	5				
Mercury	UG/L	5	3	60.00%	.04		592	2.		
Nickel	UG/L	5	0	0.00%		0	730.			
Potassium	UG/L	5	. 5	100.00%	13,600.	0		40		
Selenium	UG/L	5	3	60.00%	2.	0	182.5	10.		
Silver	UG/L	5	0	0.00%		0	182.5	50.		
Sodium	UG/L	5	5	100.00%	36,700.	0		20,000.		
Thallium	UG/L	5	0	0.00%		0 .	2.92			
Vanadium	UG/L	5	0	0.00%		0	255.5			
Zinc	UG/L	5	5	100.00%	34.3	0	10,950.	300.		
Other Analyses	00.1	-								
	UG/L	5	5	100.00%	800.	0		10,000.		
Nitrate/Nitnte	UG/L	5	4	80.00%	1,810.	0				
Total Petroleum Hydrocarbons	00/2	•								

Seneca Army Depot Activity SEAD-11 Collapsed Data Summary - Groundwater Comparison to NYS Class GA Standard

				STUDY ID.	ESI	ESI	ESI	ESI	ESI
				SITE	SEAD-11	SEAD-11	SEAD-11	SEAD-11	SEAD-11
				LOC ID.	MW11-1	MW11-2	MW11-3	MVV11-3	MW11 4
				LOC TYPE:	BACKGROUND	SITE	SITE	SITE	SITE
				SAMP_ID	MW11-1	MW11-2	MW11-5	MVV11-3	MW11-4
				QC CODE.	SA	SA	DU	SA	SA
				SAMP. DETH TO	6 1	3 4	3 9	3 9	5 4
				SAMP. DEPTH BO) 13.5	7 4	7 9	7 9	9 4
				MATRIX:	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER
				SAMP. DATE:	18-Jan-94	18-Jan-94	24-Jan-94	24-Jan-94	16·Nov-93
			Drinking Water	NYS Class GA					
PARAMETER	UNIT	Number of	PRG	Standard	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q
PARAMETER	ONIT	Exceedances	1110	Standard	V/1202 G	77.202 4			
Arsenic	UG/L	1	007	25.	.8 U	79 U	En Laboratoria Maria (1.1) J	8 U	1 U
Banum	UG/L	5	1 043	1,000	t i a il har bus bila 25.21 J	0 description (1.12/4/038.2) J	A CANADA A RESEARCH 37.1()	hardenberger, but 38.6) J	5
Manganese	UGAL	5	.104	300.			204	233	281,
Manganoso	2012			3-41	THE R. LEWIS CO., LANSING, LAN	The second control of the second seco	The second secon	montane and the state of the st	hardenstated and place to be a fine

Seneca Army Depot Activity SEAD-11 Summary Statistics - Groundwater Companson to Drinking Water PRG

