RCRA CLOSURE REPORT

BUILDING 307, HAZARDOUS WASTE CONTAINER STORAGE FACILITY BUILDING 301, TRANSFORMER STORAGE BUILDING

Prepared For:

Seneca Army Depot Activity

Route 96 Romulus, NY

U.S. Army Corps of Engineers

Huntsville Engineering and Support Center

and

U.S. Army Corps of Engineers

New York District

Prepared By:

PARSONS

290 Elwood Davis Road, Suite 312 Liverpool, New York 13088 Phone: (315) 451-9560 Fax: (315) 451-9570

REVIEWED AND APPROVED BY:

Project Manager:	Janul Holl	9-4-03
		Date
Technical Manager:	Toold their Coff	9-4-03
		Date

SEPTEMBER 2003

TABLE OF CONTENTS

LIST O	F ACRONYMSv
PROFE	SSIONAL ENGINEER CERTIFICATIONVI
SECTION	ON 1 INTRODUCTION1-1
1.1	Summary 1-1
1.2	Site Description
1.3	Closure Performance Standard1-3
1.4	Conclusions
SECTION	ON 2 CLOSURE ACTIVITIES2-1
2.1	Removal of Hazardous Waste Inventory 2-1 2.1.1 Building 307 2-1 2.1.2 Building 301 2-1
2.2	Decontamination 2-1 2.2.1 Building 307 2-1 2.2.2 Building 301 2-1
2.3	Confirmatory Sampling
2.4	Disposal
2.5	Data Reporting 2-4 2.5.1 Building 307 2-4 2.5.1.1 Rinsate Samples 2-4 2.5.1.2 PCB Wipe Samples 2-5 2.5.2 Building 301 2-5

	2.5.2.1 Rinsate Samples	2-5
	2.5.2.2 PCB Wipe Samples	
	2.5.2.3 PCB Chip Samples	
2.6	Grounds Surrounding Buildings	2-6
	2.6.1 Building 307	
	2.6.1.1 Soil Sample Results	
	2.6.2 Building 301	
	2.6.2.1 Soil Sample Results	
2.7	Survey Plat	2-7
2.8	Professional Engineer Review and Certificatification	2-7
2.9	Schedule	2-7
2.10	0 Photographic Documentation	2-7
SECTION	ON 3 DATA ANALYSIS	3-1
3.1	Building 307	3-1
	3.1.1 Rinsate Samples	
	3.1.2 PCB Samples	
	3.1.3 Soil Samples	
3.2	Building 301	3-2
	3.2.1 Rinsate Samples	
	3.2.2 PCB Samples	3-2
	3.2.3 Soil Samples	3-2
3.3	Conclusions	3-3
	3.3.1 Building 307	3-3
	3.3.2 Building 301	3-3
3.4	Recommendations	3-4
APPEN	DIX A ANALYTICAL RESULTS	
APPEN	DIX B DISPOSAL DOCUMENTATION	
APPEN	DIX C DAILY FIELD REPORTS	

LIST OF FIGURES

	Site Location Plan	1-4
Figure 2-1	Building 307 Rinsate Sample Locations	2-12
Figure 2-2	Building 307 PCB Wipe Sample Locations	2-13
Figure 2-3	Building 301 Rinsate Sample Locations	2-14
Figure 2-4	Building 301 PCB Sample Locations	2-15
Figure 2-5	Building 307 Soil Sample Locations	2-16
Figure 2-6	Building 301 Soil Sample Locations	2-17
	LIST OF TABLES	
	SEAD-1 (Building 307) Rinsate Sample Data Exceedance Compounds Only	2-8
Table 2-2		
Table 2-2	Only	2-9

LIST OF ACRONYMS

CFR Code of Federal Regulations
EPA Environmental Protection Agency
GEL Groundwater Effluent Limitation

NYCRR New York Code of Rules and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health NYSWQS New York State Water Quality Standard

PCB Polychlorinated Biphenyls

ppb parts per billion ppm parts per million

QA/QC Quality Assurance/Quality Control

RCRA Resource Conservation and Recovery Act

SEDA Seneca Army Depot Activity

Standard New York State Water Quality Standard

TAGM Technical and Administrative Guidance Memorandum

TAL Target Analyte List

TSCA Toxic Substance Contol Act
TCL Target Compound List

ug/kg micrograms per kilogram (ppb)

US United States

PROFESSIONAL ENGINEER CERTIFICATION

To the best of my knowledge, after thorough investigation, I certify that the information contained in or accompanying this submission is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

David B. Babcock, P.E. Parsons NYS Professional Engineer 065209-1

SECTION 1

INTRODUCTION

This Closure Report details the work completed as proposed in the Resource Conservation and Recovery Act (RCRA) Closure Plan (Parsons, December 2002) and approved by the New York State Department of Environmental Conservation (NYSDEC) (letter dated March 31, 2003). Parsons was retained by the United States (US) Army to perform RCRA closure of two Hazardous Waste Management Units (Building 307 and Building 301) at Seneca Army Depot in Romulus, New York. The objective of the work was to obtain regulatory closure by meeting the objectives of Title 6 New York Code of Rules and Regulations (6 NYCRR) Subpart 373-3.7, Interim Status Standards for Owners and Operators of Hazardous Waste Facilities (New York State Department of Environmental Conservation (NYSDEC), March 15, 2002).

1.1 SUMMARY

Building 307 and Building 301 were decontaminated by high pressure washing with detergent and triple rinsing with clean water obtained from on-site fire hydrants. The buildings were sampled for Volatile Organic Compounds (VOC), Semi-Volatile Organic Compounds (SVOC), Polychlorinated Biphenyls (PCB) and heavy metals.

In addition, the grounds adjacent to the buildings were investigated, by sampling, for the presence of hazardous materials that may have been associated with the use of these buildings. Soils were analyzed for VOC, SVOC, PCB and heavy metals.

The RCRA closure work was performed in strict accordance with the approved RCRA closure plan and in accordance with 6 NYCRR Subpart 373-3.7, Interim Status Standards for Owners and Operators of Hazardous Waste Facilities (NYSDEC, March 15, 2002).

This report documents all closure activities associated with Building 307 (the former Hazardous Waste Container Storage Facility) and Building 301 (the former Transformer Storage Building). Included are analytical results (Appendix A), disposal documentation (Appendix B) and Daily Field Reports (Appendix C).

1.2 SITE DESCRIPTION

Building 307 and Building 301 are located within the Seneca Army Depot Activity (SEDA), a 10,587 acre facility located in Seneca County, near the village of Romulus, New York (Figure 1). The facility has been owned by the United States Government and operated by the Department of the Army since 1941. Since its inception in 1941, SEDA's primary mission was the receipt, storage, maintenance and supply of military items.

1.2.1 Building 307 - Hazardous Waste Container Storage Facility (SEAD-1)

Building 307 is located in the eastern portion of SEDA, approximately 3,500 feet southwest of the Depot's main entry gate off New York State Route 96. The Army constructed Building 307 in 1981. Building 307 was used for storage of hazardous waste generated throughout the Depot prior to their shipment offsite for disposal. Hazardous wastes stored within Building 307 included spent solvents, still bottoms from 1,1,1-trichloroethene vapor degreasers, sludge from oil/grease separations, cleaning compounds, paper filters from paint spray booths, and spent battery acids. Most wastes stored within the building were stored in new 55-gallon drums, but occasionally small amounts of hazardous waste were stored in 5-gallon pails.

Building 307 measures 40-feet wide by 50-feet long and its sides and roof are corrugated metal construction. The corrugated metal structure sits on a six-inch thick monolithic, reinforced concrete slab floor that is surrounded by an integral component, six-inch concrete curb. The floor of the building is sealed to prevent seepage in the event that materials were spilled onto the concrete floor. Other than the portion of the floor that is covered by the access/egress ramp, the monolithic floor of the building is not sloped nor does it contain any collection sumps or drains. The only entrance into the building is through a sliding corrugated-steel door located on the south side of the building. A 10-foot wide concrete access/egress ramp extends 10 feet beyond the exterior of the building and 8 feet into the building's interior.

1.2.2 Building 301 – Transformer Storage Building (SEAD-2)

Building 301 is located in the east central portion of SEDA, approximately 6,000 feet west, southwest of the Depot's main entry gate off New York State Route 96. The building is located near the munitions igloo storage area. The Army constructed Building 301 in 1942. The building was upgraded in 1986 to meet hazardous waste storage requirements. The Army has used Building 301 as a PCB Storage Facility since approximately 1980. Building 301 was used for the storage of materials associated with unserviceable transformers or other electrical equipment that were known, or suspected, to contain PCBs.

The exterior dimensions of Building 301 are 35 feet 4 inches long by 23 feet 4 inches wide, and the main structure is bounded partially on two sides (east and west), and completely on a third side (i.e., north) by a raised loading dock or platform that measures 6 feet 4 inches in width. The raised loading platform ramps to ground surface on the western side of the building, and a stairway provides transition from the ground to the raised loading dock halfway along the eastern side of the building.

A gravel and tar roof sits on pre-cast concrete planks supported by steel trusses. The exterior walls are 12-foot high and made of 12-inch thick tile. Access to the building from the loading dock is provided through either of two 8-foot by 8-foot overhead doors; one access door is located on the northern side of the building while the second is located on the eastern side of the building.

Routine inspections indicate that there is no evidence of historic release within the building and that the building is in good structural condition. As part of the 1986 Building 301 Upgrade Program, four surface soil samples were collected from each of the exterior corners of the

building and analyzed to determine total PCB content. The results of this sampling show that each of the four samples contained less than 1 part per million (ppm) of total PCBs.

1.3 CLOSURE PERFORMANCE STANDARD

The closure performance standard as written in 6 NYCRR Part 373-3.7(b) states that the facility must be closed in a manner that:

- Minimizes the need for further maintenance;
- Controls, minimizes or eliminates, to the extent necessary to protect human health and the environment, post closure escape of hazardous waste, hazardous constituents, leachate, contaminated run-off, or hazardous waste decomposition products to the ground or surface waters or to the atmosphere;

Subdivisions of 373 3.10(h), 3.11(f), 3.12(g), 3.13(g), 3.14(d), 3.15(e), 3.16(e), 3.17(e) and 3.30(c) are NOT applicable to this closure, as written in the standard.

1.4 CONCLUSIONS

The primary objective of this work was to perform the work necessary to obtain clean closure of the buildings in conformance with the closure performance standard. Review of the confirmatory rinsate analytical data indicates only minor exceedances of the New York State Standards that were used to assess the level of decontamination achieved. The rinsate analytical results indicate the levels of the exceedance compounds were far below hazardous waste concentrations. In fact, the wash water was disposed of as a non-hazardous/non-regulated waste. Therefore, it can be concluded that;

- · No further maintenance is needed;
- The buildings pose no threat to human health or the environment;
- Because all hazardous materials have been removed and the buildings decontaminated, there is no chance for post closure escape of hazardous waste or hazardous constituents.
- Because the buildings are in good repair and are no longer used for storage of hazardous
 materials, there is no chance for future leachate, contained run-off or hazardous waste
 decomposition products migrating to the ground, surface waters or to the atmosphere.
- Soils surrounding the buildings do not appear to be impacted by the former use of the buildings. The analytical results for the soils indicate the presence of SVOC and metals in concentrations typical of an industrial setting.

REGIONAL MAP SCALE: 1 INCH=2.5 MILES SOURCE: Mapquest.com

SITE MAP SCALE: 1 INCH=10,000 FEET

FIGURE 1-1

SENECA ARMY DEPOT ACTIVITY
RCRA HAZARDOUS WASTE STORAGE FACILITY
TRANSFORMER STORAGE BUILDING

SITE LOCATION PLAN

PARSONS

290 ELWOOD DAVIS ROAD, SUITE 312, LIVERPOOL, N.Y. 13088, PHONE: 315-451-9560

SECTION 2

CLOSURE ACTIVITIES

2.1 REMOVAL OF HAZARDOUS WASTE INVENTORY

All hazardous waste inventory was removed prior to the start of this closure work.

2.1.1 Building 307

No hazardous waste was removed during this closure activity. The last shipment of hazardous waste was removed from Building 307 in March 2002.

2.1.2 Building 301

No hazardous waste was removed during this closure activity. The last shipment of PCB containing waste was removed from Building 301 in 1998.

2.2 DECONTAMINATION

The buildings were decontaminated manually to the extent practical through the use of rigorous industrial cleaning methods.

2.2.1 Building 307

All interior floor and wall surfaces were decontaminated using a high-pressure detergent and water wash, followed by three clear water rinses using a high-pressure hose. During each of the wash and rinse cycles, the doorway was sealed to prevent the spread of wash and rinse waters beyond the inside of the building and the containment area.

2.2.2 Building 301

All interior floor and wall surfaces were decontaminated using a high-pressure detergent and water wash, followed by three clear water rinses using a high-pressure hose. During each of the wash and rinse cycles, the doorways were sealed to prevent the spread of wash and rinse waters beyond the inside of the building and the containment area.

Exterior floor surfaces were decontaminated using a high-pressure detergent and water wash, followed by three clear water rinses using a high-pressure hose. Temporary containment, consisting of polyethylene sheeting, was used to prevent the spread of wash and rinse waters beyond the intended containment area.

2.3 CONFIRMATORY SAMPLING

After completion of the decontamination process, samples were collected to confirm the degree of decontamination achieved. Confirmation sampling included the collection of aqueous samples in accordance with the State of New York's "Rinsate Sample Collection Protocol" and

the collection of wipe samples in accordance with procedures that are specified under the Toxic Substance Control Act (TSCA) regulations [40 Code of Federal Regulations (CFR) § 761.123].

2.3.1 Rinsate Samples

Rinsate samples were collected from areas that were generally flat and horizontal (i.e. floors and ramps) where damming techniques could be successfully implemented. Prior to collecting rinsate samples, grids were laid out on the floors of the buildings by placing chalk marks at the appropriate intervals, and sampling locations were chosen based on a random numbering selection process.

An Ultra Spill Berm® (temporary floor dike made of a flexible, non absorbing polyurethane) was used to contain rinsate water. The berm was shaped into an approximately 400 square inch surface area (i.e., 20 inches by 20 inches). Sampling was initiated by pouring approximately 2 liters of labratory grade water into the bermed area and letting it stand for ten minutes.

The water was sampled from the bermed area using a peristaltic pump with dedicated tubing. Each sample was labeled and recorded (Sample ID, Location ID, and time) in the field logbook and on the chain of custody.

After each sample, the berm was decontaminated using alconox and water followed by a laboratory grade water rinse. The dedicated tubing was disposed after use.

Rinsate samples were analyzed for Target Compound List (TCL) VOC, SVOC, and Target Analyte List (TAL) metals. All sample analyses were conducted by General Engineering Laboratories, LLC, a laboratory certified by the New York State Department of Health (NYSDOH), and were performed in accordance with "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846 (Third Edition (November 1986), as amended by Updates: I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), and IIIA (April 1998), and later approved revisions), hereinafter referred to as "SW-846".

2.3.2 PCB Wipe Samples

PCB wipe samples were collected from the horizontal and vertical non-porous surfaces in the buildings. A sampling grid was developed for the buildings in accordance with the EPA's guidance manual "Field Manual for Grid Sampling of PCB Spill Sites to Verify Clean-up" (EPA-560/5-86-017). Each sampling location was marked out with tape and labeled.

In order to conform to TSCA's recommended 100 square centimeter surface area, 10 centimeter square templates were utilized.

The wipe samples were collected by placing the template over the area to be sampled, grasping the wipe with forceps, and wiping in a left to right motion and then top to bottom motion. The wipe was air-dried, folded over, and place in the container. Each sample was labeled and recorded (Sample ID, Location ID, and time) in the field logbook and on the chain of

custody. The forceps were decontaminated using alconox and water followed by a hexane rinse. The forceps were allowed to air dry.

Wipe samples were analyzed for PCBs. All sample analyses were conducted by General Engineering Laboratories, LLC, a laboratory that is certified by the NYSDOH, and were performed in accordance with "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846, Appendix 19 of 6NYCRR Part 371.

2.3.3 PCB Chip Samples

Chip samples were collected in lieu of wipe samples where surfaces were tar and gravel coatings (i.e., exterior floor slabs and ramps). All sample analyses were conducted by General Engineering Laboratories, LLC, a laboratory that is certified by the NYSDOH, and were performed in accordance with "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA Publication SW-846.

Chip samples were collected from the tar/gravel ramp locations on the exterior of Building 301. The samples were collected by placing a 10 centimeter square template on the surface and chipping the surface, no more than 1 cm deep, and collecting approximately 50 grams of the surface material.

2.3.4 Building 307 Confirmation Samples

Seventeen (17) locations were chosen for collection of rinsate samples, plus additional quality assurance and quality control (QA/QC) samples. The samples were collected from the surfaces (i.e., ramps and contained floor) of Building 307. Three samples (15, 64, 77) were collected from areas that were visibly stained. See Figure 2-1 for locations.

Forty (40) wipe samples, plus additional QA/QC samples were collected from locations on the interior walls and floor of Building 307. See Figure 2-2 for locations.

2.3.5 Building 301 Confirmation Samples

Fifteen (15) locations were chosen for collection of rinsate samples, plus additional QA/QC samples. The samples were collected from the surfaces (i.e., ramps and contained floor) of Building 301. See Figure 2-3 for locations.

The exterior ramp and loading dock surface finish is made of gravel and tar/asphalt aggregate. Samples from these areas are 1, 4, 13, 30, 90 and 93.

Sample #84 was collected on the stairs adjacent to the railroad tracks.

Sixteen (16) wipe samples, plus additional QA/QC samples were collected from locations on the interior walls and floor of Building 307. See Figure 2-4 for locations.

Six (6) chip samples and one (1) duplicate sample were collected from locations on the exterior surfaces of Building 301. See Figure 2-4 for locations.

2.4 DISPOSAL

2.4.1 Decontamination Water

Wastewater generated during the wash and rinse cycles was collected and pumped into DOT-approved 55-gallon drums. Eight drums of washwater were collected (three from Building 301 and five from Building 307). A sample of the drummed waters was collected and analyzed for TCL VOC, SVOC, PCB and TAL metals. Based on the analytical results, the water was determined to be a non-hazardous waste. A waste profile was generated and the water was shipped to Industrial Oil Services Corp. in Oriskany, NY for disposal. See Appendix A for analytical results and Appendix B for disposal documentation.

All pumps, hoses, containers and equipment used during the decontamination operations were decontaminated after use by triple flushing/rinsing all exposed or wetted surfaces. The rinse waters were added to the drummed decontamination liquid drums and disposed.

2.4.2 Personal Protective Equipment

Disposable personnel protective equipment worn by workers was collected and placed in two 55-gallon drums for disposal as a non-hazardous waste at Industrial Oil Services Corp. in Oriskany, NY. See Appendix B for disposal documentation.

2.5 DATA REPORTING

2.5.1 Building 307

2.5.1.1 Rinsate Samples

Analytical results from rinsate samples are listed on Table A-1 (Appendix A) and compared to New York State Water Quality Standards-Class GA (NYSWQS) (6 NYCRR § 703.5). Seven (7) compounds were detected at concentrations exceeding the NYSWQS (Table 2-1).

Toluene was detected in 4 of 18 samples. Toluene exceeded the NYSWQS (Standard) of 5 ug/L in 3 of 18 samples with a maximum value of 17.2 ug/L.

Bis(2-Ethylhexyl)phthalate was detected in 6 of 18 samples. Bis(2-Ethylhexyl)phthalate exceeded the Standard of 5 ug/L in 5 of 18 samples with a maximum value of 10.8 ug/L.

Pentachlorophenol was detected in 2 of 18 samples. Pentachlorophenol exceeded the Standard of 1 ug/L in 2 of 18 samples with a maximum value of 8.9 ug/L.

Arsenic was detected in 15 of 19 samples. Arsenic exceeded the Standard of 25 ug/L in five of 18 samples with a maximum value of 30.1 ug/L. No arsenic concentrations were greater than the NYS Groundwater Effluent Limitation-Class GA (GEL) of 50 ug/L.

Cadmium was detected in 17 of 19 samples. Cadmium exceeded the Standard of 5 ug/L in 2 of 18 samples with a maximum value of 7.18 ug/L. No cadmium concentrations were greater than the GEL of 10 ug/L.

Iron was detected in 17 of 19 samples. Iron exceeded the Standard of 300 ug/L in 16 of 18 samples with a maximum value of 3,880 ug/L.

Lead was detected in 18 of 19 samples. Lead exceeded the Standard of 25 ug/L in 13 of 19 samples with a maximum value of 165 ug/L.

2.5.1.2 PCB Wipe Samples

Analytical results from the PCB wipe samples are listed on Table A-2 (Appendix A) and compared to the 10 ug/100 cm² decontamination standard for non-porous surfaces (40 CFR 761.125). There were no detections or exceedances of the 10 ug/ 100 cm² decontamination standard.

2.5.2 Building 301

2.5.2.1 Rinsate Samples

Analytical results from rinsate samples are listed on Table A-3 (Appendix A) and compared to New York State Water Quality Standards for Class GA groundwater (6 NYCRR § 703.5). Six compounds were detected at concentrations exceeding the NYSWQS (Table 2-2).

1,1'-Biphenyl was detected in 3 of 13 samples. 1,1'-Biphenyl exceeded the Standard of 5 ug/L in 1 of 13 samples with a maximum value of 7.7 ug/L.

3 or 4-Methylphenol was detected in 1 of 13 samples. 3 or 4-Methylphenol exceeded the Standard of 1 ug/L in 1 of 13 samples with a maximum value of 7.7 ug/L.

Bis(2-Ethylhexyl)phthalate was detected in 6 of 13 samples Bis(2-Ethylhexyl)phthalate exceeded the Standard of 5 ug/L in 2 of 13 samples with a maximum value of 12.7 ug/L.

Cadmium was detected in 4 of 16 samples. Cadmium exceeded the Standard of 5 ug/L in 1 of 16 samples with a maximum value of 6.23 ug/L. No cadmium concentrations were greater than the GEL of 10 ug/L.

Iron was detected in 16 of 16 samples. Iron exceeded the Standard of 300 ug/L in 6 of 16 samples with a maximum value of 2,930 ug/L.

Lead was detected in 16 of 16 samples. Lead exceeded the Standard of 25 ug/L in 12 of 16 samples with a maximum value of 1,050 ug/L.

2.5.2.2 PCB Wipe Samples

Analytical results from the PCB wipe samples are listed on Table A-4 (Appendix A) and compared to the 10 ug/100 cm² decontamination standard for non-porous surfaces. There were no detections or exceedances of the 10 ug/ 100 cm² decontamination standard.

2.5.2.3 PCB Chip Samples

Analytical results from the chip samples are listed on Table A-5 (Appendix A) and compared to the 1,000 ug/kg standard for surface soils (New York State Technical and

Administrative Guidance Memorandum (TAGM) 4046; Appendix A; Table 3). No exceedances of the 1,000 ug/kg were observed.

2.6 GROUNDS SURROUNDING BUILDINGS

No records of historical spills or releases of chemical materials exterior to Buildings 301 or 307 exist. Soil samples were collected to determine if evidence of a possible hazardous material release exists in the shallow soils surrounding the buildings. The samples were collected using a stainless steel spoon and mixing bowl from the top two to three inches of soil. VOC samples were collected in a 5-gram syringe and placed in VOA vials. The soil samples were analyzed for TCL VOC, SVOC, PCB, and TAL metals.

2.6.1 Building 307

Twelve (12) shallow surface soil samples, plus additional QA/QC samples, were collected from the soil exterior of Building 307. See Figure 2-5 for locations.

The surface surrounding Building 307 consisted of coarse gravel and vegetation. As necessary, this surface cover was removed and the native soils were sampled. All samples were collected within two feet of the exterior walls.

2.6.1.1 Soil Sample Results

Analytical results from the soil samples are listed on Table A-6 (Appendix A). Six compounds were detected at concentrations exceeding the TAGM 4046 Soil Cleanup Objectives (Table 2-3).

2.6.2 Building 301

Twelve (12) shallow surface soil samples, plus additional QA/QC samples were collected from the soil exterior of Building 301. See Figure 2-6 for locations.

The surface surrounding Building 301 was comprised of a tar/asphalt and gravel material on the north, east and west sides (all samples, except 04). The south side surface was grassy. On the east side, the surface soil samples were collected within 7 feet of the railroad tracks (05, 06) and sample location 07 and 08 were 3 feet and 1.5 feet from the railroad tracks, respectively. Additionally, all samples were collected from within 2 feet of the Building 301 wall, with the exception of sample 04, which was approximately 8 feet from the wall. Sample 04 was moved 8 feet from the wall to avoid a concrete pad so that native soils could be sampled.

The field crew removed the top cover of asphalt/tar and attempted to only sample the underling soil. Attempts were made to remove any asphalt/tar material before collecting the sample.

2.6.2.1 Soil Sample Results

Analytical results from the soil samples are listed on Table A-7 (Appendix A). Nineteen compounds were detected at concentrations exceeding the TAGM 4046 Soil Cleanup Objectives (Table 2-4).

2.7 SURVEY PLAT

Not required. No hazardous wastes are remaining at these sites.

