104-27

U.S. ARMY ENGINEER DIVISION HUNTSVILLE, ALABAMA

SENECA ARMY DEPOT ACTIVITY (SEDA)

PEER REVIEW QUESTIONNAIRE PACKAGE SEAD-45 OPEN DETONATION AREA

U.S. Army Environmental Peer Review Program Installation Information Form

SITE SUMMARY QUESTIONNAIRE

SEAD-45 Open Detonation Facility

- 1. Summarize the basis for environmental concern at this site (i.e. Why was Preliminary Assessment (PA) performed?). Use a site-specific conceptual site model (CSM) similar to the generic example, to address the following questions for each contaminant source under investigation at the facility.
- 1) The basis for environmental concern are potential releases that may have occurred during years of operation as an open detonation facility. The OD facility (SEAD-45) consists of a detonation mound which covers approximately 1.0 acre. The hill is glacial material which is moved via a bulldozer in support of OD operations. The detonation area has been in use from 1941 to the present and the operation is regulated under RCRA interim status. The operation of the open detonation facility is regulated under Subpart X of RCRA. The permit application was pending NYSDEC approval at the time the facility was listed as a facility to be closed under BRAC. Subsequent discussions regarding the need to pursue the RCRA permit with the NYSDEC RCRA regulators have resulted in an agreement that the Part B, Subpart X, permit is not required, providing that the facility does not accept any additional new waste but demilitarizes only the wastes that cannot be safely moved.

The process of demilitarization involves detonation of munitions within 13 pits excavated within the Open Detonation (OD) mound. The maximum proposed level of open detonation at Seneca consists of one series of detonations each day in 13 pits for 80 days per year. Army policy limits the maximum OD treatment at Seneca to 3250 lb/day (250 lb Net Explosive Weight (NEW) per pit, once per day, in each of 13 pits). The mound serves as a noise suppression and kick-out prevention mechanism. Although the open detonation process is the safest and the most economical way to demilitarize a variety of waste ordnance, it is an uncontrolled process. During the detonation, it was suspected that most of the organic portions of the Pyrotechnics, Explosives and Propellants (PEP)s were consumed but the inorganic fraction of the ordnance was not.

The site was identified by US Army Toxic and Hazardous Materials Agency (USATHAMA) as one of several "potentially contaminated areas". The USATHAMA recommendation was presented following an assessment of the OD facility, performed in 1979 and reported in January of 1980 (Report No. 157). In this assessment, the demolition area was highlighted as a location of known or suspected waste materials. The area has been in use from 1941 to the present and has been used to demilitarize a variety of materials including white phosphorous, Tetryl, Composition "B", PETN, PETN-Tetryl, PETN-TNT,

PETN-Black Powder, PETN-Composition A-3, Composition A-3, TNT, Tetryl, Tetrytol, and Composition C-4.

In 1982, USAEHA analyzed soil samples collected from 8 locations around this area (pits #2, 4, 6 and 8). Analysis was performed for EP Toxicity (As, Ba, Cd, Cr, Hg, Pb, Se, and Ag) and explosives (HMX, RDX, Tetryl, 2,4, 6-TNT, 2,4-DNT, 2,6-DNT). The analytical results indicated the presence of Cd in the EP Toxicity extract in all samples (0.19-0.45 mg/l). Explosives were also found in each sample (RDX 1.4-1.7 ug/l; Tetryl 1.6-16.3 ug/l; 2,4,6-TNT 2.2-61 ug/l; 2,4-DNT 1.1-1.9 ug/l). From this data, the ground water under this area was determined to be potentially impacted.

As mandated by the EPA Region II and by NYSDEC, the U.S. Army Corps of Engineers commissioned the "Solid Waste Management Unit (SWMU) Classification Report" at SEDA (ERCE 1991). This report was finalized by ES on June 10, 1994. This work was performed to evaluate the effects of past solid waste management practices at identified SWMUs on the facility and to classify each SWMU as an area where "No Action is Required" or as an "Area of Concern" (AOC). Areas of Concern include both (a) SWMUs where releases of hazardous substances may have occurred and (b) locations where there has been a threat of a release into the environment of a hazardous substance or constituent. AOCs have included land treatment units, such as the OD area, that are known to have caused a release into the environment or whose integrity has not been verified. The 1994 Solid Waste Management Unit (SWMU) Classification Study classified the Open Detonation (OD) Facility (SEAD-45) as a high priority area of concern based on the suspected release of pollutants at the site, (ES, 1994).

Based upon this classification a Preliminary Assessment, an Expanded Site Inspection (ESI), was performed in 1994.

- a) Describe the potential sources of contamination at each site that are being evaluated.
- a) The potential sources of contamination include residual materials from ordnance detonation activities, including explosive compounds, semivolatile organics and heavy metals. The semivolatile organics and explosives are present as products of incomplete combustion. The metals are present as residuals from the Propellants, Explosives and Pyrotechnics (PEP) and metal fragments.
- b) Describe the potential migration pathway and receptors for each pathway being evaluated in the CSM. Discuss the release mechanism, the transport media, the potential exposure being evaluated, and the data needed to characterize identified chemical migration pathways, i.e., from the source to the receptor.
- b) The attached Exposure Pathway Summary figure, Figure 45-1, presents the conceptual site model for the Open Detonation Facility, (SEAD-45). The operation of open detonation involves earth

moving operations including burial of waste ordnance within the 10 to 15 foot OD mound. As the volume of the mound is decreased due to repeated detonations, soil is pushed back into the mound from the surrounding area. Residuals of the OD process are dispersed following a detonation. A large portion of the residues are expected to remain within or near the OD mound. For purposes of safety and fire control, the OD mound and surrounding area is intentionally devoid of vegetation and is located in an open, exposed, easily accessible area. The mound is situated in a high point and is subjected to erosion. Reeder Creek, a Class C surface water body, is located adjacent to the OD area. As a result of the operation and the poor vegetative cover, migration pathways and transport mechanisms have been identified as:

- Suspension of soil particulates due to the wind;
- Direct deposition of ordnance residues in the surface soil following a detonation;
- Direct burial of ordnance residues to the subsurface due to continual reworking of the area;
- Leaching of ordnance residues due to dissolution with infiltrating rainfall;
- Runoff to surface water and sediment due to erosion.

Pathway

The site is currently used for open detonation activities by SEDA workers. Future uses include recreational/conservation uses. Following BRAC closure, this site will be part of a large recreational/conservation area that will potentially be used for hiking, camping, etc. There is also a potential that the area could be a managed recreational area. Realistic future human exposure scenarios include: an adult site worker (ranger), an adult and child site visitor (camper) and a future construction worker. The potential for constructing a shower facility for campers and the site worker have been included, since the site may be used by the state in this manner. The actual future use of the facility has not been established with certainty, other than as a conservation/recreational area, because discussions with the State of New York Fish and Wildlife Service regarding their willingness to accept this and other sites are still ongoing. Based upon the understanding that the site will be used for these purposes, the migration pathways for human health receptors, as shown in Figure 45-1, include the following;

Receptors

····	•
Inhalation of fugitive dust from atmospheric resuspension of surface soil;	Current/Future Site Worker, Future Adult/Child Site Visitor, Future Construction Worker, Terrestrial Biota
Ingestion and dermal contact from surface soil;	Current/Future Site Worker, Future Adult/Child Site Visitor, Future Construction Worker, Terrestrial Biota
Ingestion and dermal contact from subsurface soil from	Future Construction Worker, Terrestrial Biota

burrowing (ecological) and construction activities;

Inhalation, ingestion and dermal contact to groundwater from drinking and showering; Future Site Worker, Future Adult/Child Site Visitor

Ingestion and dermal contact to surface water and sediment during wading or swimming (ecological) Future Adult/Child Site Visitor, Terrestrial and Aquatic

Biota

The release mechanisms for these pathways include;

Pathway	Release Mechanisms				
Dust	Atmospheric resuspension of soil;				
Surface Soil	Erosion/direct deposition;				
Subsurface Soil	Direct deposition;				
Groundwater	Infiltration and percolation;				
Surface Water	Runoff and erosion.				
and Sediment					

In order to completely evaluate these potential chemical migration pathways, data needs include the following;

Pathway	Data Needs
Dust	Surface soils samples
Surface Soil	Surface soil samples
Subsurface Soil	Subsurface soil samples
Groundwater	Monitoring wells and ground water samples
Surface Water	Surface water and sediment samples
and Sediment	

- c) Describe the potential contaminants of concern (COCs) for each source and chemical migration pathway.
- c) The source of COCs is the OD mound and the ordnance residuals that exist within the mound. The potential contaminants of concern at this site include;

- Semi volatile compounds
- Explosives
- Metals

The chemical migration pathways have been described in Part b.

- 2. For each identified source, pathway, receptor combination, identify the decisions to be made using the data that have been (will be) collected. For each decision, identify the decision criteria to be used to make the decision. Please identify the specific criteria for making the decisions. Examples of Decision Criteria (D.C.) are shown below:
- Risk (human health or ecological)
- Applicable, Relevant, or Appropriate Requirements (ARARs)
- Technology, or
- Other (please specify)
- 2) Investigatory and remedial efforts have been performed in accordance with the decision process outlined in the Interagency Agreement (IAG), also known as the Federal Facility Agreement (FFA), the requirements of the Army, the New York State Department of Environmental Conservation (NYSDEC) and the U.S. Environmental Protection Agency, Region II (EPA). The IAG established an incremental agenda that began with an initial identification of each SWMU and culminates with a Record of Decision (ROD) for each SWMU. On-going clarifications, improvements and refinements have been incorporated into the decision process.

The overall decision process is depicted in Figure 45-2 titled "Seneca Army Depot Activity Decision Criteria Remediation Flowchart". A key aspect of the process is to allow for a site to exit the process, requiring no further action, if site conditions are shown to meet the decision criteria. In many instances exiting the process occurs prior to conducting a full RI/FS program. This was essential given the nature and extent of contamination at many of the sites and the number of sites that have been identified at SEDA that will required a final outcome decision.

The decision process involves implementing a series of baseline actions. Decisions are integrated into the baseline action process to justify the actions to be taken. Supplemental actions, such as collecting additional data, are conducted, where necessary, to provide support for the baseline actions. The final action for each SWMU or AOC involves preparation of either a completion report, a ROD or a closeout report. These reports provide documentation that site conditions have met the requirements of the decision process.

The process is divided into six (6) distinct phases. These include:

- 1. The Site Classification Phase,
- 2. The Preliminary Assessment Phase,
- 3. The Interim Remedial Measures (IRM) Phase,
- 4. The Remedial Investigation Phase (RI) Phase,

- 5. The Feasibility Study (FS) Phase and
- 6. The Remedial Design/Remedial Action (RD/RA) Phase.

Each phase is further divided into a series of actions that result from the decisions. As depicted in Figure 45-2, each decision is identified with a letter, whereas each action is identified with a number so that the status of each site can be identified. This provides an easy mechanism to understand what decisions have been made and what decisions need to be made. Each of the six phases of the process allow the site to exit the process. The effort involved in exiting the process is dependent upon the phase involved and the information required to document that conditions are within the required limits. In some cases this involves a comparison to an appropriate State and Federal Standard, Guideline and Criteria (SGC). In other instances, this will involve completion of a remedial action or an Interim Remedial Measure (IRM).

The first phase is the site classification phase. Site classification begins with an initial identification of a site and ends with a determination that the site has either impacted the environment or it has not, in which case no further action is required and unrestricted use is allowed. At SEDA, the list of potential sites were compiled, by SEDA staff, during the preparation of the RCRA Part B permit, that requires a listing of SWMUs. The list of SWMUs was developed from a variety of sources. Active, on-going depot operations involving waste generation and management were obvious candidates for SWMUs. Past operations and lesser known disposal practices were identified from interviews with current and former depot employees. The initial list of SWMUs identified in the Part B permit application was 72. Recently, as part of the BRAC closure process, the Environmental Baseline Survey (EBS) was prepared that involved additional interviews with former employees and field reconnaissance. These efforts identified an additional 25 potential SWMUs. The key decision point in this phase involves determining whether or not site conditions have impacted the environment. In many instances this decision was made from historical records or an understanding of the processes involved, without collecting additional field data. In other instances, this required some limited sampling. Twenty-four (24) SWMUs have been eliminated from further consideration during this phase as No-Action SWMUs, although some of the newly identified sites have not been evaluated yet. SWMUs that proceed further in the process are considered to be Areas of Concern (AOC).

The second phase is the Preliminary Assessment Phase. This phase begins with collection of data as part of an Expanded Site Inspection (ESI), as shown in Action 5 of Figure 45-2. The ESI data is then evaluated to determine whether a threat exists at the AOC. This determination is based upon direct comparisons of the site data to background or an appropriate State and/or Federal Standards, Guidelines and Criteria (SGC). Exceedences of an appropriate standard, guideline, or criteria is used to indicate that a threat exists. A quantitative risk analysis is not performed to quantify the threat. Professional judgments are used to evaluate the significance of the exceedences and are incorporated into the

recommendations for either no further action or additional evaluations, as shown in Decision No. C of Figure 45-2.

Each media have unique SGCs that are used for comparison. Soil data, collected during the ESI, are compared to background concentrations, or the TAGM value for soil. The NYSDEC TAGM is attached for review. Correspondence between SEDA and NYSDEC regarding the use and application of the TAGM is also provided. In some instances, in particular for metals in soil, the TAGM value is either background or a pre-determined value. In instances where the TAGM value is background the value chosen represents the 95th percentile of the background data set that has been accumulated at the SEDA. The 95th percentile of the background database was chosen to reduce the possibility of concluding that an exceedence had occurred from a release when the exceedence was from a site sample that represents the high end of background distribution in soil. If no exceedences are determined then the recommendation is for no further action (NFA). For sediment, values presented in the NYSDEC document "Technical Guidance for Screening Contaminated Sediments" are used for comparison. This document is also reproduced for review. If exceedences of TAGMs or other media specific SGC are noted, further evaluation of the data is required to determine if exceedences are over the Preliminary Remedial Goals (PRG)s, see Decision No. D of Figure 45-2.

PRGs have not been accepted by the NYSDEC or EPA, Region 2. Although the approach of using, site-wide PRG values as a mechanism for determining if a site can be deemed a no further action site is not acceptable, PRGs have value as milestones for determining if conducting a screening risk assessment is worthwhile. PRGs have been developed for each Potential Chemical of Concern (PCOC) and for both human health and ecological protection. The process of developing PRGs has involved back calculation of allowable soil concentrations from an acceptable risk level. For non-carcinogenic compounds this is a Hazard Index (HI) of 1, for carcinogenic compounds this value is 1E-06. For human exposure to soil, ingestion was used as the only pathway as ingestion of soil is normally the pathway that governs all other pathways. PRG values for human exposure were developed for an industrial scenario, a recreational scenario and a construction scenario.

PRG values have also been developed for an ecological receptor. Ecological PRGs were calculated based on the toxicological response of the field mouse to chemicals in the soil. The field mouse has been identified as the ecological receptor for all of the ecological risk assessments that have been conducted at SEDA to date. The route of exposure was assumed to be ingestion with the mouse's diet being chemical containing plants, insects, and soil. The mouse is further assumed to have its entire range wholly contained in the site. The evaluation was conducted using an Ecological Quotient (EQ) approach, similar to the non-carcinogenic calculations performed for the human health evaluation. Ecological Quotients, representing quantitative expressions of risk, were calculated for each chemical of concern. The EQs assumed for this evaluation were 10.

If exceedences of a PRG are noted then it is almost certain that the mini-risk assessment will yield unacceptable risk and therefore there is no need to perform the screening risk assessment. In this instance the decision process enters the Interim Remedial Measures (IRM) phase which begins with performing a hot spot analysis. If on the other hand, a PRG is not exceeded, performing the mini-risk assessment is a mechanism of documenting that the site conditions are acceptable and no further action is required. The mini-risk assessment is used to provide a quantitative risk value that can be supportive of a no further action decision. The mini-risk assessment utilizes identical procedures as what would be used for a Baseline Risk Assessment (BRA) but uses the maximum detected concentration as the Exposure Point Concentration (EPC) instead of the Upper 95th Confidence Limit of the mean due to the uncertainties associated with evaluating a site with the smaller ESI database. If the results of the mini-risk assessment indicate acceptable risk, i.e. carcinogenic risks are less than 1E-04 or the HI is less than 1, then the site conditions meet the requirements for no further action. Otherwise the site conditions are not acceptable and the site enters the Interim Remedial Measure (IRM) phase, Decision No. E Figure 45-2.

The IRM phase involves evaluating whether the site can attain a no further action designation via implementation of an IRM. An IRM is most likely to be a non-time critical removal action and are generally considered appropriate if:

- The problems can be attributed to discrete soil or sediment "hot spots";
- The extent of soil or sediment to be excavated is less than 1000 CYs;
- The technologies are limited to "low tech" technologies such as off-site disposal or capping;
- The pollutants involved are amenable to such technologies such as off-site disposal or capping;
- Groundwater or surface water conditions are acceptable

If deemed appropriate, an IRM can be used to eliminate a site from further consideration by preparing an Engineering Evaluation/Cost Analysis (EE/CA). The EECA is the decision document that presents the goals and rational for implementing the IRM and discusses the evaluations that have been conducted in support of the IRM. After the removal action has been performed, confirmatory sampling is required to document the effectiveness of the IRM in attaining the IRM goals. This information is then documented in the project completion report and the ROD.

If the conditions of the site are such that the problems are not readily able to be solved via an IRM then the site moves into the RI phase. This phase is identical to the process described by CERCLA and involves a multi-media sampling effort and Baseline Risk Assessment (BRA). The results of the BRA may support a no further action if the risk conditions are below the EPA target limits for risk. Otherwise, the site enters the FS stage.

The FS phase involves an initial evaluation of presumptive remedies. Presumptive remedies includes a variety of technologies for both groundwater and soil such as bioventing, off-site disposal, capping or deed restriction for soils and alternative water supply, air sparging, zero-valence iron treatment or natural

attenuation with monitoring for groundwater. If presumptive remedies are not appropriate then an FS is prepared.

The final phase is the preparation of a remedial design and implementation of the remedial action. Both the FS and the RD/RA will follow guidance provided by both the EPA and the NYSDEC.

3. Has a re-use plan been developed and agreed upon for the site? If so, please attach the plan and a corresponding map. Compare the current use to the planned re-use and explain how the relationship between contaminant sources and chemical transport from these sources was used to develop the planned re-use.

A reuse plan for the Seneca Army Depot was developed by RKG Associates, Inc. in December of 1996. This is shown the figure titled "Final Land Use Plan". The current use for this site is as a munitions destruction area. The proposed future use for this site is for conservation and recreational purposes. The proposed future use was not based upon a review of the present nature of potential contaminants at this site.

4. What COCs were identified for each source? Were COCs compared to risk-based screening criteria? Was planned reuse used to determine the future land use exposure scenarios for the risk assessment?

An Expanded Site Inspection has been completed at SEAD-45. As part of the ESI report, the analytical data for the site was compared to available State and Federal standards, guidelines and criteria (SGC) to determine if a threat to human health, welfare, or the environment exists. Exceedences of an appropriate standard, guideline, or criteria was used to indicate that a threat existed. A quantitative risk analysis was not performed to quantify the threat. Professional judgments were used to evaluate the significance of the exceedences and incorporate them into recommendations for further evaluation, shown as Decision No. C of Figure 45-2. If no exceedences had been detected then the recommendation for SEAD-45 would have been for a No Further Action (NFA) determination. However, exceedences of TAGMs were noted, as described below, and further evaluation of the data was required to determine if either a minirisk assessment evaluation was appropriate or a Interim Remedial Measure (IRM) was appropriate.

Further evaluation was conducted to determine if exceedences over the Preliminary Remedial Goals (PRG)s were noted, Decision No. D of Figure 45-2. PRGs were recently developed and this comparison was only recently added to the decision criteria process. For SEAD-45 exceedences of the PRGs were also noted for mercury in soil. The next step in the decision process involved performing a hot spot analysis. Action No. 8 of Figure 45-2. Since the PRG exceedences for mercury were noted over a wide

area away from the actual OD mound, it was determined that a removal action was not appropriate since hot spots were not identified. Excavation of the entire OD mound and surrounding areas, yet to be fully determined, was considered beyond the scope of a removal action. Removal actions are intended to be applicable to well-defined areas where the threat can be eliminated quickly and cost effectively. Neither aspect applied in this situation. The next action to be conducted involves performing an Remedial Investigation (RI) and a Baseline Risk Assessment (BRA), Action No. 13 of Figure 45-2.

The ESI conducted at SEAD-45 indicated that impacts to the surface soils and sediments, from the release of heavy metals and nitroaromatic compounds, and to a lesser extent by semivolatile compounds, has occurred at this site. Surface soils collected from around the Open Detonation mound showed an irregular distribution of elevated levels of nitroaromatic and heavy metal compounds. The results of the soil sampling from within the mound itself showed elevated concentrations of semivolatile, heavy metal, and nitroaromatic compounds. The groundwater investigation completed at SEAD-45 indicated that no adverse impacts to the groundwater have occurred.

Even though a risk assessment has not yet been completed for this site, exposure scenarios have been based upon the planned land re-use classification for this site.

The initial decisions that have been made for SEAD-45 have been described in response to Question 1. We believe that the next step in the decision process involves Action No. 13, Conduct an RI/BRA. The decision process is summarized briefly as follows. SEAD-45 was identified as a SWMU after an evaluation of historical uses and available information. It was determined that SEAD-45 had impacted the environment and was an "Area of Concern" (AOC). Additional data collection was justified in order to evaluate the threat to human health and the environment. The data collection process involved performing an Expanded Site Inspection (ESI), shown as Action No. 5 in Figure 45-2.