				Frequency				
PARAMETER	UNIT	Number of Analyses	Number of Detections	of Detection	Maximum Value	Number of Exceedances	Drinking Water PRG	NYS Class GA Standard
Volatiles							792.549	5.
1,1 1-Trichloroethane	UG/L	5	0	0.00%		0	, .521	5. 5.
1,1,2,2-Tetrachloroethane	UG/L	5	0	0.00%		0	188	J.
1,1,2-Trichloroethane	UG/L	5	0 0	0.00% 0.00%		0	811.742	5.
1,1-Dichloroethane	UG/L	5 5	0	0.00%		0		5.
1,1-Dichloroethene	UG/L	5 5	0	0.00%		Ö	.116	5.
1,2-Dichloroethane	UG/L	5	0	0.00%		o		5.
1,2-Dichloroethene (total)	UG/L UG/L	5	0	0.00%		0	.989	5.
1,2-Dichloropropane	UG/L	5	0	0.00%		0	3,650.	
Acetone	UG/L	5	ō	0.00%		0	.364	.7
Benzene Bromodichloromethane	UG/L	5	0	0.00%		0	1.084	
Bromoform	UG/L	5	0	0.00%		0	2.354	
Carbon disulfide	UG/L	5	0	0.00%		0	1,042.857	
Carbon distince Carbon tetrachloride	UG/L	5	0	0.00%		0	.163	5.
Chlorobenzene	UG/L	5	0	0.00%		0	39.431	5.
Chlorodibromomethane	UG/L	5	0	0.00%		0	.8	
Chloroethane	UG/L	5	0	0.00%		0	8,591.77	5.
Chloroform	UG/L	5	0	0.00%		0	.153	7.
Cis-1,3-Dichloropropene	UG/L	5	0	0.00%		0		5.
Ethyl benzene	UG/L	5	0	0.00%		0	1,328.117	5.
Methyl bromide	UG/L	5	0	0.00%		0	8.699	
Methyl butyl ketone	UG/L	5	0	0.00%		0		
Methyl chloride	UG/L	5	0	0.00%		0	1.436	5.
Methyl ethyl ketone	UG/L	5	0	0.00%		0		50.
Methyl isobutyl ketone	UG/L	5	0	0.00%		0	158.118	
Methylene chloride	UG/L	5	0	0.00%		0	4.124	5.
Styrene	UG/L	5	0	0.00%		0		
Tetrachloroethene	UG/L	5	0	0.00%		0	1.069	5.
Toluene	UG/L	5	0	0.00%		0	747.038	5.
Total Xylenes	UG/L	5	0	0.00%		0	73,000.	5.
Trans-1,3-Dichloropropene	UG/L	5	0	0.00%		0		5.
Trichloroethene	UG/L	5	0	0.00%		0	1.556	5.
Vinyl chloride	UG/L	5	0	0.00%		0	.019	2.
Herbicides								
2,4,5-T	UG/L	5	0	0.00%		0		35.
2.4.5-TP/Silvex	UG/L	5	0	0.00%		0		.26
2,4-D	UG/L	5	0	0.00%		0		4.4
2,4-DB	UG/L	5	0	0.00%		0		50.
Dalapon	UG/L	5	0	0.00%		0		.44
Dicamba	UG/L	5	0	0.00%		0		.44
Dichloroprop	UG/L	5	0	0.00%		0		1.
Dinoseb	UG/L	5	0	0.00%		0		.44
MCPA	UG/L	5	0	0.00%		0		
MCPP	UG/L	5	0	0.00%		U		
Nitroaromatics		_	_	0.0004		٠.	1.825	5. '
1,3,5-Trinitrobenzene	UG/L	5	0	0.00%		0 .	3.65	5.
1,3-Dinitrobenzene	UG/L	5	0	0.00%	.43	0	2.241	5.
2,4,6-Trinitrotoluene	UG/L	5	1	20.00%	.43	0	73.	5.
2,4-Dinitrotoluene	UG/L	5	0	0.00%		0	36.5	5.
2,6-Dinitrotoluene	UG/L	5	0	0.00%		0	00.0	5.
2-amino-4.6-Dinitrotoluene	UG/L	5	0	0.00%		0		5.
4-amirio-2,6-Dinitrotoluene	UG/L	5	0	0.00% 0.00%		0		•
HMX	UG/L	5	0	0.00%		0		
RDX	UG/L	5 .	0	0.00%		0		5.
Tetryl	UG/L	5	U	0.0076		· ·		
Semivolatile Organics		-	0	0.00%		0	194.599	5.
1,2,4-Trichlorobenzene	UG/L	5	0 0	0.00%		0	268.163	4.7
1,2-Dichlorobenzene	UG/L	5	0	0.00%	, .	Ö	3,248.5	5.
1,3-Dichlorobenzene	UG/L	5	0	0.00%		0	2.802	4.7
1,4-Dichlorobenzene	UG/L	5	0	0.00%		0		
2,2'-oxybis(1-Chloropropane)	UG/L	5 5	0	0.00%		0	3,650.	
2.4.5-Trichlorophenol	UG/L	5 5	0	0.00%		0 .	.967	
2.4,6-Tnchlorophenol	UG/L	5	0	0.00%		Ö	109.5	
2,4-Dichlorophenol	UG/L	5 5	0	0.00%		Ö	730.	5.
2.4-Dimethylphenol	UG/L UG/L	5 5	0	0.00%		Ö	73.	
2,4-Dinitrophenol	JG/L	3	•	2.24.4		-		

Seneca Army Depot Activity SEAD-11 Summary Statistics - Groundwater Companson to Drinking Water PRG