2.8 PROFESSIONAL ENGINEER REVIEW AND CERTIFICATIFICATION

As per 6 NYCRR Part 373-3.7(f), this report shall serve as certification of the closures of Building 307 and Building 301. David Babcock, P.E. has reviewed this report and certifies that the work was done in accordance with the approved closure plan and 6 NYCRR Part 373-3.7. See Certification of Closure at the beginning of this report.

2.9 SCHEDULE

A letter announcing the intended closure work schedule was forwarded to the NYSDEC on April 4, 2003.

Building decontamination was completed between April 14, 2003 and April 16, 2003.

Post decontamination confirmatory sampling started on April 17, 2003 and was completed on April 24, 2003.

2.10 PHOTOGRAPHIC DOCUMENTATION

Photographic documentation of the decontamination effort and the confirmatory sampling can be found in the Daily Field Reports in Appendix C.

SEAD-1 (BUILDING 307) RINSATE SAMPLE DATA EXCEEDANCE COMPOUNDS ONLY

Location ID							INT/FLR	INT/FLR	INT/FLR	INT/FLR	INT/FLR	INT/FLR	INT/FLR	INT/FLR
Bldg ID/Grid Number (2)							R307-4	R307-13	R307-13	R307-15	R307-16	R307-18	R307-64	R307-77
Sample Type							RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE
Field Sample ID							15001	15004	15003	15013	15002	15000	15011	15012
Sample Date	ample Date							4/22/2003	4/22/2003	4/23/2003	4/22/2003	4/22/2003	4/23/2003	4/23/2003
Sample Designation							SA	DU	SA	SA	SA	SA	SA	SA
Parameter	Units	Maximum Detected Value	Action Level	No. of Exceedances	No. of	No. of Samples Analyzed (1)	Value (Q)	Value (Q)	Value (Q)) Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Toluene	UG/L	8.4	5	3	4	18	8.4	1 0	1 U	1 U	1 0	6:7	1 U	1 U
Bis(2-Ethylhexyl)phthalate	UG/L	10.8	5	5	6	18	10.3 U	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	5.6 J	7.1 J
Pentachlorophenol	UG/L	8.9	1	2	2	18	10.3 U	10.2 U	10.2 U	11.1 U	10.3 U	8.9 NJ	11 U	9.7 R
Arsenic	UG/L	30.1	25	5	15	19	9.59	27.3	14.1	7.26	10.8	264	16.9	4.1 U
Cadmium	UG/L	7.18	5	2	17	19	1.27 J	4.16	2.05	0.808 J	1.57	7.18	5:76	0.807 U
iron	UG/L	3880	300	14	17	19	843	3830	1740	653	1640	3190	3880	82
Lead	UG/L	165	25	13	18	19	73.1	165	88.2	27.4	42.7	116	118	10.1

Location ID		INT/FLR		INT/FLR	INT/FLR	INT/RAMP	INT/RAMP	EXT/RAMP	INT/FLR
Bldg ID/Grid Number (2)		R307-84		R307-90	R307-90 R3	307-RMP-1 (49)	R307-RMP-2 (58)	R307-EXT	R307-EXT2
Sample Type		RINSATE		RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE
Field Sample ID		15009		15010	015010D	15014	15015	15016	15017
Sample Date		4/22/2003		4/22/2003	4/22/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003
Sample Designation		SA		SA	DU	SA	SA	SA	SA
Parameter	Units .	Value (0	Q)	Value (Q)	Value (Q)	Value (Q) Value (0	Q) Value (Q)	Value (Q)
Toluene	UG/L	1 U		1 Ü		1 0	1 1 0	1 U	17.2
Bis(2-Ethylhexyl)phthalate	UG/L	10.2 U		4.6 U		8.7 J	5.9 J	10.8 3	3.6 J
Pentachlorophenol	UG/L	10.2 U	J	5.9 J		10.5	9.6 U	11.2 U	9.9 U
Arsenic	UG/L	26.3		30.1	29.4	5.02	8.75	4.1 U	4.1 U
Cadmium	UG/L	2.03		3.25	3.39	1.3 J	2.79 J	0.877 J	0.807 U
Iron	UG/L	1890		767	736	2390	1760	2450	1270
Lead	UG/L	64.9		125	124	81.6	115	106	16.9

NOTES:

SA = Sample

DU = Duplicate

Q = Data Qualifier

U = Undetected

J = Estimated

R ≈ Rejected

FLR = Floor (Coated Concrete)

INT = Interior

EXT = Exterior

RAMP = RAMP Entrance to Building

RMP = Ramp

NOTES:

- (1) Number of samples analyzed includes all QA/QC samples Samples with no exceedances do not appear on this table
- (2) The 2nd part of the designation identifies the grid location on Figure 2-1 (i.e: R307-4 = grid #4)

SEAD1 Report Tables\Rinsate - Exceedances

SEAD-2 (BUILDING 301) RINSATE SAMPLE DATA EXCEEDANCE COMPOUNDS ONLY

Location ID							EXT/DOCK	EXT/DOCK	EXT/DOCK	EXT/DOCK	EXT/RAMP	EXT/RAMP	EXT/STAIR
Bldg ID/Grid Number (2)							R301-1	R301-4	R301-13	R301-90	R301-30	R301-93	R301-84
Sample Type									RINSATE	RINSATE	RINSATE	RINSATE	RINSATE
Field Sample ID	V					25011	25015	25014	25010	25013	25012	25009	
Sample Date						4/24/2003	4/24/2003	4/24/2003	4/24/2003	4/24/2003	4/24/2003	4/24/2003	
Sample Designation							SA	SA	SA	SA	SA	SA	SA
Parameter	Units	Maximum Detected Value	Action Level	No. of Exceedances	No. of Detections	No. of Samples Analyzed (1)	Value (Q	Value (0	Q) Value (Q) Value (Q)	Value (Q) Value (Q)	Value (Q)
1,1'-Biphenyl	UG/L	7.7	5	1	3	13	44.4 U	0.51 J	2.2 J	7.7 J	10.9 U		
3 or 4-Methylphenol	UG/L	3.4	1	1	1	13	44.4 U	9.9 U	40 U	3.4 J	10.9 U		
Bis(2-Ethylhexyl)phthalate	UG/L	12.7	5	2	6	13	6.8 U	4.2 U	40 U	40.8 U	5.4 U		
Cadmium	UG/L	6.23	5	1	4	16	0.807 U	0.807 U	0.807 U	4.17	0.807 U	0.807 U	6.23
Iron	UG/L	2930	300	6	16	16	302	2050	639	2320	296	168	2930
Lead	UG/L	1050	25	12	16	16	93.2	284	64	1050	112	213	602

Location ID		INT/FLR	INT/RAMP	INT/FLR	INT/FLR	INT/FLR	INT/RAMP
Bldg ID/Grid Number (2)		R301-28	R301-42	R301-43	R301-63	R301-65	R301-73
Sample Type		RINSATE	RINSATE	RINSATE	RINSATE	RINSATE	RINSATE
Field Sample ID		25000	25008	25007	25006	25004	25005
Sample Date		4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003
Sample Designation		SA	SA	SA	SA	SA	SA
Parameter	Units	Value (Q)					
1,1'-Biphenyl	UG/L	10.8 U	11.1 U	10 U	10.8 U	11.1 U	
3 or 4-Methylphenol	UG/L	10.8 U	11.1 U	10 U	10.8 U	11.1 U	
Bis(2-Ethylhexyl)phthalate	UG/L	3.3 J	4.4 J	12:7	12 19.5 J	2.1 J	
Cadmium	UG/L	0.807 U	1.2 J	0.807 U	0.807 U	0.807 U	1.57 B
Iron	UG/L	466	76.5	102	20.7 J	26.7 J	205
Lead	UG/L	584	146	209	22	78.7	304

NOTES:

SA = Sample

DU = Duplicate

Q = Data Qualifier

U = Undetected

J = Estimated

R-

DOCK = Loading Dock (Gravel on Tar/Asphalt Base over Concrete)

EXT = Exterior

1NT = Interior

RAMP = Ramp Entrance to Building

FLR = Floor (Coated Conrete)

STAIR = Concrete Stairs

NOTES:

- Number of samples analyzed includes all QA/QC samples Samples with no exceedances do not appear on this table
- (2) The 2nd part of the designation identifies the grid location on Figure 2-3 (i.e: R301-1 = grid #1)

SEAD-1 (BLDG 307) EXTERIOR SOIL DATA EXCEEDANCE COMPOUNDS ONLY

Location ID							SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1
Bldg ID/Sample Location	(2)						SS307-00	SS307-11	SS307-01	SS307-02	SS307-03	SS307-04	SS307-05
Sample Type	`						SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Field Sample ID						11000	11011	11001	11002	11003	11004	011005D	
Sample Date						4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	
Sample Designation							SA	DU	SA	SA	SA	SA	DU
Parameter	Units	Maximum Detected Value	Action Level	No. of	No. of Detections	No. of Samples Analyzed (1)	Value (Q)	Value (Q)	Value (Q)				
Benzo(a)anthracene	UG/KG	514	224	3	7	12	140 U	145 U	402	514	202	34.9 U	
Benzo(a)pyrene	UG/KG	561	61	11	11	12	140 UJ	1334 NJ	387	561	283	105	
Benzo(b)fluoranthene	UG/KG	1140	1100	1	12	12	692 J	840	866	1140	344	237	
Chrysene	UG/KG	591	400	3	12	12	383	427	405	591	239	118	
Calcium	UG/KG	306000000	293000000	1	13	13	209000000	155000000	178000000	245000000	173000000	19600000	12700000
Mercury	UG/KG	370	130	2	13	13	65.1	61.8	36.9	18.8	22.1	39.8	370
Sodium	UG/KG		269000	1	12	13	88100	68000	77700	348000	85200 U	232000	51200
Zinc	UG/KG		126000	13	13	13	2930000	2470000	905000	16200000	Net 9650000	5800000	180000

Location ID		SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1
Bldg ID/Sample Location	(2)	SS307-05	SS307-06	SS307-07	SS307-08	SS307-09	SS307-10
Sample Type	, ,	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Field Sample ID		11005	11006	11007	11008	11009	11010
Sample Date		 4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003
Sample Designation		 SA	SA	SA	SA	SA	SA
Parameter	Units	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Benzo(a)anthracene	UG/KG	211	38.4 U	185	291	36.7 U	166
Benzo(a)pyrene	UG/KG	283	188	273	360	162	226
Benzo(b)fluoranthene	UG/KG	367	387	383	578	245	308
Chrysene	UG/KG	188	194	219	302	190	159
Calcium	UG/KG	10900000	13400000	4090000	7270000	306000000	159000000
Mercury	UG/KG	354	47.3	48.3	62	13.9	64.1
Sodium	UG/KG	46200	177000	161000	158000	88600	96700
Zinc	UG/KG	157000	6350000	8660000	14100000	3020000	1050000

NOTES:

NOTES

SA = Sample

DU = Duplicate

SS = Surface Soit

Q = Data Qualifler

U = Undetected

J = Estimated

(1) - Number of samples analyzed includes all QA/QC samples

(1) Italian of a sample analyzes moras an arras samples

(2) - The 2nd part of the designation identifies the sample location on Figure 2-5 (i.e: SS307-00 = sample #00)

SEAD- 2 (BLDG 301) EXTERIOR SOIL DATA EXCEEDANCE COMPOUNDS ONLY

Location ID							SEAD-2												
Bldg (D/Location (2)							SS301-00	SS301-01	SS301-02	SS301-03	SS301-04	SS301-04	SS301-05	SS301-06	SS301-07	SS301-08	SS301-09	SS301-20	SS301-21
Sample Type							SOIL												
Field Sample ID							21000	21001	21002	21003	021004D	21004	21005	21006	21007	21008	21009	21020	21021
Sample Date							4/17/2003	4/17/2003	4/17/2003	4/17/2003	4/17/2003	4/17/2003	4/17/2003	4/17/2003	4/17/2003	4/17/2003	4/17/2003	4/17/2003	4/17/2003
Sample Designation							SA	SA	SA	SA	DU	SA	DU						
Parameter	Units	Maximum Detected Value	Action Level	No. of	No. of Detections	No. of Samples Analyzed (1)	Value (Q)												
Benzo(a)anthracene	UG/KG	66600	224	12	12	12	39300 J	4670 J	7690 J	27900 J		1330	1749	11300 J	66600 J	9100 J	3300 J	2660	19400 J
Benzo(a)pyrene	UG/KG	56900	61	12	12	12	31600 J	5300 J	7240 J	22900 J		. 1000	1710	11500 J	56900 J	, 8840 J	3240 J	2100 J	19600 J
Benzo(b)fluoranthene	UG/KG	102000	1100	12	12	12	'56700 J	6540 J	8980 J	28800 J		1670	2510	11900 J	102000 J	12500 J	4050 J	3210 J	22700 J
Benzo(k)fluoranthene	UG/KG	11700	1100	7	7	12	1370 UJ	3660 J	4340 J	11700 J		41.4 U	34.4 U	5240 J	4080 UJ	5760 J	1540 J	35.5 UJ	11200 J
Chrysene	UG/KG	67700	400	12	12	12	35000 J	5340 J	7950 J	29900 J		1150	2060	12200 J	67700 J	9480 J	4150 J	2620	20000 J
Dibenz(a,h)anthracene	UG/KG	19900	14	3	3	12	19900 J	346 UJ	354 UJ	1380 UJ		.281	354	364 UJ	4080 UJ	375 UJ	353 UJ	35 5 UJ	356 UJ
Dibenzofuran	UG/KG	22100	6200	2	12	12	11300 J	250 J	761 J	2210 J		265 J	40.9 J	1750 J	22100 J	2300 J	468 J	46.3 J	5000 J
Fluoranthene	UG/KG	151000	50000	3	12	12	188900 J	9100 J	17400 J	53200 J		2560	1500	17400 J	151000 J	19400 J	6980 J	2490	34500 J
Indeno(1,2,3-cd)pyrene	UG/KG	24900	3200	7	12	12	11600 J	2630 J	3640 J	10700 J		572	662	3770 J	24900 J	4020 J	1730 J	864	7020 J
Naphthalene	UG/KG	33900	13000	1	8	12	838 J	346 UJ	354 UJ	1380 UJ		572	62.7	2030 J	33900 J	2440 J	353 UJ	106	10100 J
Phenanthrene	UG/KG	159000	50000	2	12	12	81500 J	5340 J	12400 J	38300 J		2000	669	14700 J	159000 J	18800 J	5240 J	1050	34100 J
Phenol	UG/KG	1680	30	3	3	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	1680 J	178 J	3530 UJ	355 U	. 372 J
Pyrene	UG/KG	148000	50000	3	12	12	98600 J	10500 J	15700 J	61200		2150	3280	23500 J	1.48000 J	18400 J	8150 J	5350	39000 J
Cadmium	UG/KG	4200	2900	3	12	13	359	134 J	78.8 U	150 J	329	325 J	97.4 J	300 J	4120	4200	470	4200	251 J
Chromium	UG/KG	52800	32700	3	13	13	6410	8080	7570	10700	152800	52300	5230	8970	30700	39100	11900	17400	12700
Copper	UG/KG	86400	62800	1	13	13	8110	10600	9500	11400	35100	34300	6230	11600	86400	53800	14100	16900	10700
Lead	UG/KG	1570000	400000	1	13	13	24700	23400	14800	26800	29300	27600	9510	97900	1570000	372000	62800	77600	141000
Magnesium	UG/KG		29100000	8	13	13	19800000	32500000	35700000	37500000	5230000	5670000	56100000	34800000	9450000	6580000	36700000	53900000	38200000
Zinc	UG/KG	752000	126000	4	13	13	28100	36200	29400	63900	156000	151000	30600	56600	752000	325000	76400	88000	57100

NOTES: SA = Sample DU = Duplicate O = Data Qualifier U = Undetected J = Estimated

NOTES:
(1) - Number of samples analyzed includes all QA/QC samples

(2) - The 2nd part of the designation identifies the grid location on Figure 2-3 (i.e: SS301-00 = sample #00)

GRID #	FIELD SAMPLE #
4	15001
13	15003,15004
15	15013
16	15002
18	15000
43	15005
47	15006
49	15014
58	15015
63	15007
64	15011
65	15008
77	15012
84	15009
90	15010,15010D
■ EXT	15016
■EXT2	15017

FIGURE 2-1

SENECA ARMY DEPOT ACTIVITY
RCRA CLOSURE
BUILDING 307

RINSATE SAMPLE LOCATIONS

PARSONS

290 ELWOOD DAVIS ROAD, SUITE 312, LIVERPOOL, N.Y. 13088, PHONE: 315-451-9560

	in the state of th	0	1		2	3	4	5	6	7	8	9		
							STAI	RS						
9		90				93								9
8	The second secon	>0				RAMP SLOPE	84							8
7		RECEIVING/ SHIPPING	JOCK			73		— ENTF	RY OVE	RHEAD				7
6		REC				63		65			68			6
5 "0-													.4"	5
36,					42	43	MONOL RAMP	ITHIC	K FLOOR, CURB	47			23,	4
3		30	2000	-	RAMP SLOPE		ENTRY							3
2	### S T-1		RAMP SLOPE		SLOPE		DOOR				28			2
1						13			RAMP				_	1
0			0	1			04	_	SLOPE					0
			-	-			-	35'-	4"			-		
		0	1		2	3	4	5	6	7	8	9		

GRID #	FIELD SAMPLE #
1	25011
4	25015
13	25014
28	25000
30	25013
42	25008
43	25007
47	25002,25003
63	25006
65	25004
68	25001
73	25005
84	25009
90	25010
93	25012

FIGURE 2-3

SENECA ARMY DEPOT ACTIVITY RCRA CLOSURE BUILDING 301

RINSATE SAMPLE LOCATIONS

PARSONS

290 ELWOOD DAVIS ROAD, SUITE 312, LIVERPOOL, N.Y. 13088, PHONE: 315-451-9560

20

290 ELWOOD DAVIS ROAD, SUITE 312, LIVERPOOL, N.Y. 13088, PHONE: 315-451-9560

P:\743157 Seneca\CAD\43157F07.dwg, 08/21/03 at 15:56, MAB, 1=1

LEGEND

• 01 SURFACE SOIL SAMPLE LOCATIONS

FIGURE 2-6

SENECA ARMY DEPOT ACTIVITY RCRA CLOSURE BUILDING 301

SOIL SAMPLE LOCATIONS

PARSONS

290 ELWOOD DAVIS ROAD, SUITE 312, LIVERPOOL, N.Y. 13088, PHONE: 315-451-9560

P:\743157 Seneca\CAD\43157F05.dwg, 09/04/03 at 08:12, MAB, 1=1 No XREFs

SECTION 3

DATA ANALYSIS

3.1 BUILDING 307

3.1.1 Rinsate Samples

The analytical results from the rinsate sampling were compared to the NYS GWQS. This Standard was used as a guidance to confirm the degree of decontamination achieved.

The only VOC detected at a concentration greater than the Standard was toluene. Sample 4; 8.4 parts per billion (ppb) and sample 18; 6.7 ppb are less than 4 ppb greater than the 5 ppb Standard. Sample EXT2; 17.2 ppb was collected on the concrete ramp leading into the building, however, the other exterior ramp sample (EXT, collected within 4 feet of EXT2 was non-detect for toluene.

There were two SVOC's that had exceedances of the Standard. Bis(2-Ethylhexyl)phthalate exceeded the Standard in samples 49, 58, 64, 77 and the exterior ramp (8.7, 5.9, 5.6, 7.1 and 10.8 ppb). These results are less than 6 ppb greater than the 5 ppb Standard. Pentachlorophenol exceeded the Standard in samples 18 and 90 (8.9 and 5.9 ppb). These results are less than 8 ppb greater than the 1 ppb Standard.

Four metals (arsenic, cadmium, iron and lead) were detected at concentrations greater than the Standard. The maximum values of arsenic and cadmium detected are less than the Groundwater Effluent Limitation (GEL).

Iron, at a maximum of 3,880 ug/L is not a hazardous constituent and therefore not regulated as part of this decontamination effort.

Lead concentrations at a maximum of 165 ug/L are likely due to migration of dust into the building through the open to the environment, passive ventilation system. Even so, the maximum detected concentration is far below the hazardous waste regulated value of 5,000 ug/L.

3.1.2 PCB Samples

No PCBs were detected.

3.1.3 Soil Samples

The analytical results from the soil sampling were compared to NYS TAGM 4046 guidelines. The purpose was to assess whether grounds surrounding the building had been impacted by waste materials from ongoing operations during the life of this building.

Four SVOCs were detected at concentrations greater than TAGM 4046 guidelines. Benzo(a)anthracene exceeded the guideline in samples 1, 2 and 8 (0.402, 0.514 and 0.291 parts per million (ppm)). Benzo(a)pyrene exceeded the guideline in 11 of 12 samples with a

3.2.3 Soil Samples

The analytical results from the soil sampling were compared to NYS TAGM 4046 guidelines. The purpose was to assess whether grounds surrounding the building had been impacted by waste materials from ongoing operations during the life of this building.

There were no VOC exceedances of the TAGM 4046 guidelines.

Thirteen SVOCs were detected at concentrations greater than TAGM 4046 guidelines. Benzo(a)anthracene, benzo(b)pyrene, benzo(b)fluoranthene and chrysene exceeded the guidelines in all 12 samples collected. Benzo(k)fluoranthene, dibenz(a,h)anthracene, dibenzofuran, fluoranthene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, phenol and pyrene exceeded the guidelines with less frequency. SVOC concentrations above TAGM 4046 guidelines are typically seen in industrial areas. Building 301 is situated directly adjacent to a railroad spur (Figure 1). Dust from the railroad operations is the likely source of the SVOC exceedances.

Four metals (cadmium, copper, magnesium and zinc) were detected at concentrations greater than the Senecawide Maximum Background value. However, all three of these metals are non-hazardous by regulatory status. The magnitude of the exceedances is small and is likely due to variations in normal soil background levels.

Lead exceeded the EPA residential standard of 400 ppm in one of twelve sample locations. Sample 7 (1,570 ppm). This level is considered normal for an industrial area.

Chromuim was detected at concentrations marginally greater than Senecawide Maximum Background value in two of twelve locations (three samples total including one duplicate). The detected values are 52.8 and 39.1 ppm. The Senecawide Maximum Background concentration is 32.7 ppm. The magnitude of the exceedance is negligible and is likely due to variations in normal soil background levels.

3.3 CONCLUSIONS

3.3.1 Building 307

- Building 307 is free of all PCB contamination.
- Generally, the decontamination effort removed all visible contamination and produced non-hazardous rinsewater for disposal. Despite the minor exceedances of the GWQS in the confirmatory rinsate samples, it can be concluded that the building is sufficiently decontaminated.
- Soil sample results are in general what might be expected in an industrial setting. It does not appear that waste storage operations caused any impact to the surrounding soils.

3.3.2 Building 301

Building 307 is free of all PCB contamination.

- Generally, the decontamination effort removed all visible contamination and produced non-hazardous rinsewater for disposal. Despite the minor exceedances of the GWQS in the confirmatory rinsate samples, it can be concluded that the building is sufficiently decontaminated.
- Soil sample results are generally what would be expected in an industrial setting. It does not appear that waste storage operations caused any impact to the surrounding soils.

3.4 RECOMMENDATIONS

- No further decontamination efforts are required. The confirmatory sampling shows a sufficient degree of decontamination was achieved.
- Close SEAD-1 and SEAD-2 with regulatory concurrence.

APPENDIX A

ANALYTICAL RESULTS

- **Table A-1 Building 307 Rinsate Samples**
- Table A-2 Building 307 PCB Wipe Samples
- **Table A-3 Building 301 Rinsate Samples**
- **Table A-4 Building 301 PCB Wipe Samples**
- Table A-5 Building 301 PCB Chip Samples
- **Table A-6 Building 307 Soil Samples**
- **Table A-7 Building 301 Soil Samples**
- Table A-8 Washwater for Disposal

(Tables A-1 through A-8 contain summarized analytical results. Full data reports are included on the attached disk).