This site was grouped as a high priority site, in order to initiate the data collection process as soon as possible. Additional data was required to support the decision as to whether or not the site poses a threat. The location of the sampling points and other significant features of the site are shown in the attached Figure 2.9-2 that was originally presented in the ESI report. The decision process is outlined in Figure 45-2. The decisions that have been made have been based upon the data collected during the ESI. The following summarizes the data collected during the ESI and provides the basis of the decision making process:

<u>Test Pits</u>: A total of fifteen test pits were excavated at SEAD-45. Five test pits were excavated in the open detonation mound and one soil sample, at a 3 foot depth, was obtained from each of these test pits for chemical analysis. Ten test pits were excavated on the north and west edges of the mound and in the field on the east of the mound. These ten locations were at the site of anomalies detected during the geophysical survey and were exploratory only. Subsurface soil samples collected from the test pits were

compared to the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) values presented in TAGM HWR-94-4046, January 24, 1994 (Revised). A copy of the TAGM is attached.

<u>Surface Soils</u>: Nine surficial soil samples at 0 to 2 inch depths, were obtained from locations east and west of the ten open detonation test pits. Chemical analysis of these samples were used to evaluate the effect of wind-blown material from the pits on the environment in the two prominent wind directions, east and west. Surface soil samples were also compared to the values presented in TAGM HWR-94-4046, January 24, 1994.

The NYSDEC TAGM values are the lower of either a value derived from a risk-based analysis of human health exposure due to ingestion of soil or a value derived from soil-groundwater partitioning calculations that are intended to be protective of groundwater quality.

A total of 20 semivolatile organic compounds were found at varying concentrations in the surface soil samples collected at SEAD-45. In general, the concentrations of semivolatile compounds were low, with only 1 result exceeding a TAGM value. The surface soil sample SS45-2, which was collected west of the OD mound, had a benzo(a)pyrene concentration of 82 µg/kg, which slightly exceeded the TAGM value of 61 µg/kg. The distribution of total semi-volatiles detected in surface soils are shown in the attached Figure 4.7-1. This figure is reproduced from the ESI report.

A number of the soil samples collected at SEAD-45 were found to contain various metals at concentrations that exceed the associated TAGM values. Of the 24 inorganics analyzed for, 14 were found in one or more samples at concentrations above the associated TAGM values. Although several of these exceedences were observed in only 1 or 2 samples, the majority of the TAGM exceedences were more significant. Of particular note are the metals cadmium, chromium, copper, lead, mercury, silver, and zinc where a large percentage of the samples exceed the criteria value and where the concentrations of the exceedences are generally an order of magnitude or greater above the criteria value. In general, the highest metals concentrations were found in the soil samples collected from the test pits completed directly in the OD mound. Even though the highest metals concentrations were in the test pit soil samples, there were numerous TAGM exceedences in the surface soil samples as well. The highest metals concentrations in the surface soil samples were in the samples SS45-5, collected just west of the OD mound, and SS45-6 and SS45-9, collected east of the OD mound.

The occurrence and distribution of metals which were found above TAGM values in the subsurface soils were similar to those observed in the surface soil samples. In particular, copper, lead, mercury, silver, and zinc were found in concentrations above TAGM values in all of the subsurface soil samples. Of these metals, copper, mercury and silver were found at concentrations which exceeded the TAGM by an order magnitude in every subsurface soil sample. In addition, cadmium was found in three samples at concentrations which were an order of magnitude above the TAGM value.

The highest cadmium concentration was identified in sample TP45-3, where 13.1 mg/kg was reported. This test pit soil sample was collected from the center of the OD mound. This sample also had elevated concentrations of all the other metals of note, and had the highest detected concentrations of lead and nickel.

Ten different nitroaromatic compounds were detected in the surface soil samples collected at SEAD-45. The frequencies of detection ranged from 6.25% for 4-amino-2,6-dinitrotoluene to 81.25% for RDX, with several compounds being present in greater than 50% of the surface soil samples. The concentrations were all low, with the maximum concentration being 5800 µg/kg of RDX found in the surface soil sample SS45-9, which was collected at the east end of the site.

The occurrence and distribution of nitroaromatics in the subsurface soil samples were similar to those observed in the surface soil samples. The distribution of total explosives detected in surface soils are shown in the attached Figure 4.7-2. This figure is reproduced from the ESI report. The primary differences noted in the pattern of nitroaromatics in the subsurface soils were higher frequencies of occurrences (100% frequency of detection for the compounds HMX, RDX, 2,4,6 TNT, and 2-amino-4,6 DNT) and, on average, higher reported concentrations.

Lead

The following compounds were found to exceed the NYSDEC TAGM screening guidelines :

Benzo(a)pyrene

Aluminum Magnesium

BariumMercuryCadmiumNickelChromiumPotassium

Copper Silver
Cyanide Zinc

Iron

The SEAD-45 soil data was also compared to Ecological and Recreational PRGs as shown in the attached Collapsed Data Summary and Summary Statistics tables. There were no exceedences of the Recreational PRG for soil at SEAD-45. Exceedences of the Ecological PRGs were noted for 2,4-dinitrotoluene, mercury, copper, and barium. Since the PRG exceedences were noted over a wide area away from the actual OD mound, it was determined that a removal action was not appropriate since hot spots were not identified. Excavation of the entire OD mound and surrounding areas, yet to be fully determined, was considered beyond the scope of a removal action. Removal actions are intended to be applicable to well-defined areas where the threat can be eliminated quickly and cost effectively. Neither

aspect applied in this situation. The next action to be conducted involves performing an Remedial Investigation (RI) and a Baseline Risk Assessment (BRA), Action No. 13 of Figure 45-2.

Groundwater: Four wells were installed at SEAD-45. One well (MW45-4) was located upgradient of the mound to obtain background water quality data and three wells were located downgradient of the detonation mound as shown on Figure 2.9-2. The direction of groundwater flow at this AOC is northeast to east toward Reeder Creek based on data from the existing wells. Groundwater at SEAD-45 have been classified by NYSDEC as GA and therefore samples were compared to the NYSDEC Class GA Ambient Water Quality Standards presented in the NYSDEC Division of Water, Technical and Operational Guidance Series 1.1.1 (TOGS). GA quality is for protection of groundwater as a source of drinking water.

One monitoring well was constructed at each location and screened over the entire thickness of the aquifer above competent bedrock. MW45-1 was found to be a dry well. Following installation and development, one groundwater sample was collected from MW45-2, 3, & 4. Existing wells MW-1 through MW-5 were also sampled with the three new wells. The locations of the wells were shown in Figure 2.9-2.

The following sections describe the nature and extent of the groundwater contamination identified at SEAD-45 based on a comparison of the groundwater data to the NYSDEC Class GA standards and guidelines. The attached Collapsed Data Summary and Summary Statistics tables detail the comparison of the groundwater data to the NYSDEC Class GA standards only.

The nine metals antimony, beryllium, chromium, iron, lead, magnesium, manganese, sodium, and zinc were found in one or more of the groundwater samples at concentrations above the NYSDEC Class GA criteria value. Most of the exceedences occurred in only 1 sample, with the exceptions being iron, magnesium, and manganese. Iron was found in 5 of the 8 monitoring wells at concentrations above the criteria value of 300 μg/L. The maximum iron concentration, 113,000 μg/L, was found in the groundwater sample collected from monitoring well MW45-4. This high concentration may have been due to silt in the water sample, as evidenced by the very high turbidity (9860 NTU) and the high aluminum concentration. Magnesium exceeded the NYSDEC Class GA criteria in 3 of the 8 wells sampled, MW45-2, MW45-3, and MW45-4. The maximum concentration was 77,900 μg/L detected in the groundwater sample collected from monitoring well MW45-3. Manganese was found in 4 of the 8 samples at concentrations exceeding the NYSDEC Class GA groundwater standard of 300 μg/L, with the maximum concentration of 4640 μg/L found in the groundwater sample collected from monitoring well MW45-4. As described above, the high metals concentrations in MW45-4 may have been due in part to high sample turbidities.

The nitroaromatic compounds HMX and 1,3-dinitrobenzene were each found in 1 of the 8 groundwater samples collected at SEAD-45. HMX was detected in the groundwater sample collected from monitoring well MW-1 at a concentration of 0.5 µg/L. The nitroaromatic compound 1,3-dinitrobenzene was detected in the groundwater sample collected from monitoring well MW-5 at a concentration of 0.067J µg/L.

None of the 8 groundwater samples analyzed had nitrate concentrations above the criteria value of 10 mg/L. The maximum nitrate value detected was 8.7 mg/L in the groundwater sample collected from monitoring well MW-5.

The groundwater data was also compared to the Drinking Water PRGs, as detailed in the attached Collapsed Data Summary and Summary Statistics tables. One semivolatile organic compound, bis(2-ethylhexyl)phthalate, was found in four samples at levels which exceeded the drinking water PRG. Ten metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, iron, manganese, and mercury) were found at levels which exceeded the drinking water PRGs. There were no exceedences of PRGs for volatile organics, herbicides, nitroaromatics, pesticides/PCBs, or nitrate/nitrate.

Surface Water and Sediment: A surface water sample and a sediment sample were collected at the same sampling point from each of four locations at SEAD-45. Three sets of samples (SW/SD 45-1, 2, and 3) were collected from three drainage channels east of the detonation mound. One set (SW/SD45-4) was collected from within the marsh area northwest of the detonation mound as shown in Figure 2.9-2. Surface water in Reeder Creek has been classified by NYSDEC as Class C and therefore surface water collected on-site were compared to the NYSDEC Class C Ambient Water Quality Standards presented in the NYSDEC Division of Water, Technical and Operational Guidance Series 1.1.1 (TOGS). Sediment in has been classified by NYSDEC as Class C and therefore surface water collected on-site were compared to the NYSDEC Class C Ambient Water Quality Standards presented in the NYSDEC Division.

Four surface water samples were collected as part of the SEAD-45 investigation. The sample locations were shown in Figure 2.9-2. Three of the surface water samples, SW45-1, SW45-2, and SW45-3, were collected from drainage ditches located downgradient of the OD mound. The last sample, SW45-4, was collected from a low-lying area northwest of the OD mound. The following sections describe the nature and extent of contamination identified in surface water at SEAD-45.

The standards for the hardness dependent values were calculated using an average hardness of 300 mg/l.

Cyanide and the nine metals aluminum, beryllium, cadmium, cobalt, copper, iron, lead, vanadium, and zinc were found at concentrations above the associated criteria value. In addition, cyanide was detected in sample SW45-4 at 47.7 µg/L, which exceeds the NYSDEC Class C. and EPA water quality criteria.

The highest concentrations of metals were found in samples SW45-1, collected from the northernmost drainage swale, and SW45-4, collected from the low-lying area northwest of the OD mound. These drainage swales are typically dry, and the water present at the time of sampling was likely due to runoff from recent precipitation. The drainage swales are similar to the drainage swales located at the adjacent Open Burning (OB) Grounds, which were studied in detail (ES, 1994) and found to contain macroinvertebrate life typical of terrestrial environments, and not aquatic environments.

The nitroaromatic compounds HMX and RDX were found in 2 of the surface water samples collected from the drainage swales. HMX was detected in samples SW45-2 and SW45-3 at concentrations of 0.45 μ g/L and 0.49 μ g/L, respectively. RDX was detected in samples SW45-1 and SW45-2 at concentrations of 0.24J μ g/L and 2 μ g/L, respectively. No other nitroaromatic compounds were detected in the four surface water samples analyzed.

Nitrate/nitrite nitrogen was detected in all four of the surface water samples collected at SEAD-45, at concentrations ranging from 0.01 mg/L to 1.06 mg/L. The maximum concentration (1.06 mg/L) was detected in the sample SW45-3.

A total of four sediment samples were collected as part of the SEAD-45 investigation. The sample locations are shown in Figure 2.9-2. Three of the sediment samples, SD45-1, SD45-2, and SD45-3, were collected from the drainage ditches located downgradient of the OD mound. The last sample, SD45-4, was collected from a low-lying area northwest of the OD mounds. The following sections describe the nature and extent of sediment contamination identified at SEAD-45.

A total of 13 semivolatile organic compounds were identified in the 4 sediment samples collected at SEAD-45. Most of the semivolatile organic compounds detected were PAHs, and all were found at low concentrations. The highest concentration detected was 110J μg/kg of pyrene found in the sediment sample SD45-2, which was collected from the middle drainage swale. While low concentrations of SVOCs were found in the samples SD45-2, SD45-3, and SD45-4, no semivolatile organic compounds were detected in the sample SD45-1, which was collected from the northernmost drainage swale. None of these compounds exceeded the NYSDEC Class C Ambient Water Quality Standards.

Six pesticides and 1 PCB compound were detected in sediment samples collected at SEAD-45. Sample SD45-4, collected in the low-lying area northwest of the OD mound, had the most compounds detected, and at the highest concentrations. The concentrations ranged from 3.2J μg/kg for the pesticide endrin aldehyde, to 580J μg/kg for the PCB Aroclor-1254. Lower levels of 2 pesticides and Aroclor-1254 were found in the sample SD45-2. Only 1 pesticide was detected in sample SD45-3, and no pesticides or PCBs were detected in sample SD45-1. There were 2 samples which exceeded the criteria for Aroclor-1254 and one sample which exceeded the criteria for 4,4,1-DDE.

A number of metals were detected in the sediment samples collected at SEAD-45. Of these, 11 metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, and zinc) were detected in excess of the NYSDEC sediment criteria concentrations. In general, most exceedences occurred in the two more southerly drainage swales (samples SD45-2 and SD45-3) and in the low-lying area northwest of the OD mound.

Five nitroaromatic compounds were detected in the sediment samples collected at SEAD-45. The five nitroaromatic compounds RDX, Tetryl, 2,4,6-trinitrotoluene, 2-amino-4,6-dinitrotoluene, and 2,4-dinitrotoluene were all detected in the sediment sample SD45-2 only. This sediment sample was collected from the drainage area between the OD mound and Reeder Creek.

There were no exceedences of the NYSDEC criteria for volatile organics in sediment at SEAD-45.

5. For each source area, identify the decisions that supported the need for additional investigation. Identify the data used to evaluate the alternative of additional investigation compared to a removal action option. Was this removal action considered? As part of the decision making process, were COC concentrations compared to risk-based criteria, either site-specific or generic screening level risk-based criteria?

The initial decision to perform a preliminary site assessment at SEAD-45 was based upon the uncontrolled release of metals, semivolatile compounds and explosives as part of the open detonation process. The conclusions within the ESI report for SEAD-45 recommended that a limited removal action could address the present site threat.

- 6. Was a site-specific risk assessment performed? Describe the results:
- a) Did site-specific current or potential future health risks exceed the acceptable carcinogenic risk range or Hazard Index (HI) level? Define these with respect to the site.
- b) If the answer to 6a is yes, please identify the media, pathway(s), and receptor(s) that had potentially unacceptable health risk. Identify any deviations from USEPA risk assessment guidance that were used to estimate potential risk.

An Expanded Site Inspection (ESI) has been completed at SEAD-45, however, no risk assessment has been performed.

7. Was an alternatives analysis performed (i.e. Feasibility Study/Corrective Measures Study (FS/CMS))? If so, describe the analysis and the selected alternative.

Only an Expanded Site Inspection (ESI) has been completed at SEAD-45. No Feasibility Study or Corrective Measures Study has been performed to date.

- 8. Identify and discuss the data used to support the decision that remediation to risk-based criteria was practicable.
- a) If remediation to risk-based criteria was practicable, was a remedial action (RA) completed? Describe the completed RA and the remedial alternatives considered.
- b) If remediation to risk-based criteria was not practicable, was an interim removal action (IRA) completed? Describe the completed IRA and any alternatives considered.

The work at SEAD-45 has not progressed to this point. While an Interim Removal Action (IRA) has not been completed, this step was evaluated as a possible recommendation of the ESI report.

9. What is the current site status? If applicable, provide a discussion of long-term monitoring requirements including frequency of monitoring, list of measured parameters, number of sample locations, and the criteria established to terminate or complete the monitoring program.

An ESI has been completed at SEAD-45. This project is waiting to perform an RI/BRA.

Project Funding

- 1. Provide total past environmental restoration expenditures.
- 2. Provide total planned environmental restoration expenditures (with schedule).

Attachments

Maps: Location maps, boring maps with data, well maps with data, potentiometric surface maps, geologic maps, etc.

Data Tables: Tabular presentation of data that is considered to be a driver for additional work, risk, or clean-up.

Decision Criteria Flowchart

- SENECA ARMY DEPOT ACTIVITY	
	•
	-
SEAD-45	
SOIL	
COLLAPSED DATA TABLES	
AND	
SUMMARY STATISTICS TABLES	
JOHNAKI OTTILOTIOS TILBULO	
•	
,	

Seneca Army Depot Activity SEAD-45 SOILS Summary Statistics Companson to NYSDEC TAGM 4046

									NYSDEC TAGM
PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	4046
Volatile Organics								057.440	200
1,1,1-Trichloroethane	UG/KG	16	0	0.00%		0	36,850,961 54 3,439,423.077	957.110	800 600
1,1,2,2-Tetrachloroethane	UG/KG	16	0	0.00%		0	1,206,815.115		000
1,1,2-Trichloroethane	UG/KG	16	0 0	0.00%		0	105,288,461.5		200
1,1-Dichloroethane	UG/KG	16 16	0	0.00%		0	114,647 436		[~] 400
1 1-Dichloroethene	UG/KG UG/KG	16	0	0.00%		0	755,917 16		100
1,2-Dichloroethane 1,2-Dichloroethene (total)	UG/KG	16	o	0.00%		0			
1,2-Dichloropropane	UG/KG	16	0	0.00%		0	1,011,595.023		
Acetone	UG/KG	16	0	0.00%		0	105,288,461.5	34.270	200
Benzene	UG/KG	16	0	0 00%		0	2,372,015.915	247,370	60
Bromodichloromethane	UG/KG	16	0	0.00%		0	1,109,491 315		
Bromoform	UG/KG	16	0	0.00%		0	8,707,400.195	53,000.	2.700
Carbon disulfide	UG/KG	16	0	0.00%		0	105,288,461.5 529,142.012	33,000.	600
Carbon tetrachloride	UG/KG	16	0	0.00%		0	21,057,692.31		1,700
Chlorobenzene	UG/KG	16	0	0.00%		0	818,910.256		.,, .
Chlorodibromomethane	UG/KG	16 16	0	0.00%		o	421,153,846.2		1,900
Chloroethane	UG/KG	16	0	0.00%		0	10,528,846.15	194,610	300
Chloroform	UG/KG UG/KG	16	0	0.00%		0			
Cis-1 3-Dichloropropene Ethyl benzene	UG/KG	16	0	0.00%		0	105,288,461.5	1,720,290.	5,500
Methyl bromide	UG/KG	16	0	0.00%		0	1,505,625		-
Methyl butyl ketone	UG/KG	16	0	0.00%		0			
Methyl chloride	UG/KG	16	0	0 00%		0	5,291,420.118		
Methyl ethyl ketone	UG/KG	16	0	0.00%		0		421,380	300
Methyl isobutyl ketone	UG/KG	16	0	0.00%		0	84,230,769.23	400.020	1,000
Methylene chloride	UG/KG	16	0	0.00%		0	9,171,794.872	132,030	100
Styrene	UG/KG	16	0	0.00%		0	4 222 255 02	C 454 550	1,400
Tetrachloroethene	UG/KG	16	6	37.50%	19.	0	1,322,855.03	6,454,550. 1,552,560	1,500
Toluene	UG/KG	16	0	0.00%		0	210,576,923 1	5,642,680	1,200
Total Xylenes	UG/KG	16	0	0.00%		0	2,105,769,231	3,042,000	1,200
Trans-1,3-Dichloropropene	UG/KG	16	0	0.00%		0	6,253,496.503		700
Trichloroethene	UG/KG	16	0	0 00%		0	36,204 453		200
Vinyl chloride	UG/KG	16	0	0 00%		O	30,204 400		
Herbicides		4.0	0	0.00%		0			1 900
2,4,5-T	UG/KG	16	0	0.00%		0			700
2,4.5-TP/Silvex	UG/KG	16 16	0	0.00%		0			500
2.4-D	UG/KG UG/KG	16	0	0.00%		0			
2,4-DB	UG/KG	16	0	0.00%		0			
Dalapon Dicamba	UG/KG	16	0	0.00%		0		22,600	
Dichloroprop	UG/KG	16	0	0.00%		0			
Dinoseb	UG/KG	16	0	0.00%		0			
MCPA	UG/KG	16	2	12.50%	9,400.	0		110 100	
MCPP	UG/KG	16	0	0.00%		0		818,180	
Nitroaromatics							52.644 231		
1,3,5-Trinitrobenzene	UG/KG	16	7	43.75%	190.	0	105,288,462		
1,3-Dinitrobenzene	UG/KG	16	0	0 00%	4 400	0	526,442 308		
2.4 6-Trinitrotoluene	UG/KG	16	11	68.75%	1,400.	0	2,105,769 231	5,060	
2.4-Dinitrotoluene	UG/KG	16	9	56 25%	190	0	1,052,884 615	0,000	1 000
2,6-Dinitrotoluene	UG/KG	16	0	0 00%	680.	0	1,002.001010		
2-amino-4 6-Dinitrotoluene	UG/KG	16	10 1	62 50% 6 25%	270	0			
4-amino-2.6-Dinitrotoluene	UG/KG	16 16	8	50 00%	470	Ö			
HMX	UG/KG	16	13	81 25%	5,800	0			
RDX Tetryi	UG/KG UG/KG	16	4	25.00%	330.	0			
Semivolatile Organics	00110								- 100
1,2,4-Trichlorobenzene	UG/KG	16	0	0 00%		0	10,528,846 15	1,132,060	3 400
1 2-Dichlorobenzene	UG/KG	16	0	0 00%		0	94,759,615 38		7 900 1 600
1.3-Dichlorobenzene	UG/KG	16	0	0 00%		0.	93,706,730 77		9 500
1,4-Dichlorobenzene	UG/KG	16	0	0 00%		0	2,866,185 897		100
2.4.5-Trichlorophenol	UG/KG	16	0	0.00%		0	105,288,461 5		100
2.4 6-Trichlorophenol	UG/KG	16	0	0.00%		0	6,253,496,503		400
2.4-Dichlorophenol	UG/KG	16	0	0 00%		0	3,158,653 846 21,057,692 31		
2.4-Dimethylphenol	UG/KG	16	0	0.00%		0	2,105,769 231		200
2,4-Dinitrophenol	UG/KG	16	0	0 00%	14.000	0	2,105,769 231	5 060	
2.4-Dinitrotoluene	UG/KG	16	9	56 25%	14,000. 700	0	1,052,884 615	2 230	1 000
2.6-Dinitrotoluene	UG/KG	16	2	12 50% 0 00%	700	0	.,0-1.00.010		
2-Chloronaphthaiene	UG/KG	16	0 0	0.00%	,	0	5,264,423 077	83,200	800
2-Chlorophenol	UG/KG	16	0	0 00%		0		962,620	36 400
2-Methylnaphthalene	UG/KG	16 16	0	0 00%		0	52,644,230 77		100
2-Methylphenoi	UG/KG	16	0	0 00%		O	63,173 077		430
2-Nitroaniline	UG/KG UG/KG	16	0	0 00%		Ο,			330
2-Nitrophenol 3,3°-Dichlorobenzidine	UG/KG	16	0	0 00%		0	152,863 248		500
3.3 -Dichlorobenzidine 3-Nitroaniline	UG/KG	16	Ö	0 00%		0	3,158,653.846		500
4 6-Dinitro-2-methylphenol	UG/KG	16	0	0 00%		0			
4-Bromophenyi phenyi ethe		16	0	0 00%		0	61,067,307 69		240
4-Chloro-3-methylphenol	UG/KG	16	0	0 00%		0	1011 500 100		220
4-Chtoroaniline	UG/KG	16	0	0 00%		0	4,211,538 462		4.4.

