File # Seneca Army Depot Activity **Quarterly Report** Quality Assured Data Received between April 1, 2001 and June 30, 2001 - SEAD-11 Soil Chemical Data Collected in October 2000 - SEAD-11 Groundwater Chemical Data Collected in November 2000 #### DEPARTMENT OF THE ARMY SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK 14541-5001 July 17, 2001 Engineering and Environmental Division Mr. Julio Vazquez U.S. Environmental Protection Agency Emergency & Remedial Response Division 290 Broadway 18th Floor, E-3 New York, New York 10007-1866 Ms. Alicia Thorne NYS Department of Environmental Conservation Division of Hazardous Waste Remediation 625 Broadway, 11th Floor Albany, New York 12233-7015 Dear Mr. Vazquez/Ms. Thorne: The emphasis on this quarterly report is on the events occurring between April 1, 2001 and June 30, 2001. In accordance with paragraph 26.1 of the Interagency Agreement (IAG) between the Army, United States Environmental Protection Agency (EPA), and New York State Department of Environmental Conservation (NYSDEC), the following quarterly report is submitted. - a. Minutes from Formal Meetings Held During the Reporting Period: A RAB meeting was held at the Romulus Town Hall in Willard on May 15, 2001. The minutes from the RAB meeting was sent under separate cover. A BRAC Cleanup Team (BCT) meeting was held on May 15-16, 2001. Minutes of these meetings were also sent under separate cover. - b. Milestones Met on Schedule, Explanation of Milestones Not Met on Schedule: - (1) Ash Landfill Milestones: Quarterly monitoring is continuing. Treatability Study in progress and the first year report has been submitted. The Draft-Final PRAP has been submitted, however DOH/DEC comments need to be resolved. The remedial actions of a one-foot cover on the Ash Landfill and Non-combustible Fill area, debris piles removal, and additional insitu permeable reactive walls have apparently, in the Army's opinion, essentially been agreed to. The Army currently has funding to execute the RD and RA. - (2) Open Burning Grounds Milestones: The Record of Decision was signed on June 14, 1999. Field sampling results are submitted monthly. The UXO contractor mobilized August 8, 2000 and screened "1-foot cut" soil until September 10, 2000. The UXO contractor demobilized due to budget constraints. The contract for completion of the UXO effort and remaining HTRW efforts is expected to be awarded the week of 16 July 01. This contract will include the UXO -only SEAD 44A site in the prison property. Start-up is expected to be 23 July 01. - (3) <u>Fire Training Areas (FTAs) Milestones</u>: The Draft PRAP is being revised and an updated FFA schedule will be submitted. The Bioventing Treatability Study has been cancelled. - (4) Deactivation Furnaces Milestones: Regulator comments on the September 11, 2000 revised Feasibility Study submittal, which were received in February and April 01, are currently being addressed. The use of SEAD-17 as a Low Temperature Thermal Desorption Unit is no longer being considered to burn contaminated soils from other sites at SEDA. #### (5) Radioactive Waste Burial Sites Milestones: - (a) SEAD-12: The Draft-Final Remedial Investigation report was submitted for regulator review on February 3, 2001 with additional inserts for the document submitted on February 14, 2001. - (b) SEAD-12: The Radiological Indoor Building Survey is currently underway for the Class 3 buildings. The response to regulator comments on the Draft Report addressing this effort was submitted on June 27, 2001. - (c) SEAD-63: A non-time critical removal action is planned for this site. The Final Action Memorandum and Engineering Evaluation/Cost Analysis (EE/CA) Document was submitted on July 31, 2000. Additional comments were received from the EPA in March 2001 and are currently being addressed. - (6) Paint Disposal Area, SEAD-59, 71: A Draft Action Memorandum for Removal Action was submitted on June 29, 2001. A schedule for the Removal Action will be submitted along with the FFA schedule. - (7) Environmental Baseline Study: Fieldwork for site investigations of rumored/previously unknown sites is complete. Summary results and recommendations have been forwarded to the agencies. The investigation of the Lake Housing area rumored landfill is being performed under this project. - (8) Munitions Washout Facility: The Final RI was submitted on January 23, 2001. Additional fieldwork requested by the State to check for VOC's in soils at one location was completed in May 2001. The Feasibility Study is scheduled to be submitted in July 2001. - (9) <u>Solid Waste Management Unit Investigation</u> <u>Milestones</u>: There was no change in the SWMU status during the reporting period. - (10) The decision documents/mini-risk assessments for the prison area are funded and proceeding fast track to comply with the transfer schedule. - (11) Old Construction Debris Landfill Milestones: Additional test pits and monitoring wells were performed to better characterize the site. The Draft Action Memorandum is scheduled for submittal on July 20, 2001. A schedule for the Removal Action will be submitted along with the FFA schedule. - (12) Ammunition Breakdown Area Milestones: SEAD-52 and SEAD-60 were separated due to comments from the Peer Review. SEAD personnel, under their spill program, excavated soil and transported the soil to SEAD-17. SEAD-52 is part of a Draft Completion Report for the prison parcel and will not need a full Remedial Investigation as planned. The project will be on hold on the IAG schedule. - (13) IRFNA Site Milestones: The Decision Document to support a No Action SWMU designation for this site was submitted for regulatory review and comment on April 12, 2000. Additional sampling to establish baseline parameters was recently funded and is scheduled to begin in July 2001. This will include installation of additional groundwater monitoring wells. - (14) <u>Sludge Piles, SEAD-5, Milestones</u>: An EE/CA and Approval Memorandum has been finalized. The project was presented at the March 2000 RAB meeting. The public comment period has ended and removal of the sludge piles will take place through the installations contracting mechanisms. ### C. Inspection Reports, Audits, and Administrative Information: $\underline{\text{FY 2000 Funding Status}}\colon \text{ BRAC funding for FY 2000 was $5.47 million. FY01 funding is planned for $21 million.}$ - d. Permit Status As Applicable: No change from previous status. - e. Personnel Staffing Status: Michael Duchesneau, Project Manager for Parsons Engineering Science, Inc. has taken a position with another firm, effective 12 July 01. #### f. Data and Sampling Results: Copies of Quality Assured Data and sampling and test results are included in an attachment. #### g. Community Relations Activity Update: - (1) Administrative Record Milestones: There have been no updates since last submission. - (2) <u>Restoration Advisory Board Information</u>: Meetings are usually held on the third Tuesday of the month, every other month, and will now be held at two locations. The meetings will alternate being held at the Romulus Town Hall in Willard and the County Building in Waterloo. If you have any comments or questions, contact Mr. Stephen M. Absolom at (607) 869-1309. Sincerely, Stephen M. Absolom Commander's Representative Enclosure Copies Furnished: - U.S. Army Corps of Engineers, Seneca Army Depot Activity, ATTN: CENAN-PP-M, Seneca Office for Project Management, Romulus, New York 14541-5001 - Commander, U.S. Army Corps of Engineers, Huntsville Division, ATTN: CEHND-PE-E (Mr. Kevin Healy), P.O. Box 1600, Huntsville, Alabama 35807 - Commander, U.S. Army Operations Support Command, ATTN: AMSOS-EQE (Ed Agy), Rock Island, Illinois 61299-6000 - Ms. Jackie Travers, Parsons Engineering Science, Inc., 30 Dan Road, Canton, MA 02021 # Seneca Army Depot Activity **Quarterly Report** # Quality Assured Data Received between April 1, 2001 and June 30, 2001 - SEAD-11 Soil Chemical Data Collected in October 2000 - SEAD-11 Groundwater Chemical Data Collected in November 2000 - SEAD-11 Groundwater Chemical Data Collected in February 2001 - LTTD Treatability Study Soil Chemical Data Collected in August 2000 - LTTD Treatability Study Soil Chemical Data Collected in September 2000 - LTTD Treatability Study Soil Chemical Data Collected in September 2000 | | STUDY ID: | SEAD-11 EECA | | EAD-11 EECA | | SEAD-11 EECA | | SEAD-11 EECA | | SEAD-11 EECA | |------------------------------------|------------------|--------------|-----|------------------------------------|--------|--------------|---------|--------------|----------|-------------------| | | SDG: | 80348 | | 80348 | i . | 80348 | | 80348 | | 80348 | | | LOC ID: | TP11-11 | | TP11-11 | 1 | TP11-9 | | TP11-9 | | TP11-9 | | | SAMP_ID: | 114000 | | 114001 | 1. | 114002 | | 114003 | | 114004 | | | FIELD QC CODE: | SA | | | SAMP. DEPTH TOP: | 3 | | 0.5 | | 3.5 | - | 0.5 | | 3.5 | | | SAMP. DEPTH BOT: | 3 | | 1 | | 3.5 | 1 | 0.5 | | 3.5 | | | MATRIX: | SOIL | | SOIL | | SOIL | | SOIL | | | | | SAMP. DATE: | 23-Oct-00 | | 23-Oct-00 | | 24-Oct-00 | | 24-Oct-00 | | SOIL
24-Oct-00 | | | | | | | | 21 302 00 | | 24-00-00 | | 24-001-00 | | ORT PARAMETER | UNIT | VALUE | | VALUE | | VALUE | Q | VALUE | Q | VALUE | | 100.000 1,1,1-Trichloroethane | UG/KG | 1,900. | | 1,400. | U | 1,500. | U | 1,000 | U | 1,000. L | | 100.000 1,1,2,2-Tetrachloroethane | UG/KG | 1,900. | | 1,400. | U | | Ü | 1,000. | U | 1,000. U | | 100.000 1,1,2-Trichloroethane | UG/KG | 1,900. | U | 1,400. | U | 1000 | Ü | 1.000 | Ū - | 1,000. 0 | | 100.000 1,1-Dichloroethane | UG/KG | 1,900. | U | 1,400. | | 1,500. | Ü | 1,000 | u - | 1,000. 0 | | 100.000 1,1-Dichloroethene | UG/KG | 1,900. | Ü | 1,400. | | 1,500. | ŭ | 1,000 | Ü | 1,000. | | 100.000 1,2-Dichloroethane | UG/KG | 1,900. | Ū | 1,400 | A non- | 1,500. | ŭ · | 1,000 | Ü | 1,000. | | 100.000 1,2-Dichloroethene (total) | UG/KG | 1,900. | 1 - | 1,400. | | 2,200. | | 250. | - | | |
100.000 1,2-Dichloropropane | UG/KG | 1,900. | 1 | 1,400. | | 1,500. | u | 1,000. | Ŋ | 1,900. | | 100.000 Acetone | UG/KG | 1,900. | | 1,400. | | | UJ