SEAD -1 (BLDG 307) RINSEATE WATER DATA ALL COMPOUNDS

Location ID Sample Type/Bldg ID/Grid N	Number	SEAD-1	SEAD-1 R307-13	SEAD-1 R307-15	SEAD-1 R307-16	SEAD-1 R307-18	SEAD-1 R307-4	SEAD-1 R307-43	SEAD-1	SEAD-1 R307-63	SEAD-1 R307-64	SEAD-1 R307-65	SEAD-1	SEAD-1 R307-84	SEAD-1 R307-90	SEAD-1 R307-90	SEAD-1	SEAD-1	SEAD-1	SEAD-1
Sample Type Blog to/Glid N		RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	R307-EXTERIOR1	R307-RMP-1	R307-RMP-2	R307-EXTERIOR2						
Field Sample ID		15004	15003	15013	15002	15000	15001	15005	15006	15007	15011	15008	15012	15009	015010D	15010	15016	15014	15015	15017
Sample Date		4/22/2003 DU	4/22/2003 SA	4/23/2003	4/22/2003	4/22/2003	4/22/2003	4/22/2003	4/22/2003	4/22/2003	4/23/2003	4/22/2003	4/23/2003	4/22/2003	4/22/2003	4/22/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003
Sample Designation Parameter	Units Max Det Level Ex Det No.	Value (Q)		SA Value (Q)	SA Value (Q)	SA Value (Q)	SA Value (C	SA Value (Q) Value (SA Value	(Q) Value (SA Value (Q)	SA Value (0	SA Value (Q)	Value (Q)	SA Value (Q)	SA Value (Q)	SA Value (Q)	SA Value (Q)	SA Value (Q)
1,1,1-Trichloroethane	UG/L 0 0% 5 0 0 17	1 R	1 R	10	1 R	1 1 R	1 R	1 1 6			R 1U		1 0	1 R	value (u)	1 R	1 U	1 0	1 U	
1,1,2,2-Tetrachloroethane	UG/L 0 0% 5 0 0 17	1 UJ			1 UJ	1 W	1 U.				UJ 1 U			1 UJ		1 UJ	1 U	1 U	1 U	
1,1,2-Trichloroethane 1,1-Dichloroethane	UG/L 0 0% 1 0 0 17 UG/L 0 0% 5 0 0 17	1 0			10	10	10	1 1			U 1 U			10		1 U	1 0	1 0	1 U	
1,1-Dichloroethene	UG/L 0 0% 5 0 0 17	10			10	110	1 0				U 1 U			1 1 0		1 U	1 0	1 U	1 U	
1,2-Dichloroethane	UG/L 0 0% 0.6 0 0 17	1 UJ			1 W	1 W	1 U.				UJ 1U			1 UJ		1 UJ		1 U	1 U	
1,2-Dichloropropane	UG/L 0 0% 1 0 0 17	10	1 U		1 U		1 U	1 U			U 1 U			1 U		1 U				
Acetone Benzene	UG/L 5.6 24% 0 4 17	5 U	5 U		2.6 J	5.6	3.5 J	5 0			U 5 U			3.2 J	-	5 U	5 U	5 U	5 U	
Bromodichloromethane	UG/L 0 0% 0 0 17	10	10		10	1 U	10	110			U 1U			10		110		10	10	
Bromoform	UG/L 0 0% 0 0 17	1 U			1 U	1 U	1 U	1 0		1	U 1 U			1 U		1 U		1 U	1 U	1 U
Carbon disulfide Carbon tetrachloride	UG/L 0 0% 0 0 17	5 U	5 U		5 U	5 U	5 U	5 U			U 5 U					5 U	5 U	5 U	5 U	
Chlorobenzene	UG/L 0 0% 5 0 0 17	110	1 R		1 R	1 R	1111	1 R	1 1 F		R 1U				-	1 R	10	10	1 U	110
Chlorodibromomethane	UG/L 0 0% 0 0 17	1 U	1 0		1 U	10	1 0	1 0	110		U 1U	1 U				10	10	1 U	1 0	10
Chloroethane	UG/L 0 0% 5 0 0 17	1 UJ					1 UJ	1 U	J 1 L		UJ 1 U					1 UJ		1 U	1 U	
Chloroform Cis-1,2-Dichloroethene	UG/L 0 0% 7 0 0 17 UG/L 0 0% 5 0 0 17	1 U			1 U	1 U	10	110	1 1		U 1 U	1 U				10		1 0	1 U	
Cis-1,3-Dichloropropene	UG/L 0 0% 0.4 0 0 17	10		10	10	1 U	10	110	10		U 1U					1 U		10		10
Ethyl benzene	UG/L 0 0% 5 0 0 17	1 U		1 U	1 U	1 U	1 U		1 1	1	U 1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
Methyl bromide Methyl butyl ketone	UG/L 0 0% 5 0 0 17 UG/L 0 0% 0 0 17	1 U		1 UJ		1 U	1 U	10			1 0				-	1 0		10	1 U	10
Methyl chloride	UG/L 0 0% 5 0 0 17	1 R		5 U	5 U	5 U	5 U				U 5 U		5 U			5 U		5 U	5 U	
Methyl ethyl ketone	UG/L 0 0% 0 0 17	5 UJ	5 W	5 U	5 W	5 W	5 W	5 U	J 5 U	J 5	UJ 5 U	5 UJ	5 U	5 UJ		5 UJ			5 U	5 U
Methyl isobutyl ketone Methylene chloride	UG/L 0 0% 0 0 17	5 UJ			5 UJ		5 W	5 U		J 5	W 5 U				-	5 UJ		5 U	5 U	
Styrene	UG/L 0 0% 5 0 0 17	5 U		5 UJ	5 U	5 U	5 U	50	5 0	5	U 5 U	5 U	5 U.		-	5 U		50	5 U	
Tetrachloroethene	UG/L 0 0% 5 0 0 17	1 U		1 U	1 U	1 U	10		1 0		U 1U	1 U	1 U			1 U		1 U	1 U	1 U
Total Vidence	UG/L 8.4 18% 5 2 3 17	1 U			1 U	6.7	8.4	2.2			J 1 U		1 U			1 U		1 U	1 U	17.2
Total Xylenes Trans-1,2-Dichloroethene	UG/L 0 0% 5 0 0 17 UG/L 0 0% 5 0 0 17	1 U		1 0	110	1 U	1 U	10	1 0		U 1 U		1 U		-	1 U	1 0	10	10	
Trans-1,3-Dichloropropene	UG/L 0 0% 0.4 0 0 17	10			10	10	10				10		10			10		10	110	
Trichloroethene	UG/L 0 0% 5 0 0 17	1 U			1 U	1 U	1 U	1 U		1	J 1 U		1 U			1 U	1 U	1 U	1 U	1 U
Vinyl acetate Vinyl chloride	UG/L 0 0% 0 0 17 UG/L 0 0% 2 0 0 17	5 UJ			5 W	5 W	5 UJ				JJ 5 U	J 5 UJ				5 UJ		5 U	5 U	5 U
1,1'-Biphenyl	UG/L 0 0% 5 0 0 17	10			110	1 U	1 U	1 U			J 1 U	1.10	9.7 U	1 U		1 0		10.5 U	9.6 U	9.9 U
1,2,4-Trichlorobenzene	UG/L 0 0% 5 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U					9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	UG/L 0 0% 3 0 0 17 UG/L 0 0% 3 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U					9.7 U			10.3 U	11.2 U	10.5 U	9.6 U	9.9 U 9.9 U 9.9 U
1,4-Dichlorobenzene	UG/L 0 0% 3 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U					9.7 U 9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
2,4,5-Trichlorophenol	UG/L 0 0% 1 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U				And the second s	9.7 R			10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
2,4,6-Trichlorophenol	UG/L 0 0% 1 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U					9.7 R			10.3 U	11.2 U	10.5 U	9.6 U	9.9 U 9.9 U
2,4-Dichlorophenol 2,4-Dimethylphenol	UG/L 0 0% 5 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U					9.7 R 9.7 R			10.3 U	11.2 U	10.5 U	9.6 U	9.9 U 9.9 U
2,4-Dinitrophenol	UG/L 0 0% 0 0 17	20.4 UJ	20.4 UJ		20.6 UJ	24.4 UJ	20.6 UJ						19.4 R		-	20.6 UJ	22.5 U	21 U	19.2 U	19.8 U
2,4-Dinitrotoluene	UG/L 0 0% 5 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8	J 11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
2,6-Dinitrotoluene 2-Chloronaphthalene	UG/L 0 0% 5 0 0 17 UG/L 0 0% 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U		10.8			9.7 U 0.97 U		-	10.3 U	11.2 U	10.5 U	9.6 U	9.9 U 0.99 U
2-Chlorophenol	UG/L 0 0% 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	1 U 10.3 U	10.6 U					9.7 R		-	10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
2-Methylnaphthalene	UG/L 1.6 6% 0 1 17	1 U	1 U	1.1 U	1 U	1.6	1 U	1.1 U	1 0	1.1	J 1.1 U	1.1 U	0.97 U	1 U		1 U	1.1 U	1 U	0.96 U	0.99 U
2-Methylphenol 2-Nitroaniline	UG/L 0 0% 0 0 17 UG/L 0 0% 5 0 0 17	10.2 U 10.2 UJ	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U					9.7 R 9.7 U			10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
2-Nitrophenol	UG/L 0 0% 3 0 0 17	10.2 U	10.2 U	11.1 U	10.3 UJ	12.2 UJ 12.2 U	10.3 UJ 10.3 U	10,6 U					9.7 U		-	10.3 UJ 10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
3 or 4-Methylphenol	UG/L 0 0% 1 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8	J 11 U	11.1 U	9.7 R	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U 9.9 U
3,3'-Dichlorobenzidine 3-Nitroaniline	UG/L 0 0% 5 0 0 17 UG/L 0 0% 5 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U		10.8		11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
4,6-Dinitro-2-methylphenol	UG/L 0 0% 5 0 0 17	10.2 UJ 10.2 U	10.2 UJ 10.2 U	11.1 U	10.3 UJ 10.3 U	12.2 UJ 12.2 U	10.3 W 10.3 U	10.6 U.					9.7 U 9.7 R			10.3 UJ 10.3 U	11.2 U	10.5 U	9.6 U	U 9.9
4-Bromophenyl phenyl ether	UG/L 0 0% 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U		10.8	J 11 U	11.1 U	9.7 U 9.7 R	10.2 U		10.3 U	11.2 U	10.5 U 10.5 U	9.6 U	9.9 U 9.9 U
4-Chloro-3-methylphenol 4-Chloroaniline	UG/L 0 0% 1 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8	J 11 U				-	10.3 U	11.2 U	10.5 U	9.6 U	9911
4-Chlorophenyl phenyl ether	UG/L 0 0% 5 0 0 17 UG/L 0 0% 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U					9.7 U 9.7 U			10.3 U	11.2 U	10.5 U 10.5 U	9.6 U 9.6 U	
4-Nitroaniline	UG/L 0 0% 5 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U					9.7 U			10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
4-Nitrophenol	UG/L 0 0% 1 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8	J 11 U	11.1 U	9.7 R	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
Acenaphthene Acenaphthylene	UG/L 0 0% 0 0 17 UG/L 0 0% 0 0 17	1 U	1 U	1.1 U	10	1.2 U	1 U	1.1 U				1.1 U	0.97 U	1 U		10	1.1 U	1 U	0.96 U	0.99 U
Anthracene	UG/L 0 0% 0 0 17	1 U	1 U		1 U	1.2 U	1 U	1.1 U		1.1 (J 1.1 U 1.1 U	1.1 U	0.97 U	10		1 1 0	1.1 U	1 U	0.96 U	0.99 U
Atrazine	UG/L 0 0% 7.5 0 0 17		10.2 R	11.1 U	10.3 R	12.2 R	10.3 R	10.6 R	10 R				9.7 U	10.2 R		10.3 R	11.2 U	10.5 U	9.6 U	9.9 U
Benzaldehyde	UG/L 3 18% 0 3 17	10.2 U	10.2 U	11.1 U	0.84 J	3 J	10.3 U	0.83 J 1.1 U	10 U	10.8	J 11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
Benzo(a)anthracene Benzo(a)pyrene	UG/L 0 0% 0 0 17 UG/L 0 0% 0 0 0 17	1 U	1 0	1.1 U	1 U	1.2 U	1 U			1.1			0.97 U			1 U	1.1 U	1 0	0.96 U	
Benzo(b)fluoranthene	UG/L 1 6% 0 1 17	1 U	1 0		1 U	1.2 U	1 U	1.1 U					0.97 U 0.97 U			10	1.1 U	10	0.96 U	0.99 U 0.99 U
Benzo(ghi)perylene	UG/L 0 0% 0 0 17	10	1 U	1.1 U	1 U	1.2 U	1 U	1.1 U	10	1.1	J 1.1 U	1.1 U	0.97 U	1 U		1 U	1.1 U	1 U	0.96 U	0.99 U
Benzo(k)fluoranthene	UG/L 0 0% 0 0 17	1 U	1 U	1.1 U	1 U	1.2 U	1 U	1.1 U		1.1	1.1 U	1.1 U	0.97 U	1 U		1 U	1.1 U	1 U	0.96 U	0.99 U
Bis(2-Chloroethoxy)methane Bis(2-Chloroethyl)ether	UG/L 0 0% 5 0 0 17 UG/L 0 0% 1 0 0 17	10.2 U 10.2 U	10.2 U	11.1 UJ	10.3 U	12.2 U	10.3 U	10.6 U	10 U			11.1 U	9.7 UJ	10.2 U 10.2 U		10.3 U	11.2 UJ	10.5 UJ 10.5 U	9.6 W	9.9 W 9.9 U 9.9 W
Bis(2-Chloroisopropyl)ether	UG/L 0 0% 5 0 0 17	10.2 U	10.2 U	11.1 U 11.1 UJ	10.3 U	12.2 U	10.3 U	10.6 U				11.1 U	9.7 U 9.7 UJ	10.2 U		10.3 U	11.2 U 11.2 UJ	10.5 UJ	9.6 U 9.6 UJ	9.910
Bis(2-Ethylhexyl)phthalate	UG/L 10.8 29% 5 5 5 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	4.5 U	10.8 L	5.6 J	11.1 U	7.1 J	10.2 U		4.6 U	10.8 J	8.7 J	5.9 J	3.6 J
Butylbenzylphthalate Carbazole	UG/L 2.3 41% 0 7 17 UG/L 1.7 6% 0 1 17	10.2 U	1.2 J	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	0.95 J	10.8	1.1 J	11.1 U	1.1 J	10.2 U		10.3 U	0.79 J	2.3 J	2 J	9.9 U 9.9 U
Chrysene	UG/L 1.7 6% 0 1 17 UG/L 0 0% 0 0 17	10.2 U	10.2 U	11.1 U 1.1 U	10.3 U	12.2 U	10.3 U	10.6 U		10.8 L			9.7 U 0.97 U			10.3 U	1.7 J 1.1 U	10.5 U	9.6 U 0.96 U	9.9 U
Di-n-butylphthalate	UG/L 1.4 24% 50 0 4 17	10.2 U	10.2 U	1.1 J	10.3 U	12.2 U	10.3 U	3.9 U		3.4			1.3 J			1.2 U	11.2 U	10.5 U	1.3 J	9.9 U
Di-n-octylphthalate	UG/L 0 0% 0 0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8	11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
Dibenz(a,h)anthracene	UG/L 0 0% 0 17	1 0	1 U	1.1 U	1/U	1.2 U	1 U	1.1 U	1 U	1.1 (1.1 U	1.1 U	0.97 U	1 0		1 1 1	1.1 U	1 U	0.96 U	0.99[1]

SEAD -1 (BLDG 307) RINSEATE WATER DATA ALL COMPOUNDS

Location ID						SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1
Sample Type/Bldg ID/Grid Nu	ımber				_	R307-13	R307-13	R307-15	R307-16	R307-18	R307-4	R307-43	R307-47	R307-63	R307-64	R307-65	R307-77	R307-84	R307-90	R307-90	R307-EXTERIOR1	R307-RMP-1		R307-EXTERIOR2
Sample Type						RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE
Field Sample ID						15004	15003	15013	15002	15000	15001	15005	15006	15007	15011	15008	15012	15009	015010D	15010	15016	15014	15015	15017
Sample Date						4/22/2003 DU	4/22/2003 SA	4/23/2003	4/22/2003	4/22/2003	4/22/2003	4/22/2003	4/22/2003	4/22/2003	4/23/2003	4/22/2003 SA	4/23/2003 SA	4/22/2003	4/22/2003	4/22/2003	4/23/2003	4/23/2003	4/23/2003 SA	4/23/2003
Sample Designation Parameter	Links M.	Dot.	Lavel	Ev	Det No.			SA (C)	SA	SA	SA	SA	SA	SA (O)	SA Value (O)			SA (O)	DU	SA	SA	SA Yaku (O)		SA
Dibenzoluran		0%		0	0 17		Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)		Value (Q)	Value (Q)	Value (Q)	Value (Q)	10.2 U	Value (Q)	Value (Q		Value (Q)		
Diethyl phthalate		4 47%		0	8 17	10.00	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U 0.99 J	1110	11.10	9.7 U 9.7 U	1.1 J	-	10.3 U	11.2 U	10.5 U	9.6 U	9.9 U 9.9 U
Dimethylphthalate		0%		0	0 17		10.2 U	11.1 U	1.2 J 10.3 U	2.4 J 12.2 U	1.1 J 10.3 U	1 J 10.6 U	10 U	10.8 U	1111	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
Diphenylamine		0%		0	0 17	10.00	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
Fluoranthene	UG/L 1.			0	1 17		10.20	1.10	10.30	1.2 U	10.30	1.1 U	100	1.1 U	1111	1.10	0.97 U	10.20		10.30	1.4	10.50	0.96 U	0.99 U
Fluorene		0%		0		1 1	10	1.1 U	10	1.2 U	10	1.10	10	1.10	1.1U	1.110	0.97 U	10		1111	1.1 U	110	0.96 U	0.99 U
Hexachlorobenzene	UG/L C				0 17		10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
Hexachlorobutadiene		0%			0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	
Hexachlorocyclopentadiene	UG/L 0	0%	5	0	0 17	10.2 U	10.2 U	11.1 UJ	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 UJ	11.1 U	9.7 UJ	10.2 U		10.3 U	11.2 UJ	10.5 UJ	9.6 UJ	9.9 U 9.9 UJ
Hexachloroethane	UG/L 0	0%	5	0	0 17	10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
Indeno(1,2,3-cd)pyrene		0%		0	0 17	1 0	1 U	1.1 U	1 U	1.2 U	1 U	1.1 U	1 U	1.1 U	1.1 U	1.1 U	0.97 U	10		1 U		1 U	0.96 U	0.99 U
Isophorone		0%		0		10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U 9.9 U
N-Nitrosodipropylamine	UG/L 0			0		10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	
Naphthalene		0%		0		1 U	1 U	1.1 U	1 U	1.2 U	10	1.1 U	1 U	1.1 U	1.1 U	1.1 U	0.97 U	1 U		1 U		1 U	0.96 U	0.99 U
Nitrobenzene	UG/L 0					10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 U	11.1 U	9.7 U	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U 9.9 U
Pentachlorophenol	UG/L 8.					10.2 U	10.2 U	11.1 U	10.3 U	W 6.8	10.3 U	10.6 U	10 U	10.8 U	11 U	11.1 U	9.7 R	10.2 U		5.9 J	11.2 U	10.5 U	9.6 U	9.9 U
Phenanthrene	UG/L 1.			0		1 U	1 0	1,1 U	1 U	0.67 NJ	1 U	1.1 U	1 U	1.1 U	1.1 U	1.1 U	0.97 U	1 U		1 U	1.1 J	10	0.96 U	0.99 U
Phenol		0%	1	_		10.2 U	10.2 U	11.1 U	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 U	11.1 U	9.7 R	10.2 U		10.3 U	11.2 U	10.5 U	9.6 U	9.9 U
Pyrene alpha-Terpineol		6%	-		1 17	10	1 U	1.1 U	1 U	1.2 U	1 U	1.1 U	10	1.1 U	1.1 U	1.1 U	0.97 U	1 U		1 U		10	0.96 U	9.9 U 0.99 U 9.9 UJ
Aluminum	UG/L 300		-		0 17	10.2 U	10.2 U	11.1 UJ	10.3 U	12.2 U	10.3 U	10.6 U	10 U	10.8 U	11 UJ	11.1 U	9.7 U	10.2 U	000	10.3 U	11.2 UJ	10.5 UJ	9.6 UJ	9.9 (J)
Antimony	UG/L 0			0		2760 9.68 U	1320 5.31 U	416	747	1410	427	36.4 U	246	188	3000 6.81 U	32.2 U	36.2 J 6.81 U	1040 3.29 U	662 2.54 U	684 3.3 U	1730 6.81 U	1170 6.81 U	1230 6.81 U	654 6.81 U
Arsenic	UG/L 30					27.3	14.1	6.81 U 7.26	3.63 U 10.8	4.3 U	4.41 U 9.59	2.73 U 1.82 U	2.8 U 6.19	2.7 U 5.5	16.9	3.32 J	4.1 U	263	29.4	30.1	4.1 U	5.02	8.75	4.1 U
Barium	UG/L 10					45.2 Ü	25.7 U	87.1	82.3 J	44.9 U	9.59 25.4 U	64.4 J	64.9 J	107 J	87.5	100 J	68.8	33.2 U	84.2 J	85.4 J	36.4	24.9	61.8	66
Beryllium	UG/L 0.1		1000	0		0.145 J	0.118 U	0.133 U	0.118 U	0.118IU	0.118 U	0.118 U	0.118 U	0.118 U	0.133 U	0.118 U	0.133 U	0.118 U	0.118	0.118 U	0.133 U	0.133 U	0.133 U	0.133 U
Boron		1 72%	1000	0	13 18	92 J	51.1 J	79	53.1	45.7 U	27.1 U	891	42 U	54.6 J	37.5	34.1 U	16.5 J	19.2 U	121	123	15 J	11.4 J	36.1	16.7 J
Cadmium	UG/L 7.1	8 94%	5	2	17 18	4.16	2.05	0.808 J	1.57	7.18	1.27 J	0.507 J	1,32 J	1.04 J	5.76	0.471 J	0.807 U	2.03	3.39	3.25	0.877 J	1.3 J	2.79 J	0.807 U
Calcium	UG/L 578	00 94%		0	17 18	29800 J	18800 J	32800	35300 J	38800 J	13600 U	18900 J	29400 J	26900 J	57800	23500 J	24000	23200 J	43800 J	44200 J	30700	35300	28300	130000
Chromium	UG/L 29.			0	16 18	29.2	14.3	7.13	7.12	20.8	8.71	1.15 J	2.46 J	1.99 J	29.2	0.987 U	1.37 U	22.4	18.1	19.2	12.8	9.19	11.6	1.37 U
Cobalt		9 6%		0	1 18	1.5 U	0.535 U	1.88 U	1.17 U	1.39 U	0.352 U	0.541 U	0.466 U	1.11 U	2.09 J	1.02 U	1.88 U	0.724 U	1.03 U	1.02 U	1.88 U	1.88 U	1.88 U	1.88 U
Copper		7 83%			15 18	34.8	16.9	10.8	16	32.9	12.8	4.23 U	7,12 J	5.59 J	32	2.49 U	3.91 U	21.7	50.7	51.7	16.4	26.3	19.5	7.48
Iron					16 18	3830	1740	4653	1640	3190	# \$43	56.8 U	285	278	3880	35 U	82	1890	736	767	2450	∈ 2390	1760	1270
Lead		5 94%				165	38.1	TIA	42.7	116	73.1	4.51 J	15.5	12.1	118	2.9 U	10.1	61.9	T24	125	106	.81.6	115	16.9
Magnesium	UG/L 651			0		3710 J	2200 J	3370	4490 J	4730 J	1720 U	2010 J	2820 J	3010 J	6230	2660 J	2490	2530 J	2900 J	2970 J	6510	4970	3410	9940
Manganese Mercury	UG/L 10						44.1 J	37.9	50.5 J	93.2	28 J	14.1 J	25.4 J	30.2 J	103	21.2 J	16.1	50.8 J	71.9	73.2	101	89.9	68.5	193
Molybdenum		0%			0 18	0.052 U 0.705 U	0.052 U	0.052 U	0.052 U	0.166 J	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U 0.634 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U
Nickel	UG/L 14.					9.13 J	0.635 U 4.68 U	1.7 U	1.22 U	0.838 U	0.634 U	0.71 U	0.703 U	0.634 U	1.7 U	0.857 U 5.48 J	1.7 U 4.95 J	0.884 U 5.58 J	0.634 U	0.634 U	1.7 U	1.7 U	1.7 U 6.06	1.7 U
Phosphorous	UG/L 112			0		420	4.68 U	5.78	7.79 J 152 J	8.45 J 404	3.91 U	4.16 U 56.9 U	4.39 U	97.2 U	405	5.48 J	97.7	167 J	1100	1120	176	172	210	120
Potassium	UG/L 712			0		7120 J	3640 J	3550	5000 J	6100 J	4590 J	2370 J	2950 J	2570 J	4420	2350 J	1920	3070 J	3460 J	3540 J	1600	1590	1620	2170
Selenium	UG/L 6.2					3.3 U	3.52 J	4.2 U	3.3 U	510013	3.3 U	3.36 J	3.3 U	6.22	4.2 U	3.3 U	4.2 U	3.3 U	5.96	6.14	4.2 U	4.52 J	4.2 U	4.2 U
Silica	UG/L 1620			0			6290 J	8030	8760 J	7120 J	3190 U	4960 J	5930 J	8490 J	16200	7860 J	5410	5810 J	14000 J	14300 J	8180	5740	10400	7580
Silicon	UG/L 755			0		5510 J	2910 J	3760	3970 J	3350 J	1480 U	2310 J	2820 J	3860 J	7550	3590 J	2530	2710 J	6460 J	6520 J	3820	2680	4860	3550
Silver	UG/L 0					0.288 U	0.288 U	2.5 U	0.288 U	0.288 U	0.288 U	0.288 U	0.288 U	0.288 U	2.5 U	0.288 U	2.5 U	0.288 U	0.288 U	0.288 U	2.5 U	2.5 U	2.5 U	2.5 U
Sodium	UG/L 1780	00 78%	20000	0	14 18	7030 U	3920 U	13700	14600 J	11300 J	5380 U	12100 J	13100 J	12400 J	15100	12500 J	12700	6570 U	17700 J	17800 J	4850	4340	6360	12400
Strontium	UG/L 259				14 18	82.2 U	50.5 U	157	154 J	110 J	63.1 U	114 J	110 J	199 J	142	190 J	112	57.5 U	257 J	259 J	65.2	50.7	138	185
Sulfur	UG/L 1720			0		8690 U	5040 U	15500	17200 J	11500 U	6900 U	12600 J	15500 J	16000 J	15900	15900 J	14200	7200 U	14000 J	14200 J	4750	4230	6870	13200
Thallium	UG/L 40.				6 18	40.6 J	18 U	6.27 U	28.4 J	35.9 J	27.2 J	13.1 U	15.5 U	13.2 U	6.27 U	13.5 U	6.27 U	18.5 U	21 J	21.2 J	6.27 U	6.27 U	6.27 U	6.27 U
Tin	UG/L 0			0		1.21 U	1.21 U	3.75 U	6.04 U	1.21 U	1.21 U	1.21 U	6.04 U	6.04 U	3.75 U	1.21 U	3.75 U	1.21 U	1.21 U	1.21 U	3.75 U	3.75 U	3.75 U	3.75 U
Titanium	UG/L 57.				18 17	57.2	30.5	11.1	20.7	25.5	11 E	0.411 J	4.22	3.14	47.8	0.156 UE	0.836 J	21.3 E	11.6	11.5 E	40.6	22.3	22.4	11.2
Uranium	UG/L 0			0		16.3 U	14.2 U	4.98 U	17.5 U	18.4 U	12.6 U	13.2 U	18.1 U	14.3 U	4.98 U	15.5 U	4.98 U	13.5 U	18.4 U	18.3 U	4.98 U	4.98 U	4.98 U	4.98 U
Vanadium	UG/L 9.8			0		9.81	4.8 U	3.12 U	3.01 U	7.25	2.35 U	0.746 U	1.59 U	1.31 U	9.43	0.819 U	3.12 U	3.71 U	2.82 U	2.92 U	6	3.9 J	4.09 J	3.48 J
Zinc	UG/L 424	0 100%		0	18 18	2060	1070	690	490	1920	785	73.8	619	276	1300	96.2	114	860	4220 J	4240 J	4070	1270	1100	682