Seneca Army Depot Activity SEAD-45 SOILS Summary Statistics Comparison to NYSDEC TAGM 4046

				Comparison to N	YSDEC TAGM 404	ь			
PARAMETER	TINU	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046
		16	0	0.00%		0			
4-Chlorophenyl phenyl ether	UG/KG UG/KG	16 16	0	0.00%		ő			900
4-metry prieries	UG/KG	16	0	0.00%		0	3,158,653.8461		
4-Nitroaniline 4-Nitrophenol	UG/KG	16	0	0.00%		0	63,173,076 92	18,680.	100
	UG/KG	16	0	0.00%		0	_	2,268,070	50,000
	UG/KG	16	3	18.75%	30.	0	045 005 004 0	33,460.	41,000 50 000
	UG/KG	16	2	12.50%	18	0	315,865,384.6 94,230.769	1,269,040 1,476,040	224
Benzo(a)anthracene	UG/KG	16	8	50.00%	50 82.	0 1	9,423.077	562,720	61
	UG/KG	16	8	50.00% 56.25%	55.	0	94,230.769	59,750.	1 100
001.20[2]	UG/KG	16	9 7	43.75%	66.	0	01,200	76,250	50,000
00.10-(3.11)-11	UG/KG	16 16	7	43.75%	58.	0	942,307.692	72,640	1 100
	UG/KG UG/KG	16	0	0.00%		0			
Bis(2-Chloroethoxy)methan Bis(2-Chloroethyl)ether	UG/KG	16	0	0.00%		0	62,534 965		
	UG/KG	16	9	56.25%	740	0	4,913,461.538	39,350	50 000
2.0(= =,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UG/KG	16	0	0.00%		0	210,576,923.1		50 000
	UG/KG	16	0	0.00%		0	3,439,423.077	93.300	400
Chrysene	UG/KG	. 16	11	68.75%	68.	0	9,423,076.923	94,697,730	8,100
	UG/KG	16	9	56.25%	6,800.	0	21,057,692.31	54,057,750	50,000
	UG/KG	16	0	0.00%		0	9.423.077	53,680.	14
0.00.00	UG/KG	16	0	0.00%		0	4.211.538.462		6 200
0.000.000.000	UG/KG	16 16	1	6 25%	35.	Ö	842,307,692.3	7,665,910	7,100
D. 101. 1/1. P. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	UG/KG UG/KG	16	Ó	0.00%		0	10,528,846,150.		2.000
Ourrow, primitive	UG/KG	16	11	68.75%	68.	0	42,115,384.62	7,849,900	50,000
1 Idol di Idila	UG/KG	16	0	0.00%		0	42,115,384.62	1,755,510	50 000
1 10010110	UG/KG	16	10	62.50%	62.	0 .	42,992.788		410
	UG/KG	16	0	0.00%		0	210,576.923		
Hexachlorocyclopentadiene		16	0	0.00%		0	7,370,192.308		
Hexachioroethane	UG/KG	16	6	37.50%	1,100.	0	1,052,884 615	47.620	3,200
	UG/KG	16	4	25.00%	52	0	94,230.769	47,630	4 400
	UG/KG	16	0	0.00%		0	14 020 461 54		4 400
N-Nitrosodiphenylamine	UG/KG	16	5	31 25%	1,600.	0	14,038,461.54 9,826,923	1,454,550	
	UG/KG	16	0	0.00%	30.	0	42,115,384.62	149,740	13,000
1 rapini	UG/KG	16	5	31 25%	30.	0	526,442.308	. 10,110	200
11111-00-01-00-0	UG/KG	16	0	0 00% 0.00%		0	573,237 18	1,415,560	1 000
	UG/KG	16	9	56 25%	46	0		325,820	50 000
,	UG/KG	16 16	0	0.00%	-10	0	631,730,769 2	79,520	30
	UG/KG UG/KG	16	12	75 00%	110	0	31,586,538.46	2,420,460	50,000
. ,	UG/KG	70	12	, , , , , , , , , , , , , , , , , , , ,					
Pesticides/PCBs 4.4`-DDD	UG/KG	16	0	0 00%		0	286,618.59	874,990.	2,900
	UG/KG	16	6	37 50%	4 2	0	202,319.005	86,590	2,100
	UG/KG	16	4	25.00%	3 4	0	202,319.005	8.870	2,100 41
	UG/KG	16	0	0 00%		0	4,046.38	2,750	110
	UG/KG	16	0	0 00%		0		142,090	
Alpha-Chlordane	UG/KG	16	3	18.75%	2	0	73,701 923	742,030	
	UG/KG	16	0	0.00%		0	73,701 323		
	UG/KG	16	0	0 00% 0 00%		0			
	UG/KG	16	0	0 00%		0		12,879,550	
	UG/KG UG/KG	16 16	0	0 00%		0			
Alociol 12 10		16	1	6 25%	110	0	21,057 692	3,925,000	10,000
Aroclor-1254	UG/KG UG/KG	16	Ö	0 00%		0		2,272,730	10 000
Aroclor-1260 Beta-BHC	UG/KG	16	0	0 00%		0		11,060	200
	UG/KG	16	0	0 00%		0			300 44
	UG/KG	16	3	18 75%	3 2	0	4,299.279	121 820	900
Endosuifan I	UG/KG	16	6	37 50%	2 2	0	6,317,307 692	131,820	900
Endosulfan II	UG/KG	16	0	0 00%		0	6,317,307 692	15,820	1 000
Endosulfan sulfate	UG/KG	16	0	0 00%		O,	315,865.385	240,910	100
Endrin	UG/KG	16	0	0 00%		o	315,865 385	6,350	
Endrin aldehyde	UG/KG	16	0	0.00%		0	315,865.385	6,350	
Endrin ketone	UG/KG	16	0	0.00%		0	52,914 201		60
Gamma-BHC/Lindane	UG/KG	16 16	0	0 00%		0		47,360	540
Gamma-Chlordane	UG/KG	16	0	0.00%		0	15,286 325	28,620	100
Heptachlor	UG/KG UG/KG	16	0	0 00%		0	7,559 172	10	20
Heptachlor epoxide	UG/KG UG/KG	16	0	0 001-		0	5,264,423 077		
Methoxychlor	UG/KG	16	0	0.001:		0			
Toxaphene Metals	Joine	. •	-		•				10 500 500
Aluminum	UG/KG	16	16	100 000	. 2 900 000	4	1,052,884,615	40 .07 0-0	19 520 000 2000
Antimony	UG/KG	16	0	0.00		0	421,153 846	18,437.230	6 000 a ann
Arsenic	UG/KG	16	16	100 000	3 200	0	45,858 974	223,670	000 8 000 000
Barium	UG/KG	16	16	100 121-	365 000	1 .	73,701,923.08	91,840 6,570	1 130
Beryllium	UG/KG	16	16	100 001:	1 100	0	15,997 317	737 770	2 460
Cadmium	UG/KG	16	14	87 501:	13 100	11	526,442 308	131 110	125 300 000
Calcium	UG/KG	16	16	100 007	47 330 000	0 5	1,052,884,615	850,430	30 303
Chromium	UG/KG	16	16	100 00 =	39 300 24 300	0	63,173,076 92		32 700
Cobalt	UG/KG	16	16	100 00% 100 00%	1 240 000	16	42,115,384 62		33 000
Copper	UG/KG	16	16	100 0073	240 000	.5			

Seneca Army Depot Activity SEAD-45 SOILS Summary Statistics Companson to NYSDEC TAGM 4046

PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046
Cyanide	UG/KG	16	2	12.50%	700	2		13,636,360.	350
Iron	UG/KG	16	16	100.00%	75,700,000.	3	315,865,384 6		37,410,000
Lead	UG/KG	16	16	100 00%	87,800.	12		181,460.	24,400
Magnesium	UG/KG	16	16	100 00%	9.270,000	0			21,700,000
Manganese	UG/KG	16	16	100 00%	1,380,000	2	24,216,346.15	8,821,860.	1,100,000
Mercury	UG/KG	16	16	100 00%	4,300.	16	315,865.385	1,710	100
Nickel	UG/KG	16	11	68.75%	51,000.	1	21,057,692.31	2,833.820.	50,000
Potassium	UG/KG	16	16	100 00%	3,280,000.	5			2,623 000
Selenium	UG/KG	16	0	0.00%		0	5,264,423.077	193,140	2,000
Silver	UG/KG	16	12	75.00%	26,200.	12	5,264,423.077		800
Sodium	UG/KG	16	16	100.00%	142,000	0			188,000
Thallium	UG/KG	16	0	0 00%		0	84,230.769		855
Vanadium	UG/KG	16	16	100 00%	38,000.	0	7,370,192.308		150,000
Zinc	UG/KG	16	11	68.75%	557,000.	11	315,865,384.6		115,000
Other Analyses									
Nitrate/Nitrite	UG/KG	16	16	100.00%	28,000	0			

Seneca Army Depot Activity SEAD-45 Soil Collapsed Data Summary Comparison to NYSDEC TAGM 4046

					STUDY ID	ESI	ESI	ESI	ESI
					SITE	SEAD-45	SEAD-45	SEAD-45	SEAD-45
					LOC ID	SS45-1	SS45-2	SS45-3	SS45-4
					LOC TYPE	SITE	SITE	SITE	SITE
					SAMP_ID:	SS45-1	SS45-2	SS45-3	SS45-4
					QC CODE.	SA	SA	SA	SA
				SA	MP DETH TOP	0	0	0	0
				SAN	IP DEPTH BOT	02	02	0.2	02
					MATRIX	SOIL	SOIL	SOIL	SOIL
					SAMP DATE	25-Oct-93	25-Oct-93	25-Oct-93	25-Oct-93
					NYSDEC TAGM				
PARAMETER	UNIT	Number of	Recreational PRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q
		Exceedances							
Benzo[a]pyrene	UG/KG	1	9,423 077	562,720	61.	410. U	380. U	400 U	360 U
Aluminum	UG/KG	4	1,052,884,615.		19,520,000.	17,300,000.	19,400,000.	18,900,000.	14,900,000.
Barium	UG/KG	1	73,701,923.08	91,840	300,000.	122,000.	194,000.	115,000.	143,000
Cadmium	UG/KG	11	526,442.308	737,770.	2,460	2,800.	2,400.	1,100.	3,900
Chromium	UG/KG	5	1,052,884,615.	850,430.	30,000.	24,100.	12 300 A	27,400.	22,900.
Copper	UG/KG	16	42,115,384.62	827,810.	33,000.	79,400	[19][16][16][16][17][16][16][16][16][16][16][16][16][16][16	17. 连续的 网络大学医学医疗法	155,000
Cyanide	UG/KG	2		13,636,360.	350.	560. U	570. U	580. U	540. U
Iron	UG/KG	3	315,865,384.6		37,410,000.	25,800,000.	75,700,000	30,500,000.	26,700,000.
Lead	UG/KG	12		181,460.	24,400.	20,400.	15,700.	12,000.	34,900
Manganese	UG/KG	2	24,216,346.15	8,821,860	1,100,000	562,000.	1,150,000	627,000.	530,000.
Mercury	UG/KG	16	315,865 385	1,710.		The state of the s	630.	179.	Blanch Baltania State 30
Nickel	UG/KG	1	21,057,692 31	2,833,820	50,000.	29,400. R	41,300. R	40,500. R	35,200 R
Potassium	UG/KG	5			2,623,000.	2,310,000.	3.140,000	2,720,000	2,100,000.
Silver	UG/KG	12	5,264,423 077		800	1,300. UJ	1,500 UJ	2. CQ	1,000. UJ
Zinc	UG/KG	11	315,865,384 6		115,000	148,000 R	122,000. R	115,000. R	208,000. R

Seneca Army Depot Activity SEAD-45 Soil Collapsed Data Summary Comparison to NYSDEC TAGM 4046

STUDY ID.	ESI	ESI	ESI	ESI
SITE:	SEAD-45	SEAD-45	SEAD-45	SEAD-45
LOC ID	SS45-5	SS45-5	SS45-6	SS45-7
LOC TYPE.	SITE	SITE	SITE	SITE
SAMP_ID	SS45-10	\$\$45-5	SS45-6	SS45-7
QC CODE.	DU	SA	SA	SA
SAMP DETH TOP:	. 0	0	0	0
SAMP DEPTH BOT	02	02	0.2	02
MATRIX:	SOIL	SOIL	SOIL	SOIL
SAMP DATE:	25-Oct-93	25-Oct-93	25-Oct-93	25-Oct-93

					NYSDEC TAGM				
PARAMETER	UNIT	Number of	Recreational PRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q
		Exceedances							
Benzo[a]pyrene	UG/KG	1	9,423,077	562,720	61.	44. J	· 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	45. J	380. U
Aluminum	UG/KG	4	1,052,884,615.		19,520,000.	15,600,000.	17,600,000.	16,300,000.	18,000,000.
Barium	UG/KG	1	73,701,923.08	91,840.	300,000.	151,000.	161,000.	160,000.	163,000.
Cadmium	UG/KG	11	526,442 308	737,770.	2,460.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9,500. J	8,800	1,600. J
Chromium	UG/KG	5	1,052,884,615	850,430	30,000.	23,800.	26,900.	24,200.	24,800.
Copper	UG/KG	16	42,115,384 62	827,810	33,000.	405,000	538,000.	491,000	HERE TO FINANCE STOOL
Cyanide	UG/KG	. 2		13,636,360	350	670 U	720. U	520. U	660. U
Iron	UG/KG	3	315,865,3846		37,410,000	30,400,000.	31,400,000.	28,100,000.	29,900,000.
Lead	UG/KG	12		181,460.	24,400	54,900	63,600	63,200.	21,900.
Manganese	UG/KG	2	24,216,346 15	8,821,860		599,000.	575,000.	555,000.	1,050,000
Mercury	UG/KG	16	315,865 385	1,710.	. 100.	2,100 J	1,500, J	· 100	ACCOUNT OF THE PARTY OF THE PAR
Nickel	UG/KG	1	21,057,692 31	2,833,820	50,000.	36,400.	40,500.	34,200. R	35,100.
Potassium	UG/KG	5			2,623,000.	1,980,000.	2,140,000.	2,060,000.	2,080,000.
Silver	UG/KG	12	5,264,423 077		800	2.700 J	3,500. J	国际的 的特别对于	1,200. UJ
Zinc	UG/KG	11	315 865 384 6		115,000.	361.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	347,000. R	1 期 4 年 (4 11 1 1 1 1 2 0 1 0 0 0 1

Page 2

Seneca Army Depot Activity SEAD-45 Soil Collapsed Data Summary Comparison to NYSDEC TAGM 4046

					STUDY ID.	ESI	ESI	ESI	ESI
		,			SITE:	SEAD-45	SEAD-45	SEAD-45	SEAD-45
					FOC ID.	SS45-8	SS45-9	TP45-1	TP45-1
					LOC TYPE:	SITE	SITE	SITE	SITE
					SAMP_ID:	SS45-8	SS45-9	TP45-11	TP45-1
					QC CODE.	SA	SA	DU	SA
				SAN	IP DETH TOP:	0	0	3	3
				SAME	DEPTH BOT:	0 2	0.2	3	3
					MATRIX:	SOIL	SOIL	SOIL	SOIL
					SAMP DATE:	25-Oct-93	25-Oct-93	11-Nov-93	11-Nov-93
					YSDEC TAGM				
PARAMETER	UNIT	Number of Exceedances	Recreational PRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Benzo[a]pyrene	UG/KG	1	9,423.077	562,720.	61.	420. U	390. U	41. J	46. J
Aluminum	UG/KG	4	1,052,884,615.		19,520,000.	18,600,000.	17,800,000	16,500,000.	20,100,000,
Barium	UG/KG	1	73,701,923.08	91,840.	300,000.	365,000	202,000.	177,000.	208,000.
Cadmium	UG/KG	11	526,442.308	737,770.	2,460.	4,800. J	5,500 J	9,600.	10,400. J
Chromium	UG/KG	5	1,052,884,615.	850,430	30,000.	27,200.	27,400.	25,700.	31,300
Copper	UG/KG	16	42,115,384 62	827,810.		293,000.	267,000.	555,000	722,000
Cyanide	UG/KG	2		13,636,360.	350.	720. U	700. U	540. U	700
Iron	UG/KG	3	315,865,384 6		37,410,000.	29,400,000.	32,500,000.	31,900,000.	35,700,000
Lead	UG/KG	12		181,460.	24,400.	66,900.	77,700	73,300.	54,100
Manganese	UG/KG	2	24,216,346 15	8,821,860	1,100,000	489,000.	912,000.	613,000.	1,380,000.
Mercury	UG/KG	16	315,865.385	1,710.	100.	1,900. J	J. 100. J	1,400. J	3,100. J
Nickel	UG/KG	1	21,057,692.31	2,833,820	50,000.	39,400.	42,500.	39,100.	41,800
Potassium	UG/KG	5			2,623,000.	2,530,000.	2,260,000.	1,960,000.	3,040,000.
Silver	UG/KG	12	5,264,423 077		800.	2,300. J	1,300. J	4,700.4 J	3,200. J
Zinc	UG/KG	11	315,865,384 6		115,000	306,000.	383,000.	360,000,	345,000.

4/30/98

Seneca Army Depot Activity SEAD-45 Soil Collapsed Data Summary Comparison to NYSDEC TAGM 4046

					0011	IPERISON TO MISDEC TAGE	11 4040		
					STUDY ID SITE. LOC ID: LOC TYPE: SAMP_ID: QC CODE: MP. DETH TOP: IP DEPTH BOT. MATRIX: SAMP_DATE:	ESI SEAD-45 TP4\$-2 SITE TP45-2 SA 3 3 SOIL 11-Nov-93	ESI SEAD-45 TP45-3 SITE TP45-3 SA 3 3 SOIL 11-Nov-93	ESI SEAD-45 TP45-4 SITE TP45-4 SA 3 3 SOIL 09-Nov-93	ESI SEAD-45 TP45-5 SITE TP45-5 SA 3 3 SOIL 09-Nov-93
PARAMETER	UNIT	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046	VALUE Q	. VALUE Q	VALUE Q	الاً VALUE Q
Benzo[a]pyrene Aluminum Barium Cadmium Chromium Copper	UG/KG UG/KG UG/KG UG/KG UG/KG UG/KG	1 4 1 11 5	9,423.077 1,052,884,615. 73,701,923.08 526,442.308 1,052,884,615. 42,115,384.62	562,720. 91,840 737,770. 850,430.	300,000. 2,460. 30,000.	1,900. U 10,800,600. 201,000. 2,500. J 30,100.	28. J 22.800.000J 248,000 13,100. J 35.500.	45. J 216,000. 10,900. R	42. J 17,300,000. 174,000. 7,400. R 27,600.
Cyanide Iron Lead Manganese Mercury	UG/KG UG/KG UG/KG UG/KG UG/KG	2 3 12 2	315,865,384 6 24,216,346.15 315,865 385	827,810. 13,636,360. 181,460. 8,821,860. 1,710.	33,000. 350. 37,410,000. 24,400. 41,100,000.	551,000 550, U 31,500,000, 69,400, 605,000,	791,000, 550. U 41,300,000, 57,860, 827,000.	1,240,000 J 620 57,600,000 57,4700 726,000	510. U 31,600,000. 600,000.

100 3,100 J

40,500.

5,000. J

390,000.

3,280,000.

50,000.

800

115,000 #

2,623,000

3,600.3

48,300

2,400,000.

4,300.

39,200.

1,960,000.

4,000. J

6,600. J

51,000.

538,000.

3,010,000.

Potassium

Nickel

Silver

Zinc

UG/KG

UG/KG

UG/KG

UG'KG

1

5

12

1.1

21,057,692 31

5,264 423 077

315 865 384 6

1,710.