U | 1,000. | | 1,000. L | | 100.000 Benzene | UG/KG | 1,900. | | 1,400. | | 1,500. | O1 | 1,000. | | 1,000. | | 100.000 Bromodichloromethane | UG/KG | 1,900. | Ü | 1,400. | | 1,500. | O1 | 1,000. | Ü | 1,000. | | 100.000 Bromoform | UG/KG | 1,900. | 1 | 1,400. | | 1,500. | U | 1,000. | | 1,000. U | | 100.000 Carbon disuffide | UG/KG | 1,900. | Ü | 1,400 | | | Ü | | U | 1,000. U | | 100.000 Carbon tetrachloride | UG/KG | 1,900 | | 1,400. | die e | | | 1,000. | U | 1,000. L | | 100.000 Chlorobenzene | UG/KG | 1,900 | | 1,400. | | 1,500. | U | 1,000. | | 1,000. | | 100.000 Chlorodibromomethane | UG/KG | 1,900 | | | | 1,500. | U | 1,000. | U | 1,000. L | | 100.000 Chloroethane | UG/KG | 1,900 | | 1,400. | | | U | 1,000 | Ü | 1,000. U | | 100.000 Chloroform | | | | 1,400. | | 1,500. | U | 1,000 | U | 1,000. L | | | UG/KG | 1,900 | | 1,400. | | 1,500. | U | 1,000 | U | 1,000. L | | 100.000 Cis-1,3-Dichloropropene | UG/KG | 1,900 | | 1,400. | | 1,500. | U | 1,000. | | 1,000. L | | 100.000 Ethyl benzene | UG/KG | 1,900. | | 1,400. | | 1,500. | Ü | 1,000. | U | 1,000. L | | 100.000 Methyl bromide | UG/KG | 1,900. | | 1,400. | | 1,500. | U . | 1,000. | U | 1,000. U | | 100.000 Methyl butyl ketone | UG/KG | 1,900. | | 1,400. | | 1,500. | UJ | 1,000. | UJ | 1,000. L | | 100.000 Methyl chloride | UG/KG | 1,900. | | 1,400. | | 1,500. | U | 1,000. | | 1,000. L | | 100.000 Methyl ethyl ketone | UG/KG | 1,900. | | 1,400. | | 1,500. | UJ | 1,000. | | 1,000. L | | 100.000 Methyl isobutyl ketone | UG/KG | 1,900. | | 1,400. | U | 1,500. | U | 1,000. | U | 1,000. L | | 100.000 Methylene chloride | UG/KG | 1,900. | U | 1,400. | Ü | | | 1,000. | U | 1,000. U | | 100.000 Styrene | UG/KG | 1,900. | U | 1,400. | U | | Ü | 1,000. | Ü | 1,000. L | | 100.000 Tetrachloroethene | UG/KG | 1,900. | U | 1,400. | | 1,500. | u | 1,000. | U | 1,000. U | | 100.000 Toluene | UG/KG | 1,900. | | 1,400. | | 1,500. | Ū | 1,000. | U | 1,000. U | | 100.000 Total Xylenes | UG/KG | 1,900. | | 1,400. | 4 | 1,500. | u | 1,000. | U | | | 100.000 Trans-1,3-Dichloropropene | UG/KG | 1,900. | | 1,400. | | 1,500. | 11 - | 1,000. | U | 1,000. U | | 100.000 Trichloroethene | UG/KG | 1,400. | J | 4,800. | - | 23,000. | - | 12,000. | <u> </u> | 1,000. U | | 100.000 Vinyl chloride | UG/KG | 1,900. | ū | 1,400. | U | 1,500. | | 1,000. | | 28,000. J | | 600.000 Aluminum | MG/KG | 11,200. | | 8,670. | | 14,800. | - | | <u> </u> | 1,000. U | | 600.000 Antimony | MG/KG | 28.5 | | 7.1 | | 14,800. | | 13,000. | J | 14,600. J | | 600.000 Arsenic | MG/KG | 14.2 | | 7.2 | | | J | 16.8 | j | 45.8 J | | 600,000 Barium | MG/KG | 242. | | 139. | | 13.3 | | 11.2 | | 11.7 | | 600.000 Beryllium | MG/KG | .75 | | .65 | | 597. | J | 461. | J | 528. J | | 600.000 Cadmium | MG/KG | .95 | | .49 | | .88 | J | .84 | J | .92 J | | 600.000 Calcium | MG/KG | | J | THE RESERVE AND THE PARTY NAMED IN | J | 2.8 | | 3.2 | | 3.2 | | | | 24,700. | | 29,900. | | 26,800. | | 33,400. | | 30,700. | | 600.000 Chromium | MG/KG | 52.4 | J | 19,1 | | 78.3 | J | 91.2 | J | 103. J | | 600.000 Cobalt | MG/KG | 12.4 | | 10.1 | | 15.6 | | 16.4 | | 20.2 | | 600.000 Copper | MG/KG | . 133. | | 87.3 | | 461. | J | 281. | J | 427. J | | 600.000 Cyanide | MG/KG | .57 | U | .6 | U | .35 | U | .43 | | .54 U | | Į. | STUDY ID: | SEAD-11 EECA | |-------------------|------------------|--------------|--------------|--------------|--------------|--------------| | | SDG: | 80348 | 80348 | 80346 | 80348 | 80348 | | | LOC ID: | TP11-11 | TP11-11 | TP11-9 | TP11-9 | TP11-9 | | - | SAMP_ID: | 114000 | 114001 | 114002 | 114003 | 114004 | | | FIELD QC CODE: | SA | SA | SA | SA | SA | | | SAMP. DEPTH TOP: | 3 | 0.5 | 3.5 | 0.5 | 3.5 | | | SAMP. DEPTH BOT: | 3 | 1 | 3.5 | 0.5 | 3.5 | | | MATRIX: | SOIL | SOIL | SOIL | SOIL | SOIL | | | SAMP. DATE: | 23-Oct-00 | 23-Oct-00 | 24-Oct-00 | 24-Oct-00 | 24-Oct-00 | | SORT PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE | VALUE Q | VALUE | | 600.000 Iron | MG/KG | 32,300. J | 23,200. J | 50,500. J | 66,600. J | 62,800. J | | 600.000 Lead | MG/KG | 686. J | 1,090. J | 1,210. J | 1,140. J | 2,240. J | | 600.000 Magnesium | MG/KG | 6,670. | 8,440. | 7,830. | 7,590. | 9,140. | | 600.000 Manganese | MG/KG | 629. | 745. | 948. | 956. | 881. | | 600.000 Mercury | MG/KG | .11 J | .06 UJ | .44 J | .22 J | .13 J | | 600.000 Nickel | MG/KG | 45.1 J | 27.2 J | 51.9 J | 70.1 J | 66.7 J | | 600.000 Potassium | MG/KG | 1,580. | 1,290. | 2,100. | 1,930. | 2,500. | | 600.000 Selenium | MG/KG | 2.2 | .83 U | 3.1 J | 1.4 J | 1.4 J | | 600.000 Silver | MG/KG | .96 J | .42 J | 1.6 J | 2.6 | 3.2 | | 600.000 Sodium | MG/KG | 376. J | 167. J | 823. J | 422. J | 828. J | | 600.000 Thallium | MG/KG | 2.4 | 2. J | 4.5 | 4.6 | 3.9 | | 600.000 Vanadium | MG/KG | 22.5 J | 16.7 J | 27.7 J | 27.4 J | 27.4 | | 600 000 Zinc | MG/KG | 970. J | 870. J | 2,610. J | 1,940. J | 3,990. | | | | STUDY ID: | SEAD-11 EECA | - | SEAD-11 EECA | | SEAD-11 EECA | į | SEAD-11 EECA | | NONE | |---|--|--|------------------------|----|--------------|-----|--------------|---------------------
--|--|----------| | | | SDG: | 80348 | | 80348 | | 80348 | | 80348 | | 80348 | | | | LOC ID: | TP11-6 | | TP11-8 | | TP11-5 | | TP11-5 | | NONE | | | | SAMP_ID: | 114005 | | 114008 | | 114007 | | 114008 | | 114008RE | | | | FIELD QC CODE: | SA | | SA | | SA | | SA | | NONE | | 1 | | SAMP. DEPTH TOP: | 3 | | 0.5 | | 3 | | 0.5 | | NONE | | | | SAMP. DEPTH BOT: | 3 | - | 0.5 | | 3 | | 0.5 | | NONE | | | | MATRIX: | SOIL | - | SOIL | | SOIL | | SOIL | | NONE | | - 1 | *************************************** | SAMP. DATE: | 25-Oct-00 | | 25-Oct-00 | | 25-Oct-00 | | 25-Oct-00 | | | | | all minimum annua and an an an an an | | | | | | | | | | | | | ARAMETER | UNIT | VALUE | | VALUE | 1 | VALUE | Q | VALUE | | VALUE Q | | 100.000 1 | ,1,1-Trichloroethane | UG/KG | 1,400. | | 1,200. U |) | 16. | U | | ΠΊ | 11. U | | 100.000 1 | ,1,2,2-Tetrachloroethane | UG/KG | 1,400. | | 1,200. U | J | 1 | U | 10. | | 11. Ũ | | 100.000 1 | ,1,2-Trichloroethane | UG/KG | 1,400. | U | 1,200. U | J | | U | | UJ | 11. U | | 100.000 1 | ,1-Dichloroethane | UG/KG | 1,400. | U | 1,200. U | , | 16. | U | 10. | UJ | 11. U | | | ,1-Dichloroethene | UG/KG | 1,400. | U | 1,200. U | | 16. | U | | UJ | 11. Ü | | | ,2-Dichloroethane | UG/KG | 1,400. | | 1,200. L | 1 | 16. | U | 10 | บ่า | 11. U | | | ,2-Dichloroethene (total) | UG/KG | 1,400. | U | 1,200. L | | 16. | U | 10 | UJ | 11. U | | | ,2-Dichloropropane | UG/KG | 1,400. | Ū | 1,200. L | | 16. | U | 10 | UJ | 11. U | | 100.000 A | | UG/KG | | UJ | 1,200. L | | 140. | J | 110 | J | 150. | | 100.000 E | | UG/KG | | UJ | 1,200. L | | 2. | J | | j - | 13. | | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - | Bromodichloromethane | UG/KG | attender to the second | Ü | 1,200. L | | 16. | Ū | | UJ | 11. U | | | Bromoform | UG/KG | 1,400. | | 1,200. | | 16. | ů | | ÜÜ | 11. Ū | | | Carbon disulfide | UG/KG | 1,400. | | 1,200. L | | | ũ | 8 | | 9. J | | | Carbon disumde | UG/KG | | U | 1,200. L | - | 16. | 1 | | UJ | 11. U | | | | UG/KG | Orac - 1979 - 1979 | Ü | 1,200. | | 16. | <u> </u> | | UJ | 11. U | | | Chlorobenzene | UG/KG | | U | 1,200. L | | 16. | | | UJ | 11. U | | | Chlorodibromomethane | | | 1 | 1,200. | | 16. | | | UJ | 11. U | | | Chloroethane | UG/KG | 1,400. | U | | | | ŭ | | UJ | | | | Chloroform | UG/KG | 1,400. | U | 1,200. L | | 16. | Ú | | | 11. U | | | Cis-1,3-Dichloropropene | UG/KG | | | 1,200. | | 16. | | | UJ | 11. U | | | Ethyl benzene | UG/KG | | U | 1,200. L | | 16. | | | UJ | 11. U | | | Methyl bromide | UG/KG | 1,400. | | 1,200. L | | 16. | | | UJ | 11. U | | | Methyl butyl ketone | UG/KG | 1,400. | | 1,200. U | | 16. | | | . UJ | 11. U | | | Methyl chloride | UG/KG | | | 1,200. l | | 16. | | | . UJ | 11. U | | | Methyl ethyl ketone | UG/KG | 1,400. | | 1,200. | | 16. | | | . UJ | 11. U | | | Methyl isobutyl ketone | UG/KG | 1,400. | U | | J | | U | | UJ | 11. U | | | Methylene chloride | UG/KG | | U | | Ų į | 3. | J | | UJ | 11. U | | 100.000 | Styrene | UG/KG | 1,400. | | | Ú . | 16. | U . | | UJ | 11. U | | 100.000 | Tetrachloroethene | UG/KG | 1,400. | U | | J | 16. | Ü | 10 | | 11. U | | 100.000 | Toluene | UG/KG | 1,400. | U | 1,200. | | 3. | | | . J | 21. | | | Total Xylenes | UG/KG | 1,400. | U | 1,200. | J | 16. | U | | J | 22. | | | Trans-1,3-Dichloropropene | UG/KG | 1,400. | U | 1,200. (| U | 16. | U | 10 | UJ | 11. U | | | Trichloroethene | UG/KG | 2,400. | | 4,000. | | 16. | | 21 | . J | 74. | | | Vinyl chloride | UG/KG | 1,400. | U | 1,200. (| Ü | 16. | UJ | 10 | LUJ | 11. U | | | Aluminum | MG/KG | 13,600. | J | 12,200. | j - | 12,200. | J | 12,300 | J | | | 600.000 | | MG/KG | 13.3 | J | 24.2 |] | | ŪJ | 1.5 | \$ mr = | | | 600.000 | | MG/KG | 21.4 | - | 8.3 | | 6.2 | | 4.8 | | | | 600.000 | | MG/KG | 6.560. | 1 | 349. | 1 | 122. | | 101 | | | | | | MG/KG | .77 | | 73 | 1 | 1. | · of them were a co | .80 | | ***** | | 600.000 | The state of s | A feet was an over the same of | 3.6 | | 11. | | .28 | | | | | | 600.000 | | MG/KG | | | | | | J | AND DESCRIPTION OF A PARTY AND ADDRESS OF THE A | THE RESERVE THE PARTY OF PA | | | 600.000 | | MG/KG | 24,700. | | 21,200. | | 17,400. | | 12,200 | | | | | Chromium | MG/KG | 462. | | 122. | J | 21.6 | | 29.4 | | | | 600.000 | | MG/KG | 29.3 | | 18.5 | | 10.2 | | 11.0 | | | | 600.000 | Copper | MG/KG | 584. | | 781. | | 34.4 | | 62.1 | | | | 600.000 | Cyanide | MG/KG | .56 | U | .54 | U | .6 | U | .41 | 3 U | | | | | | | | | | | | | | | SEAD-11 VALIDATED DATA - SOIL SDG 80348 | 1 | | STUDY ID: | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | NONE | |---------|-----------|------------------|--------------|--------------|--------------|--------------|----------| | 1 | | SDG: | 80348 | 80348 | 80348 | 80348 | 80348 | | | | LOC ID: | TP11-8 | TP11-8 | TP11-5 | TP11-5 | NONE | | | | SAMP_ID: | 114005 | 114006 | 114007 | 114008 | 114008RE | | | | FIELD QC CODE: | SA | SA | SA | SA | NONE | | | | SAMP. DEPTH TOP: | 3 | 0.5 | 3 | 0.5 | NONE | | | | SAMP. DEPTH BOT: | 3 | 0.5 | 3 | 0.5 | NONE | | | | MATRIX: | SOIL | SOIL | SOIL | SOIL | NONE | | | | SAMP. DATE: | 25-Oct-00 | 25-Oct-00 | 25-Oct-00 | 25-Oct-00 | | | | | | | | | | | | SORT | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE Q | VALUE | | 600.000 | Iron | MG/KG | 135,000. J | 81,800. J | 24,200. J | 25,900. J | | | 600.000 | Lead | MG/KG | 6,860. J | 2,960. J | 69.4 J | 200. J | | | 600.000 | Magnesium | MG/KG | 5,370. | 5,150. | 11,200. | 6,910. | | | 600.000 | Manganese | MG/KG | 1,000. | 753. | 1,120. | 757. | | | 600.000 | | MG/KG | .33 J | .23 J | .06 UJ | .06 UJ | | | 600.000 | Nickel | MG/KG | 221. J | 93.1 J | 25.6 J | 31.4 J | | | 600.000 | Potassium | MG/KG | 1,500. | 2,190. | 1,770. | 1,920. | | | 600.000 | Selenium | MG/KG | 3.7 | 2.3 | 1.6 | .97 J | | | 600.000 | Silver | MG/KG | 2.1 J | 1.4 J | .57 J | .84 J | | | 600.000 | Sodium | MG/KG | 1,660. | 512. J | 61. U | 58.8 U | | | - | Thallium | MG/KG | 8.3 | 5.1 | 2.2