				Frequency				
PARAMETER	UNIT	Number of Analyses	Number of Detections	of Detection	Maximum Value	Number of Exceedances	Dnnking Water PRG	NYS Class GA Standard
2.4-Dinitrotoluene	UG/L	5	0	0.00%		0	73.	5.
2.6-Dinitrotoluene	UG/L	5	0	0.00%		0	36.5	5.
2-Chloronaphthalene	UG/L	5	0	0.00%		0	100.5	
2-Chlorophenol	UG/L	5	0	0.00%		0	182.5	
2-Methylnaphthalene	. UG/L	5	0	0.00%		0		_
2-Methylphenol	UG/L	5	0	0.00%		0	1,825.	5.
2-Nitroaniline	UG/L	5	0	0.00%		0	.35	
2-Nitrophenol	UG/L	5	0	0.00%		0		
3.3'-Dichloropenzidine	UG/L	5	0	0.00%		0	.149	
3-Nitroaniline	UG/L	5	0	0.00%		0	109.5	_
4.6-Dinitro-2-methylphenol	UG/L	5	0	0.00%		0		5.
4-Bromophenyl phenyl ether	UG/L	5	0	0.00%		0	2,117.	
4-Chloro-3-methylphenol	UG/L	5	0	0.00%		0		_
4-Chloroaniline	UG/L	5	0	0.00%		0	146.	5.
4-Chlorophenyl phenyl ether	UG/L	5	0	0.00%		0		
4-Methylphenol	UG/L	5	0	0.00%		0		5.
4-Nitroaniline	UG/L	5	0	0.00%		0	109.5	5.
4-Nitrophenol	UG/L	5	0	0.00%		0	2,190.	
Acenaphthene	UG/L	5	0	0.00%		0		
•	UG/L	5	0	0.00%		0		
Acenaphthylene	UG/L	5	0	0.00%		0	10,950.	
Anthracene	UG/L	5	0	0.00%		0	.017	
Benzo(a)anthracene	UG/L	5	0	0.00%		0	.002	10.
Benzo(a)pyrene	UG/L	5	Ō	0.00%		0	.017	
Benzo[b]fluoranthene	UG/L	5	Ö	0.00%		0		
Benzo[ghi]perylene		5	0	0.00%		0	.168	
Benzo[k]fluoranthene	UG/L	5	0	0.00%	•	0		
Bis(2-Chloroethoxy)methane	UG/L		0	0.00%		Ō	.009	
Bis(2-Chloroethyl)ether	UG/L	5 5	0	0.00%		ō	4.803	50.
Bis(2-Ethylhexyl)phthalate	UG/L		0	0.00%		Ö	7,300.	
Butylbenzylphthalate	UG/L	5	0	0.00%		0	3.362	
Carbazole	UG/L	5	0	0.00%		ō	1.679	
Chrysene	UG/L	5				Ö		50.
Di-n-butylphthalate	UG/L	5	0	0.00% 0.00%		0	730.	
Di-n-octylphthalate	UG/L	5	0			Ö	.002	
Dibenz(a,h)anthracene	UG/L	5	0	0.00%		0	146.	
Dibenzofuran	UG/L	5	0	0.00%		0	29,200.	
Diethyl phthalate	. UG/L	5	2	40.00%	.5	0	365,000.	
Dimethylphthalate	UG/L	5	0	0.00%		0	1,460.	
Fluoranthene	UG/L	5	0	0.00%		0	1,460.	
Fluorene	UG/L	5	0	0.00%		0	.007	.35
Hexachlorobenzene	UG/L	5	0	0.00%			.137	.55
Hexachlorobutadiene	UG/L	5	0	0.00%		0	.146	
Hexachlorocyclopentadiene	UG/L	5	0	0.00%		0	.754	
Hexachloroethane	UG/L	5	0	0.00%		0		
Indeno[1,2,3-cd]pyrene	UG/L	5	0	0.00%		0	.017	
Isophorone	UG/L	5	0	0.00%		0	10.700	
N-Nitrosodiphenylamine	UG/L	5	0	0.00%		0	13.722	
N-Nitrosodipropylamine	UG/L	5	0	0.00%		0	.01	
Naphthalene	UG/L	5	0	0.00%		0	1,460.	
Nitrobenzene	UG/L	5	0	0.00%		0	3.393	
Pentachiorophenol	UG/L	5	0	0.00%		0	.56	1.
Phenanthrene	UG/L	5	0	0.00%		0		
Phenol	UG/L	5	0	0.00%		0	21,900.	1.
Pyrene	UG/L	5	0	0.00%		0	1,095.	
Pesticides/PCBs								
4.4'-DDD	UG/L	5	0	0.00%		0	.28	.1
.,	UG/L	5	0	0.00%		0	.198	.1
4,4`-DDE 4.4`-DDT	UG/L	5	0	0.00%		0	.031	.1
	UG/L	5	Ō	0.00%		0	.001	.055
Aldrin	UG/L	5	. 0	0.00%	÷.	0		
Alpha-BHC	UG/L	5	0	0.00%		0		5.
Alpha-Chlordane	UG/L	5	ō	0.00%		0	2.555	
Aroclor-1016		5	o	0.00%		0		
Aroclor-1221	UG/L	5	0	0.00%		0 1		
Aroclor-1232	UG/L		0	0.00%		0		
Aroclor-1242	UG/L	5	0	0.00%		o		
Aroclor-1248	UG/L	5	0	0.00%		o	.73	1
Aroclor-1254	UG/L	5	U	J.UJ /6		-		

Seneca Army Depot Activity SEAD-11 Summary Statistics - Groundwater Comparison to Drinking Water PRG