2,833,820

Seneca Army Depot Activity SEAD-45 Soils Summary Statistics Comparison to Ecological PRG

									NYSDEC TAGM
PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	4046
Valatila Organics									
Volatile Organics	UG/KG	16	0	0 00%		0	36,850,961 54	957,110	800 600
1 1,2,2-Tetrachloroethane	UG/KG	16	0	0 00%		0	3,439,423 077		600
1,1,2-Trichloroethane	UG/KG	16	0	0 00%		0	1,206,815.115 105,288,461 5		200
1,1-Dichlorcethane	UG/KG	16	0	0 00% 0 00%		0	114.647 436		400
1.1-Dichloroethene	UG/KG	16 16	0	0.00%		0	755,917 16		100
1.2-Dichloroethane 1.2-Dichloroethene (total)	UG/KG UG/KG	16	0	0.00%		0			
1.2-Dichloropropane	UG/KG	16	0	0 00%		0	1,011,595.023		222
Acetone	UG/KG	16	0	0.00%		0	105,288,461 5	34,270	200 60
Benzene	UG/KG	16	0	0 00%		0	2,372,015.915 1,109,491.315	247,370	60
Bromodichloromethane	UG/KG	16	0	0 00% 0 00%		0	8,707,400 195		
Bromoform	UG/KG	16 16	0	0.00%		0	105,288,461 5	53.000	2.700
Carbon disulfide Carbon tetrachloride	UG/KG UG/KG	16	0	0 00%		0	529,142,012		600
Chlorobenzene	UG/KG	16	0	0.00%		0	21,057,692.31		1,700
Chlorodibromomethane	UG/KG	16	0	0 00%		0	818,910 256		1 900
Chloroethane	UG/KG	16	0	0 00%		0	421,153,846.2 10,528,846.15	194,610	300
Chloroform	UG/KG	16	0	0 00% 0.00%		0	10,320,040.10	101,010	
Cis-1.3-Dichloropropene	UG/KG UG/KG	16 16	0	0.00%		- 0 '	105,288,461.5	1,720.290	5,500
Ethyl benzene	UG/KG	16	o	0 00%		0	1,505,625		
Methyl bromide Methyl butyl ketone	UG/KG	16	0	0.00%		0			
Methyl chloride	UG/KG	16	0	0.00%		0	5.291,420 118	101 202	300
Methyl ethyl ketone	UG/KG	16	0	0 00%		0	04 220 760 22	421,380	1 000
Methyl isobutyl ketone	UG/KG	16	0	0 00%		0	84,230,769 23 9,171,794 872	132,030	100
Methylene chloride	UG/KG	16	0	0 00% 0 00%		0	3,171,734072	,02,000	
Styrene	UG/KG UG/KG	16 16	6	37 50%	19	O	1,322,855 03	6 454,550	1 400
Tetrachioroethene Toluene	UG/KG	16	0	0.00%		0	210,576,923 1	1,552.560	1 500
Total Xylenes	UG/KG	16	0	0 00%		0	2,105,769,231	5,642.680	1 200
Trans-1,3-Dichloropropene	UG/KG	16	0	0.00%		0	0.252.406.503		700
Trichloroethene	UG/KG	16	0	0.00%		0	6,253,496 503 36,204 453		200
Vinyl chloride	UG/KG	16	0	0 00%		U	30,204 430		
Herbicides	UG/KG	16	0	0 00%		0			1 900
2,4 5-T 2,4,5-TP/Silvex	UG/KG	16	0	0.00%		0			700
2.4-D	UG/KG	16	0	0 00%		0			500
2.4-DB	UG/KG	16	0	0.00%		0			
Dalapon	UG/KG	16	0	0 00%		0		22,600	
Dicamba	UG/KG	16	0	0.00%		. 0			
Dichloroprop	UG/KG UG/KG	16 16	0	0.00%		0			
Dinoseb MCPA	UG/KG	16	2	12.50%	9 400	0			
MCPP	UG/KG	16	0	0 00%		0		818,180	
Nitroaromatics			_	10.75%	190	0	52.644 231		
1 3,5-Trinitrobenzene	UG/KG	16	7 0	43 75% 0 00%	190	0	105,288 462		
1 3-Dinitrobenzene	UG/KG UG/KG	16 16	11	68 75%	1 400	0	526,442 308		
2.4 6-Trinitrotoluene 2.4-Dinitrotoluene	UG/KG	16	9	56 25%	190	0	2,105,769 231	5 060	
2.6-Dinitrotoluene	UG/KG	16	0	0 00%		0	1 052,884 615		, 336
2-amino-4 6-Dinitrotoluene	UG/KG	16	10	62 50%	680	0			
4-amino-2 6-Dinitrototuene	UG/KG	16	1	6 25%	270 470	0			
HMX	UG/KG	16	8 13	50 00% 81 25%	5 800	0			
RDX	UG/KG UG/KG	16 16	4	25 00%	330	0			
Tetryl Semivolatile Organics	UG/NG	10							2 472
1,2,4-Trichiorobenzene	UG/KG	16	0	0 00%		0	10.528,846 15	1,132 060	3 430 7 900
1 2-Dichlorobenzene	UG/KG	16	0	0 00%		0	94,759,615 38		1 630
1 3-Dichlorobenzene	UG/KG	16	0	0 00%		Q O	93,706,730 77 2,866,185 897		9 500
1 4 Oichlorobenzene	UG/KG	16	0	0 00% 0 00%		0	105,288,461 5		100
2 4 5-Trichlorophenol	UG/KG	16 16	0	0 00%		0	6,253,496 503		
2.4 6-Trichlorophenol 2.4-Dichlorophenol	UG/KG UG/KG	16	0	0 00%		0	3,158,653 846		400
2.4-Dimethylphenol	UG/KG	16	0	0 00%		0	21,057,692.31		m, m, m
2.4-Dinitrophenol	UG/KG	16	0	0 00%		0	2,105,769 231	5 060	200
2.4-Dinitrotoluene	UG/KG	16	9	56 25%	14 000	1	2,105,769 231 1,052,884 615	5 000	. ::::
2.6-Dinitrotoluene	UG/KG	16	2	12 50% 0 00%	700	0	,,052,004 015		
2-Chloronaphthalene	UG/KG	16 16	0	0 00%	,	o	5,264,423 077	83 200	9.13
2-Chlorophenol	UG/KG UG/KG	16	0	0 00%		0		962 620	19.413
2-Methylnaphthalene 2-Methylphenol	UG/KG	16	Ö	0 00%		. 0	52,644,230 77		*10 437
2-Nitroaniline	UG/KG	16	0	0 00%		0	63,173 077		333
2-Nitrophenol	UG/KG	16	0	0 00%		0	152,863 248		- ~ ~
3 3'-Dichloropenzidine	UG/KG	16	0	0 00% 0 00%		0	3,158,653 846		522
3-Nitroaniline	UG/KG	16 16	0	0 00%		0			
4 6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	UG/KG	16	0	0 00%		0	61,067,307,69		4.1
4-Bromophenyi phenyi ether 4-Chioro-3-methyiphenol	UG/KG	16	0	0 00%		0			242
4-Chloroaniline	UG/KG	16	0	0 00%		0	4,211,538 462		

	Comparison to Ecological PRG								
PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046
4-Chlorophenyl phenyl ether	LICIKG	16	0	0.00%		0			
4-Methylphenol	UG/KG	16	0	0 00%		0			900
4-Nitroanifine	UG/KG	16	0	0 00%		0	3,158,653,846	40.000	100
4-Nitrophenol	UG/KG	16	0	0.00%		0	63,173,076.92	18,680	100 50 000
Acenaphthene	UG/KG	16	0	0.00%		0	-	2,268,070. 33,460	41,000
Acenaphthylene	UG/KG	16	3	18 75%	30. 18.	0	315,865,384.6	1,269,040	50,000
Anthracene	UG/KG	16	2	12.50% 50.00%	18. 50.	0	94,230.769	1,476,040	224
Benzo(a)anthracene	UG/KG	16 16	8 8	50.00%	82.	0	9,423.077	562,720.	61
Benzo(a)pyrene	UG/KG UG/KG	16	9	56.25%	55.	0	94,230.769	59,750	1,100
Benzo(b)fluoranthene Benzo(ghi)perylene	UG/KG	16	7	43.75%	66.	0		76,250	50,000
Benzo(k)fluoranthene	UG/KG	16	7	43.75%	58.	0	942,307 692	72,640	1,100
Bis(2-Chloroethoxy)methan	UG/KG	16	0	0.00%		0			
Bis(2-Chloroethyl)ether	UG/KG	16	0	0.00%		0	62,534.965		50.000
Bis(2-Ethylhexyl)phthalate	UG/KG	16	9	56.25%	740.	0	4,913,461.538	39,350	50.000 50.000
Butylbenzylphthalate	UG/KG	16	0	0 00%		0	210,576,923.1 3,439,423.077		50,000
Carbazole	UG/KG	16	0	0.00%	68	0	9,423,076.923	93,300	400
Chrysene	UG/KG	16	11 9	68 75% 56 25%	6,800.	0	5,425,576.525	94,697,730	8 100
Di-n-butylphthalate	UG/KG UG/KG	16 16	0	0 00%	0,000.	0	21,057,692.31		50.000
Di-n-octylphthalate	UG/KG	16	0	0.00%		0	9,423.077	53,680	14
Dibenz(a,h)anthracene Dibenzofuran	UG/KG	16	0	0.00%		0	4,211,538.462		6.200
Diethyl phthalate	UG/KG	16	1	6.25%	35.	0	842,307,692.3	7,665,910.	7,100
Dimethylphthalate	UG/KG	16	0	0.00%		0	10,528,846,150.		2,000
Fluoranthene	UG/KG	16	11	68.75%	68	0	42,115,384.62	7.849.900	50,000
Fluorene	UG/KG	16	0	0.00%		0	42,115,384 62	1,755.510	50 000 410
Hexachlorobenzene	UG/KG	16	10	62.50%	62.	0	42,992.788 210.576.923		410
Hexachlorobutadiene	UG/KG	16	0	0 00%		0	7,370,192.308		
Hexachlorocyclopentadiene	UG/KG	16	0 6	0 00% 37 50%	1,100	0	1,052,884.615		
Hexachloroethane	UG/KG UG/KG	16 16	4	25.00%	52.	0	94,230.769	47,630	3,200
indeno[1,2,3-cd]pyrene Isophorone	UG/KG	16	0	0.00%	5 2.	0			4,400
N-Nitrosodiphenylamine	UG/KG	16	5	31 25%	1,600.	0	14,038,461.54		
N-Nitrosodipropylamine	UG/KG	16	0	0 00%		0	9,826.923	1,454,550	
Naphthalene	UG/KG	16	5	31.25%	30.	0	42,115,384 62	149,740	13.000
Nitrobenzene	UG/KG	16	0	0.00%		0	526,442.308	4 445 560	200 1 000
Pentachlorophenol	UG/KG	16	0	0.00%	40	0	573,237.18	1,415,560 325,820	50.000
Phenanthrene	UG/KG	16	9	56.25%	46.	0	631,730,769.2	79,520	30
Phenol	UG/KG	16	0 12	0.00% 75.00%	110	0	31,586,538.46	2,420,460	50 000
Pyrene	UG/KG	16	12	75.00%	110	O	01,000,000.10	,	
Pesticides/PCBs	UG/KG	16	0	0.00%		0	286,618 59	874,990	2,900
4.4`-DDD 4.4`-DDE	UG/KG	16	6	37.50%	42	0	202,319 005	86,590	2 100
4.4 -DOE 4.4 -DOT	UG/KG	16	4	25.00%	3 4	0	202,319 005	8,870	2,100
Aldrin	UG/KG	16	0	0.00%		0	4,046 38	2,750	41
Alpha-BHC	UG/KG	16	0	0 00%		0		4 .0 000	110
Alpha-Chlordane	UG/KG	16	3	18.75%	2	0	70 704 603	142.090	
Aroclor-1016	UG/KG	16	0	0.00%		0	73,701 923		
Aroclor-1221	UG/KG	16	0	0 00%		0			
Aroctor-1232	UG/KG	16	0	0 00% 0 00%		0		12,879,550	
Aroclor-1242	UG/KG	16 16	0	0.00%		0			
Aroclor-1248	UG/KG	16	1	6.25%	110	0	21,057 692	3,925.000	10 000
Aroclor-1254 Aroclor-1260	UG/KG UG/KG	16	Ö	0.00%		0		2,272,730.	10 000
Beta-BHC	UG/KG	16	0	0 00%		0		11,060	200
Delta-BHC	UG/KG	16	0	0.00%		0			300
Dieldrin	UG/KG	16	3	18.75%	3 2	0	4,299.279	124 000	44 900
Endosulfan I	UG/KG	16	6	37 50%	2.2	0	6,317,307 692	131,820	900
Endosulfan II	UG/KG	16	0	0 00%		0	6,317,307 692	15,820	1 000
Endosulfan sulfate	UG/KG	16	0	0.00%		Q.	315,865 385	240,910	100
Endrin	UG/KG	16	0	0.00%		0	315,865 385	6,350	
Endrin aldehyde	UG/KG	16 16	0	0.00%		0	315,865.385	6,350	
Endrin ketone	UG/KG UG/KG	16	0	0.00%		0	52,914 201		50
Gamma-BHC/Lindane	UG/KG	16	. 0	0.00%		0		47 360	540
Gamma-Chlordane Heptachlor	UG/KG	16	0	0 00%		0	15,286 325	28,620	*30
Heptachlor epoxide	UG/KG	16	0	0 00%		0	7,559 172	10	20
Methoxychlor	UG/KG	16	0	0 00%		0	5,264.423 077		
Toxaphene	UG/KG	16	0	0 00%	,	0			
Metals						-	4.050.004.045		19 520,000
Aluminum	UG/KG	16	16	100 00%	22,800,000	0	1,052,884,615	18,437.230	6 000
Antimony	UG/KG	16	0	0.00%	0.000	0	421,153 846 45,858 974	223,670	8,900
Arsenic	UG/KG	16	16	100 00%	8 200 365 000	0 16 ·	73,701,923.08	91,840	300 000
Barium	UG/KG	16	16 16	100 00% 100 00%	1,100	0	15,997 317	6.570	1 130
Beryllium	UG/KG	16	16 14	87 50%	13,100	0	526,442.308	737,770	2 460
Cadmium	UG/KG	16 16	14 16	100 00%	47 000,000	0	222, 7.2,030		125 300 000
Calcium	UG/KG UG/KG	16	16	100 00%	39,300	O	1.052,884,615	850 430	30 000
Chromium Cobalt	UG/KG	16	16	100 00%	24,300	0	63,173,076 92		30 000
Copper	UG/KG	16	16	100 00%	1 240,000	1	42,115,384 62	827.810	33 000
aabba.									

Seneca Army Depot Activity SEAD-45 Soils Summary Statistics Comparison to Ecological PRG

				_					NYSDEC TAGM	
PARAMETER	UNIT	Number of	Number of	Frequency of	Maximum	Number of	Recreational PRG	Ecological PRG	4046	
		Analyses	Detections	Detection	Value	Exceedances				
Cyanide	UG/KG	16	2	12.50%	700.	0		13,636,360.	350	
Iron	UG/KG	16	16	100 00%	75 700,000	0	315,865,384 6		37,410,000	
Lead	UG/KG	16	16	100.00%	87,800	0		181,460	24,400	
Magnesium	UG/KG	16	16	100 00%	9 270,000	0			21,700,000	
Manganese	UG/KG	16	16	100 00%	1,380,000	0	24,216,346.15	8,821,860.	1,100,000	
Mercury	UG/KG	16	16	100 00%	4,300	9	315,865.385	1,710	100	-
Nickel	UG/KG	16	11	68.75%	51,000.	0	21,057,692.31	2,833,820	50,000	
Potassium	UG/KG	16	16	100 00%	3,280,000	0			2,623,000	
Selenium	UG/KG	16	0	0.00%		0	5,264,423.077	193,140	2,000	
Silver	UG/KG	16	12	75.00%	26,200	0	5,264,423.077		800	
Sodium	UG/KG	16	16	100.00%	142,000	0			188,000	
Thallium	UG/KG	16	0	0.00%		0	84,230.769		855	
Vanadium	UG/KG	16	16	100.00%	38,000.	0	7,370,192.308		150,000	
Zinc	UG/KG	16	11	68 75%	557,000	0	315,865,384 6		115,000	
Other Analyses										
Nitrate/Nitrite	UG/KG	16	16	100 00%	28,000	0				
		0	0	100 00%		0				

Seneca Army Depot Activity SEAD-45 Soils Collapsed Data Summary Comparison to Ecological PRG

STUDY ID.	ESI	ESI	ESI	ESI
SITE:	SEAD-45	SEAD-45	SEAD-45	SEAD-45
LOC ID:	SS45-1	SS45-2	SS45-3	SS45-4
LOC TYPE:	SITE	SITE	SITE	SITE
SAMP_ID:	SS45-1	SS45-2	SS45-3	SS45-4
QC CODE:	SA	SA	SA	SA
SAMP. DETH TOP:	0	0	0	0
SAMP DEPTH BOT:	0.2	0.2	0.2	0 2
MATRIX:	SOIL	SOIL	SOIL	SOIL
SAMP, DATE:	25-Oct-93	25-Oct-93	25-Oct-93	25-Oct-93

					NYSDEC TAGM				
PARAMETER	UNIT	Number of	Recreational PRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q
		Exceedances				-			
2.4-Dinitrotoluene	UG/KG	1	2,105,769 231	5,060.		410. U	380. U	400. U	360. U
Barium	UG/KG	16	73,701,923.08	91,840	300,000.	122,000	194,000,	115,000	143,000
Copper	UG/KG	1	42,115,384.62	827,810.	33,000.	79,400.	192,000.	55,800.	155,000.
Mercury	UG/KG	9	315,865.385	1,710.	100.	430	630.	170.	430

h \eng\seneca\peer0498\S45s xls

Seneca Army Depot Activity
SEAD-45 Soils
Collapsed Data Summary
Comparison to Ecological PRG

STUDY ID.	ESI	ESI	ESI	ESI
SITE:	SEAD-45	SEAD-45	SEAD-45	SEAD-45
LOC ID	SS45-5	SS45-5	SS45-6	SS45-7
LOC TYPE.	SITE	SITE	SITE	SITE
SAMP_ID:	SS45-10	SS45-5	SS45-6	SS45-7
QC CODE:	DU	SA	SA	SA
SAMP DETH TOP:	0	0	0	0
SAMP, DEPTH BOT:	0.2	0.2	02	02
MATRIX:	SOIL	SOIL	SOIL	SOIL
SAMP DATE.	25-Oct-93	25-Oct-93	25-Oct-93	25-Oct-93
NYSDEC TAGM				
 		144445		

				14	I SDEC I AGINI				
PARAMETER	UNIT	Number of	Recreational PRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q
		Exceedances							
2,4-Dinitrotoluene	UG/KG	1	2,105,769 231	5,060.		75. J	160. J	830	380 U
Barium	UG/KG	16	73,701,923.08	91,840.	300,000.	151,000.	161,000.	0: 160,000.	163,000
Copper	UG/KG	1	42,115,384 62	827,810.	33,000.	405,000.	538,000.	491,000.	69,800.
Mercury	UG/KG	9	315,865 385	1,710	100.	2,100. J	1,500. J	2,400.4	410. J
		0							

1.8

Seneca Army Depot Activity SEAD-45 Soils Collapsed Data Summary Comparison to Ecological PRG

ESI	ESI	ESI	ESI	STUDY ID
SEAD-45	SEAD-45	SEAD-45	SEAD-45	SITE
TP45-1	TP45-1	SS45-9	SS45-8	LOC ID
SITE	SITE	SITE	SITE	LOC TYPE
TP45-1	TP45-11	SS45-9	SS45-8	SAMP_ID:
SA	DU	SA	SA	QC CODE:
3	3	0	0	SAMP DETH TOP
3	3	0 2	0 2	SAMP DEPTH BOT
SOIL	SOIL	SOIL	SOIL	MATRIX.
11-Nov-93	11-Nov-93	25-Oct-93	25-Oct-93	SAMP DATE.