J | 2.9 | | | 600.000 | Vanadium | MG/KG | 23.8 J | 23.4 J | 25.5 J | 22.1 J | | | 600 000 | Zinc | MG/KG | 6,960. J | 2,730. J | 126. J | 222. J | | | | | STUDY ID: | SEAD-11 EECA | NO NO | | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | |---------|----------------------------|------------------|--------------|--------|--------|--------------|--------------|--------------| | | | SDG: | 80348 | 803 | | 80348 | 80348 | 80348 | | | 1 | LOC ID: | TP11-6 | NO | | TP11-6 | TP11-7 | TP11-7 | | | _ | SAMP_ID: | 114009 | 114009 | RE | 114010 | 114011 | 114012 | | | | FIELD QC CODE: | SA | NO | VE | SA | SA | SA | | | | SAMP. DEPTH TOP: | 2 | NO | VE | 0.5 | 4 | 0.5 | | | | SAMP. DEPTH BOT: | 2 | NO | VE | 0.5 | 5 | 0.5 | | | | MATRIX: | SOIL | NO | | SOIL | SOIL | SOIL | | - | | SAMP. DATE: | 25-Oct-00 | | -= - | 25-Oct-00 | 25-Oct-00 | | | | | | | | | 20000 | 25-04-00 | 25-Oct-00 | | ORT | PARAMETER | UNIT | VALUE | | UEQ | VALUE Q | VALUE Q | VALUE Q | | | 1,1,1-Trichloroethane | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 16. U | | | 1,1,2,2-Tetrachioroethane | UG/KG | 18. | U | 18. Ü | 1,100. U | 16. U | 18. UJ | | | 1,1,2-Trichloroethane | UG/KG | 18. | Ü | 18. U | 1,100. U | 16. Ū | 16. U | | 100.000 | 1,1-Dichloroethane | UG/KG | 18. | Ū | 18. U | 1,100. U | 16. U | 16. U | | 100.000 | 1,1-Dichloroethene | UG/KG | 18. | U | 18. U | 1,100. U | 18. U | 16. U | | | 1,2-Dichloroethane | UG/KG | 18. | | 18. U | 1,100. U | 16. U | | | 100.000 | 1,2-Dichloroethene (total) | UG/KG | 18. | | 3. J | 1,100. U | 16. U | 16. U | | | 1,2-Dichloropropane | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 12. J | | | Acetone | UG/KG | 140. | | 30. J | 1,100. UJ | | 16. U | | | Benzene | UG/KG | 3. | ā! | 2. J | | 370. J | 270. J | | | Bromodichloromethane | UG/KG | . 18. | | 18. U | 1,100. UJ | 2. J | 30. | | | Bromoform | UG/KG | 18. | | | 1,100. U | 16. U | 16. U | | | Carbon disuffide | UG/KG | | | 18. U | 1,100. U | 16. U | 16. UJ | | | Carbon tetrachloride | UG/KG | 4. | | 3. J | 1,100. U | 19. | 9. J | | 100.000 | | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 16. U | | | Chlorodibromomethane | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 16. UJ | | | | | 18. | | 18. U | 1,100. U | 16. Ü | 16. U | | | Chloroethane | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 16. U | | | Chloroform | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 16. U | | | Cis-1,3-Dichloropropene | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 16. U | | | Ethyl benzene | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 16. UJ | | | Methyl bromide | UG/KG | 18. | U | 18. U | 1,100. U | 16. U | 16. U | | | Methyl butyl ketone | UG/KG | 18. | | 18. U | 1,100. UJ | 18. U | 16. UJ | | | Methyl chloride | UG/KG | 18. | U | 18. U | 1,100. U | 16. U | 16. U | | 100.000 | Methyl ethyl ketone | UG/KG | 18. | | 18. U | 1,100. UJ | 16. U | | | 100.000 | Methyl isobutyl ketone | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 16. UJ | | 100.000 | Methylene chloride | UG/KG | 3. | J | 3. J | 1,100. U | 3. J | 16. U | | 100.000 | Styrene | UG/KG | 18. | Ū | 18. U | 1,100. U | 16. U | 4. J | | 100.000 | Tetrachloroethene | UG/KG | 18. | | 18. U | 1,100. U | 10. J | 18. UJ | | 100.000 | Toluene | UG/KG | 6. | L | 2. J | 1,100. U | 3. J | 8. J | | | Total Xylenes | UG/KG | . 18. | | 18. U | 1,100. U | 16. U | 25. | | | Trans-1,3-Dichloropropene | UG/KG | 18. | | 18. U | 1,100. U | 16. U | 8. J | | | Trichloroethene | UG/KG | 74. | | 36. | 3,600. | | 16. U | | | Vinyl chloride | UG/KG | 18. | | 18. U | 1,100. U | 76. | 77. | | | Aluminum | MG/KG | 3,660. | | 0. 0 | 1,100.0 | 16. U | 16. U | | | Antimony | MG/KG | 3,000. | | | 37,500. J | 16,400. J | 19,300. J | | 600.000 | | MG/KG | | 3 | | 29.6 J | 1. UJ | 9.1 J | | | | | 12.9 | | | 11. | 13.3 | 7.9 | | 600.000 | | MG/KG | 92.2 | | - | 340. J | 396. J | 258. J | | | Beryllium | MG/KG | .33 | J | | .81 J | .02 U | 1.4 | | | Cadmium | MG/KG | 1.2 | | _ | 4.9 | 10.9 | 14.1 | | | Calcium | MG/KG | 5,270. | | | 23,700. | 104,000. | 24,900. | | | Chromium | MG/KG | 18.7 | J | | 83.2 J | 27.4 J | 149. J | | 600.000 | | MG/KG | 9.7 | | 1 | 19.7 | 40.5 | 16.8 | | 600.000 | Copper | MG/KG | 85.1 | J | | 339. J | 594. J | 262. J | | 600,000 | Cyanide | MG/KG | .58 | U | | .59 | .58 U | 1.7 | | | | STUDY ID: | SEAD-11 EECA | NONE | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | |---------|-----------|------------------|--------------|----------|--------------|--------------|--------------| | 1 | | SDG: | 80348 | 80348 | 80348 | 80348 | 80348 | | 1 | | LOC ID: | TP11-6 | NONE | TP11-8 | TP11-7 | TP11-7 | | i | | SAMP ID: | 114009 | 114009RE | 114010 | 114011 | 114012 | | | | FIELD QC CODE: | SA | NONE | SA | SA | SA | | | | SAMP. DEPTH TOP: | . 2 | NONE | 0.5 | 4 | 0.5 | | | | SAMP. DEPTH BOT: | 2 | NONE | 0.5 | 5 | 0.5 | | | | MATRIX: | SOIL | NONE | SOIL | SOIL | SOIL | | | | SAMP. DATE: | 25-Oct-00 | | 25-Oct-00 | 25-Oct-00 | 25-Oct-00 | | SORT | PARAMETER | UNIT | VALUE Q | | 600.000 | | MG/KG | 30,500. J | | 63,100. J | 91,500. J | 110,000. J | | 600.000 | | MG/KG | 126. J | | 1,150. J | 1,600. J | 1,160. J | | 600.000 | Magnesium | MG/KG | 2,040. | | 6,470. | 5,370. | 6,200. | | | Manganese | MG/KG | 181. | | 836. | 647. | 3,000. | | 600.000 | | MG/KG | .15 J | | .05 UJ | .06 UJ | 3.9 J | | 600.000 | | MG/KG | 24. J | | 67.3 J | 209. J | 63.5 J | | 600.000 | Potassium | MG/KG | 580. J | | 2,300. | 5,200. | 1,950. | | 600.000 | Selenium | MG/KG | 2.7 | | 1.1 | 3.4 | 3.4 | | 600.000 | Silver | MG/KG | 1.9 | | 8.5 | 4.6 | 7.3 | | 600.000 | Sodium | MG/KG | 120. J | | 387. J | 1,580. | 607. J | | 600.000 | Thallium | MG/KG | 1.3 J | | 4.2 | 4.5 | 8.8 | | 600.000 | Vanadium | MG/KG | 55.3 J | | 48.2 J | 1,940. J | 26.7 J | | 600 000 | Zinc | MG/KG | 961. J | | 920. J | 645. J | 1,860. J | | | STUDY ID: | NONE | I | SEAD-11 EECA | | SEAD-11 EECA | 1 | SEAD-11 EECA | 1 | NONE | | |--|--|----------|------|---
-----|-------------------|-----|--------------|----|----------|-----| | | SDG: | 80348 | | 80348 | | 80348 | i | 80348 | 1 | 80348 | | | | LOC ID: | NONE | - | TP11-10 | | TP11-10 | | TP11-14 | | NONE | | | | SAMP_ID: | 114012RE | | 114013 | | 114014 | | . 114015 | 1 | | | | - | FIELD QC CODE: | NONE | - | SA | | SA | | | | 114015RE | | | - | SAMP. DEPTH TOP: | NONE | | 5 | | 0.5 | | SA | | NONE | | | - | SAMP. DEPTH BOT: | NONE | | | | 0.5 | | _2 | - | NONE | | | | MATRIX: | NONE | - | SOIL | | | - | 2 | | NONE | | | | SAMP. DATE: | HONE | | 25-Oct-00 | 99- | SOIL
25-Oct-00 | | SOIL | | NONE | 4 | | | The state of s | | | 25-04-00 | | 25-00-00 | 1 | 25-Oct-00 | | | - | | ORT PARAMETER | UNIT | VALUE | Q | VALUE | 0 | VALUE | 0 . | VALUE | 0 | VALUE | - | | 100.000 1,1,1-Trichloroethane | UG/KG | 14. | Ü | 1,700. | | 1,200. | Ü - | 14. | ÜJ | | | | 100.000 1,1,2,2-Tetrachloroethane | UG/KG | 14. | 4 | | Ū - | 1,200. | U | main a | UJ | 13. | | | 100.000 1,1,2-Trichloroethane | UG/KG | 14. | | | Ü | 1,200. | Ü | | UJ | 13. | 1 | | 100.000 1,1-Dichloroethane | UG/KG | 14. | 4 | 1,700. | | 1,200. | U | | | 13. | 1 | | 100.000 1,1-Dichloroethene | UG/KG | 14. | | | U | 1,200. | Ü | | UJ | 13. | | | 100.000 1,2-Dichloroethane | UG/KG | 14. | | | Ü | | U | | UJ | 13. | | | 100.000 1,2-Dichloroethene (total) | UG/KG | 7. | i | | Ü | 1,200. | | | UJ | 13. | | | 100.000 1,2-Dichloropropane | UG/KG | 14. | | | u | 1,200. | U | 14. | UJ | 13. | | | 100.000 Acetone | UG/KG | 200 | | 1,700. | | | U | 14. | UJ | 13. | . 1 | | 100.000 Benzene | UG/KG | 33. | | 1,700. | ÜĴ | 1,200. | | 66. | J | 58. | | | 100.000 Bromodichloromethane | UG/KG | 14. | U | 1,700. | Ü | | UJ | 45. | J | 20. | | | 100.000 Bromoform | UG/KG | 14. | · 1 | | Ü | | U | 14. | UJ | 13. | . 1 | | 100.000 Carbon disulfide | UG/KG | 6. | | | Ü | | U | 14. | | 13. | . L | | 100.000 Carbon tetrachioride | UG/KG | 14 | | | | | U | 10. | J | 26. | | | 100.000 Chlorobenzene | UG/KG | | Ŋ | 1,700. | | 1,200. | U | | UJ | 13. | | | 100.000 Chlorodibromomethane | UG/KG | 14 | | | U | 1,200. | Ŭ _ | 14. | | 13. | . L | | 100.000 Chloroethane | UG/KG | | | | U | | Ü | | N1 | 13. | . 1 | | to the second se | | | Ü | | U | 1,200. | U | | UJ | 13. | . 1 | | 100.000 Chloroform | UG/KG | | U | | U | 1,200. | U | | UJ | 13. | . 1 | | 100.000 Cis-1,3-Dichloropropene | UG/KG | | U | THE RESERVE AND ADDRESS OF THE PARTY NAMED IN | U | 1,200. | | 14. | UJ | 13. | | | 100.000 Ethyl benzene | UG/KG | | J | 1,700. | | | U | 14. | UJ | 13. | l | | 100.000 Methyl bromide | UG/KG | 14. | | 1,700. | | | U | 14. | UJ | 13. | | | 100.000 Methyl butyl ketone | UG/KG | | U | 1,700. | | 1,200. | | 14. | UJ | 13. | | | 100.000 Methyl chloride | UG/KG | 14. | | 1,700. | | | U | 14. | UJ | 13. | U | | 100.000 Methyl ethyl ketone | UG/KG | 14. | | 1,700. | | | UJ | | UJ | 13. | | | 100.000 Methyl isobutyl ketone | UG/KG | 14. | | | U | 1,200. | U | 14. | UJ | 13. | ī | | 100.000 Methylene chloride | UG/KG | 4. | 1 | 1,700. | | 1,200. | Ü | 3. | J | 2. | J | | 100.000 Styrene | UG/KG | | nn _ | 1,700. | | 1,200. | U | | UJ | 13. | t | | 100.000 Tetrachloroethene | UG/KG · | 5. | | 1,700. | | 1,200. | U | | UJ | 13. | | | 100.000 Toluene | UG/KG | 20. | 1 | 1,700. | U | 1,200. | U | 20. | | | J | | 100.000 Total Xylenes | UG/KG | 6. | | 1,700. | U | 1,200. | Ü | 14. | | 14. | | | 100.000 Trans-1,3-Dichloropropene | UG/KG | 14. | U | 1,700. | U | 1,200. | Ü | | UJ | 13. | | | 100.000 Trichloroethene | UG/KG | 130. | | 2,400. | | 610. | J | 44. | | 26. | | | 100.000 Vinyl chloride | UG/KG | 14. | U | 1,700. | U | 1,200. | Ü | 14. | | 13. | | | 600.000 Aluminum | MG/KG | | | 12,800. | J | 13,000. | J | 13,700. | J | | - | | 600.000 Antimony | MG/KG | | | 6.7 | J | 10.2 | J | 33.5 | j | | - | | 600.000 Arsenic | MG/KG | | | 10.5 | | 14.2 | | 20.5 | | | 1 | | 600.000 Barium | MG/KG | | | 198. | J | 291. | j | 490. | J | | 1 | | 600.000 Beryllium | MG/KG | | | .99 | J | .68 | j | .75 | J | | - | | 600.000 Cadmium | MG/KG | | 1 | 4.3 | - | 9.5 | | 4.8 | - | | - | | 600.000 Calcium | MG/KG | | | 11,000. | | 76,700. | | 27,900. | | | - | | 600.000 Chromium | MG/KG | | | 70.7 | J | 66.4 | J | 120. | 1 | | - | | 600.000 Cobalt | MG/KG | | | 19.2 | | 14.6 | | 18. | 3 | | - | | 600.000 Copper | MG/KG | | - | 462. | .1 | 567. | 1 | | | | - | | 600.000 Cyanide | MG/KG | | | .54 | 11 | .49 | | 306.
.54 | J | | 1 | | | | STUDY ID: | NONE | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | NONE | |---------|-----------|------------------|--|--------------|--------------|--------------|-------------------------| | | | SDG: | 80348 | 80348 | 80348 | 80348 | 80348 | | | | LOC ID: | NONE | TP11-10 | TP11-10 | TP11-14 | NONE | | | | SAMP_ID: | 114012RE | 114013 | 114014 | 114015 | 114015RE | | | | FIELD QC CODE: | NONE | SA | SA | SA | NONE | | | - | SAMP. DEPTH TOP: | NONE | 5 | 0.5 | 2 | NONE | | | | SAMP. DEPTH BOT: | NONE | 5 | 0.5 | 2 | NONE | | - | - | MATRIX: | NONE | SOIL | SOIL | SOIL | NONE | | | | SAMP. DATE: | and the second s | 25-Oct-00 | 25-Oct-00 | 25-Oct-00 | 679 Mp. 1-66765 201-100 | | ORT | PARAMETER | UNIT | VALUE | VALUE Q | VALUE | VALUE Q | VALUE | | 600.000 | Iron | MG/KG | | 46,100. J | 39,500. J | 50,900. J | | | 600.000 | Lead | MG/KG | | 495. J | 2,440. J | 3,790. J | | | 600.000 | Magnesium | MG/KG | | 4,380. | 7,950. | 6,490. | 704 | | 600.000 | Manganese | MG/KG | | 1,040. | 748. | 607. | | | 600.000 | Mercury | MG/KG | | .1 3 | .06 UJ | .19 J | | | 600.000 | Nickel | MG/KG | | 50.9 J | 41. J | 191. J | | | 600.000 | Potassium | MG/KG | | 1,640. | 2,810. | 2,170. | - | | 600.000 | Selenium | MG/KG | | .85 U | .84 U | 2.1 | | | 600,000 | Silver | MG/KG | | 1.1 J | 10.3 | 2.3 | | | 600.000 | Sodium | MG/KG | | 106. J | 657. J | 1,700. | | | 600.000 | Thallium | MG/KG | | 3.3 | 2.8 | 3. | | | 600.000 | Vanadium | MG/KG | | 26.4 J | 24.1 J | 25.5 J | | | 600.000 | Zinc | MG/KG | | 357. J | 1,220. J | 7,150. J | | | 1 | | STUDY ID: | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | | | |---------