NOTES:
SA = Sample
DU = Duplicate
Maximum = Maximum Detected Value
Freq = Frequency of Detection
Level = Action Level or Cleanup Criteria
Ex = Number of Exceedances of the Action Level
Det = Number of Detections

NOTES: Q ≈ Data Qualifier U = Undetected J = Estimated

SEAD1 Report Tables\Rinsate - All

SEAD-1 (BLDG 307) INTERIOR SURFACES PCB WIPE SAMPLE DATA

Location ID			SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1	
Sample Numb	er		W307-00		W307-01		W307-02		W307-03		W307-04		W307-05		W307-06	
Sample Type			WIPE		WIPE		WIPE		WIPE		WIPE		WIPE		WIPE	
Field Sample ID			16000		16001		16002		16003		16004		16005		16006	
Sample Date			4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/21/2003	
Sample Designation			SA		SA		SA		SA		SA		SA		SA	
		Action														
Parameter	Units	Levei	Value	(Q)												
Aroclor-1016	UG/Filter	10	0.1	U												
Aroclor-1221	UG/Filter	10	0.1	U												
Aroclor-1232	UG/Filter	10	0.1	U												
Aroclor-1242	UG/Filter	10	0.1	U												
Aroclor-1248	UG/Filter	10	0.1	U												
Aroclor-1254	UG/Filter	10	0.1	U												
Aroclor-1260	UG/Filter	10	0.1	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1	1.1	0.1	LL	0.1	111

NOTES:

SA = Sample

FB = Field Blank

Q = Data Qualifier

U = Undetected

SEAD-1 (BLDG 307) INTERIOR SURFACES PCB WIPE SAMPLE DATA

Location ID			SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1	3 111111
Sample Number	er		W307-07		W307-08		W307-09		W307-10		W307-11		W307-12		W307-13	
Sample Type			WIPE		WIPE		WIPE		WIPE		WIPE		WIPE		WIPE	
Field Sample I	D		16007		16008		16009		16010		16011		16012		16013	
Sample Date			4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/21/2003	
Sample Design	nation		SA		SA		SA		SA		SA		SA		SA	
		Action														
Parameter	Units	Level	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)
Aroclor-1016	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1221	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1232	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1242	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1248	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1254	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1260	UG/Filter	10	0.1	lŪ -	0.1	U	0.1	U	0.1	lu	0.1	lu -	0.1	U	0.1	Ü

NOTES:

SA = Sample

FB = Field Blank

Q = Data Qualifier

U = Undetected

SEAD-1 (BLDG 307) INTERIOR SURFACES PCB WIPE SAMPLE DATA

Location ID			SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1	
Sample Number	er		W307-14		W307-15		W307-16		W307-17		W307-18		W307-19		W307-20	
Sample Type			WIPE		WIPE		WIPE		WIPE		WIPE		WIPE		WIPE	
Field Sample I	D		16014		16015		16016		16017		16018		16019		16020	
Sample Date			4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/21/2003	
Sample Designation		SA		SA		SA		SA		SA		SA		SA		
		Action														
Parameter	Units	Level	Value	(Q)												
Aroclor-1016	UG/Filter	10	0.1	U												
Aroclor-1221	UG/Filter	10	0.1	U	0.1	U	0.1	J	0.1	J	0.1	U	0.1	U	0.1	U
Aroclor-1232	UG/Filter	10	0.1	U	0.1	Ü	0.1	U	0.1	U	0.1	U	0.1	U	0.1	C
Aroclor-1242	UG/Filter	10	0.1	U												
Aroclor-1248	UG/Filter	10	0.1	U												
Aroclor-1254	UG/Filter	10	0.1	U												
Aroclor-1260	UG/Filter	10	0.1	11	0.1	111	0.1	111	0.1	111	0.1	11	0.1	11	0.1	111

NOTES:

SA = Sample

FB = Field Blank

Q = Data Qualifier

U = Undetected

Location ID			SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1	
Sample Numb	er		W307-21		W307-22		W307-23		W307-24		W307-25		W307-26		W307-27	
Sample Type			WIPE		WIPE		WIPE		WIPE		WIPE		WIPE		WIPE	
Field Sample I	D		16021		16022		16023		16024		16025		16026		16027	
Sample Date			4/21/2003		4/21/2003		4/21/2003		4/21/2003		4/22/2003		4/22/2003		4/22/2003	
Sample Design	nation		SA		SA		SA		SA		SA		SA		SA	
		Action														
Parameter	Units	Level	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)
Aroclor-1016	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1221	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1232	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1242	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1248	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1254	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1260	UG/Filter	10	0.1	U	0.1	lu 💮	0.1	U	0.1	U	0.1	U	0.1	U	0.1	TU

NOTES:

SA = Sample

FB = Field Blank

Q = Data Qualifier

Location ID			SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1	
Sample Number	er		W307-28		W307-29		W307-30		W307-31		W307-32		W307-33		W307-34	
Sample Type			WIPE		WIPE		WIPE		WIPE		WIPE		WIPE		WIPE	
Field Sample I	D		16028		16029		16030		16031		16032		16033		16034	
Sample Date			4/22/2003		4/22/2003		4/22/2003		4/22/2003		4/22/2003		4/22/2003		4/22/2003	
Sample Design	nation		SA		SA		SA		SA		SA		SA		SA	
	1	Action														
Parameter	Units	Level	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)
Aroclor-1016	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	Ü	0.1	Ü	0.1	UJ
Aroclor-1221	UG/Filter	10	0.1	Ų	0.1	U	0.1	Ü	0.1	U	0.1	U	0.1	Ü	0.1	UJ
Aroclor-1232	UG/Filter	10	0.1	Ų	0.1	U	0.1	J	0.1	U	0.1	U	0.1	U	0.1	UJ
Aroclor-1242	UG/Filter	10	0.1	U	0.1	U	0.96	U	0.1	U	0.1	U	0.1	U	0.1	UJ
Aroclor-1248	UG/Filter	10	0.1	U	0.1	U	0.1	\supset	0.1	U	0.1	U	0.1	U	0.1	UJ
Aroclor-1254	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	Ų	0.1	U	0.1	UJ
Aroclor-1260	UG/Filter	10	0.1	U	0.1	lu	0.1	U	0.1	U	0.1	U	0.1	U	0.1	UJ

NOTES:

SA = Sample

FB = Field Blank

Q = Data Qualifier

Location ID			SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1		SEAD-1	
Sample Numb	er		W307-35		W307-36		W307-37		W307-38		W307-39		W307-40		W307-41	
Sample Type			WIPE		WIPE		WIPE		WIPE		WIPE		WIPE		WIPE	
Field Sample I	D		16035		16036		16037		16038		16039		16040		16041	
Sample Date			4/22/2003		4/22/2003		4/22/2003		4/22/2003		4/22/2003		4/23/2003		4/23/2003	
Sample Desig	nation		SA		SA	-	SA									
		Action														
Parameter	Units	Level	Value	(Q)												
Aroclor-1016	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	Ū	0.1	Ü	0.1	U
Aroclor-1221	UG/Filter	10	0.1	U												
Aroclor-1232	UG/Filter	10	0.1	U												
Aroclor-1242	UG/Filter	10	0.1	U												
Aroclor-1248	UG/Filter	10	0.1	U												
Aroclor-1254	UG/Filter	10	0.1	U												
Aroclor-1260	UG/Filter	10	0.1	U	0.1	IU	0.1	U								

NOTES:

SA = Sample

FB = Field Blank

Q = Data Qualifier

Location ID			SEAD-1		SEAD-1		SEAD-1		SEAD-1	
Sample Number			W307-42		W307-RB		W307-RB		W307-RB	
	3 1									
Sample Type			WIPE		WIPE		WIPE		WIPE	
Field Sample I	D		16042		16043		16044		16045	
Sample Date			4/23/2003		4/21/2003		4/22/2003		4/22/2003	
Sample Design	nation		SA		FB		FB		FB	
		Action								
Parameter	Units	Level	Value	(Q)	Value	(Q)	Value	(Q)	Value	(Q)
Aroclor-1016	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U
Aroclor-1221	UG/Filter	10	0.1	U	0.1	Ü	0.1	U	0.1	
Aroclor-1232	UG/Filter	10	0.1	U	0.1	U	0.1	\supset	0.1	U
Aroclor-1242	UG/Filter	10	0.1	U	0.1	U	2.4	U	0.1	U
Aroclor-1248	UG/Filter	10	0.1	U	0.1	Ü	0.1	U	0.1	U
Aroclor-1254	UG/Filter	10	0.1	U	0.1	U	0.1	Ü	0.1	U
Aroclor-1260	UG/Filter	10	0.1	U	0.1	Ū	0.1	U	0.1	U

NOTES:

SA = Sample

FB = Field Blank

Q = Data Qualifier

le Type/Bldg ID/Grid le Type Sample ID le Date le Designation		R301-1	R301-13	R301-28	R301-30	R301-4	R301-42	R301-43	SEAD-2 R301-47	SEAD-2 R301-47	R301-63	R301-65	SEAD-2 R301-68	SEAD-2 R301-73	SEAD-2 R301-84	R301-90	SEAI R301
le Date		RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEA
		25011	25014	25000	25013	25015	25008	25007	25003	25002	25006	25004	25001	25005	25009	25010	250
le Designation		4/24/2003	4/24/2003	4/23/2003	4/24/2003	4/24/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/24/2003	4/24/2003	4/24/20
neter	Units Max Freq Level Ex Det No.	SA	SA	SA	SA	SA	SA	SA	DU Value (O)	SA	SA Value (Q)	SA	SA Value (O)	SA	SA Value (O)	SA	(2) Va
Trichloroethane	Units Max Freq Level Ex Det No. UG/L 0 0% 5 0 0 16	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q		1 U	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q	
2-Tetrachloroethane	UG/L 0 0% 5 0 0 16	103	1 1 U	1 1 U	1 U	1 1 0	1 U	1 U	1 U 1 U		1 1 0	10		1 U	103	10	
Trichloroethane	UG/L 0 0% 1 0 0 16	1 U	1 U	10	10	10	10	1 U	1 U		10	1 U	10	1 U	1 U	1 U	
chloroethane	UG/L 0 0% 5 0 0 16	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U		1 U	1 U	1 U	
chloroethene	UG/L 0 0% 5 0 0 16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U		1 U	1 U	1 U	
chloroethane	UG/L 0 0% 0.6 0 0 16	1 UJ	1 U	1 U	1 UJ	1 UJ	1 U	1 U	1 U		1 U	1 U		1 U	1 UJ	1 U.	
chloropropane	UG/L 0 0% 1 0 0 16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1U		1 U	1 U	10	
ne ne	UG/L 3.4 13% 0 2 16	5 U	5 U	5 U	3.4 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	5 U	311	
dichloromethane	UG/L 0 0% 1 0 0 16	1 U 1 U	1 U	1 0	1 U	1 U	1 U	1 U	1 U		1 0	1 U		1 U	1 U	1 U	
form	UG/L 0 0% 0 0 16	1 U	10	1 U	10	10	10	110	10		110	110		10	10	10	
n disulfide	UG/L 0 0% 0 0 16	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	5 U		5 U	5 U	5 U	
tetrachloride	UG/L 0 0% 5 0 0 16	1 UJ	1 UJ	1 U	1 UJ	1 UJ	10	1 U	1 U		1 U	1 U		1 U	1 UJ	1 U.	
oenzene	UG/L 0 0% 5 0 0 16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 0	1 U	1 U	1 U	1 U	1 U	
dibromomethane	UG/L 0 0% 0 0 16	1 U	1 U	1 U	1 U	1 U_	1 U	1 U	1 U		1 U	1 U		1 U	1 U	1 U	
thane	UG/L 0 0% 5 0 0 16	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 U	1 UJ		1 UJ	1 UJ			1 UJ	1 U.	
orm	UG/L 0 0% 7 0 0 16	1 U	1 U	1 U	1 U	1 0	1 U_	1 U	1 U		1 U	1 U		10	1 U	1 U	
-Dichloroethene -Dichloropropene	UG/L 0 0% 5 0 0 16	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U		1 0	10		10	1 U	10	
enzene	UG/L 0 0% 0.4 0 0 16	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 0	1 U	1 U	
promide	UG/L 0 0% 5 0 0 16	1 U	1 U	1 U 1 UJ	1 U 1 U	1 1 0	1 U	1 U	1 U 1 UJ		1 0	1 U		1 U	1 U	1 U	
outyl ketone	UG/L 0 0% 0 0 16	5 U	5 U	5 U	5 U	511	5 U	5 U	5 U		5 U	5 U	5 U	5 U	5 U	50	
chloride	UG/L 0 0% 5 0 0 16	1 UJ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 UJ	1 UJ	1 1 1 1	1 1 1 1	1 U	1 UJ		1 UJ	1 1 1 1 1			1 UJ	1 U	
ethyl ketone	UG/L 0 0% 0 0 16	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U_		5 U	5 U	5 U	5 U	5 U	5 U	
obutyl ketone	UG/L 0 0% 0 0 16	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
ne chloride	UG/L 0 0% 5 0 0 16	5 U	5 U	5 UJ	5 U	5 U	5 UJ	5 U	5 UJ		5 UJ	5 UJ			5 U	5 U	
aro ath a	UG/L 0 0% 5 0 0 16	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U	1 U	
proethene	UG/L 0 0% 5 0 0 16	1 U	10	1 U	1 U	1 0	1 U	1 0	1 U		1 U	1 U	1 U	1 U	1 U	1 U	
enes		1 U	1 U	10	1 0	1 U	1 U	1 U	1 U		1 U	1.3 1 U	1 U	1 1 0	1 U	1 0	
2-Dichloroethene	UG/L 0 0% 5 0 0 16 UG/L 0 0% 5 0 0 16	1 U	1 U	1 U	1 U	1 U	1 0	1 U	1 0		10	10	1 U	10	110	1 U	
3-Dichloropropene		10	1 U	1 U	1 U	10	10	10	10		10	10	10	1 U	10	10	
ethene	UG/L 0 0% 5 0 0 16	1 U	1 U	10	1 U	10	1 U	1 U	1 U		10	1 U	1 U	1 U	1 U	10	
tate	UG/L 0 0% 0 0 16	5 U	5 U	5 UJ	5 U	5 U	5 U	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ		5 U	5 U	
oride	UG/L 0 0% 2 0 0 16	1 U	1 U	1 U	1 Ú	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
enyl	UG/L 7.7 23% 5 1 3 13	44.4 U	2.2 J	10.8 U	10.9 U	0.51 J	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			- 7.7 J	
chlorobenzene lorobenzene	UG/L 0 0% 5 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U	+		40.8 U	
lorobenzene	UG/L 0 0% 3 0 0 13 UG/L 0 0% 3 0 0 13	44.4 U	40 U	10.8 U 10.8 U	10.9 U	9.9 U 9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U	+	+	40.8 U	
lorobenzene	UG/L 0 0% 3 0 0 13	44.41U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.10	1110	+	 	40.8 U	
chlorophenol	UG/L 0 0% 1 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11,1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
chlorophenol	UG/L 0 0% 1 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
lorophenol	UG/L 0 0% 5 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
ethylphenol	UG/L 1.9 8% 0 1 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			1.9 J	
rophenol rotoluene	UG/L 0 0% 0 0 13	88.9 U	80 U	21.5 U	21.7 U	19.8 U	22.2 U	20 U	21.5 U	20.2 U	21.5 U	22.2 U	22 U			81.6 U	
rotoluene	UG/L 0 0% 5 0 0 13 UG/L 0 0% 5 0 0 13	44.4 U	40 U 40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U 10.8 U	10.1 U	10.8 U	11.1 U	11 U	 	 	40.8 U	
naphthalene	UG/L 0 0% 3 0 0 13	44.4 U	40 U	10.8 U 1.1 U	10.9 U	9.9 U 0.99 U	11.1 U	1 U	1.1 U	10.10 1U	1.1 U	1.1 U	1.1 U	+	 	4.1 U	
phenol	UG/L 0 0% 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 Ú	10.8 U	11.1 U	11 U			40.8 U	
naphthalene	UG/L 37 38% 0 5 13	4.4 U	9.2	1.1 U	0.55 J	2	1.1 U	1.5	1.1 U	1 U	1.1 U	1.1 U	1.1 U			37	
phenol	UG/L 2 8% 0 1 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			2 J	
iline	UG/L 0 0% 5 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
enol	UG/L 0 0% 1 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
thylphenol orobenzidine	UG/L 3.4 8% 1 1 1 13 UG/L 0 0% 5 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U	 		3.4 J	
iline	UG/L 0 0% 5 0 0 13 UG/L 0 0% 5 0 0 13	44.4 UJ	40 UJ 40 U	10.8 U	10.9 UJ	9.9 UJ	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U	 		40.8 UJ 40.8 U	
o-2-methylphenol	UG/L 0 0% 1 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U 9.9 U	11.1 U	100	10.8 U	10.1 U	10.8 U	11.1 U	11 U	1	1	40.8 U	
henyl phenyl ether		44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	100	10.8 U	10.1 U	10.8 U	11.1 U	11 U	T		40.8 U	
3-methylphenol	UG/L 0 0% 1 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
niline	UG/L 0 0% 5 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
henyl phenyl ether		44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
line	UG/L 0 0% 5 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U	 -		40.8 U	
enol	UG/L 0 0% 1 0 0 13 UG/L 51.7 46% 0 6 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U	 		40.8 U	
nylene	UG/L 51.7 46% 0 6 13 UG/L 0 0% 0 0 13	4.4 U	11.7	1.1 U	0.74 J	2.2	1.1 U	1.6	1.1 U 1.1 U	1 0	0.67 J 1.1 U	1.1 U	1.1 U	 	 -	51.7 4.1 U	
e	UG/L 78.4 54% 0 7 13	4.4 U	4 U 19.5	1.1 U	1.1 U 1.3	0.99 U 3.7	1,1 0	3.5	1.1 U	1 U	1.4	1.1 U	1.1 U	+	1	78.4	
	UG/L 0 0% 7.5 0 0 13	44.4 R	40 R	10.8 U	10.9 R	9.9 R	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U		 	40.8 R	
yde	UG/L 0 0% 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
nthracene	UG/L 146 62% 0 8 13	6.5 NJ	42.7	1.5	1.1 U	6	0.99 J	5.6	1.1 U	1 U	3	1.1 U	1.1 U			146	
yrene	UG/L 116 69% 0 0 9 13	5.8	34.2	1 J	2.2	5.5	0.65 J	4.4	1.1 U	1 Ü	2.4	1.1 U	1,1 U			116	
uoranthene	UG/L 148 54% 0 7 13	4.4 U	45.3	1.8	1.1 U	9.3	1.1 J	5.3	1.1 U	1 U	3.2	1.1 U	1.1 U	1		148	
perylene	UG/L 54.2 38% 0 5 13	4.4 U	16.5	1.1 U	1.1 U	2.4	1.1 U	1.7	1.1 U	1 U	0.91 J	1.1 U	1.1 U	ļ	-	54.2	
uoranthene	UG/L 2.6 15% 0 2 13	4.4 U	4 U_	1.1 U	1.1 U	0.99 U	1.1 U	2.6	1.1 U	1 U	1.8	1.1 U	1.1 U			4.1 U	
roethoxy)methane roethyl)ether		44.4 U	40 U	10.8 UJ	10.9 U	9.9 U	11.1 UJ	10 UJ	10.8 UJ		10.8 UJ	11.1 UJ		 	 	40.8 U	
proetnyrjetner proisopropyl)ether	UG/L 0 0% 1 0 0 13 UG/L 0 0% 5 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 UJ	11.1 U	11 U			40.8 U 40.8 U	
hexyl)phthalate	UG/L 0 0% 5 0 0 13 UG/L 12.7 46% 5 2 6 13	44.4 U 6.8 U	40 U	10.8 UJ	10.9 U	9.9 U	11.1 UJ 4.4 J	10 UJ	10.8 UJ 10.8 U	10.1 UJ	10.8 UJ	11.1 U 2.1 J	11 UJ		 	40.8 U	
yiphthaiate	UG/L 1.3 23% 0 3 13	44.4 U	40 U 40 U	3.3 J 10.8 U	5.4 U 10.9 U	4.2 U 9.9 U	0.85 J	12.7 1.3 J	10.8 U	1.4 J	1.3 J	11.1 U	11 U	++-		40.8 U	
)	UG/L 52.6 69% 0 9 13	2.4 J	15.2 J	1.8 J	1.2 J	2.4 J	1.8 J	3.3 J	10.8 U	10.1 U	2.4 J	11.10	11 U	 		52.6	
	UG/L 125 69% 0 9 13	6.5	39.6	1.0 3	2.5	6.4	0.72 J	4.9	1.1 U	10.10	3.3	1.10	1.1 U			125	
phthalate	UG/L 2.4 54% 50 0 7 13	44.4 U	40 U	1.3 J	3.1 U	9.9 U	1.4 J	1.4 J	1.2 J	10.1 U	2.4 J	1.5 J	1.6 J			40.B U	
phthalate	UG/L 0 0% 0 0 13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
n)anthracene ran	UG/L 0 0% 0 0 13 UG/L 51.8 46% 0 6 13	4.4 U 44.4 U	4 U 12.8 J	1.1 U 10.8 U	1.1 U 0.97 J	0.99 U 2.8 J	1.1 U	1 U	1.1 U 10.8 U	1 U	1.1 U 0.83 J	1.1 U 11.1 U	1.1 U			4.1 U 51.8	