					NYSDEC TAGM					
PARAMETER	UNIT	Number of	Recreational PRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q		VALUE Q
		Exceedances				,				
2.4-Dinitrotoluene	UG/KG	1	2,105,769 231	5,060		420 U	390 U	190. J		100. J
Barium	UG/KG	16	73,701,923.08	91,840.	300,000.	365,000.	202,000.	177,000.	1.	208,000.
Copper	UG/KG	1	42,115,384 62	827,810	33,000	293,000.	267,000	555,000		722,000.
Mercury	UG/KG	9	315,865 385	1,710	100.	1,900. J	. 1,900. J	1,400 J	1,	3,100.
•		0								

Page 3

Seneca Army Depot Activity SEAD-45 Soils Collapsed Data Summary Comparison to Ecological PRG

ESI	ESI	ESI	ESI	STUDY ID
SEAD-45	SEAD-45	SEAD-45	SEAD-45	SITE
TP45-5	TP45-4	TP45-3	TP45-2	LOC ID.
SITE	SITE	SITE	SITE	LOC TYPE:
TP45-5	TP45-4	TP45-3	TP45-2	SAMP_ID:
SA	SA	SA	SA	QC CODE:
3	3	3	3	SAMP DETH TOP:
3	3	3	3	SAMP, DEPTH BOT:
SOIL	SOIL	SOIL	SOIL	MATRIX:
09-Nov-93	09-Nov-93	11-Nov-93	11-Nov-93	SAMP DATE

					NYSDEC TAGM				
PARAMETER	UNIT	Number of	Recreational PRG	Ecological PRG	4046	VALUE Q	VALUE Q	VALUE Q	VALUE Q
		Exceedances							
2,4-Dinitrotoluene	UG/KG	1	2,105,769.231	5,060.	4.0	14,000	84. J	59. J	230. J
Barium	UG/KG	16	73,701,923.08	91,840.	300,000	201,000.	248,000,3	216,000.	174,000
Copper	UG/KG	1	42,115,384 62	827,810.	33,000.	561,000.	791,000.	1,240,000, J	449,000. J
Mercury	UG/KG	9	315,865 385	1,710.	100.	3,100, J	4.000 J	3,600	4.300.
*									

h \eng\seneca\peer0498\S45s xis

Seneca Army Depot Activity SEAD-45 Soil Summary Statistics Comparison to Recreational PRG

Volatile Organics	957,110 957,110 34,270 247,370 53,000	800 600 200 400 100 200 60 2,700 600.
1.1.1-Trichloroethane UG/KG 16 0 0.00% 0 33,439,423,077 1.1.2-Z-Tetrachloroeth UG/KG 16 0 0.00% 0 1,206,815,115 1.1.2-Trichloroethane UG/KG 16 0 0.00% 0 105,288,461,5 1.1-Dichloroethane UG/KG 16 0 0.00% 0 114,647,436 1.2-Dichloroethane UG/KG 16 0 0.00% 0 755,917.16 1.2-Dichloroethane UG/KG 16 0 0.00% 0 1,011,595.023 1.2-Dichloropthene UG/KG 16 0 0.00% 0 1,011,595.023 1.2-Dichloropthene UG/KG 16 0 0.00% 0 105,288,461.5 2.2-Dichloroptropane UG/KG 16 0 0.00% 0 105,288,461.5 Benzene UG/KG 16 0 0.00% 0 2,372,015,915 Bromodichloromethan UG/KG 16 0 0.00% 0 <th>34,270 247,370</th> <th>200 400 100 200 60</th>	34,270 247,370	200 400 100 200 60
1.1.1-Trichloroethane UG/KG 16 0 0.00% 0 33,830,943,947 1.1.2.2-Tetrachloroeth UG/KG 16 0 0.00% 0 3,439,423,077 1.206,815,115 0.00% 0 1,206,815,115 0.00% 0 1,206,815,115 0.00% 0 105,288,461.5 0.00% 0 105,288,461.5 0.00% 0 1,206,105,288,461.5 0.00% 0 1,206,105,288,461.5 0.00% 0 0.00% 0 755,917.16 0.00% 0.00% 0 1,206,105,288,461.5 0.00% 0.00% 0 1,011,595,023 0.00% 0.	34,270 247,370	200 400 100 200 60
1.1,2,2-Tetrachloroeth UG/KG 16 0 0.00% 0 1,206,815,115 1.1,2-Trichloroethane UG/KG 16 0 0.00% 0 105,288,461.5 1,1-Dichloroethane UG/KG 16 0 0.00% 0 114,647,436 1,2-Dichloroethane UG/KG 16 0 0.00% 0 755,917.16 1,2-Dichloroethane UG/KG 16 0 0.00% 0 1,011,595,023 1,2-Dichloropropane UG/KG 16 0 0.00% 0 105,288,461.5 2,2-Dichloropropane UG/KG 16 0 0.00% 0 105,288,461.5 4,2-Dichloropropane UG/KG 16 0 0.00% 0 105,288,461.5 4,2-Dichloropropane UG/KG 16 0 0.00% 0 2,372,015.915 4,2-Dichloropropane UG/KG 16 0 0.00% 0 2,372,015.915 8 Enzeroe UG/KG 16 0 0.00% 0 1,109,491.315 8 Bromodichloromethan UG/KG 16 0 0.0	247,370	200 400 100 200 60
1,1,2-Trichloroethane UG/KG 16 0 0.00% 0 105,288,461.5 1,1-Dichloroethane UG/KG 16 0 0.00% 0 114,647,436 1,2-Dichloroethane UG/KG 16 0 0.00% 0 755,917.16 1,2-Dichloroethane (lo UG/KG 16 0 0.00% 0 1,011,595.023 1,2-Dichloroethane (lo UG/KG 16 0 0.00% 0 1,011,595.023 1,2-Dichloroethane (lo UG/KG 16 0 0.00% 0 105,288,461.5 4-Cetone UG/KG 16 0 0.00% 0 2,372,015.915 Benzene UG/KG 16 0 0.00% 0 1,109,491.315 Bromodichloromethan UG/KG 16 0 0.00% 0 1,109,491.315 Bromoform UG/KG 16 0 0.00% 0 8,707,400.195 Carbon disuffide UG/KG 16 0 0.00% 0 105,288,461.5 Carbon tetrachloride UG/KG 16 0 0.00% 0 529,142.012 Chlorobenzene UG/KG 16 0	247,370	400 100 200 60 2,700
1,1-Dichloroethane UG/KG 16 0 0.00% 0 114,647.436 1,2-Dichloroethane UG/KG 16 0 0.00% 0 755,917.16 1,2-Dichloroethane UG/KG 16 0 0.00% 0 1,2-Dichloroethane UG/KG 16 0 0.00% 0 1,2-Dichloroethane UG/KG 16 0 0.00% 0 1,011,595,023 1,2-Dichloropropane UG/KG 16 0 0.00% 0 105,288,461.5 Acetone UG/KG 16 0 0.00% 0 2,372,015.915 Benzene UG/KG 16 0 0.00% 0 1,109,491.315 Bromodichloromethan UG/KG 16 0 0.00% 0 8,707,400.195 Bromoform UG/KG 16 0 0.00% 0 105,288,461.5 Carbon disulfide UG/KG 16 0 0.00% 0 105,288,461.5 Carbon tetrachloride	247,370	400 100 200 60 2,700
1,1-Dichloroethene UG/KG 16 0 0.00% 0 755,917.16 1,2-Dichloroethane UG/KG 16 0 0.00% 0 1.011,595.023 1,2-Dichloroethene (to UG/KG 16 0 0.00% 0 1.011,595.023 1,2-Dichloropropane UG/KG 16 0 0.00% 0 105,288,461.5 Acetone UG/KG 16 0 0.00% 0 2,372,015.915 Benzene UG/KG 16 0 0.00% 0 1,109,491.315 Bromodichloromethan UG/KG 16 0 0.00% 0 8,707,400.195 Bromoform UG/KG 16 0 0.00% 0 105,288,461.5 Carbon disulfide UG/KG 16 0 0.00% 0 105,288,461.5 Carbon tetrachloride UG/KG 16 0 0.00% 0 529,142.012 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31 <td>247,370</td> <td>200 60 2,700</td>	247,370	200 60 2,700
1,2-Dichloroethane UG/KG 16 0 0.00% 0 1,2-Dichloroethane (to UG/KG 16 0 0.00% 0 1,011,595,023 1,2-Dichloropropane UG/KG 16 0 0.00% 0 105,288,461.5 Acetone UG/KG 16 0 0.00% 0 2,372,015,915 Benzene UG/KG 16 0 0.00% 0 1,109,491,315 Bromodichloromethan UG/KG 16 0 0.00% 0 8,707,400.195 Bromoform UG/KG 16 0 0.00% 0 105,288,461.5 Carbon disulfide UG/KG 16 0 0.00% 0 105,288,461.5 Carbon tetrachloride UG/KG 16 0 0.00% 0 529,142.012 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31	247,370	200 60 2,700
1,2-Dichloroetnene (16 UG/KG 16 0 0.00% 0 1,011,595.023 1,2-Dichloropropane UG/KG 16 0 0.00% 0 105,288,461.5 Acetone UG/KG 16 0 0.00% 0 2,372,015.915 Benzene UG/KG 16 0 0.00% 0 1,109,491.315 Bromodichloromethan UG/KG 16 0 0.00% 0 1,109,491.315 Bromoform UG/KG 16 0 0.00% 0 8,707,400.195 UG/KG 16 0 0.00% 0 105,288,461.5 Carbon disulfide UG/KG 16 0 0.00% 0 529,142.012 Carbon tetrachloride UG/KG 16 0 0.00% 0 21,057,692.31 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31	247,370	2,700
1,2-Dichloropropane UG/KG 16 0 0.00% 0 105,288,461.5 Acetone UG/KG 16 0 0.00% 0 2,372,015,915 Benzene UG/KG 16 0 0.00% 0 1,109,491.315 Bromodichloromethan UG/KG 16 0 0.00% 0 8,707,400.195 Bromoform UG/KG 16 0 0.00% 0 105,288,461.5 Carbon disulfiide UG/KG 16 0 0.00% 0 529,142.012 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31	247,370	2,700
Acetone UG/KG 16 0 0.00% 0 2,372,015.915 Benzene UG/KG 16 0 0.00% 0 1,109,491.315 Bromodichloromethan UG/KG 16 0 0.00% 0 8,707,400.195 Bromoform UG/KG 16 0 0.00% 0 105,288,461.5 Carbon disulfide UG/KG 16 0 0.00% 0 529,142.012 Carbon tetrachloride UG/KG 16 0 0.00% 0 21,057,692.31 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31		2,700
Bromodichloromethan UG/KG 16 0 0.00% 0 1,109,491.315 Bromodichloromethan UG/KG 16 0 0.00% 0 8,707,400.195 Carbon disulfide UG/KG 16 0 0.00% 0 105,288,461.5 Carbon disulfide UG/KG 16 0 0.00% 0 529,142.012 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31	53,000	
Bromoform UG/KG 16 0 0.00% 0 8,707,400.195 Carbon disulfide UG/KG 16 0 0.00% 0 105,288,461.5 Carbon tetrachloride UG/KG 16 0 0.00% 0 529,142.012 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31 818 910 256 0 0.00% 0 0.00% 0 9,00%	53,000	
Carbon disulfide UG/KG 16 0 0.00% 0 105,288,461.5 Carbon tetrachloride UG/KG 16 0 0.00% 0 529,142.012 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31 818,910.255	53,000	
Carbon tetrachloride UG/KG 16 0 0.00% 0 529,142.012 Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31		600.
Chlorobenzene UG/KG 16 0 0.00% 0 21,057,692.31		
0 918 910 256		1,700
Chlorodibromomethan UG/KG 16 0 0.00%		
Chloropthane UG/KG 16 0 0.00% . 0 421,153,846.2		1,900
Chloroform UG/KG 16 0 0.00% 0 10,528,846.15	194,610	300
Cis.1 3-Dichloroprope LIG/KG 16 0 0.00%		5.500
Ethyl hegzene UG/KG 16 0 0.00% 0 105,288,461.5	1,720,290	5,500
Methyl bromide UG/KG 16 0 0.00% . 0 1,505,625.		
Methyl hittyl ketone LIG/KG 16 0 0.00%		
Methyl chloride UG/KG 16 0 0.00% 0 5,291,420.118	104 000	300
Methyl lehvil kelone LIG/KG 16 0 0.00%	421,380	1,000
Methyl isobutyl ketone UG/KG 16 0 0.00% 0 84,230,749,23	122 020	100
Methylene chloride UG/KG 16 0 0.00% 0 9,171,794.672	132,030	,00
Styrene UG/KG 16 0 0.00% 0	6,454,550	1,400
Tetrachloroethene UG/KG 16 57.50 %	1,552,560.	1,500
Toluene UG/KG 16 0 0.00%	5,642,680	1,200
Total Xylenes UG/KG 16 0 0.00%	3,042,000	1,200
Trans-1,3-Dichloropro UG/KG 10 0 0.000		700
Trichlorgethene UG/KG 10 0 36 204 453		200
Vinyl chloride UG/KG 16 0 0.00% 0 35,204.453		
Herbicides 0 0.00% 0		1 900
2,4,5-1		700
2,4.5-1P/Silvex UG/KG 10 0 0.00%		500
2,4-0 0G/KG 16 0 0.00%		
2.4-08 06/kg 10 0 0.00%		
Dalapon Jug/kg 10 0 0.00%	22,600.	
Dicamba UG/RG 16 0 0.00%		
Dichloroprop UG/KG 16 0 0.000/		
2 12 50%		
MCPA OG/RG 10	818,180	
MCPP UG/KG 16 U 0.00% Nitroaromatics		
1.3,5-Trinitrobenzene UG/KG 16 7 43.75% 190. 0 52,644 231		
13-Doutrobergage LIGIKG 16 0 000% 0 105,288,462		
2.4.6-Trinitrotoluene UG/KG 16 11 68.75% 1,400 0 526,442,308		
2.4 Districtions 11 CWC 16 9 56.25% 190 0 2,105,769.231	5,060	4 000
2.6. Digitatolyjene UG/KG 16 0 0.00% 0 1,052,884.615		1,000
2-amino-4-6-Dinitrotot UG/KG 16 10 62.50% 680 0		
4-amino-2 6-Dintrotal LIG/KG 16 1 6.25% 270 0		
HMX UG/KG 16 8 50.00% 470 0		
RDX UG/KG 16 13 81 25% 5,800. 0		
Tetryl UG/KG 16 4 25.00% 330. 0		
Semivolatile Organics	4 422 000	3 400
1.2.4-Trichloropenzen UG/KG 16 0 0.00% 0 10,528,646.15	1,132,060	7 900
1,2-Dichlorobenzene UG/KG 16 0 000% 0 94,759,615 38		1,600
1,3-Dichlorobenzene UG/KG 16 0 0.00% 0 93,706,730.77		8,500
1.4-Dichlorobenzene UG/KG 16 0 00% 0 2.866,185.897		100
2.4.5-Trichlorophenol UG/KG 16 0 0.00% 0 105,288,461 5 0 6,253,496.503		
2,4,6-Trichlorophenol UG/KG 16 0.00%		400
2,4-Dichlorophenol UG/KG 16 0 0.00%		
2.4-Dimethylphenol UG/KG 16 0 0 0 0 2 105 769 231		200
2.4-Dinitrophenol UG/KG 16 0 00%	5,060	
2.4-Dinitrotoluene UG/KG 16 9 30 23 %	5,000	1 000
2,6-Dinitrotoluene UG/KG 16 2 12.300		
2-Chloronaphthalene UG/KG 16 0 0 00% 0 5,264,423,077	83,200	800
2-Chlorophenol UG/KG 16 0 00%	962,620	36 400
2-Methylnaphthalene UG/KG (6) 52 644 230 77		100
2-Methylphenol UG/KG 16 0 0 0 63 173 077		430
2-Nitroaniline UG/KG 16 U 00%		330
2-Nitrophenol UG/KG 16 0 0 0 0 0 0 152.863.248		
3,3°-Dichlorobenzidin UG/KG 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		500
3-Nitroaniline UG/KG 16 0 0000		
4.6-Dinitro-2-methylph UG/KG 16 0 000%		

Seneca Army Depot Activity SEAD-45 Soil Summary Statistics Comparison to Recreational PRG

Comparison to Recreational PRG									
PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Recreational PRG	Ecological PRG	NYSDEC TAGM 4046
	110.11/0	16	0	0 00%		0	61,067,307.69		
4-Bromophenyl pheny 4-Chloro-3-methylphe		16	0	0 00%		0			240
	UG/KG	16	0	0 00%		0	4,211,538 462		220
4-Chlorophenyl pheny		16	0	0 00%		0			000
4-Methylphenol	UG/KG	16	0	0 00%		0	3,158,653 846		_900
	UG/KG	· 16	0	0 00%		0	63,173,076 92	18,680	100
	UG/KG	16	0	0 00% 0 00%		0	00,170,070 02	2,268,070	50,000
	UG/KG UG/KG	16 16	3	18 75%	30	0		33,460	41,000
	UG/KG	16	2	12.50%	18	0	315,865,384.6	1,269,040.	50,000
	UG/KG	16	8	50 00%	50	0	94,230 769	1,476,040	224
	UG/KG	16	8	50.00%	82.	0	9,423.077	562,720. 59,750	61 1,100
Benzo(b)fluoranthene		16	9	56 25%	55	0	94,230.769	76,250.	50,000
	UG/KG	16	7	43.75%	66. 58	0	942,307.692	72,640	1,100
Benzo(k)fluoranthene		16	7 0	43 75% 0.00%	56	0	342,007.002		
Bis(2-Chloroethoxy)m		16 16	0	0.00%		0	62,534 965		
Bis(2-Chloroethyl)ethe Bis(2-Ethylhexyl)phtha		16	9	56.25%	740	0	4,913,461,538	39,350	50,000
	UG/KG	16	0	0.00%		0	210,576,923 1		50,000
/	UG/KG	16	0	0.00%		0	3,439,423 077	00.000	400
	UG/KG	16	11	68.75%	68	0	9,423,076 923	93.300	400 8.100 -
Di-n-butylphthalate	UG/KG	16	9	56 25%	6.800	0	21,057,692.31	94,697,730.	50,000
	UG/KG	16	0	0.00%		0	9,423 077	53.680	14
Dibenz(a,h)anthracen		16	0	0.00%		0	"4,211 538 462		6.200
	UG/KG	16 1 6	1	6.25%	35	0	842,307,692.3	7,665,910	7,100
	UG/KG UG/KG	16	0	0.00%		0	10,528,846,150		2,000
	UG/KG	16	11	68.75%	68	0	42,115,384 62	7,849,900	50 000
	UG/KG	16	0	0 00%		0	42,115,384 62	1,755,510	50.000
	UG/KG	16	10	62.50%	62	0	42,992.788		410
Hexachlorobutadiene	UG/KG	16	0	0 00%		0	210,576 923		
Hexachlorocyclopenta	UG/KG	16	0	0 00%	1,100	0	7,370,192.308 1,052,884 615		
	UG/KG	16	6	37.50% 25.00%	52.	0	94,230.769	47,630	3 200
Indeno[1,2,3-cd]pyren		16	4 0	0 00%	J2.	0	.,		4,400
	UG/KG	16 16	5	31 25%	1,600	0	14,038,461 54		
N-Nitrosodiphenylami N-Nitrosodipropylamin		16	0	0.00%		0	9,826.923	1,454 550	
	UG/KG	16	5	31 25%	30	0	42,115,384 62	149,740	13.000
	UG/KG	16	0	0 00%		0	526,442.308	4 415 550	200 1,000
	UG/KG	16	0	0 00%		0	573,237 18	1,415,560 325,820	50,000
	UG/KG	16	9	56 25%	46.	0 Q	631,730,769.2	79 520	30
,	UG/KG	16	0 12	0 00% 75 00%	110	0	31,586,538 46	2,420,460	50 000
. ,	UG/KG	16	12	7500%	110	-			
Pesticides/PC8s 4.4"-DDD	UG/KG	16	0	0 00%		0	286,618 59	874,990	2.900
	UG/KG	16	6	37 50%	4 2	0	202,319 005	86,590	2,100 2,100
	UG/KG	16	4	25 00%	3 4	0	202,319.005	8,870 2,750	41
Aldrin	UG/KG	16	0	0 00%		0	4,046 38	2,750	110
	UG/KG	16	0	0 00%	2	0		142.090	
	UG/KG	16	3	18 75% 0 00%	2	0	73,701 923		
Aroclor-1016	UG/KG	16	0	0 00%		0			
	UG/KG UG/KG	16 16	0	0 00%		0			
	UG/KG	16	0	0 00%		0		12,879,550	
	UG/KG	16	0	0 00%		0		0.005.000	10 000
	UG/KG	16	1	6 25%	110	0	21,057 692	3,925,000 2,272,730	10 000
Aroclor-1260	UG/KG	16	0	0 00%		0		11 060	200
Beta-BHC	UG/KG	16	0	0 00%		0 .			300
Detta-BHC	UG/KG	16	0	0 00% 18 75%	3 2	0	4,299,279		44
Dieldrin	UG/KG	16 16	3 6	37 50%	22	0	6,317,307 692	131 820	900
Endosulfan I Endosulfan II	UG/KG UG/KG	16	0	0 00%		0	6,317,307.692		900
Endosulfan sulfate	UG/KG	16	0	0 00%		0		15,820	1 000 100
Endrin	UG/KG	16	0	0 00%		0	315,865 385	240,910	100
Endrin aidehyde	UG/KG	16	0	0 00%		0	315,865 385	6 350 6 350	
Endrin ketone	UG/KG	16	0	0 00%		0	315,865 385 52,914 201	0 330	50
Gamma-BHC/Lindane		16	0	0 00%	,	0	JZ,314 ZU1	47 360	540
Gamma-Chlordane	UG/KG	16	0	0 00% 0 00%		0	15,286 325	28.620	100
Heptachlor	UG/KG	16 16	0	0 00%		0	7,559 172	10	20
Heptachlor epoxide	UG/KG UG/KG	16	0	0 00%		o	5,264 423 077		
Methoxychlor Toxaphene	UG/KG	16	0	0 00%		0 .			
Metals	30.110								19,520 000
Aluminum	UG/KG	16	16	100 00%	22 800 000	0	1 052,884 615	18,437 230	6 000
Antimony	UG/KG	16	0	0 00%	0 200	0	421 153 846 45 858 974	223 670	9 900
Arsenic	UG/KG	16	16	100 00% 100 00%	8 200 365 000	0	73,701 923 08	91 840	300 000
Barium	UG/KG	16	16	100 00 70	230 000	-			

Seneca Army Depot Activity SEAD-45 Soil Summary Statistics Comparison to Recreational PRG

									NYSDEC TAGM
PARAMETER	UNIT	Number of	Number of	Frequency of	Maximum	Number of	Recreational PRG	Ecological PRG	4046
		Analyses	Detections	Detection	Value	Exceedances			
Beryllium	UG/KG	16	16	100,00%	1,100	0	15,997 317	6,570	1 130
Cadmium	UG/KG	16	14	87 50%	13,100	0	526,442.308	737,770	2,460
Calcium	UG/KG	16	16	100.00%	47,000,000.	0			125,300,000
Chromium	UG/KG	16	16	100 00%	39.300.	0	1,052,884,615	850,430	30 000
Cobalt	UG/KG	16	16	100.00%	24,300	0	63,173,076 92	,	30,000
Copper	UG/KG	16	16	100 00%	1,240,000.	0	42,715,384 62	827.810	33,000
Cyanide	UG/KG	16	2	12.50%	700	0		13,636,360	350
Iron	UG/KG	16	16	100 00%	75,700,000.	0	315,865,384 6	-,,	37,410 000
Lead	UG/KG	16	16	100.00%	87,800	0		181,460	24 400
Magnesium	UG/KG	16	16	100 00%	9.270,000	0			21,700,000
Manganese	UG/KG	16	16	100.00%	1,380,000.	0	24,216,346.15	8,821,860	1,100,000
Mercury	UG/KG	16	16	100.00%	4,300	0	315,865 385	1.710	100
Nickel	UG/KG	16	11	68.75%	51,000	0	21,057,692 31	2,833,820	50,000
Potassium	UG/KG	16	16	100.00%	3,280,000	0		2,000,020	2,623,000
Selenium	UG/KG	16	0	0.00%	-,,	0	5,264,423 077	193,140	2,000
Silver	UG/KG	16	12	75.00%	26,200	0	5.264.423 077	700,110	800
Sodium	UG/KG	16	16	100 00%	142,000	0	-,,		188.000
Thallium	UG/KG	1-6	0	0.00%		0	84.230 769		855
Vanadium	UG/KG	16	16	100.00%	38,000.	0	7.370.192.308		150,000
Zinc	UG/KG	16	11	68 75%	557,000	Ö	315,865,384 6		115,000
Other Analyses	00/110	10	,,	00 7 3 70	337,000	0	313,000,000		115,000
Nitrate/Nitrite	UG/KG	16	16	100.00%	28,000	0			
1410 0101140110	00,110	10	10 .	100.0076	20,000	-			*