--|------------------|-----------------|--------------|--------------|-----------|--------------| | | | SDG: | 80348 | 80348 | 80348 | | | | 1 | | LOC ID: | TP11-14 | TP11-13 | TP11-13 | | NONE | | 1 | | SAMP_ID: | 114016 | 114017 | 114018 | 114019 | 114019MS | | | | FIELD QC CODE: | SA | SA | SA | SA | NONE | | | | SAMP. DEPTH TOP: | 0.5 | 3 | 0.5 | 2.5 | NONE | | 1 | | SAMP. DEPTH BOT: | 0.5 | 3 | 0.5 | | | | | | MATRIX: | SOIL | SOIL | SOIL | SOIL | NONE | | | | SAMP. DATE: | 25-Oct-00 | 26-Oct-00 | 26-Oct-00 | | | | ORT | PARAMETER | UNIT | VALUE Q | VALUE | VALUE | Q VALUE | Q VALUE Q | | | 1,1,1-Trichloroethane | UG/KG | 14. U | 1,700. | 2,400 | | | | 4 | 1,1,2,2-Tetrachloroethane | UG/KG | 14. U | 1,700. | | | | | | | UG/KG | 14. U | 1,700. | | | | | | 1,1,2-Trichloroethane | | 14. U | 1,700. | | | | | | 1,1-Dichloroethane | UG/KG | | | | | | | | 1,1-Dichloroethene | UG/KG | 14. U | 1,700. | | | | | | 1,2-Dichioroethane | UG/KG | | | | | | | | 1,2-Dichloroethene (total) | UG/KG | 2. J | 270. | 2,400 | | | | | 1,2-Dichloropropane | UG/KG | 14. U | | U 2,400 | | | | 100.000 | | UG/KG | 190. J | | UJ 2,400 | | | | 100.000 | make a separate and a second as a | UG/KG | 13. J | | UJ 2,400 | | | | 100.000 | Bromodichloromethane | UG/KG | 14. U | | U 2,400 | | | | 100.000 | Bromoform | UG/KG | 14. U | 1,700. | | | | | 100.000 | Carbon disulfide | UG/KG | 28. | 1,700. | | | | | | Carbon tetrachloride | UG/KG | 14. U | 1,700. | U 2.400 | | | | | Chlorobenzene | UG/KG | 14. U | 1,700. | Ú 2,400 | 1,200 | . U 6,100. | | | Chlorodibromomethane | UG/KG | 14. U | 1,700. | | 1,200 | . U 1,200. U | | | Chloroethane | UG/KG | 14. U | 1,700. | | | | | | Chloroform | UG/KG | 14. U | 1,700. | | | | | | Cis-1,3-Dichloropropene | UG/KG | 14. U | 1,700. | | | | | | Ethyl benzene | UG/KG | 14. U | 1,700. | | | | | | Methyl bromide | UG/KG | 14. U | 1,700. | | | | | | Methyl butyl ketone | UG/KG | 14. U | 1,700. | | | | | | Methyl chloride | UG/KG | 14. U | 1,700. | U 2,400 | | | | | | UG/KG | 14. U | 1,700. | | | | | | Methyl ethyl ketone | UG/KG | 14. U | 1,700. | | | | | | Methyl isobutyl ketone | | 2. J | 1,700. | | | | | | Methylene chloride | UG/KG | | | | | | | 100.000 | | UG/KG | 14. U | 1,700. | | | | | | Tetrachioroethene | UG/KG | 14. U | 1,700. | | | | | 100.000 | | UG/KG | 5. J | 1,700. | 2,400 | | | | | Total Xylenes | UG/KG | 6. J | 1,700. | U 2,400 | | | | | Trans-1,3-Dichloropropene | UG/KG | 14. U | 1,700. | | | | | | Trichloroethene | UG/KG | 130. | 27,000. | 40,000 | | | | 100.000 | Vinyl chloride | UG/KG | 14. U | 1,700. | | | | | | Aluminum | MG/KG | 11,200. J | 6,900. | J 19,300 | | | | 600.000 | Antimony | MG/KG | 6. J | 29.5 | | | | | 600.000 | | MG/KG | 12.7 | 5.8 | 11. | | | | 600.000 | | MG/KG | 155. J | 328. | J 435 | 5. J 84.1 | 3 J | | - 144 | Beryllium | MG/KG | .78 J | .41 | | .8: | 3 J | | | Cadmium | MG/KG | .74 J | .92 | | 7 | 3 U | | | Calcium | MG/KG | 23,700. | 15,700. | | | | | | | MG/KG | 52. J | 29.4 | | | | | | Chromium | | 15.2 | 6.2 | | | | | 600.000 | | MG/KG | | 133. | | | | | BOD DOG | Copper | MG/KG | 219. J
.59 U | 133. | | | . J
5 U | | | | STUDY ID: | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | NONE | |---------|-----------|------------------|--------------|--------------|--------------|--------------|--------------| | | | SDG: | 80348 | 80348 | 80348 | 80348 | 80348 | | | | LOC ID: | TP11-14 | TP11-13 | TP11-13 | TP11-12 | NONE | | | | SAMP_ID: | 114018 | 114017 | 114018 | 114019 | 114019MS | | | | FIELD QC CODE: | SA | SA | SA | SA | NONE | | - | _ | SAMP. DEPTH TOP: | 0.5 | 3 | 0.5 | 2.5 | NONE
NONE | | 1 | | SAMP. DEPTH BOT: | 0.5 | 3 | 0.5 | 2.5 | NONE | | | | MATRIX: | SOIL | SOIL | SOIL | SOIL | NONE | | | | SAMP. DATE: | 25-Oct-00 | 26-Oct-00 | 26-Oct-00 | 26-Oct-00 | | | SORT | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE | VALUE Q | VALUE Q | | 600.000 | Iron | MG/KG | 78,300. J | 47,900. J | 41,400. J | 26,000. J | | | 600.000 | Lead | MG/KG | 373. J | 1,060. J | 1,180. J | 337. J | | | | Magnesium | MG/KG | 10,100. | 1,970. J | 4,930. | 9,450. | | | | Manganese | MG/KG | 713. | 467. J | 776. | 935. | | | 600.000 | | MG/KG | .1 J | .06 UJ | .06 UJ | .06 UJ | | | 600.000 | Nickel | MG/KG | 95.8 J | 23.7 J | 43.5 J | 35. J | | | 600.000 | Potassium | MG/KG | 1,680. | 1,890. J | 2,230. | 1,780. | | | 600.000 | Selenium | MG/KG | 2.6 | 1.6 J | 2.8 | .94 J | | | 600.000 | Silver | MG/KG | .73 J | .83 J | .92 J | .33 U | | | 600.000 | Sodium | MG/KG | 96. J | 316. J | 366. J | 74.8 J | | | 600.000 | Thallium | MG/KG | 4.6 | 2.8 J | 3.2 | 2.7 | | | 600.000 | Vanadium | MG/KG | 33.9 J | 16.2 J | 28.8 J | 20.6 J | | | 600.000 | Zinc | MG/KG | 451. J | 1,030. J | 2.270. J | 166. J | | | | | SDG: | | | 00040 | 1 | 000.0 | | |------------------------------|----------------------------|------------------|-----------|---|---------------------------------------|----|-------------------------------------|-----| | | | LOC ID: | 80348 | | 80348 | | 80348 | _ | | | | | NONE | | TP11-12 | | TP11-13 | | | | | SAMP_ID: | 114019MSD | | 114020 | | 114021 | - | | | | FIELD QC CODE: | NONE | | SA | | DU | | | 1 | | SAMP. DEPTH TOP: | NONE | | 0.5 | | 3 | | | | | SAMP. DEPTH BOT: | NONE | | 0.5 | | 3 | | | | | MATRIX: | NONE | | SOIL | | SOIL | | | - | | SAMP. DATE: | | | 26-Oct-00 | | 26-Oct-00 | | | ORT | PARAMETER | UNIT | VALUE | 0 | VALUE | 0 | VALUE | 0 | | | 1,1,1-Trichloroethane | UG/KG | 1,200. | Ü | 1,900. | U | 2.500. | u | | | 1,1,2,2-Tetrachloroethane | UG/KG | 1,200. | U | 1,900. | Ü | _, | u | | | 1,1,2-Trichioroethane | UG/KG | 1,200. | Ū | 1,900. | Ü | | ū | | | 1,1-Dichloroethane | UG/KG | 1,200. | Ü | 1,900. | Ü | | Ü | | | 1,1-Dichloroethene | UG/KG | 5,400. | | 1,900. | Ü | | ü | | | 1.2-Dichloroethane | UG/KG | 1,200. | u | 1,900. | U | | ū - | | | 1,2-Dichloroethene (total) | UG/KG | 1,200. | Ü | 1,900. | U | | | | | 1,2-Dichloropropane | UG/KG | 1,200. | Ü | 1,900. | U | | J | | 100.000 | | UG/KG | 1,200. | Ü | - | 1 | -,000. | U | | 100.000 | | UG/KG | | Ü | 1,900. | UJ | 3,200. | J | | | Bromodichloromethane | UG/KG | 5,300. | - | 1,900. | UJ | 2,500. | - | | | Bromoform | | 1,200. | U | 1,900. | U | | Ü | | | | UG/KG | 1,200. | U | 1,900. | Ü | | U | | | Carbon disulfide | UG/KG | 1,200. | U | 1,900. | U | | U | | | Carbon tetrachloride | UG/KG | 1,200. | U | 1,900. | U | | U | | | Chlorobenzene | UG/KG | 6,200. | | 1,900. | U | | U | | | Chlorodibromomethane | UG/KG | 1,200. | ū | 1,900. | U | 2,500. | U | | | Chloroethane | UG/KG | 1,200. | Ü | 1,900. | U | 2,500. | Ü | | | Chloroform | UG/KG | 1,200. | U | 1,900. | U | 2,500. | U | | | Cis-1,3-Dichloropropene | UG/KG | 1,200. | U | 1,900. | U | 2,500. | Ü | | | Ethyl benzene | UG/KG | 1,200. | | 1,900. | Ü | 2,500. | Ü | | | Methyl bromide | UG/KG | 1,200. | U | 1,900. | U | 2,500. | Ū | | 100.000 | Methyl butyl ketone | UG/KG | 1,200. | Ü | 1,900. | UJ | 2,500. | UJ | | 100.000 | Methyl chloride | UG/KG | 1,200. | U | 1,900. | U | | Ü | | 100.000 | Methyl ethyl ketone | UG/KG | 1,200. | U | 1,900. | Ü | | UJ | | 100.000 | Methyl isobutyl ketone | UG/KG | 1,200. | U | 1,900. | U | | U | | 100.000 | Methylene chloride | UG/KG | 1,200. | Ū | 1,900. | Ü | | U | | 100.000 | | UG/KG | 1,200. | Ü | 1,900. | Ū | | U | | | Tetrachioroethene | ÜĞ/KĞ | 1,200. | U | 1,900. | Ü | | Ü | | 100.000 | | UG/KG | 6,400. | | 1,900. | Ū | | U | | 100.000 | Total Xylenes | UG/KG | 1,200. | U | 1,900. | | | U | | 100.000 | Trans-1,3-Dichloropropene | UG/KG | 1,200. | U | 1,900. | | | Ü | | 100.000 | Trichloroethene | UG/KG | 8,400. | | 16,000. | | 42,000. | | | 100.000 | Vinyl chloride | UG/KG | 1,200. | U | | Ü | | u | | | Aluminum | MG/KG | ., | | 14,600. | J | 18,400. | 1 | | 600.000 | | MG/KG | - | - | 199. | 1 | 35. | 1 - | | 600.000 | | MG/KG | | | 8.6 | | The same of the same of the same of | 7 | | 600.000 | | MG/KG | | | 1,720. | | 472. | - | | 600.000 | | MG/KG | | | .85 | | 40-111-day | J | |
600.000 | | MG/KG | | | THE RESERVE OF MARKET AND ADDRESS AND | J | | j | | 600.000 | | MG/KG | | | 2.8 | | 1.4 | | | THE PERSON NAMED IN COLUMN 1 | Chromium | MG/KG | | | 28,200. | | | J | | | | | | | 64.9 | J | 47.4 | | | 600.000 | | MG/KG | | | 15.7 | | 13.5 | | | 600.000 | Copper | MG/KG
MG/KG | | | 834. | | 175. | | | | | STUDY ID: | NONE | SEAD-11 EECA | SEAD-11 EECA | | |---------|---|------------------|-----------|--------------|--------------|---------| | | | SDG: | 80348 | 80348 | 80348 | | | | | LOC ID: | NONE | TP11-12 | TP11-13 | | | | | SAMP_ID: | 114019MSD | 114020 | 114021 | | | | | FIELD QC CODE: | NONE | SA | DU | | | _ | | SAMP. DEPTH TOP: | NONE | 0.5 | 3 | | | | | SAMP. DEPTH BOT: | NONE | 0.5 | 3 | | | | | MATRIX: | NONE | SOIL | SOIL | _ | | | | SAMP. DATE: | | 26-Oct-00 | 26-Oct-00 | - | | SORT | PARAMETER | UNIT | VALUE | VALUE Q | VALUE | Q | | 600.000 | lron | MG/KG | | 44,400. J | 64,600. | J | | 600.000 | Lead | MG/KG | | 7,210. J | 913. | J | | 600.000 | Magnesium | MG/KG | | 6,450. | 7,600. | j | | 600.000 | Manganese | MG/KG | | 616. | 1,120. | J | | 600.000 | Mercury | MG/KG | | 6. J | .07 | | | 600.000 | | MG/KG | | 57.5 J | 44.9 | | | | Potassium | MG/KG | | 2,600. | 5,870. | J | | | Selenium | MG/KG | | 1.9 | 2. | | | 600.000 | A STATE OF THE REAL PROPERTY AND ADDRESS OF THE PARTY NAMED IN COLUMN TWO IS NOT | MG/KG | | 2.2 J | 1. | J | | 600.000 | Sodium | MG/KG | | 767. J | 775. | J | | | Thallium | MG/KG | | 3.7 | 5.7 | J | | | Vanadium | MG/KG | | 24.4 J | 34.6 | total - | | 600.000 | Zinc | MG/KG | | 3,840. J | 1,170. | J | | | STUDY ID:
SDG: | SEAD-11 EECA
80731 | SEAD-11 EECA
80731 | SEAD-11 EECA
80731 | SEAD-11 EECA
80731 | NONE
80731 | NONE
80731 | SEAD-11 EECA