SEAD- 2 (BLDG 301) RINSEATE SAMPLE DATA ALL COMPOUNDS

Location ID									SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2
Sample Type/Bldg ID/Grid Nu	mber								R301-1	R301-13	R301-28	R301-30	R301-4	R301-42	R301-43	R301-47	R301-47	R301-63	R301-65	R301-68	R301-73	R301-84	R301-90	R301-93
Sample Type									RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE	RINSEATE
Field Sample ID				-					25011	25014	25000	25013	25015	25008	25007	25003	25002	25006	25004	25001	25005	25009	25010	25012
Sample Date									4/24/2003	4/24/2003	4/23/2003	4/24/2003	4/24/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/23/2003	4/24/2003	4/24/2003	4/24/2003
Sample Designation									SA	SA	SA	SA	SA	SA	SA	DU	SA	SA	SA	SA	SA	SA	SA	SA
Parameter	Units	Ma	F	eq	Level	Ex	Det	No.	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)		Value (C				
Diethyl phthalate	UG/L	0	0	1%		0	0	13	44.4 U	40 U	10.8U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
Dimethylphthalate	UG/L	0	0	1%		0	0	13	44.4 U	40 U	10.8U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
Diphenylamine	UG/L	0	0	1%	5	0	0	13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
Fluoranthene	UG/L	258	7	7%		0	10	13	12.7	80.8	2.6	6.1	14.1	1.8	12	1.1 U	1 U	7.1	1.1 U	0.87 J			258	
Fluorene	UG/L	62.	4	6%		0	6	13	4.4 U	16.1	1.1 U	0.89 J	3.4	1.1 U	3.1	1.1 U	1 U	0.92 J	1.1 U	1.1 U			62.1	
Hexachlorobenzene	UG/L	0	. 0	1%	0.04	0	0	13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
Hexachlorobutadiene	UG/L	0	0	1%	0.5	0	0	13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
Hexachlorocyclopentadiene	UG/L	0	0	%	5	0	0	13	44.4 U	40 U	10.8 UJ	10.9 U	9.9 U	11.1 UJ	10 UJ	10.8 UJ	10.1 UJ	10.8 UJ	11.1 UJ	11 UJ			40.8 U	
Hexachloroethane	UG/L	0	0	%	5	0	0	13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
ndeno(1,2,3-cd)pyrene	UG/L	55.2	2 4	3%		0	6	13	2.9 J	16.7	1.1 U	1.1 U	2.4	1.1 U	1.8	1.1 U	1 U	1 J	1.1 U	1.1 U			55.2	
sophorone	UG/L	0	0	%		0	0	13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
N-Nitrosodipropylamine	UG/L	0		%		0	0	13	44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
Naphthalene	UG/L	102		-		0	9	13	4.4 U	24.6	0.46 J	1.6	5.4	0.37 J	4.5	0.15 J	1 U	1.5	1.1 U	1.1 U			102	-
Vitrobenzene	UG/L	0	_		0.4	0	_		44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
Pentachlorophenol	UG/L	0		%	1	0_	0		44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
Phenanthrene	UG/L	330				0	11		13.5	98.4	2.1	7.6	17.9	1.8	14.2	0.58 J	10	7	1.1 U	0.88 J			330	
Phenol	UG/L	0		%	1	0	0		44.4 U	40 U	10.8 U	10.9 U	9.9 U	11.1 U	10 U	10.8 U	10.1 U	10.8 U	11.1 U	11 U			40.8 U	
yrene	UG/L					0	10		10.6	70.6	2	5.2	12	1.4	8.9	1.1 U	1 U	5.7	1.1 U	0.59 J		-	229	-
alpha-Terpineol	UG/L	0	_	%		0	0	13	44.4 UJ	40 UJ	10.8 UJ	10.9 UJ	9.9 UJ	11.1 UJ	10 UJ	10.8 UJ	10.1 W	10.8 UJ	11.1 UJ	11 UJ	740	0000	40.8 UJ	104
Aluminum	UG/L			9%		0	11	_	182	565	326	193 J	1230	19.9 U	45.2 J	19.9 U	19.9 U	19.9 U	19.9 U	36.2 J	74.9 J	2230	1840	121 6.81 U
Antimony	UG/L	0	_	%	3	0	0	-	6.81 U	6.81 U	6.81 U	6.81 U	6.81 U	6.81 U	6.81 U	6.81 U 4.1 U	6.81 U	6.81 U 4.1 U	6.81 U	4.1 U				
Arsenic	UG/L				25	0	0		4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	4.1 U	81.2	4.1 U 93.4	86.1 J	80.8 J	95 J				
Barium	UG/L				1000				67.5 J	108 J	111	81	118	73.9	112	94.1 0.133 U	91.7 0.133 U	0.133 U	0.133 U	0.133 U	0.133 U	0.167 J	0.191 J	0.133 U
Beryllium	UG/L				1000	0			0.133 U	0.133 U	0.133 U 41.9	0.133 U 27.9	0.133 0	36.6	45.4	27.2	37.8	46.6 U	34.2 U	29.1 U				
Boron					1000	0	10		16 U	32.2 U	36.5	21.4 U	50.8 J	23.4	0.807 U	0.807 U	0.807 U	0.807 U	0.807 U	0.807 U	1.57 B	6.23	4.17	0.807 L
Dadmium Dalcium	UG/L		0 10		5	0	16		0.807 U	0.807 U	0.807 U	0.807 U	0.807 U 70100 J	1.2 J 24100	22900	23200	22400	21700	22000	22500	22800	35400 J	85200 J	23300 J
Chromium	UG/L		25		FO	0	4		29700 J	30400 J	32800 2.02 J	52900 J	2.67 J	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	2.47 J	3.31 J	1.37 L
Cobalt	UG/L		25		50	0	4		1.37 U 1.88 U	1.37 U 1.88 U	2.02 J 1.88 U	1.37 U 1.88 U	2.67J 2.09 J	1.88 U	1.88 U	1.88 U	1.88 U	1.88 U	1.88 U	1.88 U	1.9 J	2.54 J	2.06 J	1.88
Copper	UG/L				200	0	7		3.91 U	1.88 U 5.12		3.91 U	5.87	3.91 U	3.91 U	3.91 U	3.91 U	3.91 U	3.91 U	3.91 U	4.52 J	11.6	124	4.49 J
ron	UG/L	2930			300	6	16		3.910	5.12	5.2	296	2050	76.5	102	18.8 J	14.8 J	20.7 J	26.7 J	72.3	205	2930	2320	168
ead	UG/L	1050			25	12	16		93.2	64	584	112	284	146	209	7.36	8.7	22	78.7	18.7	304	602	1050	213
Magnesium	UG/L	8370			23	0	16	_	2880 J	4250 J	3620	4040 J	8370 J	2550	2780	2530	2440	2610	2620	2420	2640	4410 J	7040 J	2550 J
Manganese	UG/L		10		300	_	16		30.3 J	86.8	50.7	66	254	21.1	33.5	17	16.2	23.7	29.5	17	28.8	111	224	26.3 J
Mercury	UG/L	0			0.7	0	0		0.052 U	0.052 Ú	0.052 U	0.061 U	0.067 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.052 U	0.063 U	0.068 U	0.067 L
folybdenum	UG/L			%	0.7	0	0		1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 (
lickel	UG/L	8.97		0%	100	0	16		4.32 J	6.98	7.39	4.21 B	8.97	5.97	7.2	5.42	5.29	6.55	6.71	5 J	5.22	5.62	7.46	4.99 J
Phosphorous	UG/L	400				0	15		63 J	94.6 J	400	82.1 J	150 J	81.6	93.6	46.1	55.2	40.2 J	95.7	87.4	106	180 J	393	45.6 L
otassium	UG/L		10			0	16		2250 J	1950 J	2210	1910 J	2260 J	2130	1850	1790	1830	1940	1900	1970	2530	3440 J	3310 J	1870 J
Selenium	UG/L	5.06	_		10		2		4.88 J	4.2 U	4.2 U	5.06	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U	4.21
	UG/L					0	16		5600 J	10600 J	8310	10200 J	27200 J	10000	16000	6690	6490	11100	14800	6820	11700	12300 J	11500 J	6940 J
ilicon	UG/L		0 10			0	16	_	2620 J	4940 J	3890	4770 J	12700 J	4680	7460	3130	3030	5210	6930	3190	5460	5770 J	5370 J	3250
ilver	ÜG/L	0			50		0		2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5				
odium	UG/L				0000		16		11600	12100	13300	12300	15000	13300	13600	12700	12500	13000	13500	12500	13400	12700	12700 N	11600
trontium	UG/L	371				0	16		115 J	207 J	184	189 J	371 J	160	291	152	148	235	278	145	213	112 J	156 J	153
ulfur	UG/L		0 100			0	16		13500 J	14500 J	14600	13600 J	14200 J	14200	14500	14000	14100	14300	14600	13900	14500	13300 J	13700 J	14400
hallium	UG/L	0	_			0	0		6.27 U	6.27 U	6.27 U	6.27 U	6.27 U	6.27 U	6.27 U	6.27 U	6.27 U	6.27 U	6.27 U	6.27				
n	UG/L	6.36	69			0	1	16	3.75 U	3.75 U	3.75 U	3.75 U	3.75 U	3.75 U	3.75 U	3.75 U	3.75 U	3.75 U	6.36 J	3.75				
itanium	UG/L		75			0	12		8.24	38.5	7.12	13.4	30.7	1.04 J	1.11 J	0.622 U	0.622 U	0.622 U	0.622 U	1.69 J	3.02 J	96.6	77.8	5.4
ranium	UG/L	0	0			0	0		4.98 U	4.98 U	4.98 U	4.98 U	4.98 U	4.98 U	4.98 U	4.98 U	4.98 U	4.98 U	4.98 U	4.98 l				
anadium	UG/L	13.6	19			0	3		3.12 U	3.12 U	3.12 U	3.12 U	7.38	3.12 U	3.12 U	3.12 U	3.12 U	3.12 U	3.12 U	3.12 U	3.12 U	4.98 J	13.6	3.12 L
inc	UG/L		100		-		16		56.7	145	245	64.1	178	145	104	14.5	17.6	32.2	64.6	107	180	383	599	135

NOTES:
SA = Sample
DU = Duplicate
Maximum = Maximum Detected Value
Freq = Frequency of Detection
Level = Action Level or Cleanup Criteria
Ex = Number of Exceedances of the Action Level
Det = Number of Detections

NOTES: Q = Data Qualifier U = Undetected J = Estimated

Location ID			SEAD-2		SEAD-2	SEAD-2		SEAD-2	SEAD-2		SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	
Sample Numb	oer		W301-00		W301-01	W301-02		W301-03	W301-04		W301-05	W301-06	W301-07	W301-08	W301-09	
Sample Type			WIPE		WIPE	WIPE		WIPE	WIPE		WIPE	WIPE	WIPE	WIPE	WIPE	
Field Sample	ID		26000		26001	26002		26003	26004		26005	26006	26007	26008	26009	
Sample Date			4/24/2003		4/24/2003	4/24/2003		4/24/2003	4/24/2003		4/24/2003	4/24/2003	4/24/2003	4/24/2003	4/24/2003	
Sample Desig	gnation		SA		SA	SA		SA	SA		SA	SA	SA	SA	SA	
		Action														
Parameter	Units	Level	Value	(Q)	Value (C	Q) Value	(Q)	Value (Q) Value	(Q)	Value (Q)	Value (Q)	Value (Q) Value (Q) Value (Q)
Arocior-1016	UG/Filter	10	0.1	U	0.1 U	0.1	U	0.1 U	0.1	Ū	0.1 U	0.1 UJ	0.1 UJ	0.1 U	0.1	JJ
Aroclor-1221	UG/Filter	10	0.1	U	0.1 U	0.1	U	0.1 U	0.1	U	0.1 U	0.1 U	0.1 U	0.1 U	0.1	J
Aroclor-1232	UG/Filter	10	0.1	U	0.1 U	0.1	U	0.1 U	0.1	U	0.1 U	0.1 UJ	0.1 UJ	0.1 U	0.1 l	JJ
Arocior-1242	UG/Filter	10	0.1	U	0.1 U	0.1	U	0.1 U	0.1	U	0.1 U	0.1 UJ	0.1 UJ	J 0.1 U	0.1	JJ
Aroclor-1248	UG/Filter	10	0.1	U	0.1 U	0.1	U	0.1 U	0.1	U	0.1 U	0.1 U	0.1 U	0.1 U	0.1	J
Aroclor-1254	UG/Filter	10	0.1	U	0.1 U	0.1	U	0.1 U	0.1	U	0.1 U	0.1 U	0.1 U	0.1 U	0.1	J
Aroclor-1260	UG/Filter	10	0.1	U	0.1 U	0.1	TU TU	0.1 U	0.1	U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 (J

NOTES:

SA = Sample

DU = Duplicate

RB = Rinse Blank

Q = Data Qualifier

Location ID			SEAD-2		SEAD-2		SEAD-2		SEAD-2		SEAD-2		SEAD-2		SEAD-2		SEAD-2
Sample Numb	per		W301-10		W301-11		W301-12		W301-13		W301-14		W301-15		W301-23		W301-24
Sample Type			WIPE		WIPE		WIPE		WIPE		WIPE		WIPE		WIPE		WIPE
Field Sample	ID		26010		26011		26012		26013		26014		26015	i	26023		26024
Sample Date			4/24/2003		4/24/2003		4/24/2003		4/24/2003		4/24/2003		4/24/2003		4/24/2003		4/24/2003
Sample Desig	nation		SA		SA		SA		SA		SA		SA		RB		RB
		Action															
Parameter	Units	Level	Value	(Q)	Value	(Q)	Value	(Q)	Value (Q)								
Aroclor-1016	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	Ü	0.1	U	0.1	U	0.1	Ų	0.1 U
Aroclor-1221	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	Ü	0.1	J	0.1	U	0.1	U	0.1 U
Aroclor-1232	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1	U	0.1	S	0.1	U	0.1	U	0.1 U
Aroclor-1242	UG/Filter	10	0.1	Ü	0.1	Ū	0.1	U	0.1	U _	0.1	\supset	0.1	U	0.1	U_	0.1 U
Aroclor-1248	UG/Filter	10	0.1	U	0.1	U	0.1	٥	0.1	U	0.1	ט	0.1	U	0.1	U	0.1 U
Aroclor-1254	UG/Filter	10	0.1	U	0.1	U	0.1	U	0.1 U								
Aroclor-1260	UG/Filter	10	0.1	U	0.1	U	0.1	U ·	0.1 U								

NOTES:

SA = Sample

DU = Duplicate

RB = Rinse Blank

Q = Data Qualifier

SEAD-2 (BLDG 301) PCB CHIP SAMPLE DATA

Location ID			SEAD-2		SEAD-2		SEAD-2		SEAD-2		SEAD-2		SEAD-2		SEAD-2	
Sample Numb	er		W301-16		W301-17		W301-18		W301-19		W301-20		W301-21		W301-22	
Sample Type			CHIP		CHIP		CHIP		CHIP		CHIP		CHIP		CHIP	
Field Sample	ID		26016		26017		26018		26019		26020		26021		26022	
Sample Date			4/24/2003		4/24/2003		4/24/2003		4/24/2003		4/24/2003		4/24/2003		4/24/2003	
Sample Design	nation		SA		SA		SA		SA		SA		SA		DU	
	[Action														
Parameter	Units	Level	Value	(Q)	Value	(Q)	Value	(Q)								
Aroclor-1016	UG/KG	1000	1000	U	1000	U	1000	U	1020	U	1020	\supset	1030	\Box	1030	U
Aroclor-1221	UG/KG	1000	1000	U	1000	U	1000	U	1020	U	1020	J	1030	ر د	1030	U
Aroclor-1232	UG/KG	1000	1000	U	1000	U	1000	U	1020	U	1020	J	1030	\supset	1030	U
Aroclor-1242	UG/KG	1000	1000	U	1000	U	1000	U	1020	U	1020	U	1030	U	1030	U
Aroclor-1248	UG/KG	1000	1000	U	1000	U	1000	U	1020	U	1020	U	1030	U	1030	U
Aroclor-1254	UG/KG	1000	1000	U	388	J	1000	U	1020	U	1020	U	1030	U	1030	U
Aroclor-1260	UG/KG	1000	1000	U	1000	U	1000	U	1020	U	1020	U	1030	U	1030	U
Aroclor-1262	UG/KG	1000	1000	U	1000	U	1000	U	1020	U	1020	U	1030	U	1030	U
Aroclor-1268	UG/KG	1000	1000	U	1000	U	1000	U	1020	U	1020	U	1030	U	1030	U

NOTES:

SA = Sample

DU = Duplicate

(Q) = Data Qualifier

U = Undetected

J = Estimated Value

SEAD-1 (BLDG 307) EXTERIOR SOIL DATA ALL COMPOUNDS

Location ID			T		T - I			SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1
Sample Type/Location								SS307-00	SS307-01	SS307-02	SS307-03	SS307-04	SS307-05	SS307-05	\$\$307-06	SS307-07	SS307-08	SS307-09	SS307-10	SS307-11
Sample Type	-		-			-		11000	SOIL 11001	11002	11003	SOIL 11004	011005D	11005	11006	11007	SOIL 11008	11009	11010	SOIL 11011
Field Sample ID Sample Date								4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003
Sample Designation								SA	SA	SA	SA	SA	DU	SA	SA	SA	SA	SA	SA	DU
Parameter 1,1,1-Trichloroethane	Units UG/KG	Max 0	Freq 0%	Level 800	Ex 0	Det 0	No.	Value (Q)	Value (Q)	0.99 UJ	Value (Q) 0.86 UJ	Value (Q) 0.87 UJ	Value (C	1.4 UJ	Value (Q)	Value (Q)	- Value (Q)	Value (Q) 0.82 UJ	0.95 UJ	Value (Q) 0.97 UJ
1,1,2,2-Tetrachloroethane	UG/KG	0	0%	600	0	0	12	1.1 UJ	1 UJ	0.99 UJ	0.86 UJ	0.87 UJ		1.4 UJ	1.2 UJ	1.2 UJ	1.1 UJ	0.82 UJ	0.95 UJ	0.97 UJ
1,1,2-Trichloroethane	UG/KG	0	0%	000	0	0	12	1.1 U	10	0.99 U	0.86 U	0.87 U		1.4 U	1.2 U 1.2 U	1.2 U 1.2 U	1.1 U	0.82 U	0.95 U	0.97 U 0.97 U
1,1-Dichloroethane 1,1-Dichloroethene	UG/KG	1,1	17%	400	0	2	12	1.1 U	1 U	0.99 U 0.55 J	1.1	0.87 U	-	1.4 U	1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
1,2-Dichloroethane	UG/KG	0	0%	100	0	0	12	1.1 UJ	1 UJ	0.99 UJ	0.86 UJ	0.87 UJ		1.4 UJ	1.2 UJ	1.2 UJ	1.1 UJ	0.82 UJ	0.95 UJ	0.97 UJ
1,2-Dichloropropane	UG/KG	6.1	33%	200	0	0 4	12	1.1 U 5.5 U	1 U	0.99 U 4.2 J	0.86 U	0.87 U 4.4 U	-	1.4 U 5.6 J	1.2 U 5.8 U	1.2 U 6 U	1.1 U 5.3 U	0.82 U 4.1 U	0.95 U 5.7	0.97 U 4.9 U
Acetone Benzene	UG/KG	0.1	0%	60	0	0	12	1.1 U	1 U	0.99 U	0.86 U	0.87 U		1.4 U	1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
Bromodichloromethane	UG/KG	0	0%		0	0	12	1.1 U	1 U	0.99 U	0.86 U	0.87 U		1.4 U	1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
Bromoform Carbon disulfide	UG/KG	0	0%	2700	0	0	12	1.1 U 5.5 U	1 U 5.2 U	0.99 U 4.9 U	0.86 U 4.3 U	0.87 U		1.4 U 6.9 U	1.2 U 5.8 U	1.2 U	1.1 U 5.3 U	0.82 U 4.1 U	0.95 U 4.8 U	0.97 U 4.9 U
Carbon tetrachloride	UG/KG	0	0%	600	0	0	12	1.1 UJ	1 UJ	0.99 LU	0.86 UJ	0.87 UJ		1.4 UJ	1.2 UJ	1.2 UJ	1.1 UJ	0.82 UJ	0.95 UJ	0.97 UJ
Chlorobenzene	UG/KG	0	0%	1700	0	0	12	1.1 U	1 0	0.99 U	0.86 U	0.87 U		1.4 U	1.2 U 1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
Chlorodibromomethane Chloroethane	UG/KG	0	0%	1900	0	0	12	1.1 U 1.1 UJ	1 U 1 UJ	0.99 UJ	0.86 UJ	0.87 UJ		1.4 UJ	1.2 UJ	1.2 UJ	1.1 UJ	0.82 UJ	0.95 UJ	0.97 UJ
Chloroform	UG/KG	0	0%	300	0	0	12	1.1 U	1 U	0.99 U	0.86 U	0.87 U		1.4 U	1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
Cis-1,2-Dichloroethene Cis-1,3-Dichloropropene	UG/KG	0	0%		0	0	12	1.1 U 1.1 U	1 U	0.99 U	0.86 U	0.87 U 0.87 U	-	1.4 U	1.2 U	1.2 U 1.2 U	1.1 U	0.82 U	0.95 U 0.95 U	0.97 U 0.97 U
Ethyl benzene	UG/KG	0	0%	5500	0	0	12	1.1 U	1 U	0.99 U	0.86 U	0.87 U		1.4 U	1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
Methyl bromide	UG/KG	0	0%		0	0	12	1.1 UJ	1 UJ	0.99 UJ	0.86 UJ	0.87 UJ		1.4 UJ 6.9 U	1.2 UJ	1.2 UJ	1.1 UJ	0.82 UJ	0.95 UJ	0.97 UJ
Methyl butyl ketone Methyl chloride	UG/KG	0	0%	-	0	0	12	5.5 U 1.1 UJ	5.2 U	4.9 U 0.99 UJ	4.3 U 0.86 UJ	4.4 U 0.87 UJ		1.4 UJ	5.8 U 1.2 UJ	6 U 1.2 UJ	5.3 U 1.1 UJ	4.1 U 0.82 UJ	4.8 U 0.95 WJ	4.9 U 0.97 UJ
Methyl ethyl ketone	UG/KG	0	0%	300	0	0	12	5.5 U	5.2 U	4.9 U	4.3 U	4.4 U		6.9 U	5.8 U	6 U	5.3 U	4.1 U	4.8 U	4.9 U
Methyl isobutyl ketone	UG/KG	0	0%	1000	0	0	12	5.5 U 5.5 UJ	5.2 U 5.2 UJ	4.9 UJ	4.3 U 4.3 UJ	4.4 UJ		6.9 U	5.8 U 5.8 UJ	6 UJ	5.3 U 5.3 UJ	4.1 UJ	4.8 UJ	4.9 U 4.9 UJ
Methylene chloride Styrene	UG/KG	0.43	8%	100	0	1	12	1.1 U	5.2 UJ	0.43 J	0.86 U	0.87 U		1.4 U	1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
Tetrachloroethene	UG/KG	0	0%	1400	0	0	12	1.1 U	1 U	0.99 U	0.86 U	0.87 U		1.4 U	1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
Toluene Total Xylenes	UG/KG	0.4	8%	1500 1200	0	0	12	1.1 U 1.1 U	1 U	0.4 J 0.99 U	0.86 U	0.87 U 0.87 U		1.4 U	1.2 U 1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U 0.97 U
Trans-1,2-Dichloroethene	UG/KG	0	0%	300	0	0	12	1.1 U	1 U	0.99 U	0.86 U	0.87 U		1.4 U	1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
Trans-1,3-Dichloropropene Trichloroethene	UG/KG	0	0%	700	0	0	12	1.1 U	1 U	0.99 U	0.86 U	0.87 U 0.87 U		1.4 U	1.2 U 1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U 0.97 U
Vinyl acetate	UG/KG	0	0%	700	0	0	12	5.5 U	5.2 U	4.9 U	4.3 U	4.4 U		6.9 U	5.8 U	6 U	5.3 U	4.1 U	4.8 U	4.9 U
Vinyl chloride	UG/KG	0	0%	200	0	0	12	1.1 U	1 U	0.99 U	0.86 U	0.87 U		1.4 U 42.3 U	1.2 U	1.2 U	1.1 U	0.82 U	0.95 U	0.97 U
1,1'-Biphenyl 1,2,4-Trichlorobenzene	UG/KG	0	0%	3400	0	0	12	140 U	36.6 U	36.3 U	34.8 U 348 U	34.9 U 349 U		42.3 U	38.4 U	37.8 U 378 U	40.6 U 406 U	36.7 U	35.5 U	145 U 1450 U
1,2-Dichlorobenzene	UG/KG	0	0%	7900	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	UG/KG	0	0%	1600 8500	0	0	12	1400 U	366 U	363 U	348 U	349 U	-	423 U 423 U	384 U	378 U 378 U	406 U 406 U	367 U	355 U	1450 U 1450 U
2,4,5-Trichlorophenol	UG/KG	0	0%	100	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
2,4,6-Trichlorophenol	UG/KG	0	0%	400	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U 423 U	384 U 384 U	378 U	406 U	367 U	355 U	1450 U
2,4-Dichlorophenol 2,4-Dimethylphenol	UG/KG	0	0%	400	0	0	12	1400 U	366 U	363 U	348 U	349 UJ 349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
2,4-Dinitrophenol	UG/KG	0	0%	200	0	0	12	2810 UJ	732 UJ	726 UJ	697 UJ	698 UJ		847 UJ	769 UJ	756 UJ	813 UJ	734 UJ	710 UJ	2900 UJ
2,4-Dinitrotoluene 2,6-Dinitrotoluene	UG/KG	0	0%	1000	0	0	12	1400 U	366 UJ	363 U	348 U	349 U	-	423 U 423 U	384 U 384 U	378 U	406 U	367 U	355 U	1450 U 1450 U
2-Chloronaphthalene	UG/KG	0	0%	1000	0	0	12	140 U	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	145 U
2-Chlorophenol	UG/KG	0	0%	800	0	0	12	1400 U	366 U	363 U	348 U 34.8 U	349 U 34.9 U		423 U 42.3 U	384 U 38.4 U	378 U 37.8 U	406 U 40.6 U	367 U	355 U 35.5 U	1450 U 145 U
2-Methylnaphthalene 2-Methylphenol	UG/KG	19.1	8%	36400 100	0	0	12	140 U	36.6 U	19.1 J 363 UJ	348 UJ	34.9 U	1	423 UJ	384 U	378 UJ	406 UJ	367 U	355 UJ	1450 U
2-Nitroaniline	UG/KG	0	0%	430	0	0	12	1400 U	366 U	363 U	~ 348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
2-Nitrophenol 3 or 4-Methylphenol	UG/KG	0	0%	330	0	0	12	1400 U	366 U	363 UJ	348 U 348 UJ	349 U		423 U 423 UJ	384 U 384 U	378 U 378 UJ	406 UJ	367 U	355 UJ	1450 U
3,3'-Dichlorobenzidine	UG/KG	0	0%		0	0	12	1400 U	366 UJ	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
3-Nitroaniline	UG/KG	0	0%	500	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U 423 U	384 U	378 U	406 U	367 U	355 U	1450 U 1450 U
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	UG/KG UG/KG	0	0%		0	0	12	1400 U	366 UJ	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
4-Chloro-3-methylphenol	UG/KG	0	0%	240	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
4-Chloroaniline 4-Chlorophenyl phenyl ether	UG/KG	0	0%	220	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U 423 U	384 U	378 U	406 U	367 U	355 U	1450 U
4-Nitroaniline	UG/KG	0	- 0%		0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
4-Nitrophenol	UG/KG	50.3	100%	100 50000	0	0	12	1400 U 36.2 J	366 U 28.5 J	363 UJ 42.5	348 UJ 10.4 J	349 U 12.8 J		423 UJ 18.4 J	384 UJ 17.8 J	378 UJ 11.4 J	406 UJ 19.9 J	367 U 27.4 J	355 UJ 13.4 J	1450 U 50.3 J
Acenaphthene Acenaphthylene	UG/KG	0	0%	41000	0	0	12	36.2 J	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	145 U
Anthracene	UG/KG	70.5	83%	50000	0	10	12	140 U	70.5	58.7	21.3 J	26.9 J		38 J	35.6 J	25.5 J	48.9	37.8	19.1 J	145 U
Atrazine Benzaldehyde	UG/KG UG/KG	0	0%		0	0	12	1400 R 1400 UJ	366 R	363 R 363 U	348 R 348 U	349 R 349 UJ	•	423 R 423 U	384 R 384 UJ	378 R 378 U	406 R 406 U	367 R 367 UJ	355 R 355 U	1450 R 1450 UJ
Benzo(a)anthracene	UG/KG	514	58%	224	3	7	12	140 U	402	-1 514	202	34.9 U		211	38.4 U	185	291	36.7 U	166	145 U
Benzo(a)pyrene	UG/KG	561	92%	61	11	11	12	140 UJ	387	561 1140	283 344	237		283 367	387	383	578	245	226 308	334 NJ 840
Benzo(b)fluoranthene Benzo(ghi)perylene	UG/KG	1140 440	100%	1100 50000	0	7	12	692 J 140 UJ	866 198	440	293	34.9 U		282	38.4 U	266	322	36.7 U	240	145 U
Benzo(k)fluoranthene	UG/KG	0	0%	1100	0	0	12	140 UJ	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	145 U
Bis(2-Chloroethoxy)methane Bis(2-Chloroethyl)ether	UG/KG UG/KG	0	0%		0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U 423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Bis(2-Chloroisopropyl)ether	UG/KG	0	0%		0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Bis(2-Ethylhexyl)phthalate	UG/KG	938	100%		0	12	12	938 J	125 J	68.8 J	43.9 J	42 J		70.7 J 423 U	65.4 J 384 U	170 J 378 U	94.4 J 406 U	33.2 NJ 367 U	38.7 J 355 U	605 J 1450 U
Butylbenzylphthalate Carbazole	UG/KG UG/KG	51.6	0% 25%	50000	0	3	12	1400 U	366 U 51.6 J	363 U 363 U	348 U	349 U		423 U	24.3 J	378 U	406 U	29.4 J	355 U	1450 U
Chrysene	UG/KG	591	100%		3	12	12	383	405	591	239	118		188	194	219	302	190	159	427
Di-n-butylphthalate	UG/KG	124	25%	8100	0	3	12	124 J	366 U	363 U	348 U	349 U		423 U	384 U	35.9 J	406 U	367 U	36.9 J	1450 U