	SENECA ARMY DEPOT ACTIVITY
`.	
	• •
	CEAD 45
	SEAD-45 GROUNDWATER
	COLLAPSED DATA TABLES
	AND
	SUMMARY STATISTICS TABLES
	SUMMART STATISTICS TIBELS
	·
	,

Seneca Army Depot Activity SEAD-45 Summary Statistics NYS Class GA Standard

PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Orinking Water PRG	NYS Class GA Standard
Volatiles	1104	8	0	0 00%		0	792.549	5
1.1.1-Trichloroethane	UG/L	8	0	0.00%		0	521	
1,1,2,2-Tetrachloroethane	UG/L UG/L	8	0	0.00%		0	188	
1.1 2-Trichloroethane	UG/L	8	0	0 00%		0	811 742	
1.1-Dichloroethane	UG/L	8	0	0 00%		0	044	_ 5
1,1-Dichloroethene	UG/L	8	0	0 00%		0	.116	5
1.2-Dichloroethane	UG/L	8	0	0 00%		0		5
1.2-Dichloroethene (total)	ug L	8	0	0 00%		0	.989	5
1,2-Dichloropropane		8	0	0 00%		0	3,650	
Acetone	UG/L UG/L	8	0	0 00%		0	364	7
Benzene	UG/L	8	0	0.00%		0	1 084	1
Bromodichloromethane	UG/L	8	0	0.00%		0	2.354	l .
Bromoform	UG/L	8	0	0 00%		0	1,042.857	•
Carbon disulfide	UG/L	8	0	0 00%		0	.163	5
Carbon tetrachlonde		8	0	0.00%		0	39.431	
Chlorobenzene	UG/L UG/L	8	0	0 00%		0	8	
Chlorodibromomethane	UG/L	8	0	0 00%		0	8,591 77	5
Chloroethane		8	0	0 00%		0	153	
Chloroform	UG/L	8	0	0 00%		0		5
Cis-1,3-Dichloropropene	UG/L	8	0	0 00%		0	1,328 117	5
Elhyl benzene	UG/L	8	0	0 00%		0	8 699	
Methyl bromide	UG/L	8	0	0 00%		0		
Methyl butyl ketone	UG/L			0.00%		0	1.436	5
Methyl chlonde	UG/L	8	0	0.00%		0	1,430	50 -
Methyl ethyl ketone	UG/L	8	0			0	158 118	
Methyl isobutyl kelone	UG/L	8	0	0 00%		0	4.124	
Methylene chlonde	UG/L	8	0	0 00%		0	7.124	
Styrene	UG/L	8	0	0 00%		0	1 069	5
Tetrachloroethene	UG/L	8	1	12.50%	1.	0	747 038	
Toluene	UG/L	8	0	0 00%				
Total Xylenes	UG/L	8	0	0 00%		0	73,000	. 5 5
Trans-1,3-Dichloropropene	UG/L	8	0	0 00%		0		
Trichloroethene	UG/L	8	0	0 00%		0	1 556	
Vinyl chlonde	UG/L	8	0	0 00%		0	019	2
Herbicides								
2.4.5-T	UG/L	8	0	0 00%		0		35
2,4,5-TP/Silvex	UG/L	8	0	0 00%		0		26
2,4-D	UG/L	8	0	0 00%		0		4.4
	UG/L	8	0	0.00%		0		
2,4-DB	UG/L	8	0	0 00%		0		50
Dalapon	UG/L	8	0	0.00%		0		44
Dicamba	UG/L	8	0	0 00%		0		
Dichloroprop	UG/L	8	0	0.00%		0		1
Dinoseb		8	0	0 00%		0		44
MCPA	UG/L	8	0	0 00%		0		
MCPP	UG/L	0	· ·	0 0070				
Nitroaromatics			0	0 00%		0	1.825	5 5
1 3.5-Trinitrobenzene	UG/L	8	1	12.50%	067	ō	3.65	
1.3-Dinitrobenzene	UG/L	8			007	ŏ	2 24	
2.4.6-Trinitrotoluene	UG/L	8	0	0.00%		0	73	
2.4-Dinitrotoluene	UG/L	8	0	0 00%		0	36 5	
2 6-Dinitrotoluene	UG/L	8	0	0 00%		0	30 .	5
2-amino-4 6-Dinitrotoluene	UG/L	8	0	0 00%		0		5
4-amino-2,6-Dinitrotoluene	UG/L	8	0	0 00%				9
HMX	UG/L	8	1	12 50%	5			
RDX	UG/L	8	0	0 00%		0		5
Telryl	UG/L	8	0	0 00%		0		3
Semivolatile Organics								9 5
1 2.4-Trichlorobenzene	UG/L	8	0	0 00%		0	194 599	
1 2-Dichlorobenzene	UG/L	8	0	0 00%		0	268 163	
1 3-Dichlorobenzene	UG/L	8	0	0 00%		0	3,248.5	
1.4-Dichlorobenzene	UG/L	8	0	0 00%		0	2.802	2 4 7
2,2'-oxybis(1-Chloropropane)	UG/L	8	0	0 00%		0		
2,4.5-Trichlorophenol	UG/L	8	0	0 00%		0	3,650	
2,4,6-Trichlorophenor	UG/L	8	0	0 00%		0	96	
2,4-Dichlorophenol	UG/L	8	0	0 00%		0	109	
	UG/L	8	0	0 00%		0	730	
2.4-Dimethylphenol	UG/L	8	0	0 00%		0	73	
2.4-Dinitrophenol	UG/L	8	0	0 00%		0	73	
2,4-Dinitrotoluene	UG/L	8	Ö	0 00%		0	36	5 5
2,6-Dinitrotoluene			o	0 00%		0		
2-Chloronaphthalene	UG/L	8	0	0 00%		ō	182.	5
2-Chlorophenol	UG/L	8 .				0		
2-Methylnaphthalene	UG/L	8	0	0 00% 0 00%		0	1,825	5. 5
2-Methylphenol	UG/L	8	0			0	3.	
2-Nitroaniline	UG/L	8	0	0 00%		0	3.	-
2-Nitrophenol	UG/L	8	0	0 00%			14	g.
3.3 -Dichlorobenzidine	UG/L	8	0	0 00%		0	109	
3-Nitroaniline	UG/L	8	0	0 00%		0	109	5
4 6-Dinitro-2-methylphenol	UG/L	8	0	0 00%		0		
4-Bromophenyl phenyl ether	UG/L	8	0	0 00%		0	2,117	1
4-Chloro-3-methylphenol	UG/L	8	0	0 00%		0		
4-Chloroaniline	UG/L	8	0	0 00%		0	146	5
4-Chlorophenyl phenyl ether	UG/L	8	0	0 00%		0		
	UG/L	8	0	0 00%		0		5
4-Methylphenol	UG/L	8	0	0 00%		0	109	5 5
4-Nitroaniline	UG/L	8	0	0 00%		0	2,190	
4-Nitrophenol	UG/L	8	0	0 00%		0		
Acenaphthene		8	0	0 00%		0		
Acenaphthylene	UG/L UG/L	8	0	0 00%		0	10,956	0
Anthracene	00/L	•	•	-				

Seneca Army Depot Activity SEAD-45 Summary Statistics NYS Class GA Standard

PARAMETER	TINU	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	PRG S	IYS Class GA Standard
Benzo(a)anthracene	UG/Ľ	8	0	0.00%		0	017	10
Benzo(a)pyrene	UG/L	8	0	0.00%		0	002	10
Benzo(b)fluoranthene	UG/L	8	0	0.00%		0	017	
Benzo[ghi]perylene	UG/L	8	0	0.00%		0		
Benzoikifluoranthene	UG/L	. 8	0	0.00%		0	.168	
Bis(2-Chloroethoxy)methane	UG/L	8	0	0 00%		_0		-
Bis(2-Chloroethyl)ether	UG/L	8	0	0.00%		0	.009	
Bis(2-Ethylhexyl)phthalate	UG/L	8	4	50.00%	33.	0	4 803	50.
	UG/L	8	0	0.00%		0	7,300	
Butylbenzylphthalate		8	o	0.00%		0	3.362	
Carbazole	UG/L	8	Ö	0.00%		0	1.679	
Chrysene	UG/L					o	1.015	50
Di-n-butylphthalate	UG/L	8	0	0.00%		0	720	30
Di-n-octylphthalate	UG/L	8	0	0.00%			730.	
Dibenz(a,h)anthracene	UG/L	8	0	0.00%		0	002	
Dibenzofuran	UG/L	8	0	0.00%		0	146.	
Diethyl phthalate	UG/L	8	0	0.00%		0	29,200	
	UG/L	8	0	0.00%		0	365,000.	
Dimethylphthalate	UG/L	8	0	0 00%		0	1,460	
Fluoranthene		8	o o	0.00%		0	1,460.	
Fluorene	UG/L		0	0.00%		o	.007	35
Hexachlorobenzene	UG/L	8				Ö		55
Hexachlorobutadiene	UG/L	8	0	0 00%			137	
Hexachlorocyclopentadiene	UG/L	8	0	0.00%		0	.146	
Hexachloroethane	UG/L	8	0	0.00%		0	.754	
Indeno[1,2,3-cd]pyrene	UG/L	8	0	0.00%		0	017	
Isophorone	UG/L	8	0	0.00%		0		~
N-Nitrosodiphenylamine	UG/L	8	0	0.00%		0	13.722	
. ,	UG/L	8	0	0.00%		0	01	
N-Nitrosodipropylamine		8	Ö	0.00%		0	1,460.	
Naphthalene	UG/L	-				ō	3.393	
Nitrobenzene	UG/L	8	0	0.00%				
Pentachlorophenol	UG/L	8	0	0 00%		0	.56	1
Phenanthrene	UG/L	8	0	0.00%		0		
Phenol	UG/L	8	0	0.00%		0	21,900.	t
	UG/L	8	0	0.00%		0	1,095	
Pyrene	00/2		-					
Pesticides/PCBs		8	0	0.00%		0	28	1
4,4'-DDD	UG/L					o	.198	1
4,4`-DDE	UG/L	8	0	0.00%			031	i
4.4"-DDT	UG/L	8	0	0.00%		0		
Aldrin	UG/L	8	0	0.00%		0	001	055
Alpha-BHC	UG/L	8	0	0.00%		0		
Alpha-Chlordane	UG/L	8	0	0.00%		0		5
Aroclor-1016	UG/L	8	0	0.00%		0	2.555	
	UG/L	8	0	0.00%		0		
Aroclor-1221		8	0	0.00%		0		
Aroclor-1232	UG/L			0.00%	•	0		
Aroclor-1242	UG/L	8	0			o		
Aroctor-1248	UG/L	8	0	0.00%			70	
Aroclor-1254	UG/L	8	0	0.00%		0	73	1
Aroclor-1260	UG/L	8	0	0.00%		0		1
Beta-BHC	UG/L.	8	0	0.00%		0		5.
	UG/L	8	0	0.00%		0		
Delta-BHC		8	ō	0 00%		0	001	1
Dieldrin	UG/L	-	0	0.00%		0	219	
Endosulfan I	UG/L	8				0	219	
Endosulfan II	UG/L	8	0	0.00%		0	213	
Endosulfan sulfate	UG/L	8	0	0.00%			40.05	1
Endnn	UG/L	8	0	0.00%		0	10 95	
Endnn aldehyde	UG/L	8	0	0.00%		0	10 95	5
Endnn ketone	UG/L	8	0	0 00%		0	10.95	5
Gamma-BHC/Lindane	UG/L	8	0	0 00%		0	052	- 5
	UG/L	8	0	0.00%		0		
Gamma-Chlordane	UG/L	8	0	0.00%		0	002	05
Heptachlor			o	0 00%		0	001	05
Heptachlor epoxide	UG/L	8	0	0 00%		o	182.5	35
Methoxychlor	UG/L	8	-			0	102.0	
Toxaphene	UG/L	8	0	0 00%		U		
Metals						-	20.500	
Aluminum	UG/L	8	7	87 50%	63,300.	0	36,500	
Antimony	UG/L	8	7	87 50%	52.1	0	14 0	
Arsenic	UG/L	8	3	37 50%	9.5	0	.007	25
	UG/L	8	8	100.00%	- 751.	0	1 043	1.000
Banum		8	3	37 50%	5.	0	001	
Beryllium	UG/L	8	4	50 00%	3.8	0	002	10
Cadmium	UG/L				660,000	0		
Calcium	UG/L	8	8	100 00%			004	50
Chromium	UG/L	8	5	62.50%	106.	1	2,190.	33
Cobalt	UG/L	8	4	50.00%	. 94 4	0		200
Copper	UG/L	8	5	62.50%	123.	0	1,460	200
Cyanide	UG/L	8	0	0 00%		0		100
	UG/L	8	8	100 00%	113,000.	5	10,950	300
Iron		8	8	100 00%	75.6	1		25
Lead	UG/L	-		100 00%	77,900.	0		
Magnesium	UG/L	8	8			4	104	300
Manganese	UG/L	8	8	100 00%	4,640.		592	2
Mercury	UG/L	8	3	37 50%	1.8	0		2
Nickel	UG/L	8	4	50 00%	209	0	730	
Potassium	UG/L	8	5	62.50%	18 700.	0		
Selenium	UG/L	8	5	62 50%	2.5	0	182.5	10
	UG/L	8	1	12 50%	46	0	182 5	50
Silver		8	8	100 00%	40,000	1		20,000
Sodium	UG/L		0	0 00%	,	0	2.92	
Thailium	UG/L	8			93.1	0	255 5	
Vanadium	UG/L	8	3	37 50%		1	10,950	300
Zinc	UG/L	8	8	100 00%	321	1	10,530	555
Other Analyses								

PARAMETER UNIT Number of Number of Prequency of Maximum Number of Preduction Palue Exceedances PRG Standard

Nitrate/Nitnte UG/L 8 8 8 100 00% 8,700 0 0 10,000

Seneca Army Depot Activity SEAD-45 Collapsed Data Summary Comparison to NYS Class GA Standard

		STU	DY ID	ESI	ESI	ESI	ESI	ESI
		SITE		SEAD 45	SEAD-45	SEAD-45	SEAD-45	SEAD-45
		LOC	ID	MW1	MW2	MVV3	MVV4	MW45-2
		LOC	TYPE	SITE	SITE	SITE	SITE	SITE
		SAM	P_ID	MW1	MVV2	EWM	MVV4	MW45-2
		QC C	ODE	SA	SA	SA	SA	SA
		SAM	P DETH TOP	7	1	4 5	4 5	5 33
		SAM	P. DEPTH BOT.	12	6	9 5	9 5	9 33
		MAT	RIX	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER
•		SAM	P DATE.	01-Feb-94	02-Feb-94	01-Feb-94	02-Feb-94	03-Feb-94
	Dnnking	Water						
PARAMETER	Number o PRG	NYS	Class GA Standard	VALUE Q	VALUE Q	VALUE Q	· VALUE Q	VALUE Q
Voiatiles	Exceedances							
Chromium	1	004	50	26 U	4 1 J	26 ∪	28 9	26 U
Iron	5	10,950	300	207	940.	109	27,500	48.5 J
Lead	1		25.	71 J	.66 J	.73 J	15 7	71 J
Manganese	4	104	300	4 4 J	23 7	2 9 J	384.	1,400
Sodium	1		20,000	10,000	13,100	3,400. J	15,800	40,000
Zinc	1	10,950	300	15 3 J	23	14 J	164	31 6

Seneca Army Depot Activity SEAD-45 Collapsed Data Summary Comparison to NYS Class GA Standard

STUDY ID	ESI	ESI	ESI
SITE.	SEAD-45	SEAD-45	SEAD-45
LOC ID .	MW45-3	MW45-4	MW5
LOC TYPE	SITE	BACKGROUND	SITE
SAMP_ID.	MVV45-3	MVV45-4	MW5
QC CODE:	SA	SA	SA
SAMP. DETH TOP:	66	4.25	4
SAMP. DEPTH BOT:	10.6	6 25	9
MATRIX:	GROUNDWATER	GROUNDWATER	GROUNDWATER
SAMP. DATE:	03-Feb-94	26-Jan-94	02-Feb-94

	Dnnking	Water				
PARAMETER	Number o PRG	1	NYS Class GA Standard	VALUE Q	VALUE Q	VALUE Q
Volatiles	Exceedances					
Chromium	1	004	50.	16.1	106.	26 J
Iron	5	10,950.	300.	230 4.100	113,0003	
Lead	1		25.	9.5	13.6	1.1 J
Manganese	4	.104	300.	625	4,640	55
Sodium	1		20,000.	18,600.	17,300.	16,100.
Zinc	1	10,950.	300.	81.1	Bearing 100 100 100 100 100	24 5

Seneca Army Depot Activity SEAD-45 Summary Statistics Companson to Drinking Water PRG

PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	Dnnking Water PRG	NYS Class GA Standard
Volatiles		0	0	0.00%		0	792.549	5
1,1,1-Trichloroethane	UG/L UG/L	8 8	0	0.00%		0 .	521	5
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	UG/L	8	Ō	0.00%		0	.188	
1 1-Dichloroethane	UG/L	8	0	0.00%		_0	811 742	_ 5
1 1-Dichloroethene	UG/L	8	0	0.00%		0	044	5
1.2-Dichloroethane	UG/L	8	0	0.00%		0	116	5
1.2-Dichloroethene (total)	UG/L	8	0	0.00%		0		5
1.2-Dichloropropane	UG/L	8	0	0.00%		0	.989	5
Acetone	UG/L	8	0	0.00%		0	3,650 .364	7
Benzene	UG/L	8 8	0	0.00% 0.00%		0	1.084	,
Bromodichloromethane	UG/L	8	0	0.00%		Ö	2.354	
Bromoform	UG/L UG/L	8	0	0.00%		0	1,042.857	
Carbon disulfide Carbon tetrachlonde	UG/L	8	0	0.00%		0	163	5
Chlorobenzene	UG/L	8	0	0 00%		0	39.431	5
Chlorodibromomethane	UG/L	8	0	0.00%		0	8	
Chloroethane	UG/L	8	0	0.00%		0	8,591 77	5
Chloroform	UG/L	8	0	0.00%		0	.153	7
Cis-1,3-Dichloropropene	UG/L	8	0	0.00%		0		5
Ethyl benzene	UG/L	8	0	0.00%		0	1,328,117	5
Methyl bromide	UG/L	8	0	0.00%		0	8.699	
Methyl butyl ketone	UG/L	8	0	0.00%		0	4 426	5
Methyl chlonde	UG/L	8	0	0.00%	*	0	1.436	50
Methyl ethyl ketone	UG/L	8	0	0.00%		0	158.118	30
Methyl isobutyl ketone	UG/L	8	0	0.00%		0	4,124	5
Methylene chlonde	UG/L	8	0	0.00% 0.00%	*	0	4.124	•
Styrene	UG/L	8 8	1	12.50%	1.	0	1.069	5
Tetrachloroethene	UG/L	8	0	0.00%	1.	0-	747 038	5
Toluene	UG/L	8	0	0.00%		0	73,000	5
Total Xylenes	UG/L UG/L	8	0	0.00%		0		5
Trans-1,3-Dichloropropene	UG/L	8	0	0.00%		0	1.556	5
Trichloroethene Vinyl chlonde	UG/L	8	Ö	0.00%		0	.019	2.
Herbicides	00/2	•						
2.4.5-T	UG/L	8	0	0.00%		0		35
2,4,5-TP/Silvex	UG/L	8	0	0.00%		0		26
2.4-D	UG/L	8	0	0.00%		0		4 4
2,4-DB	UG/L	8	0	0.00%		0		50
Dalapon	UG/L	8	0	0.00%		0		50 44
Dicamba	UG/L	8	0	0.00%		0		44
Dichloroprop	UG/L	8	0	0.00%		0		1
Dinoseb	UG/L	8	0	0.00%		0		44
MCPA	UG/L	8	0	0.00%		0		, .
MCPP	UG/L	8	0	0.00%		Ü		
Nitroaromatics	UG/L	8	0	0 00%		0	1 825	5
1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	UG/L	8	1	12.50%	067	0	3 65	5
2,4,6-Trinitrotoluene	UG/L	8	0	0 00%		0	2 241	5
2.4-Dinitrotoluene	UG/L	8	0	0 00%		0	73	5
2,6-Dinitrotoluene	UG/L	8	0	0.00%		0	36 5	5
2-amino-4 6-Dinitrotoluene	UG/L	8	0	0 00%		0		5
4-amino-2,6-Dinitrotoluene	UG/L	8	0	0.00%		0		5
HMX	UG/L	8	1	12.50%	5	0		
RDX	UG/L	8	0	0 00%		0		5
Tetry!	UG/L	8	0	0 00%		U		ŭ.
Semivolatile Organics		0	0	0.00%		0	194 599	5
1.2.4-Tnchlorobenzene	UG/L	8 8	0	0.00%		ō	268 163	4 7
1.2-Dichlorobenzene	UG/L UG/L	8	0	0.00%		0	3,248 5	5
1 3-Dichlorobenzene	UG/L	8	0	0 00%		0	2.802	4.7
1 4-Dichlorobenzene 2,2'-oxybis(1-Chloropropane	UG/L	8	Ö	0 00%		0		
2,4 5-Tnchlorophenol	UG/L	8	0	0 00%		0	3,650	
2,4 6-Trichlorophenol	UG/L	8	0	0 00%		0	.967	
2.4-Dichlorophenol	UG/L	8	0	0 00%		0	109 5	
2,4-Dimethylphenol	UG/L	8	0	0 00%		0	730	5
2,4-Dinitrophenol	UG/L	8	0	0.00%		0	73	5
2,4-Dinitrotoluene	UG/L	8	0	0 00%		0	73	5
2.6-Dinitrotoluene	UG/L	8	0	0 00%		0	36 5	2
2-Chloronaphthalene	UG/L	8	0	0 00%	,	0	182 5	
2-Chlorophenol	UG/L	8	0	0 00%		0	102 3	
2-Methylnaphthalene	UG/L	8	0	0 00%		0	1,825	5
2-Methylphenol	UG/L	8	0	0 00% 0 00%		0	35	-
2-Nitroaniline	UG/L	8	. 0	0 00%		0	33	
2-Nitrophenol	UG/L	8 8	0	0 00%	*	0	149	
3.3'-Dichlorobenzidine	UG/L	8	0	0 00%		0	109 5	
3-Nitroaniline	UG/L UG/L	8	0	0 00%		0		5
4 6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	UG/L	8	0	0 00%		0	2,117	
4-Chloro-3-methylphenol	UG/L	8	0	0 00%		0		
4-Chloroaniline	UG/L	8	0	0 00%		0	146	5