80731 | |------------------------------------|-------------------|-----------------------|-----------------------|--|-----------------------|---------------|---------------|-----------------------| | _ | LOC ID: | MW11-2 | MW11-1 | MV/11-3 | MW11-5 | NONE | NONE | MW11-4 | | | SAMP_ID: | 112100 | 112101 | 112102 | 112103 | 112103MS | 112103MSD | 112104 | | | FIELD QC CODE: | SA | SA | SA | SA | NONE | NONE | SA | | | SAMP. DEPTH TOP: | 0 | 0 | 9 | 10 | NONE | NONE | 11 | | | SAMP. DEPTH BOT: | 0 | 0 | 9 | 10 | NONE | NONE | 11 | | | MATRIX: | GROUND WATER | GROUND WATER | GROUND WATER | GROUND WATER | NONE | NONE | GROUND WATER | | | SAMP. DATE: | 21-Nov-00 | 21-Nov-00 | 20-Nov-00 | 21-Nov-00 | | | 20-Nov-00 | | | | | | | | | | 201100-00 | | RT PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE | VALUE Q | VALUE Q | VALUE | | 00.000 1,1,1-Trichloroethane | UG/L | 1. U | 1. U | 1.0 | 1.10 | 1.10 | 10 | 1. | | 00.000 1,1,2,2-Tetrachloroethane | UG/L | 1. U | 1.10 | 1.10 | 1.0 | 1.0 | 1.0 | 1. | | 00.000 1,1,2-Trichloroethane | UG/L | 1.0 | 1. U | 1. U | 1.10 | 5 | - 5 | 1 | | 100.000 1,1-Dichloroethane | UG/L | 1. U | 1. U | 1. U | 1.10 | 1.0 | 1. U | 1. | | 00.000 1,1-Dichloroethene | UG/L | 1. U | 1. | | 00.000 1,2,4-Trichlorobenzene | UG/L | 1. U | 1. U | 1. U | 1. U | 5. | 5. | 1. | | 00.000 1,2-Dibromo-3-chloropropane | UG/L | 1. U | 1.10 | 1. U | 1. U | 1. U | 1. U | 1. | | 00.000 1,2-Dibromoethane | UG/L | 1. U | 1. U | 1. U | 1.0 | 5. | 5. | 1. | | 00.000 1,2-Dichlorobenzene | UG/L | 1.0 . | 1. U | 1.0 | 1.0 | 1.0 | 1.0 | | | 00.000 1,2-Dichloroethane | UGAL | 1. U
1. U
1. U | 1.0 | 1.0 | 1.0 | | 1.0 | 1. | | 00.000 1,2-Dichloropropane | UGA. | 1.10 | 1.0 | 1.0 | 1 0 | 5.1 | 3.1 | 1 | | 00.000 1,3-Dichlorobenzene | UGAL | 1.10 | 1.0 | 1.0 | 1.0 | 1. U | 1. U | | | 00.000 1,4-Dichlorobenzene | UG/L | 1.0 | 1.0 | 1.0 | - : : | 4. | 1.0 | 1. | | 100.000 Acetone | UG/L | 1. U
5. U
1. U | 5. U | 5.0 | 1. U
5. U | 5. U | 5. U | 1. | | 00 000 Benzene | UG/L | 1.10 | 1.0 | 1.0 | 1 0 | | 5.0 | 5. | | 00 000 Bromochloromethane | UGAL | 1.10 | 1.10 | 1.0 | 1.0 | 1.0 | 1.10 | - 1 | | 00.000 Bromodichloromethane | UG/L | 1.0 | 1.0 | 1.0 | | 1.0 | - 1.0 | | | 00.000 Bromoform | UGAL | 1.0 | 110 | 1.0 | 1.0 | | 4. | | | 100.000 Carbon disulfide | UG/L | 1. U | 1.0 | 1.0 | 1.0 | 1.0 | 1.14 | | | 100.000 Carbon tetrachloride | UG/L | 1.0 | 1.0 | 1.0 | 1 111 | 4. | | | | 00.000 Chlorobenzene | UG/L | 1.0 | 1.0 | 1.0 | - i u | 1.0 | 1. U | | | 00 000 Chlorodibromomethane | UGAL | 1. U | 1.0 | 1.0 | 1. U | 1.0 | 1.00 | - 1 | | 00 000 Chloroethane | UG/L | i.lü ~ | 1.0 | 1.0 | 1 1 0 | 1.0 | | 1. | | 100 000 Chloroform | UGAL | 1.10 | 1. U | 1.0 | 1 U | - 1.0 | 1.0 | | | 100 000 Cis-1,2-Dichloroethene | UG/L | 1. Ü | 1.10 | 1.0 | 1 | 1.0 | 1.0 | 1. | | 100.000 Cis-1,3-Dichloropropene | UG/L | 1.0 | 1.0 | 1.0 | 1 0 | 5.0 | 1.0 | | | 00.000 Ethyl benzene | UGAL | 1. U | 1. U | 1.0 | 1.0 | | 5. | 1. | | 100.000 Methyl bromide | UG/L | 1. U | 1. U | 1. U | 1.0 | 1.0 | 1. U | 1. | | 100.000 Methyl butyl ketone | UG/L | 5. U | 5. U | 5. U | 5. Ü | 1.0 | 1. U | 1. | | 100.000 Methyl chloride | UG/L | 1. U | 1. U | 1.0 | 1. U | 5. U | 5. U | 5. | | 100 000 Methyl ethyl ketone | UG/L | 5. U | 5. U | 5. U | | 1.lu | 1.0 | 1. | | 00.000 Methyl isobutyl ketone | UG/L | 5. U | 5. | | 100.000 Methylene chloride | UG/L | 2 11 | 2. U | 2. U | 5 U | 5. U | 5. U | 5. | | 00.000 Styrene | UGAL | 2. U
1. U | 1. U | | 2. U | 2.0 | | 2. | | 100.000 Tetrachloroethene | UG/L | 1. U | 1.0 | 1. U | 1. U | 1.0 | 1. U | 1. | | 100.000 Toluene | UGAL | 1. U | 1.0 | 1. U | 1. U | 5. | 4. | 1. | | 00.000 Total Xylenes | UGAL | 1. U | 1. | | 00.000 Trans-1,2-Dichloroethene | UG/L | 1. U | 1. U | 1. U | 1. U | 1.10 | 1. U | 1. | | 00.000 Trans-1,3-Dichloropropens | UG/L | 1.0 | 1. U | 1. U | 1. U
1. U
1. U | 1. U | 1. U | 1. | | 00.000 Trichloroethene | UG/L | 1. U | 1. U | 1.0 | 1.0 | 1.0 | 1. U | 1. | | 00.000 Vinyi chloride | UG/L | 1.0 | 1. U | .7 J | 1. U | 5. | 5. | 1. | | 300.000 1,3,5-Trinitrobenzene | | 1. U | 1. U | 1. U | 1. U | | 4. | 1. | | 00.000 1,3,5-i nntrobenzene | UG/L | 25 U | .25 U | 25 U
25 U
25 U | 25 U | 3.9 P | 3.8 P | .25 | | | UGA. | .25 U | .25 U | 25 U | 25 U | 4.4 P | 4.2 P | .25 | | 00.000 2,4,6-Trinitrotoluene | UGA. | .25 U | .25 U | .25 U | 25 U | 3.6 P | 3.5 P | 25 | | 00.000 2,4-Dinitrotoluene | UG/L | .25 U | .25 U | .25 U | 25 Ü | 3.8 P | 3.7 P | 25
25 | | | UGAL | .25 U | .25 U | 25 U | 25 U | 3.8 | 3.7 | .25 | | 00.000 2-Nitrotoluene | UG/L | .25 U | .25 U | 25 U | 25 U | 3.6 P | 3.6 P | .25 | | | UGAL | .25 U | .25 U | 25 U | .25 U | 3.4 | 3.3 | .25 | | 00.000 3-Nitrotoluene | UG/L | .25 U | .25 U | 25 U | 25 U | 3.6 P | 3.7 P | 25 | | 00.000 4-Nitrotoluene | UG/L | .25 U | 25 U | 25 U | 25 U | 3.6 P | 3.6 P | .25 | | 00.000 4-amino-2,6-Dinitrotoluene | UG/L | .25 U | .25 U | 25 U
25 U
25 U
25 U
25 U
26 U | .25 U | 3.4 | 3.2 | .25 | | 00.000 HMX | UGAL | .25 U | 25 U | 25 U | 25 U | 3.5 | 3.4 | .26 | | 00.000 Nitrobenzene | UGA. | 25 U | 25 U | 25 U | 25 U | 3.7 | 3.6 | .26 | | 00.000 RDX | UG/L | 25 U | 25 U | 25 U | 25 U | 4. | 3.8 | .25 | | 00.000 Tetryl | UGAL | .25 U | .25 U | 25 U | 25 U | 34 | 3.2 | .25 | | 00.000 1,2,4-Trichlorobenzene | UG/L | 1.1 U | 1.1 U | | 1. U | 33 E | 30. E | 1. | | 00.000 1,2-Dichlorobenzene | UG/L | 1.1 U | 1.1 U | 1. U | 1. U | | 1. U | 1. | | 00.000 1,3-Dichlorobenzene | UG/L | 1.1 U | 1.1 U | 1. | | 00.000 1,4-Dichlorobenzene | UG/L | 1.1 U | 1.1 U | 1. U | 1. U | 32. E | 29. E | | | 400.000 2,4,5-Trichlorophenol | UG/L | 2.8 U | 2.7 U | 2.6 U | 2.6 U | 2.6 U | 2.6 U | 1. | | 400.000 2,4,6-Trichlorophenol | UG/L | 1.1 U | 1.1 U | 1. U | 1. U | 1. U | 1. U | 2.6 | | 400 000 2,4-Dichlorophenol | UG/L | 1.1 U | 1.1 U | 1.0 | 1. U | .37 J | .43 J | 1. | | March Marc | | - | STUDY ID. SDG: LOC ID: SAMP ID: FIELD QC CODE: | SEAD-11 EECA
80731
MAW11-2
112100
SA | SEAD-11 EECA
80731
MW11-1
112101
SA | SEAD-11 EECA
80731
MW11-3
112102
SA | MW | 0731
11-5
2103
SA | NONE
80731
NONE
112103MS
NONE |
NONE
80731
NONE
112103MSD
NONE | SEAD-11 EECA
80731
MW11-4
112104
SA | |--|---------|-----------------------------|--|--|---|---|----|----------------------------|---|--|---| | 1000 2.4 Proprietation U.S. 1.1 U | | | MATRIX: | | | | | TER | | | GROUND WATER | | 2000 24 Amprend UAA | RT | PARAMETER | LIMIT | VALUE | VALUE | VALUE | | 1115 | VALUE | VALUE | VALUE | | 10.00 2.4 Employment U.S. 1.5 U.S. 1.5 U.S. U.S | | | | | | 1. U | | | | | VALUE Q | | 0.000 1.4 Companions | 00.000 | 2,4-Dinitrophenol | UGAL | | | 2.6 U | J | | | | 26 0 | | 2000 Colorange American U.S. | 00.000 | 2,4-Dinitrotoluene | | 1.1 U | 1.1 U | 1.0 | | | | | | | 10 10 10 10 10 10 10 10 | | | | | 1.1 U | | | 1 [U | | | | | 2000 Methylephene U.S. | | | | 1.1 0 | 1.1 0 | | | 1. U | 1.0 | | 1.0 | | 00 000 24 deshiphemend | | | | | | | | 1.10 | | | 1.0 | | 100 000 Afterwards | 000.000 | 2-Methylphenoi | | | | | | 1 10 | 1.0 | | 1.0 | | 2000 24 Programmer 10 | 00.000 | 2-Nitrosoiline | | | | | | | | | | | 1000 1.5 | 00.000 | 2-Nitrophenol | | | | | | | 1.0 | | | | 1000 | 000.000 | 3,3'-Dichlorobenzidine | UG/L | 1.1 U | 1.1 U | 1. U | | | 1.0 | | | | | | | | 2.8 U | 2.7 U | 2.6 U | | 2.6 U | 26 U | 2.6 U | | | 1000000 College Coll | | | UG/L | 28 113 | | | | | | | 2.6 UJ | | | 400 000 | 4-Bromophenyl phenyl ether | UG/L | | | | | | | | 1. U | | | 400 000 | 4-Chloro-3-methylphenol | | | | 1.0 | | | 59 E | 62 E | | | 00000 After-sending UGA 2 U | | | | | | 1.0 | | | 1.0 | | | | 00000 After-sending UGA 2 U | 100.000 | 4-Mathylphenol | UGA | 5311 | | - 1 0 | | | 1.0 | | | | 100.000 Astrophymene UOA, 1 U U | 100 000 | 4-Nitroaniline | | | 2711 | | | | | | | | 00.000 Anneaphthree U.G. | 000.000 | 4-Nitrophenol | | | 270 | | | | 73 6 | | | | 0.000 Company Systems | 00.000 | Acenaphthene | | | 1.10 | | | | 35 F | 33 E | | | 000 000 Participate interference UGA. 1.1 U | 000.000 | Acenaphthylene | | | | 1.10 | | | 1.0 | 1.0 | 1 10 | | 00 000 Description and the second programme of sec | 100.000 | Anthracene | | | | 1. Ū | | | 1.0 | | 1.10 | | 100
100 | 100.000 | Benzo(a)anthracens | | | | | | | 1. U | 1. Ü | | | 100 | 100 000 | Benzo(a)pyrene | | | | | | 1. U | 1. U | | | | 100 | 400.000 | Benzo(b)fluoranthene | | | | | | 1. U | 1. U | | 1. U | | | 400,000 | Benzo(k)fuocenthane | | | | | | | 1 0 | | | | 00.000 Dieta-Christophyrightes UGA, | 400 000 | Bia/2 Chloroethovylmethane | | | | | | | 1 10 | | | | 100,000 Bilary C-Phirensypichheid UGA, | 400.000 | Bis/2-Chloroethyl)ether | | | | | | | | | | | 100,000 Big C Emphasylphinalise UGA | 100.000 | Bis(2-Chloroisopropyl)ether | | | | | | | | | | | 100 000 Delay phensy pythelate UGAL 07 J 1.1 U 1. U 1. U U U U U U U U U | 400.000 | Bis(2-Ethythexyl)phthalate | | 1.1 U | | | | | 54 81 | | | | | 400.000 | Butylbenzylphthalate | | .07 J | | | | 1.10 | | | | | 100,000 Chrysene UGA | | | | | | 1. U | | | 1.0 | | | | 100,000 Dire-hourspin halaste UGR 1.1 U U U U U U U U U | 400.000 | Chrysene | | | | | | | | | | | | | | | 1.1 U | | 1. U | | | | .094 JB | 1. U | | | | | | | 1.1 0 | 1. U | | | 1. U | | 1. U | | | | | | 1.10 | 1.10 | 1.10 | - | | | | | | 100,000 Dimethylphthalate UGA | | | | 1.10 | | 1. 0 | | | 1.0 | 1.0 | | | 100,000 Fluorenthene UGAL | | | | | | 1.0 | | | | | 1.0 | | 400,000 Hasschlorobutadene UGA 1.1 U U U U U U U U U | 400.000 | Fluoranthene | UG/L | | | | | 1. U | | | 1.0 | | | 400.000 | Fluorene | UGA. | 1.1 U | 1.1 U | | | | | | | | 100,000 Hazachlorocytadeline UGL 1.1 U U U U U U U U U | | | | 1.1 U | 1.1 U | 1. U | | 1. U | 1.0 | | | | 400,000 Hazachlorocyclopentadene UGL | | | | | | | | | 1. U | | | | 100,000 Nexactivaroethane UGL 1.1 U 1.1 U 1.1 U U U U U U U U U | 400.000 | Hexachlorocyclopentadiene | | | | | | | 1. U | 1. U | 1. U | | 100 000 Isopherone UGA. 1.1 U 1.1 U 1.1 U U 1.1 U U U U U U U U U | | | | | | 1. U | | 1. U | 1.0 | | 1. U | | 100 000 N-Nitroeodiphenylamine UGL | | | | | | | | | | | 1. U | | 00.000 N-Nêtroacdpropriamine UG/L 1.1 U U U U U U U U U | | | | | | | | 1.0 | | | | | 00.000 Naphthalene UGAL 1.1 U 1.0 0.000 Nitrobenzene UGAL 1.1 U 1. | 00.000 | N-Nitrosodioromiamine | | | | | | | 1.0 | | | | 00.000 Nitrobenzene UG/L 1.1 U 1.0 | | | | | | | | | | | | | 00.000 Pentachlorophenol UGA. 2.8 U 2.7 U 2.5 U 2.6 U 140 E 130 E 2.6 U 0.000 Phenanthrens UGA. 1.1 U 1.1 U 1.1 U 1. U 1. U 1. U 1. U | | | | | | | | | | | | | 00.000 Phenenthrene UGA. 1.1 U 1.1 U 1.1 U 1.0 I U 1.0 I U 1.0 I U 1.0 O.000 Phened UGA. 1.1 U 1.1 U 1.1 U 1.0 I U 1.0 O.000 Phened UGA. 1.1 U 1.1 U 1.1 U 1.0 I U 1.0 O.000 Phened UGA. 1.1 U 1.1 U 1.1 U 1.0 I U 1.0 I U 1.0 O.000 Phened UGA. 1.1 U 1.1 U 1.0 U 1.0 I U 1.0 I U 1.0 O.000 Phened UGA. 1.1 U 1.1 U 1.0 | | | | | | | | | | | | | 00.000 Phenol UGAL 1.1 U 1.5 U 1.0 U U 96 E 59 E 1 U 00.000 Phenol UGAL 1.1 U 1.1 U 1.1 U 1.9 E 2.1 E 1.1 U 00.000 4.4*-DDD UGAL 0.11 U U 0.11 U U U U U U U U U | | | | | | | | | | | | | 00 000 Pyrene UG/L 1.1 U 1.1 U 1.0 1.0 1.0 1.0 1.0 0.000 4.4"-DDD UG/L 0.11 U 0 | 00.000 | Phenot | | | | 1. U | | | | | | | 00.000 4,4'-DDD UGA. 011 U 011 U 01 U 01 U 01 U 01 U 01 U 0 | 00.000 | Pyrene | | 1.1 U | 1.1 U | 1. U | | 1. U | | | | | 00.000 (4,4-DDE UGA. 0.11 U 0.01 U 0.00 U 0.00 (4,4-DDT UGA. 0.11 U 0.11 U 0.11 U 0.00 | 00.000 | 4,4'-DDD | | | | .01 U | | .01 U | | | .01 U | | 00,000 00, | | | | | | | | .01 U | .011 U | | | | 00 000 Alarin UGA008 U .008 U .005 U .005 U .04 | | | | | | | | | .084 | .078 | | | 00.000 Alpha-BHC UG/L | | | UG/L | .006 U | U 800. | .005 U | | .005 U | | | | | | STUDY ID.
SOG.