SEAD-1 (BLDG 307) EXTERIOR SOIL DATA ALL COMPOUNDS

	1		- 1			1	-	7 05.5	1 0540 41	OCAD 4	CEAD 4	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	SEAD-1	CEAD 4	SEAD-1	SEAD-1
Location ID								SEAD-1 SS307-00	SEAD-1 SS307-01	SEAD-1 SS307-02	SEAD-1 SS307-03	SS307-04	SS307-05	SS307-05	S\$307-06	SS307-07	SS307-08	SEAD-1 SS307-09	SS307-10	SS307-11
Sample Type/Location			-			-	-	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sample Type Field Sample ID								11000	11001	11002	11003	11004	011005D	11005	11006	11007	11008	11009	11010	11011
Sample Date			-			1		4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003	4/18/2003
Sample Designation								SA	SA	SA	SA	SA	DU	SA	SA	SA	SA	SA	SA	DU
Parameter	Units	Max	Freq	Level	Ex	Det	No.	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	· Value (Q)	Value (Q)	Value (Q)	Value (Q
Di-n-octylphthalate	UG/KG	0	0%	50000	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Dibenz(a,h)anthracene	UG/KG	0	0%	14	0	0	12	140 UJ	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	145 U
Dibenzofuran	UG/KG	25.6	8%	6200	0	1	12	1400 U	366 U	25.6 J	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Diethyl phthalate	UG/KG	0	0%	7100	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Dimethylphthalate	UG/KG	0	0%	2000	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Diphenylamine	UG/KG	0	0%		0		12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Fluoranthene	UG/KG	1100	100%	50000	0	12	12	598	920	1100	388	241		374 20.6 J	338 21.8 J	390 14.2 J	584 19.7 J	327	276	685
Fluorene	UG/KG	43.6	100%	50000	0		12	26 J	22.5 J	43.6	9.7 J 348 U	11.8 J 349 U		423 U	384 U	378 U	406 U	17.6 J 367 U	9 J 355 U	35.2 J 1450 U
Hexachlorobenzene	UG/KG	0	0%	410	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Hexachlorobutadiene Hexachlorocyclopentadiene	UG/KG	0	0%		0	0	12	1400 U	366 UJ	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Hexachloroethane	UG/KG	0	0%	_	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
ndeno(1,2,3-cd)pyrene	UG/KG	408	58%	3200	0	7	12	140 U	242	408	· 274	34.9 U		265	38.4 U	251	300	36.7 U	214	145 U
sophorone	UG/KG	0	0%	4400	0	-	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
N-Nitrosodipropylamine	UG/KG	0	0%	1100	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Naphthalene	UG/KG	0	0%	13000	0	0	12	140 U	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	145 U
Nitrobenzene	UG/KG	0	0%	200	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Pentachlorophenol	UG/KG	0	0%	1000	0		12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Phenanthrene	UG/KG	692	100%	50000	0	_	12	327	396	692	175	141		231	194	188	286	205	143	420
Phenol	UG/KG	0	0%	30	0	0	12	1400 U	366 U	363 U	348 U	349 U		423 U	384 U	378 U	406 U	367 U	355 U	1450 U
Pyrene	UG/KG	1080	100%	50000	0	12	12	705	691	1080	429	208		368	330	379	560	312	286	759
alpha-Terpineol	UG/KG	0	0%		0	0	12	1400 U	366 U	363 UJ	348 UJ	349 U		423 UJ 42.3 U	384 U 38.4 U	378 UJ 37.8 U	406 UJ 40.6 U	367 U	355 UJ	1450 U
Aroclor-1016	UG/KG	0	0%		0	0	12	35.1 U	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	36.3 U
Aroclor-1221	UG/KG	0	0%		0	0	12	35.1 U	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	36.3 U
Aroclor-1232 Aroclor-1242	UG/KG	209	25%		0	3	12	35.1 U	23.4 J	209 J	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	29.6 J
Aroclor-1248	UG/KG	0	0%	-	0	0	12	35.1 U	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	36.3 U
Aroclor-1254	UG/KG	194	67%	10000	0	8	12	38	38.9	194 J	9.7 J	9.6 J		42.3 U	38.4 U	37.8 U	40.6 U	11.3 J	17.7 J	44.4
Aroclor-1260	UG/KG	28.8	42%	10000	0	5	12	21.4 J	28.8 J	28.4 J	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	18.1 J	24.5 J
Aroclor-1262	UG/KG	0	0%		0	0	12	35.1 U	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	36.3 U
Aroclor-1268	UG/KG	0	0%		0	0	12	35.1 U	36.6 U	36.3 U	34.8 U	34.9 U		42.3 U	38.4 U	37.8 U	40.6 U	36.7 U	35.5 U	36.3 U
Aluminum	UG/KG	16700000	100%	20500000	0	13	13	3900000	4520000	3820000	7310000	13000000	16700000	15900000	16600000	7760000	10400000	2210000	4120000	5130000
Antimony	UG/KG	1260	62%	6550	0	8	13	796 J	748 U	956 J	713 J	779 J	865 U	1260	785 U	1170	930 J	682 U	899 J	681 U
Arsenic	UG/KG	7440	100%	21500	0		13	5420	5670	6920	6250	7440	5740	5690	6610	5430	5110	3900	6760	5210
Barium	UG/KG	254000	100%	300000	0	13	13	32600	78000	254000	53800	101000	116000	106000	113000	34500	70300	15400	58000	38500
Beryllium	UG/KG	782	100%	1400	0	13	13	319	345	326	433	660	773	752	782 9030	467 6100	538 6790	234 8220	369	7450
Boron	UG/KG	13100	100%	0000	0	13	13	8510	10200	8100	8580 620	6860 259 J	11300 437	10900	468	553	580	535	13100	944
Cadmium	UG/KG	1130	100%	2900	0	13	13	1130	933	877 245000000	173000000	19600000	12700000	10900000	13400000	4090000	7270000	306000000	159000000	155000000
Calcium Chromium	UG/KG	306000000 24900	100%	293000000 32700	0	13	13	209000000 16100	178000000 14900	14500	14000	20400	24900	23700	24800	19200	20100	7550	15100	15000
Cobalt	UG/KG	16600	100%	30000	0	13	13	4730	5910	5200	7030	9950	9830	9580	16600	7530	7770	3770	9490	5420
Copper	UG/KG	34300	100%	62800	0	13	13	24700	23200	30300	17000	20100	27200	25100	21100	34300	23700	11800	24300	22200
ron	UG/KG	22500000		38600000	0		13	11400000 J	9890000 J	9350000 J	13600000 J	18700000 J	20300000 J	19400000 J	22500000 J	16500000 J	15700000 J	4470000 J	10000000 J	12000000 J
Lead	UG/KG	116000	100%	400000	0	13	13	65700	116000	110000	29500	33200	54800	49500	47600	73200	68300	56900	73700	60900
Magnesium	UG/KG	15900000		29100000	0	13	13	15400000	15900000	11700000	12400000	7730000	6860000	6120000	6960000	3390000	5340000	7670000	15300000	13700000
Manganese	UG/KG	815000	100%	2380000	0	13	13	458000 J	368000 J	508000 J	414000 J	672000 J	505000 J	516000 J	815000 J	242000 J	365000 J	163000 J	316000 J	254000 J
Mercury	UG/KG	370	100%	130	2	13	13	65.1	36.9	18.8	22.1	39.8	370	354	47.3	48.3	62	13.9	64.1	61.8
Molybdenum	UG/KG	1280	100%		0	13	13	894	891	758 J	365 J	455 J	957	985	981	1270	820 J	506 J	1280	868 J
Nickel	UG/KG	30200	100%	62300	0	13	13	20300	20400	16400	21400	25000	29100	28100	28800	28200	25200	14200	30200	23200
Phosphorous	UG/KG	844000	100%	0400000	0	13	13	371000	473000	412000	491000	618000 1780000	827000 2350000	739000	667000 1810000	537000 904000	451000 1110000	265000 642000	844000 1300000	940000
Potassium	UG/KG	2350000		3160000	0	13	13	943000	1250000	830000	1350000	990	805	504 U	515 J	1210	830	421 U	650	489 J
Selenium	UG/KG	1210	100%	2000	0	11	13	893	877 1720000	451 J 1530000	1250000	1400000	2000000	1860000	1960000	1640000	1820000	1460000	1750000	1280000
Silica	UG/KG	933000	100%		0	13		700000 700000	803000	715000	583000	656000	933000	870000	916000	766000	851000	683000	819000	597000
Silver	UG/KG	345	15%	870	0	2	13	261 J	274 U	259 U	251 U	256 U	317 U	345 J	288 U	283 U	282 U	250 U	258 U	249 U
Sodium	UG/KG	348000	92%	269000	1			88100	77700	348000	85200 U	232000	51200	46200	177000	161000	158000	88600	96700	68000
Strontium	UG/KG	230000	100%	20000	0	13		190000	172000	224000	151000	31200	27300	25100	20800	15700	15000	230000	147000	135000
Sulfur	UG/KG	3210000	100%	~~~	0			1880000 J	1440000 J	1090000 J	689000 J	370000 J	466000 J	396000 J	323000 J	1420000 J	444000 J	898000 J	3210000 J	2010000 J
Thallium	UG/KG	0	0%	1200	0	0		617 U	688 U	650 U	630 U	644 U	797 U	751 U	723 U	711 U	708 U	628 U	649 U	627 U
Tin	UG/KG	3240	100%		0			1930	1590	1890	1350	657 J	2290	1510	881 J	3240	1050 J	685 J	950 J	1560
Titanium	UG/KG	105000	100%		0	13		39000	75600	46600	50000	71500	94700	71800	93600	96300	105000	23600	40000	42900
Uranium	UG/KG	499	8%		0	1	13	490 U	547 U	517 U	501 U	511 U	633 U	597 U	575 U	565 U	563 U	499	516 U	498 U
Vanadium	UG/KG	33200	100%	150000	0			18100	22400	20200	19900	33200	32100	30100	32000	27100	32400	15800	22900	19300
Zinc	UG/KG	16200000	100%	126000	13	13	13	2936000	905000	16200000	9650000	5800000	180000	157000	6350000	8660000		3020000	1050000	2470000
														-	-					
NOTES:			_	NOTES:											-		-			
SA = Sample				Q = Data Quali																
OU = Duplicate				U = Undetected	1	-			-	-						-	-			
Maximum = Maximum Detected Value			J	J = Estimated		-				-				-						
req = Frequency of Detection			_			-	-				-									
	3.																			
evel = Action Level or Cleanup Criter x = Number of Exceedances of the A			-		-		-													

SEAD- 2 (BLDG 301) EXTERIOR SOIL DATA ALL COMPOUNDS

Location ID	t									SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2		SEAD-2 SS301-05	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2
Sample Type/Bldg ID/Locat Sample Type	tion									SS301-00 SOIL	SS301-01 SOIL	SS301-02 SOIL	SS301-03 SOIL	SS301-04 SOIL	SS301-04 SOIL		SOIL	SS301-06 SOIL	SS301-07 SOIL	SS301-08 SOIL	SS301-09 SOIL	SS301-20 SOIL	SS301-21 SOIL
Field Sample ID Sample Date										21000 4/17/2003	21001 4/17/2003	21002 4/17/2003	21003 4/17/2003	021004D 4/17/2003	21004 4/17/2003		21005 4/17/2003	21006 4/17/2003	21007 4/17/2003	21008 4/17/2003	21009 4/17/2003	21020 4/17/2003	21021 4/17/2003
Sample Designation Parameter	Tu	nits	Max	Freq	Leve	et l	Ex	Det	No.	SA Value (Q)	SA Value (Q)	SA Value (Q)	SA Value (Q)	Value (Q)	Value ((Q)	SA Value (Q)	SA Value (Q)	Value (Q)	· Value (Q)	SA Value (Q)	SA Value (Q)	DU Value (Q)
1,1,1-Trichloroethane	UC	KG	0	0%	800		0	0	12	0.8 U	0.88 U	0.84 U	1.1 U		1.5 (U	1.2 U 1.2 UJ	1.2 U 1.2 U	1.2 U	0.94 U	0.91 U	0.82 U	1.4 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		KG KG	0	0%	600		0	0	12	0.8 U	0.88 U 0.88 U	0.84 U 0.84 U	1.1 U 1.1 U		1.5 L	U	1.2 U	1.2 U	1.2 U 1.2 U	0.94 U 0.94 U	0.91 U 0.91 U	0.82 U 0.82 U	1.4 UJ 1.4 U
1,1-Dichloroethane		KG KG	7.6	0%	200 400		0	0	12	0.8 U 1.7	0.88 U	0.84 U 0.84 U	1.1 U 1.1 U		1.5 0		1.2 U	1.2 U 1.2 U	1.2 U 6.2	0.94 U	0.91 U 4.6	0.82 U 4.9	1.4 U 7.6
1,2-Dichloroethane	UC	/KG	0	0%	100)	0	0	12	0.8 U	0.88 U	0.84 U	1.1 U		1.5 L	U	1.2 U	1.2 U	1.2 U	0.94 U	0.91 U	0.82 U	1.4 U
1,2-Dichloropropane Acetone		KG KG	20.9	0% 33%	200		0	0 4	12	0.8 U 4 U	0.88 U 4.4 U	0.84 U 4.2 U	1.1 U 5.6 U		1.5 L 7.4 L	U	1.2 U 6.3 U	1.2 U 6.5 J	1.2 U 20.9 J	0.94 U 4.7 U	0.91 U 8.4 J	0.82 U 6.5 J	1.4 U 6.8 U
Benzene Bromodichloromethane		KG KG	0	0%	60		0	0	12	0.8 U	0.88 U	0.84 U 0.84 U	1.1 U		1.5 L		1.2 U	1.2 U 1.2 U	1.2 U	0.94 U	0.91 U	0.82 U 0.82 U	1.4 U 1.4 U
Bromoform	UC	/KG	0	0%			0	0	12	0.8 U	0.88 U	0.84 U	1.1 U		1.5	Ü	1.2 UJ	1.2 U	1.2 U	0.94 U	0.91 U	0.82 U	1.4 UJ
Carbon disulfide Carbon tetrachloride		KG KG	0	0%	600		0	0	12	0.8 U	4.4 U 0.88 U	4.2 U 0.84 U	5.6 U		7.4 L 1.5 L	U	6.3 U 1.2 U	5.9 U 1.2 U	5.9 U 1.2 U	4.7 U 0.94 U	4.6 U 0.91 U	4.1 U 0.82 U	6.8 U 1.4 U
Chlorodibromomethane		KG KG	0	0%	170		0	0	12	0.8 U	0.88 U	0.84 U 0.84 U	1.1 U 1.1 U		1.5 L		1.2 U	1.2 U	1.2 U	0.94 U 0.94 U	0.91 U 0.91 U	0.82 U 0.82 U	1.4 U
Chloroethane	UC	/KG	0	0%	190	0	0	0	12	0.8 U	0.88 U	0.84 U	1.1 U		1.5 U	Ü	1.2 U	1.2 U 1.2 U	1.2 U 1.2 U	0.94 U 0.94 U	0.91 U 0.91 U	0.82 U 0.82 U	1.4 U 1.4 U
Chloroform Cis-1,2-Dichloroethene	UC	KG KG	0	0%	300		0	0	12	0.8 U 0.8 U	0.88 U 0.88 U	0.84 U 0.84 U	1.1 U 1.1 U		1.5 L	J	1.2 U	1.2 U	1.2 U	0.94 U	0.91 U	0.82 U	1.4 U
Cis-1,3-Dichloropropene Ethyl benzene		KG KG	0	0%	550		0	0	12	0.8 U 0.8 U	0.88 U	0.84 U 0.84 U	1.1 U 1.1 U		1.5 L 1.5 L		1.2 U	1.2 U 1.2 U	1.2 U 1.2 U	0.94 U 0.94 U	0.91 U	0.82 U 0.82 U	1.4 U
Methyl bromide	UC	/KG	0	0%			0	0	12	0.8 U	0.88 U 4.4 U	0.84 U 4.2 U	1.1 U 5.6 U		1.5 U	J	1,2 U 6.3 U	1.2 U 5.9 U	1.2 U 5.9 U	0.94 U 4.7 U	0.91 U 4.6 U	0.82 U 4.1 U	1.4 U 6.8 U
Methyl butyl ketone Methyl chloride	ÜC	/KG	0	0%			0	0	12	0.8 U	0.88 U	0.84 U	1.1 U		1.5 U	J	1.2 U	1.2 U	1.2 U	0.94 U	0.91 U	0.82 U	1.4 U
Methyl ethyl ketone Methyl isobutyl ketone		KG KG	0	8%	100		0	0	12	4 U	4.4 U	4.2 U 4.2 U	5.6 U		7.4 U		6.3 U	17 5.9 U	5.9 U 5.9 U	4.7 U 4.7 U	4.6 U	4.1 U 4.1 U	6.8 U
Methylene chloride Styrene	UC	KG KG	0	0%	100		0	0	12	4 U 0.8 U	4.4 U 0.88 U	4.2 U 0.84 U	5.6 U		7.4 U		6.3 U 1.2 U	5.9 U 1.2 U	5.9 U 1.2 U	4.7 U 0.94 U	4.6 U 0.91 U	4.1 U 0.82 U	6.8 U
Tetrachloroethene	UC	/KG	0	0%	140	0	0	0	12	0.8 U	0.88 U	0.84 U	1.1 U		1.5 U	J	1.2 U	1.2 U	1.2 U	0.94 U	0.91 U	0.82 U	1.4 U
Toluene Total Xylenes		KG KG	0.76	50%	150		0	6	12	0.43 J 0.8 U	0.88 U	0.35 J 0.84 U	1.1 U 1.1 U		1.5 U		1.2 U 1.2 U	1.2 U 1.2 U	0.74 J 1.2 U	0.94 U 0.94 U	0.43 J 0.91 U	0.73 J 0.82 U	0.76 J 1.4 U
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	_	KG KG	0	0%	300		0	0	12	0.8 U	0.88 U	0.84 U 0.84 U	1.1 U 1.1 U		1.5 U		1.2 U 1.2 U	1.2 U	1.2 U 1.2 U	0.94 U 0.94 U	0.91 U	0.82 U	1.4 U
Trichloroethene	UC	/KG	0	0%	700)	0	0	12	0.8 U	0.88 U	0.84 U	1.1 U		1.5 U	J	1.2 U	1.2 U	1.2 U	0.94 U	0.91 U	0.82 U	1.4 U
Vinyl acetate Vinyl chloride		KG KG	0	0%	200		0	0	12	0.8 U	4.4 U 0.88 U	4.2 U 0.84 U	5.6 U		7.4 U	J	6.3 U 1.2 U	5.9 U 1.2 U	5.9 U 1.2 U	4.7 U 0.94 U	4.6 U 0.91 U	4.1 U 0.82 U	6.8 U 1.4 U
1,1'-Biphenyl 1,2,4-Trichlorobenzene		KG KG	2900	50%	340		0	6	12	849 J 13700 UJ	3460 UJ 3460 UJ	50.1 UJ 3540 UJ	109 UJ 13800 UJ		40 J 414 U		344 U	249 J 3640 UJ	2900 J 40800 UJ	283 J 3750 UJ	57.5 UJ 3530 UJ	355 U 355 U	689 J 3560 UJ
1,2-Dichlorobenzene	UC	/KG	0	0%	790	0	0	0	12	13700 UJ 13700 UJ	3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U		344 U 344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 U 355 U	3560 UJ 3560 UJ
1,3-Dichlorobenzene 1,4-Dichlorobenzene	UC	/KG	0	0%	1600 8500	0	0	0	12	13700 UJ	3460 UJ 3460 UJ	3540 UJ	13800 UJ		414 U	j	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		/KG	0	0%	100		0	0	12	13700 UJ 13700 UJ	3460 UJ 3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U		344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 U	3560 UJ 3560 UJ
2,4-Dichlorophenol 2,4-Dimethylphenol		VKG VKG	0	0%	400		0	0	12	13700 UJ 13700 UJ	3460 UJ 3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U		344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 U	3560 UJ 3560 UJ
2,4-Dinitrophenol	ÚC	/KG	0	0%	200		0	0	12	27500 UJ	6920 UJ	7090 UJ	27500 UJ		828 U 414 U		689 U 344 U	7280 UJ 3790 J	81600 UJ 35700 J	7500 UJ 16800 J	7070 UJ 3530 UJ	710 U	7120 UJ
2,4-Dinitrotoluene 2,6-Dinitrotoluene	UC	VKG VKG	35700 951	33% 8%	1000		0	1	12	13700 UJ 13700 UJ	3460 UJ 3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U		344 U	3640 UJ	40800 UJ	951 J	3530 UJ	355 U 355 U	4650 J 3560 UJ
2-Chloronaphthalene 2-Chlorophenol		/KG	0	0%	800		0	0	12	1370 UJ 13700 UJ	346 UJ 3460 UJ	354 UJ 3540 UJ	1380 UJ 13800 UJ		41.4 U)	34.4 U	364 UJ 3640 UJ	4080 UJ 40800 UJ	375 UJ 3750 UJ	353 UJ 3530 UJ	35.5 U	356 UJ 3560 UJ
2-Methylnaphthalene	UC	/KG	15200	92%	3640	0	0	11	12	3700 J 13700 UJ	178 J	204 J 3540 UJ	1380 UJ 13800 UJ		198 414 U		44.4 344 U	1230 J 3640 UJ	15200 J 40800 UJ	1320 J 3750 UJ	260 J 3530 UJ	94.4 355 U	3360 J 3560 UJ
2-Methylphenol 2-Nitroaniline	UC	VKG VKG	0	0%	430		0	0	12	13700 UJ	3460 UJ 3460 UJ	3540 UJ	13800 UJ		414 U)	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
2-Nitrophenol 3 or 4-Methylphenol		/KG	464	8%	330	_	0	0	12	13700 UJ 13700 U	3460 UJ 3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U 414 U		344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 U 355 U	3560 UJ 464 J
3,3'-Dichlorobenzidine 3-Nitroaniline	UC	/KG	0	0%	500		0	0	12	13700 UJ 13700 UJ	3460 UJ 3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U 414 U		344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 U 355 U	3560 UJ 3560 UJ
4,6-Dinitro-2-methylphenol	UC	/KG	0	0%	300		0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	J	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
4-Bromophenyl phenyl ethe 4-Chloro-3-methylphenol		/KG	0	0%	240			0	12	13700 UJ 13700 UJ	3460 UJ 3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U 414 U]	344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 U 355 U	3560 UJ 3560 UJ
4-Chloroaniline 4-Chlorophenyl phenyl ethe	ÜC	KG KG	0	0%	220			0	12	13700 UJ 13700 UJ	3460 UJ 3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U 414 U		344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 U 355 U	3560 UJ 3560 UJ
4-Nitroaniline	UC	/KG	0	0%			0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	1	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
4-Nitrophenol Acenaphthene		KG KG	18200	100%	100 5000			12	12	13700 UJ 7570 J	3460 UJ 290 J	3540 UJ 717 J	13800 UJ 1870 J		414 U 250		344 U 44.1	3640 UJ 1610 J	40800 UJ 18200 J	3750 UJ 2260 J	3530 UJ 424 J	355 U 79.2	3560 UJ 4320 J
Acenaphthylene Anthracene	UC	KG KG	2410 33900	83%	4100 5000	Ю	0	10	12	1230 J 24200 J	900 J 1030 J	382 J 2650 J	2410 J 7560 J		41.4 U 401	1	287 164	1450 J 3500 J	4080 UJ 33900 J	284 J 4520 J	323 J 1160 J	403 320	1900 J 8180 J
Atrazine	UC	/KG	0	0%	3300	-	0	0	12	13700 UJ	3460 R	3540 R	13800 R		414 R		344 R	3640 R	40800 UJ	3750 R	3530 R	355 R	3560 R
Benzaldehyde Benzo(a)anthracene	UC	/KG	66600	100%	224			12	12	13700 UJ 39300 J	3460 UJ 4670 J	3540 UJ 7690 J	13800 UJ 27900 J		414 U	_	344 U	3640 UJ	40800 UJ ** .66600 J	3750 UJ 9100 J	3530 UJ 3300 J	355 U 2660	3560 UJ 19400 J
Benzo(a)pyrene Benzo(b)fluoranthene		/KG	56900 102000	100%				12	12	31600 J 56700 J	5300 J 5540 J	7240 J 8980 J	22900 J 28800 J		1080		1710 2510	11500 J 11900 J	56900 J 102000 J	8840 J 12500 J	3240 J 4050 J	2100 J 3210 J	19600 J 22700 J
Benzo(ghi)perylene	UC	/KG	25100	100%	5000	0	0	12	12	11600 J	3540 J	3860 J	11900 J		551 41.4 U		818 34.4 U	4570 J 5240 J	25100 J 4080 UJ	3830 J 5760 J	2220 J	1150 J	7440 J
Benzo(k)fluoranthene Bis(2-Chloroethoxy)methan	e UC	/KG	11700	58%	1100		0	7	12	1370 UJ 13700 UJ	3660 J 3460 UJ	4340 J 3540 UJ	11700 J 13800 UJ		414 U	1	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	35.5 UJ 355 U	3560 UJ
Bis(2-Chloroethyl)ether Bis(2-Chloroisopropyl)ether		/KG	0	0%				0	12	13700 UJ 13700 UJ	3460 UJ 3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U.		344 UJ 344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 UJ 355 U	3560 UJ 3560 UJ
Bis(2-Ethylhexyl)phthalate	UC	/KG	0	0%	5000	0	0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ 13800 UJ		177 U.	IJ	180 UJ 344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 UJ 355 U	3560 UJ 3560 UJ
Butylbenzylphthalate Carbazole	UC	/KG	28200	0% 83%	5000		0	10	12	13700 UJ 11300 J	3460 UJ 807 J	3540 UJ 1920 J	5810 J		281 J		344 U	2620 J	28200 J	3090 J	640 J	355 U	6070 J
Chrysene	. IUC	KG	67700 1780	100%				12	12	35000 J 13700 UJ	5540 J 3460 UJ	7950 J 3540 UJ	29900 J 13800 UJ		1150 414 U	-	2060 344 U	12200 J 3640 UJ	67700 J 40800 UJ	. 9480 J 1780 J	4150 J 419 J	329 J	20000 J 3560 UJ