Seneca Army Depot Activity SEAD-45 Summary Statistics Companson to Drinking Water PRG

PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances 0	Drinking Water PRG	NYS Class GA Standard
4-Chlorophenyl phenyl ether	UG/L	8	0	0.00% 0.00%		0		5
4-Methylphenol	UG/L	8	0			Ö	109.5	5
4-Nitroaniline	UG/L	8	0	0.00% 0.00%		0	2,190	3
4-Nitrophenol	UG/L	8	0	0.00%		0	2,130	
Acenaphthene	UG/L	8	0	0.00%		Ö		
Acenaphthylene	UG/L	8	0	0.00%		o	10,950.	
Anthracene	UG/L	8	0	0.00%		- ŏ	017	~
Benzo(a)anthracene	UG/L	8	0	0.00%		0	002	10
Benzo(a)pyrene	UG/L	8		0.00%		Ö	017	
Benzo(b)fluoranthene	UG/L	8	0	0.00%		o	017	
Benzo(ghi)perylene	UG/L	8	0	0.00%		0	168	
Benzo[k]fluoranthene	UG/L	8	0			0	100	
Bis(2-Chloroethoxy)methan	UG/L	8	0	0.00%	•	o	.009	
Bis(2-Chloroethyl)ether	UG/L	8	0	0.00%	33.	4	4 803	50
8is(2-Ethylhexyl)phthalate	UG/L	8	4	50.00%	35.	0	7,300.	50
Butylbenzylphthalate	UG/L	8	0	0.00%		0	3.362	
Carbazole	UG/L	8	0	0.00%	•	0	1.679	
Chrysene	UG/L	8	0	0.00%		o	1.073	50
Di-n-butylphthalate	UG/L	8	0	0.00%		0	730.	00
Dı-n-octylphthalate	UG/L	8	0	0.00%		0	002	
Dibenz(a,h)anthracene	UG/L	8	0	0.00%		0	146.	
Dibenzofuran	UG/L	8	0	0.00%		0	29,200.	
Diethyl phthalate	UG/L	8	0	0.00%		0	365,000.	
Dimethylphthalate	UG/L	8	0	0.00%		0	1,460.	
Fluoranthene	UG/L	8	0	0.00%		0	1,460.	
Fluorene	UG/L	8	0	0.00%		0	1,460.	35
Hexachlorobenzene	UG/L	8	0	0.00%		0	.137	33
Hexachlorobutadiene	UG/L	8	0	0.00%		0	.137	
Hexachlorocyclopentadiene	UG/L	8	0	0.00%		0	.754	
Hexachloroethane	UG/L	8	0	0.00%		0	.017	
Indeno(1,2,3-cd)pyrene	UG/L	8	0	0.00%		. 0	.017	
Isophorone	UG/L	8	0	0.00%		0	13 722	
N-Nitrosodiphenylamine	UG/L	8	0	0.00%		0	.01	
N-Nitrosodipropylamine	UG/L	8	0	0.00%		0	1,460.	
Naphthalene	UG/L	8	0	0.00%		0	3.393	
Nitrobenzene	UG/L	8	0	0.00%		0	56	1
Pentachlorophenol	UG/L	8	0	0.00%		0	30	'
Phenanthrene	UG/L	8	0	0 00%		0	21,900.	1
Phenol	UG/L	8	0	0.00%		0	1,095.	
Pyrene	UG/L	8	0	0.00%		U	1,055.	
Pesticides/PCBs				0.000/		0	28	1
4.4"-DDD	UG/L	8	0	0.00%		0	198	1
4,4`-DDE	UG/L	8	0	0.00%		0	031	1
4,4'-DDT -	UG/L	8	0	0.00%		0	001	055
Aldnn	UG/L	8	0	0.00%		0	001	055
Alpha-BHC	UG/L	8	0	0.00%		0		5
Alpha-Chlordane	UG/L	8	0	0.00%		0	2.555	•
Araclar-1016	UG/L	8	0	0.00%		0	2.555	
Araclar-1221	UG/L	8	0	0.00%		0		
Aroclor-1232	UG/L	8	0	0.00%		0		
Aroclor-1242	UG/L	8	0	0.00%		0		
Aroclor-1248	UG/L	8	0	0 00%		0	73	1
Araclar-1254	UG/L	8	0	0 00%		0	7.5	1
Aroclor-1260	UG/L	8	0	0.00%		0		5
Beta-BHC	UG/L	8	0	0 00%		0		•
Delta-BHC	UG/L	8	0	0.00%		0	001	1
Dieldnn	UG/L	8	0	0.00%		0	219.	·
Endosulfan i	UG/L	8	0	0 00%		0	219	
Endosulfan II	UG/L	8	0	0 00%		0	213	
Endosulfan sulfate	UG/L	8	0	0.00%		0	10 95	1
Endnn	UG/L	8	0	0.00%		0	10 95	5
Endnn aldehyde	UG/L	8	0	0 00%		0	10 95	5
Endrin ketone	UG/L	8	0	0 00%		0	052	5
Gamma-BHC/Lindane	UG/L	8	0	0 00%		0	032	5
Gamma-Chlordane	UG/L	8	0	0 00%		0	002	05
Heptachlor	UG/L	8	0	0 00%		0	001	05
Heptachlor epoxide	UG/L	8	0	0 00%		0	182 5	35
Methoxychlor	UG/L	8	0	0 00%		0	102 3	
Toxaphene	UG/L	8	0	0 00%		· ·		
Metals		_	~	87 50%	63,300.	1	36 500	
Afuminum	UG/L	8	7		52.1		14 6	
Antimony	UG/L	8	7	87 50% 37 50%	9.5		007	25
Arsenic	UG/L	8	3		751	8	1 043	1 000
Banum	UG/L	8	8	100 00%	751	3	001	. 4.56
Berytlium	UG/L	8	3	37 50%	3 8		002	10
Cadmium	UG/L	8	4	50 00%	660,000	0	002	
Calcium	UG/L	8	8	100 00%	106	5	004	50
Chromium	UG/L	8	5	62.50%	94.4		2,190	30
Cobalt	UG/L	8	4	50 00%		0	1,460	200
Copper	UG/L	8	5	62.50%	123	0	1,400	100
Cyanide	UG/L	8	0	0 00%	113,000	3	10 950	300
Iron	UG/L	8	8	100 00%	75 6		10 330	25
Lead	UG/L	8	8	100 00%	756			

Seneca Army Depot Activity SEAD-45 Summary Statistics Companson to Drinking Water PRG

PARAMETER	TINU	Number of	Number of	Frequency of	Maximum	Number of	Drinking Water	NYS Class GA	
		Analyses	Detections	Detection	Value	Exceedances	PRG	Standard	
Magnesium	UG/L	8	8	100 00%	77,900.	0			
Manganese	UG/L	8	8	100.00%	4,640	8	104	300	
Mercury	UG/L	8	3	37 50%	1 8	1	592	2	
Nickel	UG/L	8	4	50 00%	209	0	730		
Potassium	UG/L	8	5	62 50%	18,700.	0			
Selenium	UG/L	8	5	62.50%	2.5	0	182.5	10	
Silver	UG/L	8	1	12.50%	4 6	0	182.5	50	
Sodium	UG/L	8	8	100 00%	40,000.	_ D		20,000	_
Thailium	UG/L .	8	0	0.00%		0	2.92		
Vanadium	UG/L	8	3	37 50%	93 1	0	255 5		
Zinc	UG/L	8	8	100 00%	321	0	10,950	300	
Other Analyses									
Nitrate/Nitnte	UG/L	8	8	100 00%	8,700	0		10 000	

Seneca Army Depot Activity SEAD-45 Collapsed Data Summary Comparison to Drinking Water PRG

			s	TUDY ID	ESI	ESI	ESI	ESI	ESI	ESI
			S	ITE	SEAD-45	SEAD-45	SEAD-45	SEAD-45	SEAD-45	SEAD-45
			L	OC ID	MW1	MVV2	MW3	MVV4	MVV45-2	MW45-3
			L	OC TYPE	SITE	SITE	SITE	SITE	SITE	SITE
			S	AMP_ID:	MW1	MVV2	MVV3	MW4	MVV45-2	MVV45-3
				C CODE.	SA	SA	SA	SA	SA	SA
			S	AMP DETH TOP:	7	1	4 5	4 5	5 33	66
				AMP. DEPTH BOT	12	. 6	9.5	9.5	9.33	10.6
				ATRIX:	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER	GROUNDWATER
				AMP DATE.	01-Feb-94	02-Feb-94	01-Feb-94	02-Feb-94	03-Feb-94	03-Feb-94
	Number of	Danking	Water							
PARAMETER	Exceedances	PRG	1	IYS Class GA Standard	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE Q	VALUE
							He depth for the September of the section of	Street, garden and account on a 1 or belief of 2000	Some of white on the benchmark this make were :	44
Bis(2-Ethylhexyl)phthalate		4	4.803	50		11. U	The same of the sa		232	11.
Aluminum		1	36,500		124. J	828.	83.5 J	17,700. 49.6 J	42. U	7,510
Antimony		7	14.6		24.3 J	J	Land reference have been 52. DJ	the contract of the property of	THE RESERVE LEVEL 26.8: J	"是最级的关系的是是 "
Arsenic		3	.007	2		1.4 U	1.4 U	张·特尔斯特 34	14 U	计图像是一种图像
Banum		8	1.043	1,00		E	La Bearing with the start of th	《大学》	27.2 J	
Beryllium		3	001		.4 U	.4 U	4 U	经验证的	4 U	对是 这种。16.20
Cadmium		4	.002		D. E. Mandala Z.Z. J	2.1 U	2.1 U			
Chromium		5	004	5		A CANADA	2.6 U	THE HIM HA	2.6 U 48 5 J	小文学整线和文学
Iron		3	10,950	30	207.	940.	109.			Water Control of the
Manganese		8	.104	30		dut. S.co Catallandi	The state of the s		"我们,我们的原则 "	Andrew San And Mar Mar 942
Mercury		1	.592		204 U	.04 U	.04 U	Sales of the state of the	.04 U	08

Seneca Army Depot Activity SEAD-45 Collapsed Data Summary Comparison to Drinking Water PRG

STUDY ID	ESI	· ESI
SITE	SEAD-45	SEAD-45
LOC ID	MW45-4	MW5
LOC TYPE	BACKGROUND	SITE
SAMP_ID	MW45-4	MW5
QC CODE.	SA	SA
SAMP DETH TOP.	4 25	4
SAMP, DEPTH BOT.	6 25	9
MATRIX:	GROUNDWATER	GROUNDWATER
SAMP DATE:	26-Jan-94	02-Feb-94

	Number of	Drinking Water				
PARAMETER	Exceedances	PRG	NYS Class GA Standard	Q	VALUE Q	VALUE Q
Bis(2-Ethylhexyl)phthalate		4 4.80	3 50	. U	11. U	10. U
Aluminum		1 36,500)		63,3005	821.
Antimony		7 14.	6	J	21.6 UJ	一大学の大学の大学
Arsenic		3 .00	7 25	J	9.5, J	1.4 U
Banum		8 1.04	3 1,000	J	751.	82.8 J
Beryllium		3 .00	1	J	5	.4 U
Cadmium		4 00	2 10	L	2.1 U	2.1 U
Chromium		5 .00	4 50),	Library 106.	The State of the S
Iron		3 10,950	D. 300	1	4 3,113,000,	1,220.
Manganese		8 .10	4 300).	4.640	55.5
Mercury		1 59	2	. J	.29	.04 U

	SENECA ARMY DEPOT ACTIVITY		~
			-
		-	-
i			
;			
	SEAD-45		
	SURFACE WATER		
	COLLAPSED DATA TABLES		
	AND		
	SUMMARY STATISTICS TABLES		
	•		
	,		

Seneca Army Depot Activity SEAD-45 Summary Statistics - Surface Water NYS Class C

PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	NYS Class C
Volatiles		,					
1,1,1-Trichloroethane	UG/L	4	0	0.00%	0	0	
1,1,2,2-Tetrachloroethane	UG/L	4	0	0.00%	0	0	
1,1,2-Trichloroethane	UG/L	4	0	0.00%	0	0	
1,1-Dichloroethane	UG/L	4	0	0.00%	0	0 _	
1,1-Dichloroethene	UG/L	4	0	0.00%	0	0	
1,2-Dichloroethane	UG/L	4	0	0.00%	0	0	
1,2-Dichloroethene (total)	UG/L	4 4	0	0.00% 0.00%	0	0	
1,2-Dichloropropane	UG/L	4	0	0.00%	0	0	
Acetone	UG/L	4	0	0.00%	0	0	
Benzene	UG/L UG/L	4	0	0.00%	0	0	
Bromodichloromethane	UG/L	4	0	0.00%	0	Ö	
Bromoform	UG/L	4	0	0.00%	0	0	
Carbon disulfide Carbon tetrachloride	UG/L	4	Ö	0.00%	0	0	
Chlorobenzene	UG/L	4	0	0.00%	0	0	5.
Chlorodibromomethane	UG/L	4	0	0.00%	0	0	
Chloroethane	UG/L	4	0	0.00%	0	0	
Chloroform	UG/L	4	0	0.00%	0	0	
Cis-1,3-Dichloropropene	UG/L	4	0	0.00%	0	0	
Ethyl benzene	UG/L	4	0	0.00%	0	0	
Methyl bromide	UG/L	4	0	0.00%	0	0	
Methyl butyl ketone	UG/L	4	0	0.00%	0	0	
Methyl chloride	UG/L	4	0	0.00%	0	0	
Methyl ethyl ketone	UG/L	4	0	0.00%	0	0 -	
Methyl isobutyl ketone	UG/L	4	0	0.00%	0	0	
Methylene chloride	UG/L	4	0	0.00%	0	0	
Styrene	UG/L	4	0	0.00%	0	0	
Tetrachloroethene	UG/L	4	0	0.00%	0	0	
Toluene	UG/L	4	0	0.00%	0	0	
Total Xylenes	UG/L	4	0	0.00%	0	0	
Trans-1,3-Dichloropropene	UG/L	4	0	0.00%	0	0	
Trichloroethene	UG/L	4	0	0.00%	0	0	
Vinyl chloride	UG/L	4	0	0.00%	0	0	
Herbicides							
2,4,5-T	UG/L	4	0	0.00%	0	0	
2,4,5-TP/Silvex	. UG/L	4	0	0.00%	0	0	
2,4-D	UG/L	4	0	0.00%	0	0	
2,4-DB	UG/L	4	0	0.00%	0	0	
Dalapon	UG/L	4	0	0.00%	0	0	
Dicamba	UG/L	4	0	0.00%	0	0	
Dichloroprop	UG/L	4	0	0.00%	0	0	
Dinoseb	UG/L	4	0	0.00%	0	0	
MCPA	UG/L	4	0	0.00%	0	0	
MCPP	UG/L	4	0	0.00%	0	0	
Nitroaromatics						•	
1,3,5-Trinitrobenzene	UG/L	4	0	0.00%	0	0	
1,3-Dinitrobenzene	UG/L	4	0	0.00%	0	0	
2,4,6-Trinitrotoluene	UG/L	4	0	0.00%	0	0	
2,4-Dinitrotoluene	UG/L	4	0	0.00%	0	0	
2,6-Dinitrotoluene	UG/L	4	0	0.00%	0	0	
2-amino-4,6-Dinitrotoluene	UG/L	4	0	0.00%	0	0	
4-amino-2,6-Dinitrotoluene	UG/L	4	0	0.00%	0	0	
HMX	UG/L	4	2	50.00%	0.49	0	
RDX	UG/L	4	2	50.00%	2 0	0	
Tetryl	UG/L	4	0	0.00%	U	U	
Semivolatile Organics				0.009/	0	0	5.
1,2,4-Trichlorobenzene	UG/L	4	0	0.00%	0	0 0	5. 5.
1,2-Dichlorobenzene	UG/L	4	0	0.00% 0.00%	, 0	0	5. 5.
1,3-Dichlorobenzene	UG/L	4	0		0	0	5.
1,4-Dichlorobenzene	UG/L	4	0	0.00% 0.00%	0	0	3 .
2,2'-oxybis(1-Chloropropane)	UG/L	4 4	0	0.00%	0	0	
2,4,5-Trichlorophenol	UG/L	4	0	0.00%	0	0	
2,4,6-Trichlorophenol	UG/L	4	0	0.00%	0	0	
2,4-Dichlorophenol	UG/L UG/L	4	0	0.00%	0	0	
2.4-Dimethylphenol	UG/L	4	0	0.00%	0	0	
2,4-Dinitrophenol	00/L	7	•	2.0070	-	-	

Seneca Army Depot Activity SEAD-45 Summary Statistics - Surface Water NYS Class C

PARAMETER	UNIT	Number of Analyses	Number of Detections	Frequency of Detection	Maximum Value	Number of Exceedances	NYS Class C
2.4 Dinitratelyana	UG/L	4	0	0.00%	0	0	
2,4-Dinitrotoluene	UG/L	4	0	0.00%	0	0	
2,6-Dinitrotoluene		4	0	0.00%	0	0	
2-Chloronaphthalene	UG/L				0	0	
2-Chlorophenol	UG/L	4	0	0.00%			
2-Methylnaphthalene	UG/L	4	0	0.00%	0	0 _	
2-Methylphenol	'UG/L	4	0	0.00%	0	0	
2-Nitroaniline	UG/L	4	0	0.00%	0	0	
2-Nitrophenol	UG/L	4	0	0.00%	0	0	
3,3'-Dichlorobenzidine	UG/L	4	0	0.00%	0	0	
	UG/L	4	0	0.00%	0	0	
3-Nitroaniline		4	0	0.00%	0	0	
4,6-Dinitro-2-methylphenol	UG/L				0	0	
4-Bromophenyl phenyl ether	UG/L	4	0	0.00%			
4-Chloro-3-methylphenol	UG/L	4	0	0.00%	0	0	
4-Chloroaniline	UG/L	4	0	0.00%	0	0	
4-Chlorophenyl phenyl ether	UG/L	4	0	0.00%	0	0	
4-Methylphenol	UG/L	4	0	0.00%	0	0	
- · · · · · · · · · · · · · · · · · · ·	UG/L	4	0	0.00%	0	0	
4-Nitroaniline	UG/L	4	0	0.00%	0	0	
4-Nitrophenol					0	0	
Acenaphthene	UG/L	4	0	0.00%			
Acenaphthylene	UG/L	4	0	0.00%	0	0	
Anthracene	UG/L	4	0	0.00%	0	0	
Benzo[a]anthracene	UG/L	4	0	0.00%	0	0	
Benzo[a]pyrene	UG/L	4	0	0.00%	0	0	
	UG/L	4	0	0.00%	0	0	
Benzo[b]fluoranthene	UG/L	4	0	0.00%	0	0	
Benzo[ghi]perylene			0	0.00%	o	0	
Benzo[k]fluoranthene	UG/L	4				0	
Bis(2-Chloroethoxy)methane	UG/L	4	0	0.00%	0		
Bis(2-Chloroethyl)ether	UG/L	4	0	0.00%	0	0	
Bis(2-Ethylhexyl)phthalate	UG/L	4	0	0.00%	0	0	.6
Butylbenzylphthalate	UG/L	4	0	0.00%	0	0	
Carbazole	UG/L	4	0	0.00%	0	0	
	UG/L	4	0	0.00%	0	0	
Chrysene		4	0	0.00%	0	0	
Di-n-butylphthalate	UG/L		0		0	0	
Di-n-octylphthalate	UG/L	4		0.00%			
Dibenz(a,h)anthracene	UG/L	4	0	0.00%	0	0	
Dibenzofuran	UG/L	4	0	0.00%	0	0	
Diethyl phthalate	UG/L	4	0	0.00%	0	0	
Dimethylphthalate	UG/L	4	0	0.00%	0	0	
Fluoranthene	UG/L	4	0	0.00%	0	0	
Fluorene	UG/L	4	0	0.00%	0	0	
	UG/L	4	Ö	0.00%	0	0	
Hexachlorobenzene		4	0	0.00%	Ō	0	
Hexachlorobutadiene	UG/L				0	0	
Hexachlorocyclopentadiene	UG/L	4	0	0.00%			
Hexachloroethane	UG/L	4	0	0.00%	0	0	
Indeno[1,2,3-cd]pyrene	UG/L	4	0	0.00%	0	0	
Isophorone	UG/L	4	0	0.00%	0	0	
N-Nitrosodiphenylamine	UG/L	4	0	0.00%	0	0	
N-Nitrosodipropylamine	UG/L	4	0	0.00%	0	0	
	UG/L	4	0	0.00%	0	0	
Naphthalene	UG/L	4	0	0.00%	0	0	
Nitrobenzene					0	0	.4
Pentachlorophenol	UG/L	4	0	0.00%			
Phenanthrene	UG/L	4	0	0.00%	0	0	
Phenol	UG/L	4	0	0.00%	0	0	5.
Pyrene	UG/L	4	0	0.00%	0	0	
Pesticides/PCBs							
4,4'-DDD	UG/L	4	0	0.00%	0	0	.001
	UG/L	4	0	0 00%	0	0	.001
4.4`-DDE		4	0	0 00%	0	0	001
4,4°-DDT	UG/L					0	
Aldrın	UG/L	4	0	0.00%	, 0		
Alpha-BHC	UG/L	4	0	0.00%	0	0	
Alpha-Chlordane	UG/L	4	0	0 00%	0	0	
Aroclor-1016	UG/L	4	0	0 00%	0	0	
Aroclor-1221	UG/L	4	0	0.00%	0	0	
	UG/L	4	0	0.00%	0	0	
Aroclor-1232			0	0.00%	0	0	
Aroclor-1242	UG/L	4			0	0	
Aroclor-1248	UG/L	4	0	0 00%			.001
Aroclor-1254	UG/L	4	0	0.00%	0	0	.001