LOC ID: | SEAD-11 EECA
80731
MW11-2 | SEAD-11 EECA
80731 | SEAD-11 EECA 80731 | SEAD-11 EECA
80731 | NONE
80731 | NONE
80731 | SEAD-11 EECA
80731 | |---------------------------------------|------------------------------|---------------------------------|-----------------------|--------------------|-----------------------|---------------|---------------|-----------------------| | | | | MW11-1 | MW11-3 | MW11-5 | NONE | NONE | MW11-4 | | 1 | SAMP_ID: | 112100 | 112101 | 112102 | 112103 | 112103MS | 112103MSD | 112104 | | - | FIELD QC CODE | SA SA | SA. | SA! | SA | NONE | NONE | SA | | 1 | SAMP. DEPTH TOP: | 0 | 0 | 9 | 10 | NONE | NONE | 11 | | | SAMP. DEPTH BOT: | 0 | 0 | 9 | 10 | NONE | NONE | 111 | | | MATRIX: | GROUND WATER | GROUND WATER | GROUND WATER | GROUND WATER | NONE | NONE | GROUND WATER | | | SAMP. DATE: | 21-Nov-00 | 21-Nov-00 | 20-Nov-00 | 21-Nov-00 | | | 20-Nov-00 | | RT PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE | VALUE | VALUE | VALUE Q | | 00.000 Alpha-Chlordana | UG/L | .006 U | .006 U | .005 U | 005 U | 005 U | 005 U | .005 U | | 00.000 Aroclor-1016 | UG/L | .11 U. | .11.0 | 110 | 110 | .11 U | .1 U | .10 | | 00 000 Arodor-1221 | UG/L | 22 U | .22 U | 21 0 | 21 U | - 22 U | | | | 00.000 Arodor-1232 | UG/L | .11 U | .11 U | - 10 | | | 21 U | .21 U | | 00.000 Arodor-1242 | UG/L | .11 0 | 110 | .10 | .10 | .11]0 | .1 U | .1 U | | 00.000 Arador-1248 | UG/L | .11 0 | .11 0 | | .1 U | .11 U | 10 | .1 0 | | 00.000 Arador-1254 | UGAL | .11 U | | .1 U | .1 U | .110 | 10 | .1 U | | 00.000 Arodor-1254 | UGAL | | .11 U | .10 | .1 U | 110 | .10 | .1 U | | 00.000 Arodor-1260
00.000 Beta-BHC | | .11 U | .11 U | .1 U | .1 0 | 11 0 | .10 | .10 | | 00.000 Beta-BHC | UG/L
UG/L | .006 U | .006 U | .005 U | 005 0 | .005 U | .005 U | .005 U | | | | .006 U | .008 U | 005 U | .005 U | .005 Ü | .005 U | .005 U | | 00.000 Dieldrin | UG/L | .011 U | .006 U | .01 U | 01 U | .088 | .082 | .01 U | | 00.000 Endosulfan I | UG/L | .006 U | .006 U | .005 U | 005 Ü | .005 U | .005 U | .005 U | | 00.000 Endosultan II | UG/L | .011 U | .011 U | .01 U | 01 0 | .011 U | .01 U | .01 U | | 00 000 Endosulfan sulfate | UG/L | .011 U | .011 U | .01 U | .01 U | .011 U | .01 U | .01 U | | 600.000 Endrin | UG/L | .011 U | .011 U | .01 U | Ôi Ú | .079 | .074 | .01 U | | 00 000 Endrin aldehyde | UG/L | .011 U | .011 U | .01 U | 01 U | .011 U | .01 U | .01 U | | 00.000 Endrin ketone | UG/L | .011 U | .011 U | .01 U | 01 Ü | L 800. | .008 J | .01 U | | 00.000 Gamma-BHC/Lindane | UG/L | .006 U | .006 U | .005 U | .005 U | .038 | .035 | .005 U | | 500.000 Gamma-Chlordane | UG/L | .006 U | .006 U | .005 U | 005 U | .005 U | .005 U | .005 U | | 500.000 Heptachlor | UG/L | .006 U | .008 U | .005 U | .005 U | .041 | .038 | .005 U | | 500 000 Heptachlor epoxide | UGAL | .006 Ü | .006 U | .005 U | .005 U | .005 U | 005 U | .005 U | | 500.000 Hexachlorobenzene | UGAL | .011 W | .011 UJ | .01 UJ | 01 W | .069 | 066 | .01 UJ | | 500.000 Methoxychlor | UGAL | .055 U | .055 U | .052 U | 052 U | .054 U | 066
.053 U | .052 U | | 500.000 Toxaphene | UGIL | .55 U | .55 U | .52 U | 52 U | .54 Ü | .53 U | .52 U | | 500 000 Aluminum | UGAL | 27.2 J | 53.9 J | 12.4 U | 184.13 | | 930 | 12.4 U | | 500.000 Antimony | UGAL | 7.9 U | 7.9 U | 7.9 U | 7.9 U | | - | 7.9 U | | 500 000 Arsenic | UG/L | 42U. | 4.2 U | 4.2 U | 42 U | | | 4.2 U | | 100.000 Barlum | UGAL | 42 U .
49 9 J | 32.6 J | 62.5 J | 68 9 1 | | 1 | 48.7 J | | 500.000 Beryllium | UGAL | .16 J | .10 | 110 | 1 U | | 1 | 10 | | 500.000 Cedmium | UG/L | .35 J | .3 U | .3 U | 3 0 | | 1 | 3 0 | | 500.000 Calcium | UG/L | 103,000. | 69,000. | 122,000. | 132,000. | | | 193,000. | | 00.000 Chromium | UG/L | 1.1 U | 1.10 | 1.1 U | 1.110 | 1 - | - | | | 00.000 Cobelt | UGAL | 1.6 U | 1.610 | 1.6 U | 1.6 U | | | 1.1 U
1.6 U | | 300.000 Copper | UGAL | 3.3 U | 3.3 U | 4.6 J | 19 2 J | | | | | 500.000 Cyanide | UG/L | 10. U | 10. U | 10.0 | 10.0 | - | | 3.3 U | | 500.000 Iron | UG/L | 102. | 67. J | 21.2 U | 302. | | | 10. U | | 00.000 Lead | UG/L | 1.8 U | 1.8 U | 1.8 U | 180 | | | 21.2 U | | 00.000 Magnesium | UG/L | 20,200 | 24,600. | 19.200. | 23,000 | | | 1.8 U | |
00.000 Manganese | UGAL | 26.8 | 47.7 | 3.1 J | | | | 32,900. | | 00.000 Mercury | UGAL | .1 U | 91.1 | 3.1 0 | 152 | | | 12.1 J | | 00.000 Nickel | UG/L | 2.1 U | 2.1 U | | | | | .1 U | | 00.000 Potassium | UG/L | 2,160. J | | 2.1 U | 2.1 U | | | 2.1 U | | 00.000 Selenium | UG/L | 2,160. J | 2,220. J | 3,700. J | 2,820 J | | | 3,470. J | | 00.000 Silver | UG/L | | 3.7 U | 3.7 U | 3.7 U | | | 3.7 U | | 00.000 Sever | | 1.6 U | 1.6 U | 1.6 U | 1.6 Ü | | | 1.6 U | | 500.000 Sogium
500.000 Thalium | UG/L | 36,800. | 4,520. J | 15,300. | 22,900 | | | 10,200. | | | UG/L | 4.5 U | 4.5 U | 4.5 U | 4.5 U
2. U | | | 4.5 U | | 800.000 Vanadium | UG/L | 2. U | 2. U | 2. U
3.5 U | 2. U | | | 2. U | | 00.000 Zinc | UG/L | 9.2 J | 7.9 J | 3 5 U | 3 5 U | | | 3.5 U | | j | | STUDY ID. | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | | |-------------|--------------------------------------|------------------|--------------|--------------|--------------|---| | 1 | | SDG: | 80731 | 80731 | 80731 | 1 | | t | | LOC ID: | MW11-6 | M0V11-7 | MW11-5 | | | 1 | | SAMP ID: | 112105 | 112106 | 112107 | | | İ | | FIELD QC CODE: | SA | SA | DU | | | 1 | | SAMP, DEPTH TOP: | 8 | 7.2 | 10 | | | İ | | SAMP, DEPTH BOT: | 8 | 7.2 | 10 | - | | | | MATRIX: | GROUND WATER | GROUND WATER | GROUND WATER | | | | | SAMP. DATE: | 20-Nov-00 | 20-Nov-00 | 21-Nov-00 | 1 | | 1 | | Gram . Gran | 201101 00 | 201100-00 | - 21.100.00 | | | ORT PA | RAMETER | UNIT | VALUE | VALUE | VALUE | a | | | 1,1-Trichloroethane | UG/L | 1. U | | | Ü | | | .2.2-Tetrachioroethane | UG/L | 1. U | 1. | | Ü | | | .2-Trichloroethane | UG/L | 1. U | 1. | | Ü | | 100.000 1.1 | -Dichloroethane | UG/L | 1. U | 1. | | Ü | | 100.000 1,1 | -Dichloroethene | UGAL | 1. U | 1. | | U | | 100.000 1,2 | 2,4-Trichlorobenzene | UG/L | 1. U | 1. | | U | | 100.000 1.2 | 2-Dibromo-3-chloropropane | UG/L | 1. U | 1. | | Ü | | | 2-Dibromoethane | UG/L | 1, U | 1. | | | | | 2-Dichlorobenzene | UGAL | 1. U | 1. | U 1. | Ū | | | 2-Dichloroethane | UG/L | 1. U | - 1. | U 1. | U | | | 2-Dichloropropane | UG/L | 1. Ü | 1. | Ü 1. | Ü | | | 3-Dichlorobenzene | UGAL | 1. U | 1. | | Ü | | 100 000 1,4 | 1-Dichlorobenzene | UGIL | 1. U | 1. | | U | | | etone | UGIL | 5 U | . 5. | U 5. | U | | | enzene | UG/L | 1. U | 1. | | U | | | omochloromethene | UG/L | 1. 0 | 1. | Ü | U | | | omodichloromethane | UGIL | 1. U | 1. | U 1. | Ü | | 100.000 Bri | omoform | UG/L | 1. U | 1. | | U | | | erbon disulfide | UGAL | 1. U | 1. | | U | | | erbon tetrachloride | UG/L | 1. U | | | U | | | nlorobenzene | UGAL | 1. U | | U 1. | U | | | niorodibromomethane
nioroethane | UGA. | 1.0 | | U I. | U | | | nioroemane | | 1.0 | | U 1 | U | | | s-1,2-Dichloroethene | UG/L
UG/L | 1. U | | Ü i. | U | | | | UGAL | 1. U | | U 1. | u | | | s-1,3-Dichloropropene | UG/L | 1. U | | U 1. | U | | | hyl benzene | UGAL | 1. U | | U t. | U | | | ethyl bromide | UG/L | 1. U | | U 1. | U | | | ethyl butyl ketone | UG/L | 5. U | | U 5. | U | | | ethyl chloride
ethyl ethyl ketone | UGAL | 1. U | | Ü . | U | | | ethyl isobutył ketone | UG/L | 5. U | | | U | | | ethylene chloride | UG/L | 2. U | | | U | | | yrene | UG/L | 1. U | | | U | | | trachioroethene | UG/L | 2. | .4 | | U | | 100.000 To | | UG/L | 1. U | 1. | | - | | | otal Xylenes | UGAL | 1. U | | U 1. | U | | | ans-1,2-Dichloroethene | UGAL | 1. U | | | | | | ans-1,3-Dichloropropene | UGAL | 1. U | | U 1. | U | | | ichloroethene | UGA | 2. | 1. | | u | | | nyl chloride | UGAL | 1. U | 1. | | U | | | 3,5-Trinitrobenzene | UGAL | 25 U | | | | | | 3-Dinitrobenzene | UG/L | .25 U | .25 | | | | | 4,6-Trinitrotoluene | UG/L | 25 U | | U .25 | | | | 4-Dinkrotoluene | UG/L | .25 U | | U 25 | | | | 5-Dinitrotoluene | UG/L | 25 U | | U 25 | Ü | | | Nitrotoluene | UG/L | .25 U | | U 25 | Ü | | 300.000 2-4 | emino-4,6-Dinitrotoluene | UG/L | .25 U | | U 25 | Ů | | 300.000 3-1 | Nitrataluene | UG/L | .25 U | | U 25 | U | | | Nitrotoluene | UG/L | .25 U | .25 | U 25 | U | | | amino-2,6-Dinitrotoluene | UG/L | .25 U | | U .25 | U | | | MX | UG/L | .25 U | | U .25 | U | | | trobenzene | UG/L | .25 U | | U 25 | U | | | DX | UG/L | .25 U | | U 25 | U | | | riryi | UGAL | .25 U | | U .25 | u | | | 2,4-Trichlorobenzene | UG/L | 1. U | | U 1. | U | | | 2-Dichlorobenzene | UG/L | 1. U | | U 1. | U | | | 3-Dichlorobenzene | UG/L | 1. U | | U 1. | U | | | 4-Dichlorobenzene | UG/L | 1. U | | | u | | | 4,5-Trichlorophenol | UG/L | 2.6 U | | U .073 | | | | 4,6-Trichlorophenol | UG/L | 1. U | 1. | | | | 400 000 2.4 | 4-Dichlorophenol | UGAL | 1. U | 1. | U 1. | R | | | | STUDY ID. | SEAD-11 EECA
80731 | - | SEAD-11 EECA
80731 | | SEAD-11 EECA
80731 | | |---------|--|------------------|-----------------------|-----|-----------------------|-------|-----------------------|-----| | | | FOC ID- | MW11-6 | | MW11-7 | | MW11-5 | | | | | SAMP_ID: | 112105 | | 112106 | | 112107 | | | | | FIELD QC CODE: | SA | | SA | | DU | | | | | SAMP. DEPTH TOP: | 8 | | 7.2 | | 10 | | | | | SAMP. DEPTH BOT: | | - | 7.2 | | 10 | - | | | | MATRIX: | GROUND WATER | | GROUND WATER | | GROUND WATER | 1 | | | | SAMP. DATE: | 20-Nov-00 | | 20-Nov-00 | - | 21-Nov-00 | | | | | | . 82 1021 | | | | | | | ORT | PARAMETER | UNIT | VALUE | Q | VALUE | Q | VALUE | à - | | 400.000 | 2,4-Dimethylphenol | UGAL | 1. | Ū | 1. | U | 1. | R | | 400 000 | 2,4-Dinitrophenol | UGAL | 28 | u) | 2.6 | UJ | | R | | | 2,4-Dinitrotoluene | UGAL | 1. | U | 1 | U | 1 | Ü | | 400.000 | 2,6-Dinitrotoluene | UGAL | 1. | Ü | 1. | U | 1. | Ü | | | 2-Chloronaphthalene | UGAL | i. | U | 1. | U | | Ü | | | 2-Chlorophenol | UGAL | - 1 | Ü | 1. | Ü | | R | | | 2-Methylnaphthalene | UGAL | 1. | | 1. | Ü | | u | | | | UGAL | | | | | | | | 400.000 | 2-Methylphenol
2-Nitroaniline | UGAL | | U | | U | | R | | 400.000 | 2-Nitrophenol | UG/L | 2.6 | | 2.6 | | 2.6 | | | 400.000 | 2 - THE OPTION | | | U | 1. | U | | R | | | 3,3'-Dichlorobenzidine | UG/L | | Ú | 1. | Ü | | บ | | 400 000 | 3-Nitroaniline | UGA. | | U | 2.6 | | 2.6 | | | 400.000 | 4,6-Dinitro-2-methylphenol | UG/L. | 2.6 | m | 2.6 | UJ | 2.6 | | | | 4-Bromophenyl phenyl ether | UG/L | 1. | | 1. | U | | U | | | 4-Chloro-3-methylphenol | UG/L | 1. | U | 1. | U | 1. | R | | | 4-Chloroaniline | UG/L | 1. | Ü | 1. | U | 1. | U | | 400.000 | 4-Chlorophenyl phenyl ether | UG/L | 1. | U | - i. | Ū | 1. | Ü | | 400 000 | 4-Methylphenol | UG/L | 1. | U | 1. | Ū - | 1. | R | | 400,000 | 4-Nitroaniline | UG/L | 2.6 | Ū | 2.6 | | 2.6 | | | 400 000 | 4-Nitrophenol | UGAL | 26 | Ü | 2.6 | | 2.6 | R | | 400 000 | Acenaphthene | UGAL | 1. | Ü | 1. | Ū | | U | | 400 000 | Acenaphthylene | UGA. | 1. | Ü | 1 | U | 1 | Ü | | 400 000 | Antivacens | UGA. | 1. | U | 1. | U | | Ü | | 400.000 | | UGA | - i. | U - | 1. | U | 1. | U | | | | UGA | 1. | Ū: | - 1 | Ü | | Ü | | 400 000 | Benzo(a)pyrene