				Frequency				
PARAMETER	UNIT	Number of	Number of	of	Maximum	Number of	Drinking Water	NYS Class GA
PARONETER		Analyses	Detections	Detection	Value	Exceedances	PRG	Standard
Aroclor-1260	UG/L	5	0	0.00%		0		.1
Beta-BHC	UG/L	5	0	0.00%		0		5.
Delta-BHC	UG/L	5	0	0.00%		0		
Dieldrin	UG/L	5	0	0.00%		0	.001	.1
Endosulfan I	UG/L	5	0	0.00%		0	219.	
Endosulfan II	UG/L	5	0	0.00%		0	219.	
Endosulfan sulfate	UG/L	5	0	0.00%		0		
Endrin	UG/L	5	0	0.00%		0	10.95	1
Endrin aldehyde	UG/L	5	0	0.00%		0	10.95	5.
Endnn ketone	UG/L	5	0	0.00%		0	10.95	5.
Gamma-BHC/Lindane	UG/L	5	0	0.00%		0	.052	5.
Gamma-Chlordane	UG/L	5	0	0.00%		0		
Heptachlor	UG/L	5	0	0.00%		0	.002	05
Heptachlor epoxide	UG/L	5	0	0.00%		0	.001	.05
Methoxychlor	UG/L	5	0	0.00%		0	182.5	35.
Toxaphene	UG/L	5	0	0.00%		0		
Metals	00.2							
Aluminum	UG/L	5	5	100.00%	254.	0	36,500.	
Antimony	UG/L	5	0	0.00%		0	14.6	
Arsenic	UG/L	5	1	20.00%	1.1	1	.007	25.
Banum	UG/L	5	5	100.00%	53.4	5	1.043	1,000.
Beryllium	UG/L	5	0	0.00%		0	.001	
Cadmium	UG/L	5	0	0.00%		0	.002	10.
Calcium	UG/L	5	5	100.00%	223,000.	0		
Chromium	UG/L	5	0	0.00%		0	.004	50.
Cobalt	UG/L	5	2	40.00%	7.2	0	2,190.	
Copper	UG/L	5	0	0.00%		0	1,460.	200.
Cyanide	UG/L	5	0	0.00%		0		100.
Iron	UG/L	5	5	100.00%	653.	0	10,950.	300.
Lead	UG/L	5	3	60.00%	33.7	0		25.
Magnesium	UG/L	5	5	100.00%	41,900.	0		
Manganese	UG/L	5	5	100.00%	281.	5	.104	300.
Mercury	UG/L	5	3	60.00%	.04	0	.592	2.
Nickel	UG/L	5	0	0.00%		0	730.	
Potassium	UG/L	5	5	100.00%	13,600.	0		
Selenium	UG/L	5	3	60.00%	2.	0	182.5	10.
Silver	UG/L	5	0	0.00%		0	182.5	50.
Sodium	UG/L	5	5	100,00%	36,700.	0		20,000.
Thallium	UG/L	5	0	0.00%		0	2.92	
	UG/L	5	0	0.00%		0	255.5	
Vanadium	UG/L	5	5	100.00%	34.3	0	10,950.	300.
Zinc	00/1	•	-					
Other Analyses	UG/L	5	5	100.00%	800.	0		10,000.
Nitrate/Nitrite	UG/L	5	4	80.00%	1,810.	0		
Total Petroleum Hydrocarbons	00/2	•	•		-	,		

Seneca Army Depot Activity SEAD-11

Collapsed Data Summary - Groundwater Comparison to Drinking Water PRG

					•	-				
				STUDY ID	ESI	ESI	ESI	ESI	ESI	
				SITE	SEAD-11	SEAD-11	SEAD-11	SEAD-11	SEAD-11	
				LOC ID:	MW11-1	MW11-2	MW11-3	MW11-3	MW11-4	
				LOC TYPE.	BACKGROUND	SITE	SITE	SITE	SITE	
				SAMP_ID	MW11-1	MW11-2	MW11-5	MW11-3	MW11-4	
				QC CODE.	SA	SA	DU	SA	SA	
				SAMP. DETH TO	6.1	3 4	3 9	3 9	5 4	
				SAMP, DEPTH B	13 5	7 4	7 9	7 9	9 4	
				MATRIX:	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	
				SAMP. DATE:	18-Jan-94	18-Jan-94	24-Jan-94	24-Jan-94	16-Nov-93	
		Number of	Drinking Water	NYS Class GA						
PARAMETER	UNIT	Exceedances	PRG	Standard	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	
Arsenic	UG/L	1	007	25	8 U	79 U	de la filia de la companya de la com	8 U	1 U	
Banum	UG/L	5	1.043	1,000.	10 142 14 1 1 1 1 25.2 J	11:45 (14:44) F. 344 38.2 J	12 15 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 40 mm 1 1 1 1 1 1 1 38.6 J	Marco Charles 20 53.4 J	
Manganese	UG/L	5	.104	300	200 开版:1440.0	Ball Res Late.	3 3 Feb. 40 1 Sal 204.	1231	281.	