Seneca Army Depot Activity SEAD-45 Summary Statistics - Surface Water NYS Class C

PARAMETER	UNIT	Number of	Number of	Frequency of	Maximum	Number of	NYS Class C
		Analyses	Detections	Detection	Value	Exceedances	
Aroclor-1260 "	UG/L	4	0	0.00%	0	0	.001
Beta-BHC	UG/L	4	0	0.00%	0	0	
Delta-BHC	UG/L	4	0	0.00%	0	0	
Dieldrin	UG/L	4	0	0.00%	0	0	
Endosulfan I	UG/L	4	0	0.00%	0	0 _	
Endosulfan II	UG/L	4	0	0.00%	0	0	
Endosulfan sulfate	UG/L	4	0	0.00%	0	0	
Endrin	UG/L	4	0	0.00%	0	0	.002
Endrin aldehyde	UG/L	4	0	0.00%	0	0	
Endrin ketone	UG/L	4	0	0.00%	0	0	
Gamma-BHC/Lindane	UG/L	4	0	0.00%	0	0	
Gamma-Chlordane	UG/L	4	0	0.00%	0	0	
Heptachlor	UG/L	4	0	0.00%	0	0	.001
Heptachlor epoxide	UG/L	4	0	0.00%	0	0	.001
Methoxychlor	UG/L	4	0	0.00%	0	0	.03
Toxaphene	·UG/L	4	0	0.00%	0	0	
Metals							
Aluminum	UG/L	4	4	100.00%	37500	4	100.
Antimony	UG/L	4	0	0.00%	0	0	
Arsenic	UG/L	4 .	1	25.00%	2.3	0	190.
Barium	UG/L	4	4	100.00%	439	0	
Beryllium	UG/L	4	2	50.00%	1.5	2	1.111
Cadmium	UG/L	4	1	25.00%	11.2	1,	1.863
Calcium	UG/L	4	4	100.00%	194000	0	
Chromium	UG/L	4	3	75.00%	50.8	0	347.27
Cobalt	UG/L	4	2	50.00%	18.2	2	5.
Copper	UG/L	4	4	100.00%	612	4	20.288
Cyanide	UG/L	4	1	25.00%	47.7	1	5.2
Iron	UG/L	4	4	100.00%	60400	4	300.
Lead	UG/L	4	4	100.00%	68.7	3	7.164
Magnesium	UG/L	4	4	100.00%	24300	0	
Manganese	UG/L	4	4	100.00%	1250	0	
Mercury	UG/L	4	4	100.00%	3	0	
Nickel	UG/L	4	4	100.00%	74.2	0	154.489
Potassium	UG/L	4	4	100.00%	9670	0	
Selenium	UG/L	4	0	0.00%	0	0	1.
Silver	UG/L	4	0	0.00%	0	0	.1
Sodium	UG/L	4	4	100.00%	4340	0	
Thallium	UG/L	4	0	0.00%	0	0	8.
Vanadium	UG/L	4	3	75.00%	54.9	2	14.
Zinc	UG/L	4	4	100.00%	883	2	141.38
Other Analyses	30,2	-	-				
Nitrate/Nitrite	UG/L	4	4	100.00%	1060	0	
MICIALE/MICINE	00/L	•					

Seneca Army Depot Activity SEAD-45

Collapsed Data Summary - Surface Water Comparison to NYS Class C

		1110 01033 0	Oompanson to	
ES	ES	ESI	ESI	STUDY ID:
SEAD-4	SEAD-45	SEAD-45	SEAD-45	SITE:
SWSD45-	SWSD45-3	SWSD45-2	SWSD45-1	LOC ID:
. SITE	SITE	SITE	SITE	LOC TYPE:
SW45-	SW45-3	SW45-2	SW45-1	SAMP_ID:
SA	SA	SA	SA	QC CODE:
	(0	0	SAMP, DETH TOP:
0.	0.1	0.1	0.1	AMP. DEPTH BOT:
SURFACE WATER	SURFACE WATER	SURFACE WATER	SURFACE WATER	MATRIX:
01-Nov-9	01-Nov-93	01-Nov-93	01-Nov-93	SAMP. DATE:

PARAMETER	UNIT	Number of Exceedances	NYS Class C	VALUE Q	VALUE Q	VALUE Q	VALUE Q
Aluminum	UG/L	4	100.	29,000.	3 4.370.	2681	37,500.
Beryllium	UG/L	2	1.111	1.3 J	.3 U	.3 U	1.5 J
Cadmium	UG/L	1	1.863	3.3 U	3.3 U	3.3 U	11.2
Cobalt	UG/L	2	5.	15.2 J	4.9 U	4.9 U	18.2 J
Copper	UG/L	4	20.288	200	37.7 3.5 3.119.	· · · · · · · · · · · · · · · · · · ·	612
Cyanide	UG/L	1	5.2	8.3 U	8.3 U	8.3 U	774
Iron	UG/L	4	300.	47,700. J	5,920. J	11,270, J	(60,400) J
Lead	UG/L	3	7.164	27.2	10.9	1.9 J	68.7
Vanadium	UG/L	2	14.	45.9 J	6.1 J	3.3 U	54.9
Zinc	UG/L	2	141.38	226.	98.9	23.3	883.

,	SENECA ARMY DEPOT ACTIVITY
	·•
	SEAD-45
	SEDIMENT
	CQLLAPSED DATA TABLES
	AND
	SUMMARY STATISTICS TABLES
j	
	·
	·

Seneca Army Depot Activity SEAD-45 Summary Statistics - Sediment Comparison to Minimum Sediment Criteria

Volatiles	11046	4	0	0.00%	0	0		
1,1,1-Trichloroethane	UG/KG	4	ō	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	300.
1,1,2,2-Tetrachioroethane	UG/KG UG/KG	4	Ö	0.00%	0	0		
1,1,2-Trichloroethane	UG/KG	4	o	0.00%	0	0		
1,1-Dichloroethane	UG/KG	4	0	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	20.
1,1-Dichloroethene	UG/KG	4	0	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	700.
1,2-Dichloroethane 1,2-Dichloroethene (total)	UG/KG	4	0	0.00%	0	0	•	
	UG/KG	4	0	0.00%	0	0		
1,2-Dichloropropane Acetone	UG/KG	4	0	0.00%	0	0		
Benzene	UG/KG	4	0	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	600.
Bromodichloromethane	UG/KG	4	0	0.00%	0	0		
Bromoform	UG/KG	4	0	0.00%	0	0		
Carbon disulfide	UG/KG	4	0	0.00%	0	0		
Carbon tetrachlonde	UG/KG	4	0	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	600.
Chlorobenzene	UG/KG	4	0	0.00%	0	0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	3,500.
Chlorodibromomethane	UG/KG	4	0	0.00%	0	0		
Chloroethane	UG/KG	4	0	0.00%	0	0		
Chloroform	UG/KG	4	0	0.00%	0	0		
Cis-1,3-Dichloropropene	UG/KG	4	0	0.00%	0	0		
Ethyl benzene	UG/KG	4	0	0.00%	0	0		
	UG/KG	4	0	0.00%	0	0		
Methyl bromide	4 UG/KG	4	0	0.00%	0	0		
Wielityi batyi ketone	UG/KG	4	0	0.00%	0	0		
Methyl chloride	UG/KG	4	ō	0.00%	0	0		
Methyl ethyl ketone	UG/KG	4	ō	0.00%	0	0		
Methyl isobutyl ketone	UG/KG	4	ō	0.00%	0	0		
Methylene chloride		4	o	0.00%	0	0		
Styrene	UG/KG	4	ő	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	800.
Tetrachioroethene	UG/KG UG/KG	4	o	0.00%	0	0		
Toluene		4	o	0.00%	0	0		
Total Xylenes	UG/KG	4	ō	0.00%	0	0		
Trans-1,3-Dichloropropene	UG/KG	4	o	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	2,000.
Trichloroethene	UG/KG	4	0	0.00%	o	Ö	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	70
Vinyl chlonde	UG/KG	4	0	0.0076	·	•		
Herbicides			0	0.00%	0	0		
2,4,5-T	UG/KG	4			0	0	•	
2,4,5-TP/Silvex	UG/KG	4	0	0.00%	0	0		
2,4-D	UG/KG	4	0	0.00%	0	0		
2,4-DB	UG/KG	4	0	0.00%	0	0		
Dalapon	UG/KG	4	0	0.00%	0	0		
Dicamba	UG/KG	4	0	0.00%		0		
Dichloroprop	UG/KG	4	0	0.00%	0	0		
Dinoseb	UG/KG	4	0	0.00%	0	0		
MCPA	UG/KG	4	0	0.00%		0		
MCPP	UG/KG	4	0	0.00%	0	U		
Nitroaromatics				0.000/	0	0		
1,3,5-Trinitrobenzene	UG/KG	4	0	0.00%	0	0		
1,3-Dinitrobenzene	UG/KG	4	0	0.00%	120	0		
2,4,5-Trinitrotoluene	UG/KG	4	1	25.00%	83	0		
2,4-Dinitrotoluene	UG/KG	4	1	25.00%		0		
2,6-Dinitrotoluene	UG/KG	4	0	0.00%	0	0		
2-amino-4,6-Dinitrotoluene	UG/KG	4	1	25.00%	260 0	0		
4-amino-2,6-Dinitrotoluene	UG/KG	4	0	0.00%		0		
HMX	UG/KG	4	0	0.00%	0	0		
RDX	UG/KG	4	1	25.00%	210 140	0		
Tetryl	UG/KG	4	1 .	25.00%	140	0		
Semivolatile Organics				0.000/	•	0		
1,2,4-Trichlorobenzene	UG/KG	4	0	0.00%	0	0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	12,000.
1,2-Dichlorobenzene	UG/KG	4	0	0.00%	0	0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	12,000.
1.3-Dichlorobenzene	UG/KG	4	0	0.00%		0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	12,000
1,4-Dichlorobenzene	UG/KG	4	0	0.00%	0	0	ENTITIC AGOATIC ELL COLINGIA TOMONTO CONTENTO	
2,2'-oxybis(1-Chloropropane)	UG/KG	4	0	0.00%	0			
2,4,5-Trichlorophenol	UG/KG	4	0	0.00%	0	0		
2,4,6-Trichlorophenol	UG/KG	4	0	0.00%	0	0		
2,4-Dichlorophenol	UG/KG	4	0	0.00%	0	0		
2,4-Dimethylphenol	UG/KG	4	0	0.00%	0	0		
2,4-Dinitrophenol	UG/KG	4	0	0.00%	0	0		
2,4-Dinitrotoluene	UG/KG	4	0	0.00%	0	0		
2,6-Dinitrotoluene	UG/KG	4	0	0.00%	0	0		
2-Chloronaphthalene	UG/KG	4	0	0.00%	0			
2-Chlorophenol	UG/KG	4	0	0.00%	0	0		
2-Methylnaphthalene	UG/KG	4	0	0.00%	0	0		
2-Methylphenol	UG/KG	4	0	0.00%	0	0		
2-Nitroaniline	UG/KG	4	0	0.00%	0	0		
2-Nitrophenol	UG/KG	4	0	0.00%	0	0		
3,3'-Dichlorobenzidine	UG/KG	4	0	0.00%	0	0		
3-Nitroandine	UG/KG	4	0	0.00%	0	0		
4.6-Dinitro-2-methylphenol	UG/KG	4	0	0.00%	0	0		
4-Bromophenyi phenyi ether	UG/KG	4	0	0.00%	0	0		
4-Chloro-3-methylphenol	UG/KG	4	0	0.00%	0	0		
4-Chloroaniline	UG/KG	4	0	0.00%	0	0		
4-Chlorophenyl phenyl ether	UG/KG	4	0	0.00%	0	0 +		
4-Methylphenol	UG/KG	4	0	0.00%	0	0		
4-Nitroaniline	UG/KG	4	0	0.00%	0	0		
4-Nilrophenol	UG/KG	4	0	0.00%	0	0		140.000
Acenaphthene	UG/KG	4	0	0.00%	0	0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	140,000
Acenaphthylene	UG/KG	4	0	0.00%	0	0	•	
Anthracene	UG/KG	4	0	0.00%	0	0	*	
Benzo(a)anthracene	UG/KG	4	2	50.00%	32	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	1,300.
Benzo(a)pyrene	UG/KG	4	2	50.00%	37	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	1,300
Benzo(b)fluoranthene	UG/KG	4	2	50.00%	37	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	1,300
			1	25.00%	48	0		
Benzo(ghi)perylene	UG/KG	4	1	23.0070				

Seneca Army Depot Activity SEAD-45 Summary Statistics - Sediment Companson to Minimum Sediment Criteria

Benzo(k)fluoranthene	UG/KG	4	2	50.00%	28	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	1,300.
Bis(2-Chloroethoxy)methane	UG/KG	4	0	0.00%	0	0		
Bis(2-Chloroethyl)ether	UG/KG	4	0	0.00%	0	0		200.000
Bis(2-Ethylhexyl)phthalate	UG/KG	4	0	0.00%	0	0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	200,000
Butylbenzylphthalate	UG/KG	4	0	0.00%	0	0		
Carbazole	UG/KG	4	0	0.00% 75.00%	0 50	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	1,300.
Chrysene	UG/KG	4	3 1	75.00% 25.00%	25	0	1410 HOMPATTE ETT BIOTICO SMOETHOUT OTHER ETT	.,
Di-n-butylphthalate	UG/KG	4	0	0.00%	0	0		
Di-n-octylphthalate	UG/KG	4	0	0.00%	o	Ö		
Dibenz(a,h)anthracene	UG/KG UG/KG	4	0	0.00%	ō	ō	-	
Dibenzofuran Diethyl phthalate	UG/KG	4	0	0.00%	0	0		
Dimethylphthalate	UG/KG	4	0	0.00%	0	0		
Fluoranthene	UG/KG	4	3	75.00%	60	0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	1,020,000
Fluorene	UG/KG	4	0	0.00%	0	0		
Hexachlorobenzene	UG/KG	4	2	50.00%	40	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	150
Hexachlorobutadiene	UG/KG	4	0	0.00%	0	0		
Hexachlorocyclopentadiene	UG/KG	4	0	0.00%	0	0		
Hexachloroethane	UG/KG	4	0	0.00% 25.00%	32	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	1,300.
Indeno[1,2,3-cd]pyrene	UG/KG	4	0	0.00%	0	0	1110 11010/11110 12111 010/1000 1110/1011	.,,,,,
Isophorone	UG/KG UG/KG	4	0	0.00%	0	ō		
N-Nitrosodiphenylamine	UG/KG	4	ő	0.00%	0	0		
N-Nitrosodipropylamine Naphthalene	UG/KG	4	1	25.00%	24	0		
Nitrobenzene	UG/KG	4	0	0.00%	0	0		
Pentachiorophenol	UG/KG	4	0	0.00%	0	0		400.000
Phenanthrene	UG/KG	4	3	75.00%	34	0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	120,000
Phenol	UG/KG	4	0	0.00%	0	0		
Pyrene	UG/KG	4	3	75.00%	110	0		
Pesticides/PCBs			•	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	10.
4,4°-DDD	UG/KG	4	0 2	50.00%	12	1	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	10.
4.4'-DDE	UG/KG UG/KG	4	0	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	10.
4,4'-DDT	UG/KG	4	1	25.00%	2.2	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	100
Aldrin Alpha-BHC	UG/KG	4	0	0.00%	0	0		
Alpha-Chlordane	UG/KG	4	1	25.00%	5.7	0		
Araclor-1016	UG/KG	4	0	0.00%	0	0		
Aroclor-1221	UG/KG	4	0	- 0.00%	0	0		
Aroclor-1232	UG/KG	4	0	0.00%	0	0		
Aroclor-1242	UG/KG	4	0	0.00%	0 .	0		
Arocior-1248	UG/KG	4	0	0.00%	0 580	2	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	8
Aroclor-1254	UG/KG	4	2 0	50.00% 0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	8
Aroclor-1260	UG/KG UG/KG	4	0	0.00%	ō	Ō		
Beta-BHC Delta-BHC	UG/KG	4	ō	0.00%	0	0		
Dieldrin	UG/KG	4	1	25.00%	7.4	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	100
Endosulfan I	UG/KG	4	2	50.00%	2.7	0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	30
Endosulfan II	UG/KG	4	0	0.00%	0	0	ENTHIC AQUATIC LIFE CHRONIC TOXICITY CRITERIA	30
Endosulfan sulfate	UG/KG	4	0	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	800
Endon	UG/KG	4	0	0.00%	0	0	NTS HUMAN REALTH BIOACCOMOEATION CRITERIA	000
Endnn aldehyde	UG/KG	4	1	25.00%	3.2 0	0		
Endan ketone	UG/KG	4	0	0.00% 0.00%	0	0		
Gamma-BHC/Lindane	UG/KG	4	0	0.00%	Ö	ō		
Gamma-Chlordane	UG/KG UG/KG	4	o	0.00%	ō	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	8
Heptachlor Heptachlor epoxide	UG/KG	4	0	0.00%	0	0	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	8
Methoxychlor	UG/KG	4	0	0.00%	0	0		
Toxaphene	UG/KG	4	0	0.00%	0	0		
Metals								
Aluminum	UG/KG	4	4	100.00%	35000000	0	NYS LOWEST EFFECT LEVEL	2,000
Antimony	UG/KG	4	0	0.00%	0	0	NYS LOWEST EFFECT LEVEL	6,000
Arsenic	UG/KG	4	4	100.00% 100.00%	16100 308000	3	HIS CONCOL CITES TEVEL	0,0-3
Barium	UG/KG	4	4	100.00%	1400	0	,	
Beryllium	UG/KG	4	7	100.00%	25600	4	NYS LOWEST EFFECT LEVEL	600
Cadmium	UG/KG UG/KG	4	7	100.00%	84400000	0		
Calcium Chromium	UG/KG	4	4	100.00%	48400	3	NYS LOWEST EFFECT LEVEL	26,000
Cobalt	UG/KG	4	4	100.00%	19700	0		
Copper	UG/KG	4	4	100.00%	814000	4	NYS LOWEST EFFECT LEVEL	16,000.
Cyanide	UG/KG	4	0	0.00%	0	0		20 000 000
Iron	UG/KG	4	4	100.00%	50500000	4	NYS LOWEST EFFECT LEVEL	20,000,000 31,000
Lead	UG/KG	4	4	100.00%	101000	3	NYS LOWEST EFFECT LEVEL	31,000
Magnesium	UG/KG	4	4	100.00%	10200000	0 3	NYS LOWEST EFFECT LEVEL	460,000
Manganese	UG/KG	4	4	100.00%	935000 5300	4	NYS LOWEST EFFECT LEVEL	150
Mercury	UG/KG	4	4	100.00% 100.00%	67700	4	NYS LOWEST EFFECT LEVEL	16,000
Nickel	UG/KG	7	7	100.00%	4680000	0		
Potassium	UG/KG UG/KG	4	0	0 00%	0	0		
Selenium Silver	UG/KG	4	3	75 00%	5800	3	NYS LOWEST EFFECT LEVEL	1,000
Sodium	UG/KG	4	4	100 00%	377000	0		
Thallium	UG/KG	4	0	0.00%	0	0		
Vanadium	UG/KG	4	4	100.00%	53700	0 .	NYS LOWEST EFFECT LEVEL	120,000
Zinc	UG/KG	4	4	100.00%	755000	3	MAS FOMES! ELLEG! FEAST	. 20,000
Other Analyses	Horse							
Nitrate/Nitnte	UG/KG							

Seneca Army Depot Activity SEAD 45 Collapsed Data Summary - Sediment Companson to Minimum Sediment Criteria

	ESI	ESI	ESI	STUDY ID:
ESI	SEAD-45	SEAD-45	SEAD-45	SITE:
SEAD-45		SWSD45-2	SWSD45-1	LOC ID:
SWSD45-4	SWSD45-3	–		LOC TYPE:
SITE	SITE	SITE	SITE	
SD45-4	SD45-3	SD45-2	SD45-1	SAMP_ID.
	SA	SA	SA	QC CODE:
SA	SA	0.00	0	SAMP DETH TOP:
0	0	U	-	SAMP, DEPTH BOT:
0.5	0.5	0 5	0.5	
	SEDIMENT	SEDIMENT	SEDIMENT	MATRIX:
SEDIMENT		01-Nov-93	01-Nov-93	SAMP DATE:
01-Nov-93	01-Nov-93	01-1404-92	01110100	· · · - ·

PARAMETER Volatiles	UNIT	Number of Exceedances		Minimum Sediment Criteria	VALUE Q	VALUE Q ·	VALUE Q	VALUE Q
4.4`-DDE Aroclor-1254	UG/KG		NYS HUMAN HEALTH BIOACCUMULATION CRITERIA		4.2 U	4.3.1	5. U	
	UG/KG	2	NYS HUMAN HEALTH BIOACCUMULATION CRITERIA	.8.	42. U	74	50. U	
Arsenic	UG/KG	3	NYS LOWEST EFFECT LEVEL	6,000.		4,200.	50. U	医 原子腺素 "一个是一个
Cadmium	UG/KG	4	NYS LOWEST EFFECT LEVEL			ECOSTE CHEMINATE SECTION	E 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Chromium	UG/KG	3	NYS LOWEST EFFECT LEVEL		22,500.	1	E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2. 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Copper	UG/KG	4	NYS LOWEST EFFECT LEVEL		22,500	3.00	3 700	3 200
Iron	UG/KG	4	NYS LOWEST EFFECT LEVEL			1000	31,000	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Lead	UG/KG	3	NYS LOWEST EFFECT LEVEL		19,800.	100 m		(SECOLATED)
Manganese	UG/KG	3	NYS LOWEST EFFECT LEVEL		458.000.			(£2)1)
Mercury	UG/KG	4	NYS LOWEST EFFECT LEVEL		150,000	100	3 S S S S S S S S S S S S S S S S S S S	44 (34)
Nickel	UG/KG	4	NYS LOWEST EFFECT LEVEL		Table 11. 31		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Hilling J
Silver	UG/KG	3	NYS LOWEST EFFECT LEVEL		1,300, U	100	2.14	2,500,00
Zinc	UG/KG	3	NYS LOWEST EFFECT LEVEL		104,000.		11-1000 11-1000	A STATE