Benzo(b)fluorenthene | UGAL | 1. | Ü | 1. | U | | | | 400 000 | Benzo(ghi)perylene | UGAL | 1. | Ü | | U | 1 | U | | 400.000 | Benzo(k)fluoranthene | UG/L | | | 1. | | | U | | 400.000 | Bis(2-Chloroethoxy)methane | | 1. | U | 1. | U | | Ü | | 400.000 | Bie(2-Chioroemoxy)memane | UG/L | 1. | U | 1. | U | 1. | ū | | 400.000 | Bis(2-Chloroethyl)ether | UG/L | 1. | U | 1. | U | 1. | ū | | 400.000 | Bis(2-Chloroisopropyl)ether | UG/L | 1. | U | 1. | U | 1. | Ü | | 400.000 | Bis(2-Ethythexyl)phthalate | UG/L | | U | 1. | U | 1. | Ü | | 400.000 | Butylbenzylphthalate | UG/L | 1. | U | .16 | J | 1. | U | | | Carbazole | UG/L | 1. | U | 1. | U | 1. | U | | | Chrysene | UG/L | 1. | | 1. | U | | U | | 400.000 | | UG/L | 1. | U | 1. | U | 1. | ū | | | Di-n-octylphthalate | UG/L | 1. | U | 1. | U | 1. | U | | | Dibenz(a,h)anthracene | UG/L | | U | 1. | U | | U | | 400.000 | | UGAL | 1. | U | 1 | III - | 1. | | | 400.000 | | UG/L | 1. | U | 1. | Ū | | U | | 400.000 | | UG/L | | Ü | .36 | 3 | 33 | | | 400 000 | | UG/L | 1. | | | U | 1. | | | 400.000 | | UG/L | | U | | U | | U | | 400.000 | | UG/L | | U | | U | | U | | 400.000 | | UGAL | | U | | Ū | 1 | Ü | | 400.000 | Hexachlorocyclopentacione | UG/L | | U | 1. | | 1 | U | | 400.000 | | UG/L | | U | 1. | | | Ü | | 400.000 | | UGAL | | U | | Ü | | U | | 400.000 | | UG/L | | U | | U | | Ü | | 400.000 | | UG/L | | U | | U | | Ü | | 400.000 | | UG/L | | U | 1. | | 1. | - | | 400.000 | | UG/L | | | | | | U | | 400.000 | | | | U | 1. | | | U | | | | UG/L | 1 | | | U | | U | | 400.000 | | UG/L | 2.6 | | 2.6 | | 26 | | | 400.000 | | UG/L | 1. | U | 1. | Ü | | U | | | Phenol | UG/L | 1. | U | 1. | U | 1. | R | | | Pyrene | UG/L | .082 | | 1. | U | 1. | U | | | 4.4'-DDD | UG/L | .01 | U | .01 | U | | U | | | 4,4'-DDE | UG/L | .01 | U | .01 | U | .011 | U | | | 4,4'-DDT | UG/L | .006 | J | .01 | U | .011 | | | 500.000 | | UGAL | .005 | | .005 | ū | .005 | | | | Alpha-BHC | UG/L | .005 | | .005 | | .005 | | | | 1 | STUDY ID: | SEAD-11 EECA | 1 | SEAD-11 EECA | Ī | SEAD-11 EECA | 1 | |---------|-------------------|------------------|--------------|-----|--------------|-----|--------------|-------| | | + | SDG: | 80731 | - | 60731 | | 80731 | 1 | | | 1 | LOC ID: | MW11-6 | - | MW11-7 | | | - | | | | SAMP ID: | 112105 | - | | | MW11-5 | 1 | | | | | | | 112106 | | 112107 | | | | | FIELD QC CODE: | 8A | | SA. | | DU | | | | | SAMP. DEPTH TOP: | | | 7.2 | | 10 | | | | | SAMP. DEPTH BOT: | 8 | | 7.2 | | 10 | | | | | MATRIX: | GROUND WATER | | GROUND WATER | | GROUND WATER | | | | | SAMP. DATE: | 20-Nov-00 | | 20-Nov-00 | | 21-Nov-00 | İ | | | | | | 1 | 1 | - | 1 | t | | ORT | PARAMETER | UNIT | VALUE | Q | VALUE | Q | VALUE | 0 | | 500.000 | Alpha-Chlordane | UG/L | .005 | U | .005 | U | .005 | | | 500.000 | Aroclor-1016 | UGAL | .1 | U | .1 | Ū | .11 | | | 500,000 | Aroclor-1221 | UG/L | .21 | U | .21 | U | | U | | | Arodor-1232 | UG/L | | U | | Ü | .11 | | | 500,000 | Aroclor-1242 | UG/L | | Ü . | | - | | | | | Aroclor-1248 | UGAL | | Ü | | Ü | | | | | Araclor-1254 | UG/L | | | | U | | | | | Arodor-1260 | | | | 1 | U | .11 | | | | | UG/L | - 1 | | .1 | ū | .11 | | | |
Seta-BHC | UG/L | .005 | | .005 | U | .005 | | | 500.000 | Delta-BHC | UG/L | .005 | | .005 | U | | U | | 500.000 | Dieldrin | UG/L | .01 | U | .01 | U | .011 | U | | | Endosulfan I | UG/L | .005 | U | .005 | U | .005 | U | | 500.000 | Endosulfan II | UG/L | .01 | U | .01 | U | .011 | | | 500.000 | | UG/L | .01 | U. | .01 | Ū | .011 | | | 500.000 | Endrin | UG/L | .01 | U | .01 | U | .011 | | | 500.000 | Endrin aldehyde | UGAL | .01 | U | .01 | u | .011 | | | 500,000 | Endrin ketone | UG/L | .01 | U | .01 | U | .011 | | | 500,000 | Gamma-BHC/Lindana | UGAL | .005 | | .005 | Ü | | Ü. | | 500,000 | | UG/L | .005 | Ü | .005 | ŭ - | .005 | ü- | | 500.000 | | UGAL | .005 | Ü | | 777 | | | | 500.000 | | UGAL | | Ü | .005 | U | | U | | 500.000 | | UGAL | .005 | | .005 | Ü | .005 | | | 500.000 | | UGAL | .01 | W | .01 | ni | .011 | | | 500.000 | | | .052 | U | .052 | U | .054 | U | | | | UG/L | .52 | | .52 | U | | U | | 600.000 | Aluminum | UG/L | 51.4 | J | 147. | J | 107. | J | | 600.000 | | UG/L | 7.9 | | 8. | J | 7.9 | U | | 600.000 | | UGAL | 4.2 | | 4.2 | U | 4.2 | U | | 600.000 | | UG/L | 48.9 | J | 55.2 | J | 68.4 | J | | 600.000 | | UGAL | .1 | U | .27 | J | | Ų | | 600.000 | | UG/L | | U | .3 | U | .3 | Ü | | 600.000 | | UG/L | 184,000 | | 236,000. | | 133,000. | | | 600.000 | | UG/L | 1.1 | U | 1.1 | U | 1.1 | U | | 600.000 | Cobalt | UG/L | 1.6 | | 1.8 | J | | U | | 600.000 | | UG/L | 3.3 | U | 3.3 | U | 3.3 | U | | 600.000 | | UG/L | 10. | U | 10. | U | 10. | | | 600.000 | | UG/L | 59.7 | J | 223. | | 196. | - | | 600.000 | Lead | UG/L | 1.8 | U | 1.8 | u | 1.8 | III - | | 600.000 | Magnesium | UG/L | 32,200 | 1 | 41,000. | - | 23,200 | - | | 600.000 | Manganese | UG/L | 13.8 | J | 772. | | 150. | | | 600.000 | Mercury | UG/L | .1 | | .1 | 11 | | | | 600.000 | | UG/L | 2.1 | u . | 2.5 | - | | U | | 600,000 | Potassium | UG/L | | 9 | | 3 | | U | | 600,000 | Selenium | UG/L | 6,750 | | 4,160. | J | 2,790. | 3 | | 600.000 | | | 3.7 | | 3.7 | U | | U | | | Silver | UG/L | 1.6 | U | 1.6 | U | 1.6 | U | | 600.000 | | UG/L | 12,800. | | 16,500. | | 24,200. | | | | Thallium | UG/L | 4.5 | | 4.5 | | 4.5 | U | | | Vanedium | UG/L | 2. | U | 2. | U | 2. | Ü | | 600.000 | Zinc | UG/L | 3.5 | U | 3.5 | U | 3.5 | 11 | | | | STUDY ID:
SDG: | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | |---------|------------------------------|-------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | | LOC ID: | MW11-1 | MW11-2 | MW11-3 | MW11-4 | MW11-5 | | | | SAMP_ID: | 112200 | 112201 | 112202 | 112203 | 112204 | | | | FIELD QC CODE: | SA | SA | SA | SA | SA SA | | | | SAMP. DEPTH TOP: | 13 | 10 | 9 | 11 | 10 | | | - | SAMP. DEPTH BOT: | 13 | 10 | 9 - | 11 | 10 | | | | MATRIX: | GROUNDWATER | GROUNDWATER | GROUNDWATER | GROUNDWATER | GROUNDWATER | | | | SAMP. DATE: | - 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | | ORT | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUEQ | VALUE Q | | 100,000 | 1,1,1,2-Tetrachloroethane | UG/L | .5 U | .5 U | 50 | .5 U | | | | 1,1,1-Trichloroethane | UG/L | .5 U | .5 Ü | 50 | .5 U | .5 U | | | 1,1,2,2-Tetrachloroethane | UG/L | .5 U | .5 U | 5 0 | 50 | .5 U | | | 1,1,2-Trichloroethane | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | 1,1-Dichloroethane | UG/L | .5 U | .5 U | | | | | | 1,1-Dichloroethene | UG/L | | .5 U | .5 U | .5 U | .5 U | | | 1,1-Dichloropropene | UG/L | .5 U | .5 U | | | 5 U | | | 1,2,3-Trichlorobenzene | UG/L | .5 U | .5 U | .5 Ū | 5 0 | .50 | | | 1,2,3-Trichloropropane | UG/L | .5 U | - 5 U | - U - | .5 U | .5 U | | | 1,2,4-Trichlorobenzene | UG/L | .5 Ü | .5 0 | 5 U | .5 U | .5 U | | | 1,2,4-Trimethylbenzene | UG/L | .5 U | .5 U | 5 Ü
.5 Ü | .5 U | .5 U | | | 1,2-Dibromo-3-chloropropane | UG/L | .5 U | .5 Ū | 510 | .5 U | 5 U | | | 1,2-Dibromoethane | UG/L | .5 U | .510 | 5 Ü | .5 U | .5 U | | | 1,2-Dichlorobenzene | UG/L | .5 U | .5 U | 50 | 50 | .5 U | | 100.000 | 1,2-Dichloroethane | UG/L | .5 U | .5 Ü | _ 5 U | .5 U | .50 | | | 1,2-Dichloropropane | UG/L | 5 U | .5 U | 5 0 | 5 0 | .5 U
.5 U | | | 1,3,5-Trimethylbenzene | UG/L | .5 U | .5 U | 5 U | .5 U | .5 U | | | 1,3-Dichlorobenzene | UG/L | .5 U | .5 U | 511 | .5 U | .5 U | | | 1,3-Dichloropropane | UG/L | .5 U | 5 U | .5 Ū
.5 Ū | .5 U | .5 U | | | 1,4-Dichlorobenzene | UG/L | .5 U | .5 U | 511 | .5 U | .5 U | | | 2,2-Dichloropropane | UG/L | .5 U | .5 U | 5 11 | .5 U | .5 U | | | 2-Chlorotoluene | UG/L | .5 Ü | .5 U | .5 U | .5 U | .5 U | | | 2-Nitropropane | UG/L | 25. U | 25. U | 25. U | 25 U | 25. U | | 100.000 | | UG/L | . 5. U | 5. U | 5. U | 5. U | 5. U | | | Acrylonitrile | UG/L | .5 U | .5 U | .5 U | 50 | .5 U | | | Allyl chloride | UG/L | 5 U | .5 U | .5 U | .5 U | .5 U | | | Benzene | UG/L | .5 U | .5 U | 5 U | .5 U | .5 U | | | Bromobenzene | UG/L | .5 U | .5 U | 5 U | .5 U | .5 U | | | Bromochloromethane | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Bromodichloromethane | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Bromoform | UG/L | .5 U | .5 U | 50 | .5 U | .5 U | | | Butyl chloride | UG/L | .5 U | 5 U | .5 U | | .5 U | | | Carbon disulfide | UG/L | .5 U | .5 U | 5 Ü | .5 U | .5 U | | | Carbon tetrachloride | UG/L | .5 U | .5 U | | .5 U | .5 U | | | Chloracetonitrile | UG/L | 25. U | 25. U | 25. U | 25. U | 25. U | | | Chlorobenzene | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Chlorodibromomethane | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Chloroethane | UG/L | .5 U | .5 U | 5 U | .5 U | .5 U | | | Chloroform | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Cis-1,2-Dichloroethene | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Cis-1,3-Dichloropropene | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Dichlorodifluoromethane | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Dichloromethyl methyl ketone | UG/L | 25. UR | 25. UR | 25. UR | 25. UR | 25. UR | | | Ethyl benzene | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Ethyl ether | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | Ethyl methacrylate | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | 100.000 | Hexachlorobutadiene | UG/L | .5 U | .5 U | .5 U | .5 U | .5 U | | | | STUDY ID: | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | | SEAD-11 EECA | SEAD-11 EECA | |------------|----------------------------|------------------|--------------|--------------|--------------|--------------|---------------------------------------|--------------| | | | SDG: | 81925 | 81925 | 81925 | | 81925 | 81925 | | | | LOC ID: | MW11-1 | MW11-2 | MW11-3 | | MW11-4 | MW11-5 | | | | SAMP_ID: | 112200 | 112201 | 112202 | * *** | 112203 | 112204 | | | | FIELD QC CODE: | SA | SA | SA | | SA | SA | | | | SAMP. DEPTH TOP: | 13 | 10 | 9 | | 11 | 10 | | | | SAMP. DEPTH BOT: | 13 | 10 | 9 | ~ | 11 | 10 | | | | MATRIX: | GROUNDWATER | GROUNDWATER | GROUNDWATER | or married | GROUNDWATER | GROUNDWATER | | | | SAMP DATE: | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | | 27-Feb-01 | 27-Feb-01 | | | | | | | | | == == == == == == == == == == == == = | 27.00-01 | | | ARAMETER | UNIT | VALUE Q | VALUE Q | VALUE | Q | VALUEQ | VALUE | | | lexachloroethane | UG/L | .5 U | .5 U | 5 | Ü - | .5 U | .5 U | | | opropylbenzene | UG/L | .5 U | .5 U | .5 | U | .5 0 | 5 0 | | | feta/Para Xylene | UG/L | .5 U | .5 U | .5 | U | .5 0 | .5 U | | | lethacrylonitrile | UG/L | .5 U | .5 U | 5 | U | .5 U | .5 U | | | lethyl 2-propenoate | UG/L | .5 UJ | .5 UJ | .5 | ÚJ | .5 ÜJ | .5 Ū | | | lethyl Tertbutyl Ether | UG/L | .5 U | .5 U | .5 | | .5 U | .5 U | | | lethyl bromide | UG/L | .5 U | .5 U | .5 | U | " .5 Ū | .5 U | | | lethyl butyl ketone | UG/L | 2.5 U | 2.5 U | 2.5 | Ū | 2.5 U | 2.5 U | | | fethyl chloride | UG/L | .5 U | 5 U | .5 | U | .5 U | .5 U | | | fethyl ethyl ketone | UG/L | 5. U | 5. U | 5. | Ü | 5. U | 5. U | | | fethyl iodide | UG/L | .5 U | 5 Ú | 5 | Ū | 5 U | .5 U | | 100.000 M | fethyl isobutyl ketone | UG/L | 2.5 UJ | 2.5 UJ | 2.5 | | 2.5 UJ | 2.5 U | | | Nethyl methacrylate | UG/L | .5 U | .5 U | -5 | | .5 U | .5 U | | 100.000 M | Methylene bromide | UG/L | .5 U | .5 U | 5 | | .5 U | .5 U | | | fethylene chloride | UG/L | .5 U | .5 U | .5 | | 