SEAD- 2 (BLDG 301) EXTERIOR SOIL DATA ALL COMPOUNDS

Location ID								SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2	SEAD-2
Sample Type/Bldg ID/Location	n							SS301-00	SS301-01	SS301-02	SS301-03	SS301-04	SS301-04	SS301-05	SS301-06	SS301-07	SS301-08	SS301-09	SS301-20	SS301-21
Sample Type								SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Field Sample ID Sample Date			-					21000 4/17/2003	21001	21002 4/17/2003	21003 4/17/2003	021004D 4/17/2003	21004 4/17/2003	21005 4/17/2003	21006 4/17/2003	21007 4/17/2003	21008 4/17/2003	21009 4/17/2003	21020	21021 4/17/2003
Sample Designation								SA SA	SA	SA	SA	DU	SA	SA	SA	SA	SA	SA	SA	DU
Parameter	Units	Max	Freq	Level	Ex	Det	No.	Value (Q)			Value (Q)	Value (Q)	· Value (Q)	Value (Q)	Value (Q)	Value (Q)				
Di-n-octylphthalate	UG/KG	0	0%	50000	0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
Dibenz(a,h)anthracene Dibenzofuran	UG/KG	19900 22100	100%	6200	2	12	12	19900 J 11300 J	346 UJ 250 J	354 UJ 761 J	1380 UJ 2210 J		281 265 J	354 40.9 J	364 UJ 1750 J	4080 UJ 22100 J	375 UJ 2300 J	353 UJ 468 J	35.5 UJ 46.3 J	356 UJ 5000 J
Diethyl phthalate	UG/KG	0	0%	7100	0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
Dimethylphthalate	UG/KG	0	0%	2000	0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
Diphenylamine	UG/KG	3150	25%	50000	0	3	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	629 J	40800 UJ	3150 J	3530 UJ	119 J	3560 UJ
Fluoranthene Fluorene	UG/KG	151000 19200	100%	50000 50000	0	12	12	18100 J	9100 J 637 J	17400 J 1550 J	53200 J 4440 J		2560	1500	17400 J 1900 J	151000 J 19200 J	19400 J 2320 J	6980 J 728 J	2490	34500 J 5100 J
Hexachlorobenzene	UG/KG	0	0%	410	0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
Hexachlorobutadiene	UG/KG	0	0%		0		12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
Hexachlorocyclopentadiene	UG/KG	0	0%		0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
Indeno(1,2,3-cd)pyrene	UG/KG	24900	100%	3200	7	12	12	13700 UJ 11600 J	3460 UJ 2630 J	3540 UJ 3640 J	13800 UJ 10700 J		414 U 572	344 U 662	3640 UJ 3779 J	40800 UJ 24900 J	3750 UJ 4020 J	3530 UJ 1730 J	355 U 864	3560 UJ 7020 J
Isophorone	UG/KG	0	0%	4400	0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
N-Nitrosodipropylamine	UG/KG	0	0%		0	0	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	40800 UJ	3750 UJ	3530 UJ	355 U	3560 UJ
Naphthalene	UG/KG	33900	67%	13000	1	8	12	838 J	346 UJ	354 UJ	1380 UJ		572	62.7	2030 J	33900 J	2440 J	353 UJ	106	10100 J
Nitrobenzene Pentachlorophenol	UG/KG UG/KG	0	0%	1000	0	0	12	13700 UJ 13700 UJ	3460 UJ 3460 UJ	3540 UJ 3540 UJ	13800 UJ 13800 UJ		414 U 414 U	344 U	3640 UJ 3640 UJ	40800 UJ 40800 UJ	3750 UJ 3750 UJ	3530 UJ 3530 UJ	355 U 355 U	3560 UJ 3560 UJ
Phenanthrene	UG/KG	159000	100%	50000	2	12	12	81500 J	5340 J	12400 J	38300 J		2000	669	14700 J	159000 J	18800 J	5240 J	1050	34100 J
Phenol	UG/KG	1680	25%	30	3	3	12	13700 UJ	3460 UJ	3540 UJ	13800 UJ		414 U	344 U	3640 UJ	1680 J	178 J	3530 UJ	355 U	372 J
Pyrene	UG/KG	148000	100%	50000	3		12	98600 J	10500 J	15700 J	61200		2150	3280	23500 J	148000 J	18400 J	8150 J	5350	39000 J
alpha-Terpineol Aroclor-1016	UG/KG	0	0%		0	0	12	13700 UJ 34.3 U	3460 UJ 34.6 U	3540 UJ 35.4 U	13800 UJ 34.4 U		414 UJ 41.4 U	344 UJ 34.4 U	3640 UJ 36.4 U	40800 UJ 40.8 U	3750 UJ 37.5 U	3530 UJ 35.3 U	355 UJ 35.5 U	3560 U 35.6 U
Aroclor-1221	UG/KG	0	0%		0	0	12	34.3 U	34.6 U	35.4 U	34.4 U		41.4 U	34.4 U	36.4 U	40.8 U	37.5 U	35.3 U	35.5 U	35.6 U
Aroclor-1232	UG/KG	0	0%		0	0	12	34.3 U	34.6 U	35.4 U	34.4 U		41.4 U	34.4 U	36.4 U	40.8 U	37.5 U	35.3 U	35.5 U	35.6 U
Aroclor-1242	UG/KG	0	0%		0	0	12	34.3 U	34.6 U	35.4 U	34.4 U		41.4 U	34.4 U	36.4 U	40.8 U	37.5 U	35.3 U	35.5 U	35.6 U
Aroclor-1248 Aroclor-1254	UG/KG	120	17%	10000	0	2	12	34.3 U 34.3 U	34.6 U	35.4 U	34.4 U		41.4 U	34.4 U	36.4 U	40.8 U 120	37.5 U 53.2	35.3 U	35.5 U 35.5 U	35.6 U
Aroclor-1260	UG/KG	0	0%	10000	0	0	12	34.3 U	34.6 U	35.4 U	34.4 U		41.4 U	34.4 U	36.4 U	40.8 U	37.5 U	35.3 U	35.5 U	35.6 U
Aroclor-1262	UG/KG	0	0%		0	0	12	34.3 U	34.6 U	35.4 U	34.4 U		41.4 U	34.4 U	36.4 U	40.8 U	37.5 U	35.3 U	35.5 U	35.6 U
Aroclor-1268 Aluminum	UG/KG	1000000	0%	20500000	0	0	12	34.3 U 2780000	34.6 U 4430000	35.4 U 4300000	34.4 U 5610000	16800000	41.4 U 15700000	34.4 U 2460000	36.4 U 3540000	40.8 U 6710000	37.5 U 6490000	35.3 U	35.5 U 5400000	35.6 U 3710000
Antimony	UG/KG	16800000 4940	77%	6550	0	13	13	755 J	667 UJ	678 J	682 UJ	1580 J	1080 J	645 UJ	1200 J	3480 J	4940 J	5080000 1770 J	1050 J	11101
Arsenic	UG/KG	17600	100%	21500	0	13	13	2920	3430	3150	4600	17300	17600	2270	3380	7850	5340	3350	3470	2740
Barium	UG/KG	162000	100%	300000	0	13	13	162000 J	29500 J	41000 J	29200 J	132000 J	121000 J	34500 J	37900 J	111000 J	155000 J	30200 J	54000 J	35100 J
Beryllium Boron	UG/KG UG/KG	845 13800	100%	1400	0	13	13	194 9990 J	257 9620 J	268 12500 J	322 10900 J	845 13800 J	804 11000 J	183 10400 J	275 11500 J	537 12700 J	410 8150 J	301 . 13100 J	316 13700 J	224 10200 J
Cadmium	UG/KG	4200	92%	2900	3	12	13	359	134 J	78.8 U	150 J	329	325 J	97.4 J	300 J	4120	4200	470	4200	251 J
Calcium	UG/KG	22100000		293000000	0	13	13	221000000	137000000	212000000	129000000	7200000	7730000	204000000	147000000	105000000	23800000	126000000	123000000	128000000
Cohalt	UG/KG	52800 10500	100%	32700	3	13	13	6410	8080	7570 4400	10700	10500	52300 9010	5230 2910	8970 5300	30700 10400	39100 9640	11900 4110	17400	12700
Cobalt Copper	UG/KG	86400	100%	30000 62800	0	13	13	2360 8110	4100 10600	9500	5020 11400	35100	34300	6230	11600	86400	53800	14100	4760 16900	3630 10700
Iron	UG/KG	26300000	100%	38600000	0	13	13	5150000 J	8200000 J	6860000 J	9430000 J	21100000 J	21800000 J	4620000 J	19700000 J	26300000 J	24700000 J	7850000 J	8550000 J	6780000 J
Lead	UG/KG	1570000		400000	1	13	13	24700	23400	14800	26800	29300	27600	9510	97900	1570000	372000	62800	77600	141000
Magnesium Manganese	UG/KG	56100000	100%	29100000 2380000	8	13	13	19800000 340000 J	32500000 297000 J	35700000 323000 J	37500000 363000 J	5230000 522000 J	5670000 400000 J	222000 J	34800000 446000 J	9450000 476000 J	6580000 J	36700000 295000 J	288000 J	255000 J
Mercury	UG/KG	87.4	100%	130	0	13	13	18.8	11.3	10.6	12.2	66	63.9	11.3	21.2	87.4	56.7	17.1	24.9	18.6
Molybdenum	UG/KG	3860	62%	0	0	8	13	158 U	167 U	166 U	170 U	500	508 J	161 U	369 J	3860	1220	189 J	204 J	241 J
Nickel	UG/KG	55200	100%	62300	0	13	13	9180	12600	11600	14600	30400	28700	9610	14100	55200	26900	12100	11800	11400
Phosphorous Potassium	UG/KG	1380000		3160000	0	13	13	250000 J	312000 1370000 J	312000 1520000 J	371000 1570000 J	620000 J	649000 J	325000 1240000 J	377000 1340000 J	898000 1250000 J	534000 1250000 J	421000 1730000 J	1380000 1890000 J	387000 J
Selenium	UG/KG	1400	62%	2000	0	8	13	390 U	412 U	410 U	421 U	1280	1310	488	692	1400	953	414 J	407 U	556
Silica	UG/KG	1650000		0	0	13	13	1190000 J	1290000 J	1420000 J	1050000 J	962000 J	1650000 J	1420000 J	1500000 J	1500000 J	1350000 J	832000 J	1500000 J	1370000 J
Silicon	UG/KG				0	13		556000 J	603000 J	665000 J	491000 J	450000 J	771000 J	665000 J	700000 J	700000 J	633000 J	389000 J	703000 J	639000 J
Silver	UG/KG	465 162000	100%	870 2690000	0	1 13	13	232 U 162000	245 U 122000	244 U 162000	250 U 145000	287 U 44700	307 U 42400	237 U 137000	250 U 150000	288 U 148000	465 J 64700	243 U 136000	242 U 129000	247 U 115000
Strontium	UG/KG	250000	100%	0		13		250000	112000	213000	118000	19200	18400	176000	137000	128000	78100	114000	84100	105000
Sulfur	UG/KG	1680000		0	0	13	13	1680000 J	1160000 J	810000 J	850000 J	322000 J	352000 J	524000 J	972000 J	1000000 J	563000 J	619000 J	430000 J	828000 J
Thallium	UG/KG	0	0%	1200	0			582 U	614 U	612 U	628 U	721 U	771 U	594 U	628 U	724 U	665 U	610 U	607 U	620 U
Tin Titanium	UG/KG	19100 381000	92%	0	0			537 J 29900 J	438 J 53800 J	376 J 55300 J	450 J 97200 J	72600 J	767 J 70100 J	443 J 19300 J	375 U 381000 J	19100 164000 J	4010 72000 J	858 J 79100 J	909 J 101000 J	694 J 43800 J
Uranium	UG/KG	573	8%	0	0			462 UJ	488 UJ	486 UJ	499 UJ	573 J	613 UJ	472 UJ	499 UJ	575 UJ	529 UJ	485 UJ	482 UJ	493 UJ
Vanadium	UG/KG	36400	100%	150000	0	13	13	32100	15500	11200	13500	28300	26100	8460	36400	18200	14700	20500	17500	17900
Zinc	UG/KG	752000	100%	126000	4	13	13	28100	36200	29400	63900	156000	151000	30600	56600	752000	325000	76400	88000	57100

NOTES:
SA = Sample
DU = Duplicate
Maximum = Maximum Detected Value
Freq = Frequency of Detection
Level = Action Level or Cleanup Criteria
Ex = Number of Exceedances of the Action Level
Det = Number of Detections

NOTES:

Q = Data Qualifier

U = Undetected

J = Estimated

SEAD2 Report Tables\Soil - All

SEAD-1 and SEAD-2 (BLDG 307 and BLDG 301) WASHWATER FOR DISPOSAL

Location ID			SEAD-1		SEAD-2	SEAD-2
Building ID/Location			307/Drum		301/Drum	301/Drum
Sample Type			WATER		WATER	WATER
Sample Number			307		301D	301
Sample Date			4/21/2003		4/21/2003	4/21/2003
Sample Designation			SA		DU	SA
			BUILDING 30	01	BUILDING 307	BUILDING 307
	1	Regulatory				
Parameter	Units	Level	Value	(Q)	Value (Q)	Value (Q)
1,1,1-Trichloroethane	UG/L		1	U		50 U
1,1,2,2-Tetrachloroethane	UG/L		1	U		50 U
1,1,2-Trichloroethane	UG/L		1	U		50 U
1,1-Dichloroethane	UG/L		1	U		50 U
1,1-Dichloroethene	UG/L		1	U		50 U
1,2-Dichloroethane	UG/L	500	1.	U		50 U
1,2-Dichloropropane	UG/L			U		50 U
Acetone	UG/L		. · · · · · · · · · · · · · · · · · · ·	J		250 U
Benzene	UG/L	500		UJ		50 UJ
Bromodichloromethane	UG/L		1	U		50 U
Bromoform	UG/L			U		50 U
Carbon disulfide	UG/L					250 U
Carbon tetrachloride	UG/L	500	1	U		50 U
Chlorobenzene	UG/L	100000	1	UJ		50 UJ
Chlorodibromomethane	UG/L		1	U		50 U
Chloroethane	UG/L		1,	UJ		50 UJ
Chloroform	UG/L	6000	1	U		50 U
Cis-1,2-Dichloroethene	UG/L		1	U		50 U
Cis-1,3-Dichloropropene	UG/L		1	U		50 U
Ethyl benzene	UG/L		1	UJ		50 UJ
Methyl bromide	UG/L			UJ		50 UJ
Methyl butyl ketone	UG/L		5	U		250 U
Methyl chloride	UG/L		1	UJ		50 UJ
Methyl ethyl ketone	UG/L	200000	5	U		250 U
Methyl isobutyl ketone	UG/L			U		250 U
Methylene chloride	UG/L			UJ		250 UJ
Styrene	UG/L		1	UJ		50 UJ
Tetrachloroethene	UG/L			U		50 U
Toluene	UG/L		Ü.7/			50 UJ
Total Xylenes	UG/L		1	UJ		50 UJ
Trans-1,2-Dichloroethene	UG/L			U		50 U
Trans-1,3-Dichloropropene	UG/L		1			50 U
Trichloroethene	UG/L			U		50 U
Vinyl acetate	UG/L			UJ		250 UJ
Vinyl chloride	UG/L	200		U		50 U
1,1'-Biphenyl	UG/L		9.7			99 U
1,2,4-Trichlorobenzene	UG/L		9.7			99 U
1,2-Dichlorobenzene	UG/L		9.7	U		99 U
1,3-Dichlorobenzene	UG/L		9.7			99 U
1,4-Dichlorobenzene	UG/L	7500	9.7			99 U
2,4,5-Trichlorophenol	UG/L	400000	9.7			99 U
2,4,6-Trichlorophenol	UG/L	2000	9.7			99 U
2,4-Dichlorophenol	UG/L		9.7		ļ	99 U
2,4-Dimethylphenol	UG/L		9.7			99 U
2,4-Dinitrophenol	UG/L		19.4			198 U
2,4-Dinitrotoluene	UG/L	130	9.7			99 U
2,6-Dinitrotoluene	UG/L		9.7			99 U
2-Chloronaphthalene	UG/L		0.97			9.9 U
2-Chlorophenol	UG/L		9.7			99 U
2-Methylnaphthalene	UG/L		0.97			7 NJ
2-Methylphenol	UG/L		9.7			99 U
2-Nitroaniline	UG/L		9.7			99 U
2-Nitrophenol	UG/L		9.7			99 U
3 or 4-Methylphenol	UG/L		9.7			99 U
3,3'-Dichlorobenzidine	UG/L	1	9.7	U		99 U

Page 1 of 3 SEAD1_2WATER_BS

SEAD-1 and SEAD-2 (BLDG 307 and BLDG 301) WASHWATER FOR DISPOSAL

Location ID			SEAD-1		SEAD-2		SEAD-2	
Building ID/Location			307/Drum		301/Drum		301/Drum	1
Sample Type			WATER		WATER		WATER	
Sample Number			307		301D		301	
Sample Date			4/21/2003		4/21/2003		4/21/2003	
Sample Designation			SA		DU		SA	
			BUILDING 3	01	BUILDING 30)7	BUILDING 3	07
Parameter	Units	Regulatory Level	Value		Value	(Q)	Value	(Q)
3-Nitroaniline	UG/L		9.7	U			99	U
4,6-Dinitro-2-methylphenol	UG/L		9.7	U			99	U
4-Bromophenyl phenyl ether	UG/L		9.7				99	Ú
4-Chloro-3-methylphenol	UG/L		9.7				99	
4-Chloroaniline	UG/L		9.7				99	
4-Chlorophenyl phenyl ether	UG/L		9.7			-	99	
4-Nitroaniline	UG/L		9.7				99	
4-Nitrophenol	UG/L		9.7		-		99	
Acenaphthene	UG/L		0.97		-		7.1	
Acenaphthylene	UG/L		0.97				9.9	
	UG/L		0.97				122	
Anthracene				****			99	
Atrazine	UG/L		9.7				99	
Benzaldehyde	UG/L		9.7					
Benzo(a)anthracene	UG/L		0.97				14.6	
Benzo(a)pyrene	UG/L		0.97				11.8	
Benzo(b)fluoranthene	UG/L		0.97				17.1	
Benzo(ghi)perylene	UG/L		0.97				9.9	
Benzo(k)fluoranthene	UG/L		0.97				9.9	
Bis(2-Chloroethoxy)methane	UG/L		9.7				99	-
Bis(2-Chloroethyl)ether	UG/L		9.7				99	1
Bis(2-Chloroisopropyl)ether	UG/L		9.7	and the second			99	
Bis(2-Ethylhexyl)phthalate	UG/L		29				20.9	
Butylbenzylphthalate	UG/L		9.7	U			99	
Carbazole	UG/L		9.7				11.6	
Chrysene	UG/L		0.97	U			14.8	NJ
Di-n-butylphthalate	UG/L		9.7	U			13.4	J
Di-n-octylphthalate	UG/L		9.7	U			99	
Dibenz(a,h)anthracene	UG/L		0.97	U			9.9	U
Dibenzofuran	UG/L		9.7	U			10.1	NJ
Diethyl phthalate	UG/L		9.7				99	U
Dimethylphthalate	UG/L		0.52				99	U
Diphenylamine	UG/L		9.7				99	U
Fluoranthene	UG/L		0.97				44.2	
Fluorene	UG/L		0.97				10.4	NJ
Hexachlorobenzene	UG/L	130	9.7				99	
Hexachlorobutadiene	UG/L	500	9.7	Ü			99	
Hexachlorocyclopentadiene	UG/L	300	9.7				99	
Hexachloroethane	UG/L	-	9.7				99	
Indeno(1,2,3-cd)pyrene	UG/L		0.97		-		9.9	
	UG/L		9.7				99	
Isophorone N-Nitrosodipropylamine	UG/L		9.7				99	
							19.6	
Naphthalene	UG/L	0000	0.97			-	99	
Nitrobenzene	UG/L	2000	9.7	U	-			
Pentachlorophenol	UG/L	100000	25.5				99	U
Phenanthrene	UG/L		0.97				57.3	
Phenol	UG/L		9.7				10.8	
Pyrene	UG/L		0.97				8.08	
alpha-Terpineol	UG/L		9.7				99	
Aroclor-1016	UG/L		0.098				0.098	
Aroclor-1221	UG/L		0.098				0.098	R
Aroclor-1232	UG/L		0.098	U			0.098	
Aroclor-1242	UG/L		2.2				0.098	
Aroclor-1248	UG/L		0.098	U			0.098	
Aroclor-1254	UG/L		0.66				0.098	
Aroclor-1260	UG/L		0.098	U			0.098	R

SEAD-1 and SEAD-2 (BLDG 307 and BLDG 301) WASHWATER FOR DISPOSAL

		SEAD-1 307/Drum WATER 307		SEAD-2 301/Drum WATER		SEAD-2 301/Drum WATER	
		WATER					-

			1	301D		301	1
		4/21/2003		4/21/2003	-	4/21/2003	
		SA	-	DU		SA	-
		BUILDING 3	01	BUILDING 3	07	BUILDING 3	07
	Regulatory	DOILDING O		BOILDING		BOILDING	1
Units	Level	Value		Value	(Q)	Value	
		2.63	UJ	2.63	UJ	4.05	J
UG/L	5000	9.55	J	1210	J	1220	J
UG/L	100000	27.3	J	58.6	J	55.3	J
UG/L		0.16	UJ	0.16	UJ	0.16	UJ
UG/L				327	J	328	J
	1000			14.9	J	14.9	J
UG/L							
UG/L	5000					17.1	
						-9.39	
	5000	-				-	-
	0000	The second second			_		
	200			The state of the s			
	200						
	-	A		and the same			
	1000	The second second					
	1000			A COLUMN TO A COLU			
				AND DESCRIPTION OF THE PERSON		42000	J
				The same of the same of			
	-						
						The state of the s	-
		3.95	J	129	J		
UG/L		1090	J	2200	J	2180	J
		characteristic	s for	off-site disposa	al pur	ooses.	
	-						
	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	UG/L 0.098 U 0.098 U

APPENDIX B

DISPOSAL DOCUMENTATION

THIS ME	MORANDUM or duplicate, covering the property named herein; and is intended DAN HOFFICE FROM:	vid salety for fitting or	WA/	Sl <i>vn</i> an Ship	l per's No.	SAD	030619	
	INDUSTRIAL OIL TANK SVC CORP. SO	CAC						
at <u>TO</u>	otto da escribed below, in apparent good order, except as noted (contents and condition	te	ackages unknow	n), marked, cor	Sens	stined as indic	cated below, which said	company
destination, if of portion of said law, whether p	pany being understood throughout this contract as meaning any person or con on lite own road or its own water line, otherwise to deliver to another carrier on the route to destination, and as to each party at any time interested in all or any of a rinted or written, herein contained (as specified in Appendix B to Part 1035) which if or street address of consignee for purposes of notification only.)	he route to said of aid property, that he are hereby agree	destination. It is not every service to seed to by the ship	nutually agreed be performed in	, as to each ca tereunder shall	mer of all or a be subject to	my of said property over all the conditions not pro	all or any
TO: (Mail	INDUSTRIAL OIL TANK SVC CORP.		om: oper <i>Se.</i>	neca	Arm	v I	epot	
Street	120 DRY RD.	Stre	\mathcal{D}	oute	96'		/	
Destination	ORISKANY, NY Zip 13424	Orig	in Ro	mul u.s	, NY	,	Zip	
Route: Delivering C	YROOOOO5298 Carrier INDUSTRIAL OIL TANK SVC CORP.		Initial/Numb	per .	U.S. DC		it Reg. Number	
No of Hill		Hazard Class	I.D. Number	Packing Group	*Weight (subject to correction)	Class or rate	n se je su	Check
10	NON-RCRA/NON-DOT Regulated	N/A	N/A	N/A	5007	lea.		
	NON-RCRA/NON-DOT Regulated Material		,					
	Time left:	- 00						
	Time grrive:	915						
¥i.	Time deport:	945						
	Time @ Shop:	200						
		·						

Remit C.O. Address: City:	State: Zip:	COL		shipment is without reconsignor shipment with the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment in the carrier shipment is shipment in the carrier shipment in	to Section 7 of co to be delivered to course on the c ell sign the follows er shall not make thout payment of	the consigned oneignor, the og statement: delivery of this	C. O. D. FEE Prepaid Collect \$:
iote, ~ where the rate is depo he agreed or declared value pecifically stated by the ship	per to be not exceedingper	\$	es Advance	d (5	ignature of consig	nor).	FREIGHT CHA	RGES Collect
aboled, and are in proper of Transportation.	r condition for transportation according to the applicable regulations of the Department PERCENT Per		0		CARDS	YES DRIVER'S SI	NO - FURNISHED BY IGNATURE:	CARRIER
SHIPPER:	Senera Army Depot	CARRI	ER: INDUS	STRIAL O	L TANK			2
Permanent rost office		TELEP	GENCY RES	BER:		-6080	DATE: 6/19/0	
emaneril post office address of shipper Monkored at all times the Hazardous Material is in transportation including storage incidental to transportation (§172.604).								

29-BLS-C4 (Rev. 6/95)

PLEASE ATTACIC As business Subay Data Squate, phistics, Analysis Hapting, Harring Proceeding, application present information, Supplied Data & Companies

INDUSTRIAL OIL TANK SERVICE CORP.

VACUUM TRUCK & TRANSPORTATION SERVICES WASTE DISPOSAL - PETROLEUM RECYCLING REMEDIATION SUPPLIES

EPA NO. NYRO00005298

120 Dry Road Oristany, New York 13424 Telephone: (315) 726-8080 Fax: (315) 736-4649

•	
SOMERA BONDER ARMY DEPOT ACTIVITY	ly Milling Address 153 Brooks Road
FACELLEY Address COUTE 96	BILL ZOI GAFB
city, since 210 Romulus My 14541	CLEY, SLAKE, 24 PONCE NY 1344
Tochnical Contact Store: ARROLDM	Business Compace Rich STRUETON (Many)
Arma Cade (607) Tolophone # 869 - 1309	Arma Code, (315) Takephone # 334 -24 00
Parility EZA ID 6 NIA-	COMMENTE MADES NON HAZ PPE
PPE GIZNERAZED PROH PRESURE	MATE NO. NA. NO. NO.
	Consenser Type It Repe () Bulk () Gahar
MASHIGO INTERNATOR 2 Mildings	ROLL OF SOLID PRE
	Chargoty Linds For 1990-763
	France NOT Shipping Human: Include NO Information
Source 99-los	NOT REGULATED
	MGG-1 Desc:
havid 0/21.	Bazard Class N/A- DRINA No. N/A
2	
	Enjourced States [] Eliquid (] Same Solid (X) Solid
	Visconity ()'s Last () thatim 1) Righ
, , , , , , , , , , , , , , , , , , ,	Liquid Layering (1) None (1 Bilayered () Multilayered
*	Solids (Nert): MS-N [00 /U TOTAL
*	Franchiquid (5 Yea 179 Va
	oder None color None
Carel Classion:	Total Halagen (Z) NENE IDC 19981
I NOTEGY CITTLY PART I Name were made youngerward and not touristic with the influe- MACON Min-views of their and All MONOTHES SOCIABLY SOCIAL OF MY JUGGEY OF THIS OF MACON MIN-VIEW OF THE AND AND THE SOCIAL SOCI	Plant Point 7 7 200 NIVID NA
revisionals interceducely resourced for to taking one information. I have not that the property information to the procuracy and congrete to the basis of my incom- many and above and the information and extensive pharaces have been discovered.	POR Sport NEWS PORLEISO (Marticide (Mar) Novie
Thomas Angel of 11-03	
Figure Dela Dela	* NONE FOR ALL
	TOM TOLD TOUR TELP
Mentra Challes and Control Con	ANGEROODY (Str) Cood (Po)
	Argenta (As) Hercoay (Eq.)
Approved for Acceptance: () Ton () No	Farium (Re) Michal (#1)
Whenest my managed; () the () the	Servillum (Se) Selenium (Se)
	Cadmina (Cd) Stiver (Ac)
Solar Rep.	Chrody (Cr) thelism (Ti)
Banaling Code Deco	Copper (Cut Zine (Zin)
1	SEE ATTACKED ANALYTICALS

+ Cac.

PLEASE ATTACK AN AMERICA SAMP DAM STREET, BASDS, ANALISE RECEIVE FRANKING PROCESSING, AMERICAN PROCESSING, ACCORDANCE OF A CONTRACT CONTRACT OF A CONTRACT C

INDUSTRIAL OIL TANK SERVICE CORP.

VACULIM TRUCK & TRANSPORTATION SERVICES
WASTE DISPOSAL - PETROLEUM RECYCLING
REMEDIATION SUPPLIES

EPA NO. NYR000005298

120 Dry Road Orisicany; New York 13424 Telephone: (215) 735-6080 Fax: (315) 736-4649

constitute from Sonora Army Doport Activity	Billing Address 153 Brocks Road
Facility AMERICA Rowle 96	Bldg 301 GAFB
cies, since, sep Romolis, NY 14541	caty, state, 21 Rome NY 13441
Pechnical Concuer STONE ABSOLOM	Business concere Rich Stopleton Superintendent
(hande) (Lat)	pe Yvoniu Walsenm Manner (Miss)
Azus Cade 607) Telephone 4 869-1309	AMAX Code, (315) Telaphone # 336 - 2100
Facility EPA ID 4	Common Home at Hante Non thezarday Waste Wider
AND TO MAKE THE PROPERTY OF THE PARTY OF THE	Maste Mas. N/A BCRA No.
Generated from prossure washing	CONCALDED TYPE (XI DEWNS) Balk () Giber
interior Wells + floor of 2 buildings	Have at Generation: 8 DRUMS of LIGUID
V	Currety Units Per (Ma, YL)
****	Kroput DOT Shipping Resed: Reclyde NG Information
CONTROL CONTRO	
Water 992/001	Add-1 Desc:
30405 0%-1%	Hanand Class NA 105/M Fo. NA
	Engravent State M Riqued () Same Soild 1) Soild
2	Vinconity [Kow] Hading C Righ
	Liquid Layaring DE Horm [] Bilayered [] Maltslayered
	Balids (MCK): BS-M Total
	Free Liggis (1) No.
	DOOR NOWE CLOS
Eartification:	Total Salages (2) _ 0 % ZDC (pge)
I florethy destify that I think personally engineed had not beautify with the inter- matical administral to that and all geocomes auxiliarance. Bases on the inter-of-trape	Flush Polar 7 >200 NEW/ID NOTE
individuals (noth-coastly responsible for easiblining the information. I believe that the systemated information for the inter-interpretary must consider to the treas of any informa- ansisymal south and third die known and suspected these for large large tree of Schools.	PCA (ppm) (1%) Fenticade/Rushiciae (ppm) (1%)
11 . 9/ / 1-11-07	
Someth Ball B	ng/L
	Figure Tour Your TELP
Annay Ocean Ducar	Amesany (Sb) 4050 Lund (Fb) 409
•	ASSO HARONEY (RE) 1.702
Approved for Acceptance: [] Tes [] Re	Harrison (Bas) 55.3 Market (ML) 40.5
Ministration of the transfer o	Beryllium (N) Q,160 Selentum (Se) 37.8
Subor Ray,	Cadajua (Cd) 14.9 Silvar (As) 6400
Sardina Cade Data	Charpedian (Cp) 17.1 Thullaum (TX) 10.4
THE PARTY NAMED IN THE PARTY NAM	Copper (Cut) 140 Rine (No) 2150
	Su note and another Results +COC

APPENDIX C DAILY FIELD REPORTS

Daily Field Report

JOB NAME	Bldg 301/307 Closure Remedial Action	DATE	Monday, April 14, 2003
CONTRACT		REPORT NO.	4/14/03
PROJECT		WEATHER	Sunny/Clear
JOB#	743157	TEMPERATURE	50≈65
CLIENT	Corps Of Engineers	TIME/HRS	630 -5:00

Equipment	Model/Type	Quantity	Work Force/Trade	Quantity
F250	Crew Cab Pickup	1	Dan Douglass	10
F450	Crew Cab Rack Truck	1	Rich Stapleton	10
Power Washer/Steamer		1	Yvonne Walseman	10
Air Compressor, 185 cfm		1	Jim Goldrick	10
Generator, 5000 watt		1		
Vacuum Storage Tank 5000 gal		1		

MATERIALS DELIVERED TO, OR REMOVED FROM THE JOBSITE

Material Removed/Delivered	Quantity	Source	Unit

Work in progress or complete (including subcontractors):

- Mobilized equipment and personnel to site.
- Removed government spill control materials from Bldg 307 and staged in area designated by client representatives.
- Established exclusion zones for each location.
- Applied water for dust suppression and removed oversize debris from floors of Bldgs 301 and 307. Placed collected debris in drum.
- Secured sites for the evening.

۲	/erha	disc	nssion	c/Inc	truc	tio	ne

Accidents reported today:	0	Accidents to date:	0]

P:\740881\Field	Reports\HF49A\DFR	. 04-14-03Signed:	

 JOB NAME
 Bldg 301/307 Closure
 REPORT NO.
 4/14/03
 DATE
 April 14, 2003

Building 307 after debris removal.

Building 301 after debris removal.

Daily Field Report

JOB NAME	Bldg 301/307 Closure Remedial Action	DATE	Tuesday, April 15, 2003
CONTRACT		REPORT NO.	4/15/03
PROJECT		WEATHER	Sunny/Clear
JOB#	743157	TEMPERATURE	50≈75
CLIENT	Corps Of Engineers	TIME/HRS	630 –5:00

Equipment	Model/Type	Quantity	Work Force/Trade	Quantity
F250	Crew Cab Pickup	1	Dan Douglass	10
F450	Crew Cab Rack Truck	1	Rich Stapleton	10
Power Washer/Steamer		1	Jim Goldrick	10
Air Compressor, 185 cfm		1		
Generator, 5000 watt		1		
Vacuum Storage Tank 5000 gal		1		

MATERIALS DELIVERED TO, OR REMOVED FROM THE JOBSITE

Material Removed/Delivered	Quantity	Source	Unit

Work in progress or complete (including subcontractors):

- Setup washing equipment at Bldg 301.
- Detergent washed walls and floors. Collected rinsate and placed into drums.
- Rinsed walls and floors with clean water three times. Collected rinsate and placed into drums.
 Approximately 130 gallons of rinsate was collected.
- Secured sites for the evening.

Verbal discussions/Instructions:

Visitors and Subcontractors:

Dan Hoffner	PARSONS	QC

Accidents reported today:	0	Accidents to date:	0

 JOB NAME
 Bldg 301/307 Closure
 REPORT NO.
 4/15/03
 DATE
 April 15, 2003

Performing cleaning operations at Bldg 301.

After completion of rinsing operations.

Daily Field Report

JOB NAME	Bldg 301/307 Closure Remedial Action	DATE	Wednesday, April 16, 2003
CONTRACT		REPORT NO.	4/16/03
PROJECT		WEATHER	Sunny/Clear
JOB#	743157	TEMPERATURE	60≈40
CLIENT	Corps Of Engineers	TIME/HRS	630 -5:00

Equipment	Model/Type	Quantity	Work Force/Trade	Quantity
F250	Crew Cab Pickup	1	Dan Douglass	10
F450	Crew Cab Rack Truck	1	Rich Stapleton	10
Power Washer/Steamer		1	Jim Goldrick	10
Air Compressor, 185 cfm		1		
Generator, 5000 watt		1		
Vacuum Storage Tank 5000 gal		1		
-				

MATERIALS DELIVERED TO, OR REMOVED FROM THE JOBSITE

Material Removed/Delivered	Quantity	Source	Unit

Work in progress or complete (including subcontractors):

- Setup washing equipment at Bldg 307.
- Placed rinsate collection equipment beneath walls to collect rinsate outside of building.
- Detergent washed walls and collected rinsate and placed into drums.
- Detergent washed floors and collected rinsate and placed into drums. Applied degreaser to stained areas. Floor coating is discolored, concrete beneath is not discolored.
- Rinsed walls and floors with clean water three times. Collected rinsate and placed into drums.
 Approximately 230 gallons of rinsate was collected.
- Secured sites for the evening.

Verbal discussions/Instructions:

Visitors and Subcontractors:

Bill Bradford	PARSONS	H&S Audit
Dan Hoffner	PARSONS	QC

Accidents reported today:	0	Accidents to date:	0

P:\740881\Field	Reports\HF49A\DFR 04-16-03Signed:	

PARSONS

JOB NAME Bldg 301/307 Closure REPORT NO. 4/16/03 DATE April 16, 2003

Collecting rinsate from wall washing

Washing inside of Bldg 307.

P:\740881\Field Reports|HF49A\DFR 04-16-03

Daily Field Report

JOB NAME	Bldg 301/307 Closure Remedial Action	DATE	Thursday, April 17, 2003
CONTRACT		REPORT NO.	4/17/03
PROJECT		WEATHER	Sunny/Clear
JOB#	743157	TEMPERATURE	35≈50
CLIENT	Corps Of Engineers	TIME/HRS	630 -5:00

Equipment	Model/Type	Quantity	Work Force/Trade	Quantity
F250	Crew Cab Pickup	1	Dan Douglass	10
F450	Crew Cab Rack Truck	1	Rich Stapleton	10
Power Washer/Steamer		1	Jim Goldrick	10
Air Compressor, 185 cfm		1		
Generator, 5000 watt		1		
Vacuum Storage Tank 5000 gal		1		

MATERIALS DELIVERED TO, OR REMOVED FROM THE JOBSITE

	Material Removed/Delivered	Quantity	Source	Unit
ĺ				

Work in progress or complete (including subcontractors):

- Prepared for soil sampling at Bldg 301.
- Established soil sample locations outside of building. Existing conditions contain asphalt
 materials associated with roadway pavements and railroad track beds to include railroad ties
 located within 2'0" of the building.
 - Collected 12 surface soil samples.
- Secured sites for the evening.

Verbal discussions/Instructions:

Visitors and Subcontractors:

Accidents reported today:	0	Accidents to date:	0

P:\740881\Field	Reports\HF49A\DFR	04-17-03Signed:	
1.1/40001 U 1CIU		04-17-0331811cu.	

 JOB NAME
 Bldg 301/307 Closure
 REPORT NO.
 4/17/03
 DATE
 April 17, 2003

Asphalt pavement materials around exterior of building.

Location of railroad bed adjacent to building.

P:\740881\Field Reports|HF49A\DFR 04-17-03

Daily Field Report

JOB NAME	Bldg 301/307 Closure Remedial Action	DATE	Friday, April 18, 2003
CONTRACT		REPORT NO.	4/18/03
PROJECT		WEATHER	Sunny/Clear
JOB#	743157	TEMPERATURE	50≈55
CLIENT	Corps Of Engineers	TIME/HRS	630 -5:00

Equipment	Model/Type	Quantity	Work Force/Trade	Quantity
F250	Crew Cab Pickup	1	Dan Douglass	0
F450	Crew Cab Rack Truck	1	Rich Stapleton	0
Power Washer/Steamer		1	Jim Goldrick	10
Air Compressor, 185 cfm		1	Dale Dolph	5
Generator, 5000 watt		1		
Vacuum Storage Tank 5000 gal		1		

MATERIALS DELIVERED TO, OR REMOVED FROM THE JOBSITE

Material Removed/Delivered	Quantity	Source	Unit

Work in progress or complete (including subcontractors):

- Prepared for soil sampling at Bldg 307.
- Established soil sample locations outside of building. Existing conditions contain crushed limestone materials to facilitate building drainage.
 Collected 12 surface soil samples.
 - Secured sites for the evening.

٦	Jerhal	disc	ussions	/Incl	ruci	lion	e.

Visitors	and	Subcont	tractors:

	1			
			<u> </u>	
		T		-
Accidents reported today:	- 0	Accidents to date:	1 0	1

JOB NAME	Bldg 301/307 Closure	REPORT NO.	4/18/03	DATE	April 18, 2003

No Photos Taken During Sampling Activities.

Daily Field Report

JOB NAME	Bldg 301/307 Closure Remedial Action	DATE	Monday, April 21, 2003
CONTRACT		REPORT NO.	4/21/03
PROJECT		WEATHER	Sunny/Clear
JOB#	743157	TEMPERATURE	50≈55
CLIENT	Corps Of Engineers	TIME/HRS	630 –5:00

Equipment	Model/Type	Quantity	Work Force/Trade	Quantity
F250	Crew Cab Pickup	1	Dan Douglass	10
F450	Crew Cab Rack Truck	1	Rich Stapleton	10
Power Washer/Steamer		1	Jim Goldrick	10
Air Compressor, 185 cfm		1		
Generator, 5000 watt		1		
Vacuum Storage Tank 5000 gal		1		

MATERIALS DELIVERED TO, OR REMOVED FROM THE JOBSITE

Material Removed/Delivered	Quantity	Source	Unit

Work in progress or complete (including subcontractors):

- Layout of rinsate sampling grids for the interior of buildings 301 and 307.
- Obtained characterization samples for the rinsate liquid generated during cleaning at 301 and 307.
- Obtained interior PCB wipe samples at building 307.
- Secured sites for the evening.

Verbal dis	scussions/	Instri	actions:
------------	------------	--------	----------

|--|

		1		
Accidents reported today:	0	Accidents to date:	0	

P:\740881\Field Reports\HF49A\DFI	0.04.21.03Signed:
PINAUNA NETETA REDOTISME PARADET	C 04-21-0551911eq:

 JOB NAME
 Bldg 301/307 Closure
 REPORT NO.
 4/21/03
 DATE
 April 21, 2003

Obtaining a PCB wipe sample.

Daily Field Report

JOB NAME	Bldg 301/307 Closure Remedial Action	DATE	Tuesday, April 22, 2003
CONTRACT		REPORT NO.	4/22/03
PROJECT		WEATHER	Sunny/Clear
JOB#	743157	TEMPERATURE	50≈55
CLIENT	Corps Of Engineers	TIME/HRS	630 –5:00

Equipment	Model/Type	Quantity	Work Force/Trade	Quantity
F250	Crew Cab Pickup	1	Dan Douglass	10
F450	Crew Cab Rack Truck	1	Rich Stapleton	10
Power Washer/Steamer		1	Jim Goldrick	10
Air Compressor, 185 cfm		1	Dale Dolph	0
Generator, 5000 watt		1		
Vacuum Storage Tank 5000 gal		1		

MATERIALS DELIVERED TO, OR REMOVED FROM THE JOBSITE

Material Removed/Delivered	Quantity	Source	Unit
			}

Work in progress or complete (including subcontractors):

- Obtained interior wall wipe samples in Bldg 307.
- Began collecting rinsate samples from Bldg 307.
- Completed 10 random rinsate samples at 307.
- Secured sites for the evening.

Verbal discussions/Instructions:

Visitors and Subcontractors:

		f			
Į					
	Accidents reported today:	1	Accidents to date:	0	
	Accidents reported today:	1 V	Accidents to date:	v	

 JOB NAME
 Bldg 301/307 Closure
 REPORT NO.
 4/22/03
 DATE
 April 22, 2003

Rinsate berm.

Collecting rinsate samples.

Daily Field Report

JOB NAME	Bldg 301/307 Closure Remedial Action	DATE	Wednesday, April 23, 2003
CONTRACT		REPORT NO.	4/23/03
PROJECT		WEATHER	Sunny/Clear
JOB#	743157	TEMPERATURE	50≈55
CLIENT	Corps Of Engineers	TIME/HRS	630 -5:00

Equipment	Model/Type	Quantity	Work Force/Trade	Quantity
F250	Crew Cab Pickup	1	Dan Douglass	10
F450	Crew Cab Rack Truck	1	Rich Stapleton	10
			Jim Goldrick	10

MATERIALS DELIVERED TO, OR REMOVED FROM THE JOBSITE

Material Removed/Delivered	Quantity	Source	Unit

Work in progress or complete (including subcontractors):

- Completed rinsate samples at Bldg 307.
- Mobilized to Bldg 301 for rinsate and wipe samples.
- Obtained 8 rinsate samples inside Bldg 301.
- Secured sites for the evening.

Verbal discussions/Instructions:

Visitors and Subcontractors:

Dan Hoffner	PARSONS	QC

Accidents reported today:	0	Accidents to date:	0

Page 2 of 2 **PARSONS**

Rinsate dike and collection pump.

Sampling Equipment

Daily Field Report

JOB NAME	Bldg 301/307 Closure Remedial Action	DATE	Thursday, April 24 2003
CONTRACT		REPORT NO.	4/2403
PROJECT		WEATHER	Sunny/Clear
JOB#	743157	TEMPERATURE	50≈55
CLIENT	Corps Of Engineers	TIME/HRS	630 -5:00

Equipment	Model/Type	Quantity	Work Force/Trade	Quantity
F250	Crew Cab Pickup	1	Yvonne Walseman	10
F450	Crew Cab Rack Truck	1	Rich Stapleton	10
			Jim Goldrick	10

MATERIALS DELIVERED TO, OR REMOVED FROM THE JOBSITE

Material Removed/Delivered	Quantity	Source	Unit

Work in progress or complete (including subcontractors):

- Completed rinsate samples at Bldg 301 on the exterior ramp locations.
- Obtained PCB wipe samples from the interior floor and walls.
- Obtained chip samples of the exterior ramp areas for PCB analysis.
- Secured sites for the evening.
- Demobilized from the site.

Verbal discussions/Instructions:

Visitors and Subcontractors:

Dan Hoffner	PARSONS	QC
	·	

Accidents reported today:	0	Accidents to date:	0

P:\740881\Field	Reports\HF49A\DFR	04-24-03Signed:	

JOB NAME Bldg 301/307 Closure REPORT NO. 4/24/03 DATE April 24, 2003

Rinsate location on exterior ramp.

PCB Wipe sample Bldg 301.
P:\740881\Field Reports|HF49A\DFR 04-24-03