5 U | .5 U | | | laphthalene | UG/L | .5 U | .5 U | .5 | | 5 0 | .5 U | | 100.000 N | litrobenzene | UG/L | 25. UR | 25. UR | 25. | | 25. UR | 25. U | | 100.000 O | Ortho Xylene | UG/L | .5 U | .5 U | .5 | | .5 U | | | | entachloroethane | UG/L | .5 U | .5 Ū | 5 | * descrip | .50 | .5 U | | | ropionitrile | UG/L | 25. U | 25. U | | Ū- — | 25 U | 25. U | | | ropylbenzene | UG/L | | .5 U | 5 | | .5 U | .5 U | | 100.000 S | | UG/L | .5 U | .5 U | .5 | | .5 Ü | .5 U | | 100.000 To | etrachloroethene | UG/L | .5 U | .5 U | 5 | | .5 U | .5 U | | 100.000 T | etrahydrofuran | UG/L | 2.5 U | 2.5 U | 2.5 | | 2.5 U | 2.5 U | | 100.000 To | | UG/L | .5 U | .5 U | .5 | | .5 Ü | .5 U | | | otal Xylenes | UG/L | .5 U | .s u | .5 | ii - | .5 U | .5 U | | | rans-1,2-Dichloroethene | UG/L | .5 U | .5 U | .5 | <u> </u> | .5 U | .5 U | | 100.000 Tr | rans-1,3-Dichloropropene | UG/L | .5 U | .5 U | .5 | | 5 U | | | 100.000 Te | rans-1,4-Dichloro-2-butene | UG/L | .5 U | .5 U | 5 | Ū | .5 U | .5 U | | 100.000 To | richloroethene | UG/L | .5 U | .5 U | .5 | - | .64 | .5 U | | | richlorofluoromethane | UG/L | .5 U | .5 U | 5 | t I | .5 U | .5 U | | | /inyl chloride | UG/L | .5 U | .5 U | .5 | Ū | .5 U | .5 U | | | -Butylbenzene | UG/L | .5 U | .5 U | .5 | Ū | .5 0 | .5 U | | | -Chlorotoluene | UG/L | .5 U | .5 U | .5 | Ü | .5 U | .5 U | | | -isopropyltoluene | UG/L | .5 U | .5 U | .5 | Ü | .5 U | .5 U | | | ec-Butylbenzene | UG/L | .5 U | .6 U | .5 | | .5 U | .5 U | | | ert-Butylbenzene | UG/L | .5 U | .5 U | .5 | | .5 U | .5 U | | | ,3,5-Trinitrobenzene | UG/L | .25 U | .25 U | .25 | | .25 U | .3 U | | | ,3-Dinitrobenzene | UG/L | .25 U | .25 U | .25 | Ú | .25 U | .25 U | | | ,4,6-Trinitrotoluene | UG/L | .25 U | .25 U | 25 | | .25 U | .25 U | | | ,4-Dinitrotoluene | UG/L | .25 U |
.25 U | .25 | | .25 U | | | | ,6-Dinitrotoluene | UG/L | .25 U | .25 U | 25 | ĭi | .25 U | .25 U | | 300.000 2- | -Nitrotoluene | UG/L | .25 U | .25 U | .25 | | .25 U | .25 U | | | -amino-4,6-Dinitrotoluene | UG/L | .25 U | .25 U | .25 | | .25 U | .25 U | | | -Nitrotoluene | UG/L | .25 U | .25 U | .25 | | .25 U | .25 U | | | -Nitrotoluene | UG/L | .25 U | .25 U | .25 | | | .25 U | | | -amino-2.6-Dinitrotoluene | UG/L | .25 U | .25 U | .25 | | .25 U
.25 U | .25 U | | | | STUDY ID: | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | SEAD-11 EECA 81925 | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | |------------|------------------------------|------------------|--|-----------------------|--------------------|-----------------------|-----------------------| | 1 - | | LOC ID: | MW11-1 | MW11-2 | MW11-3 | MW11-4 | MW11-5 | | - | | SAMP ID: | 112200 | 112201 | 112202 | 112203 | 112204 | | | | FIELD QC CODE: | SA | SA | SA | SA SA | \$A | | | | SAMP. DEPTH TOP: | 13 | 10 | - 50 | 11 | 10 | | | | SAMP. DEPTH BOT: | 13 | 10 | | 11 | 10 | | 1 | | MATRIX: | GROUNDWATER | GROUNDWATER | GROUNDWATER | GROUNDWATER | GROUNDWATER | | | | SAMP. DATE: | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | | | | | William William I and Market M | | | | 27.000 | | | ARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE Q | VALUE | | 300.000 HI | | UG/L | .25 U | .25 U | .25 U | .25 U | .25 U | | | trobenzene | UG/L | .25 U | .25 U | .25 U | .25 U | .25 U | | 300.000 RI | | UG/L | .25 U | .25 U | .25 U | .25 U | .25 U | | 300.000 Te | | UG/L | .25 U | .25 U | .25 U | .25 U | .25 U | | | 2,4-Trichlorobenzene | UG/L | 1.1 U | 1. U | 1 U | 1. U | 1. U | | | 2-Dichlorobenzene | UG/L | 1.1 U | 1. U | 1. Ü | 1 0 | 1.0 | | | 3-Dichlorobenzene | UG/L | 1.10 | 1. U | 1. U | 1. U | 1. U | | | 4-Dichlorobenzene | UG/L | 1.1 0 | 1. U | 1. 0 | 1. U | 1.10 | | | 4,5-Trichlorophenol | UG/L | 2.6 U | 2.5 U | 2.6 U | 2.5 U | 2.6 U | | | 4,6-Trichlorophenol | UG/L | 1.1 U | 1. U | 1.0 | 1. U | 1. U | | | 4-Dichlorophenol | UG/L | 1.1 U | 1. U | 1.10 | 1. Ü | 1.0 | | 400.000 2, | 4-Dimethylphenol | UG/L | 1.1 0 | 1.0 | 1 U | 1.10 | 1.0 | | 400.000 2, | 4-Dinitrophenol | UG/L | 2.6 UJ | 2.5 UJ | 2.6 UJ | 2.5 UJ | 2.6 U | | 400.000 2. | 4-Dinitrotoluene | UG/L | 1.1 Ü | 1.0 | 1. U | 1 11 | 1. U | | 400.000 2 | 6-Dinitrotoluene | UG/L | 1.1 U | 1. Ü | i lü — | 1 111 | 1.0 | | | Chloronaphthalene | UG/L | 1.1 UJ | 1. UJ | 1. UJ | 1. UJ | | | | Chlorophenol | UG/L | 1.1 U | 1. U | 1.03 | 1.03 | 1.00 | | | Methylnaphthalene | UG/L | 1.1 0 | - 1.0 | 1. U | 1.10 | _ 1.U | | | Methylphenol | UG/L | 1.1 U | 1.0 | 1.0 | 1. U | 1. U | | | Nitroaniline | UG/L | 2.6 U | 2.5 U | | | 1. 0 | | | Nitrophenol | UG/L | 1.10 | 1.0 | 26 U | 2.5 U | 2.6 U | | | 3'-Dichlorobenzidine | UG/L | 1.10 | 1.0 | 1. U | 1.0 | 1. U | | | Nitroaniline | UG/L | 2.6 UJ | 2.5 UJ | | 1.0 | 1. U | | 400,000 4 | 6-Dinitro-2-methylphenol | UG/L | 2.6 UJ | 2.5 UJ | 2.6 UJ | 2.5 UJ | 2.6 U | | 400,000 4 | Bromophenyl phenyl ether | UG/L | 1.1 U | 1. U | 2.6 UJ | 2.5 UJ | 2.6 U | | 400,000 4 | Chloro-3-methylphenol | UG/L | 1.1 U | | 1.0 | 1. U | 1. U | | | Chloroaniline | UG/L | | 1. U | 1.0 | 1. U | 1. U | | | Chlorophenyl phenyl ether | UG/L | 1.1 U | 1. U | 1. U | 1. U | 1. U | | 400.000 4 | Methylphenol | UG/L
UG/L | 1.1 U | 1. U | 1. U | 1. U | 1. U | | | Metnyiphenoi
Nitroaniline | | 1.1 U | 1. U | 1. U | 1. U | 1. U | | | Nitrophenol | UG/L | 2.6 UJ | 2.5 UJ | 2 6 UJ | 2.5 UJ | 2.6 U | | | | UG/L | 2.6 UJ | 2.5 UJ | 2.6 UJ | 2.5 UJ | 2.6 U | | | cenaphthene | UG/L | 1.1 U | 1. U | 1. U | 1. U | 1. U | | | cenaphthylene | UG/L | 1.1 U | 1. U | 1. Ü | 1. U | 1. U | | 400.000 Ar | | UG/L | 1,1 U | 1. U | 1. U | 1. 0 | 1. U | | 400.000 Be | enzo(a)anthracene | UG/L | 1.1 U | 1. U | 1. Ü | 1.0 | 1. U | | 400.000 B | enzo(a)pyrene | UG/L | 1.1 U | 1. U | 1. U | 1.0 | 1.10 | | 400.000 Be | enzo(b)fluoranthene | UG/L | 1.1 U | 1. U | 1. U | 1. Ü | 1. U | | 400.000 Be | enzo(ghi)perylene | UG/L | 1.1 U | 1. U | 1. U | 1. U | 1. U | | | enzo(k)fluoranthene | UG/L | 1.1 U | 1. U | 1. Ü | 1. U | 1. U | | 400.000 Bi | s(2-Chloroethoxy)methane | UG/L | 1.1 U | 1. U | 1. U | 1. U | 1. U | | 400.000 Bi | s(2-Chloroethyl)ether | UG/L | 1.1 U | 1. U | 1.0 | | 1. U | | 400.000 Bi | s(2-Chloroisopropyl)ether | UG/L | 1.1 U | 1. U | 1.0 | 1. U
1. U | | | | s(2-Ethylhexyl)phthalate | UG/L | 1. U | 1.1 U | 1.0 | 1.10 | 1. U | | | utylbenzylphthalate | UG/L | 1.1 U | 1.0 | 1. U | 1.0 | | | 400.000 C | | UG/L | 1.1 U | 1. U | 1.0 | 1.0 | 1. U | | 400.000 C | | UG/L | 1.1 U | 1. U | 1.10 | | 1. U | | | i-n-butylphthalate | UG/L | 1.1 U | 1.0 | 1.0 | 1. U | 1. U | | | | STUDY ID: | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | |---------|---|------------------|--------------|--------------|--------------|--------------|--------------| | 1 | | SDG: | 81925 | 81925 | 81925 | 81925 | 81925 | | | * unique to a a a a a a a a a a a a a a a a a a | LOC ID: | MW11-1 | MW11-2 | MW11-3 | MW11-4 | MW11-5 | | - 1 | | SAMP_ID: | 112200 | 112201 | 112202 | 112203 | 112204 | | | - | FIELD QC CODE: | SA | SA | SA | SA | SA | | | | SAMP DEPTH TOP: | 13 | 10 | 9 | 11 | 10 | | | | SAMP. DEPTH BOT: | 13 | 10 | 9 | 11 | 10 | | | | MATRIX: | GROUNDWATER | GROUNDWATER | GROUNDWATER | GROUNDWATER | GROUNDWATER | | | | SAMP. DATE: | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | | ORT | PARAMETER | UNIT | VALUEQ | VALUE Q | VALUE | VALUE Q | | | | Di-n-octylphthalate | UG/L | 1.1 U | .072 J | VALUE Q | 1.U | VALUE Q | | | Dibenz(a,h)anthracene | UG/L | 1.1 U | 1. U | 1.0 | 1. U | 1. 0 | | | Dibenzofuran | UG/L | 1.1 U | 1.0 | 1. U | 1.0 | 1. U | | | Diethyl phthalate | UG/L | 1.1 U | 1.0 | 1. U | 1. U | 1. U | | | Dimethylphthalate | UG/L | 1.1 U | 1. U | 1.10 | 1. 0 | 1. Ü | | | Fluoranthene | UG/L | 1.1 U | 1. U | 1.0 | 1. 0 | 1. U | | 400.000 | | UG/L | 1.1 U | 1.0 | 10 | 1. U | 1.0 | | | Hexachlorobenzene | UG/L | 1.1 U | 1.0 | 1 10 | 1.0 | | | | Hexachlorobutadiene | UG/L | 1.1 0 | 1.00 | 1 100 | - 1. UJ | 1. 0 | | | Hexachlorocyclopentadiene | UG/L | 1. UJ | 1.1 UJ | 1. 03 | 1.1 UJ | 1. 0. | | 400.000 | Hexachloroethane | UG/L | 1.1 U | 1. U | 1.03 | 1.103 | 1. U | | | Indeno(1,2,3-cd)pyrene | UG/L | 1.1 U | 1.0 | 1.0 | 1.0 | 1.0 | | | Isophorone | UG/L | 1.1 U | 1.0 | 1.10 | 1. Ü | 1. U | | 400.000 | N-Nitrosodiphenylamine | UG/L | 1.1 U | 1. U | 1.0 | 1. U | 1.0 | | 400.000 | N-Nitrosodipropylamine | UG/L | 1.1 U | 1. 0 | 1.0 | 1. U | 1. U | | 400.000 | Naphthalene | UG/L | 1.1 U | 1. U | 1 0 | 1.0 | 1. U | | | Nitrobenzene | UG/L | 1.1 U | 1. U | 10 | 1.0 | 1. U | | | Pentachlorophenol | UG/L | 2.6 UJ | 2.5 UJ | 2.6 UJ | 2.5 UJ | | | | Phenanthrene | UG/L | 1.1 U | 1. U | 1. U | 1. U | 2.6 U. | | 400.000 | | UG/L | 1.1 U | 1. U | 1 - 1 0 | 1. U | 1. U | | 400.000 | | UG/L | 1.1 U | 1. U | 1 1 0 - | 1. 0 | 1. U | | 500.000 | | UG/L | .11 0 | 11 0 | .11 U | .11 U | 1.0 | | 500.000 | 4,4'-DDE | UG/L | .11 U | .110 | .11 U | .11 U | .1 U | | 500.000 | | UG/L | .11 U | .11 U | 11 0 | .11 U | .10 | | 500.000 | | UG/L | .056 U | .054 U | .057 U | .057 U | .05 U | | | Alpha-BHC | UG/L | .056 U | .054 U | .057 U | .057 U | .05 U | | | Alpha-Chlordane | UG/L | .056 U | .054 U | 057 U | .057 U | .05 U | | | Aroclor-1016 | UG/L | 1.1 U | 1.1 U | 1.1 U | 1.1 U | 1. U | | | Aroclor-1221 | UG/L | 2.2 U | 2.2 U | 2.3 U | 2.3 U | 2. U | | | Aroclor-1232 | UG/L | 1.1 U | 1.1 U | 1.1 U | 1.1 U | 1. U | | | Aroclor-1242 | UG/L | 1.1 U | 1.1 U | 1.10 | 1.10 | 1. U | | | Aroclor-1248 | UG/L | 1.1 U | 1.1 U | 1.1 Ü | 1.1 0 | 1. U | | | Aroclor-1254 | UG/L | 1.1 U | 1.1 U | 1.10 | 1.10 | 1. U | | 500.000 | Aroclor-1260 | UG/L | 1.1 U | 1.1 U | 1.1 U | 1.10 | 1. U | | | Beta-BHC | UG/L | .056 U | .054 U | .057 U | .057 U | .05 U | | | Delta-BHC | UG/L | .056 U | .054 U | .057 U | .057 U | .05 U | | 500.000 | | UG/L | .11 U | .11 Ü | .11 U |
.11 U | .1 U | | | Endosulfan i | UG/L | .056 U | .054 U | .057 U | .057 U | .05 U | | | Endosulfan II | UG/L | .11 U | .11 U | .11 U | .11 U | .1 U | | | Endosulfan sulfate | UG/L | .11 U | .11 U | 11 U | 11 U | .1 U | | 500.000 | | UG/L | .11 U | .11.U | 1110 | .11 U | .10 | | | Endrin aldehyde | UG/L | .11 U | .11 U | .11 U | .11 U | .1 U | | 500.000 | Endrin ketone | UG/L | .11 U | .11 U | 11 U | .11 U | .10 | | 500.000 | Gamma-BHC/Lindane | UG/L | .056 U | .054 U | .057 U | .057 U | .05 U | | 500.000 | Gamma-Chlordane | UG/L | .056 U | .054 U | .057 U | .057 U | .05 U | | | Heptachlor | UG/L | .056 U | .054 U | .057 U | .057 U | .05 U | | | Heptachlor epoxide | UG/L | .056 U | .054 U | .057 U | .057 U | .05 U | | | | STUDY ID: | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | SEAD-11 EECA
81925 | |---------|-------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------| | | 200.0000 | LOC ID: | . MW11-1 | MW11-2 | MW11-3 | MW11-4 | MW11-5 | | | | SAMP_ID: | 112200 | 112201 | 112202 | 112203 | 112204 | | | | FIELD QC CODE: | SA | SA | SA | SA | SA | | | | SAMP. DEPTH TOP: | 13 | 10 | 9 | 11 | 10 | | | - | SAMP. DEPTH BOT: | 13 | 10 | 9 | 11 | 10 | | | | MATRIX: | GROUNDWATER | GROUNDWATER | GROUNDWATER | GROUNDWATER | GROUNDWATER | | | | SAMP. DATE: | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | 27-Feb-01 | | | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE Q | VALUE | | | Hexachlorobenzene | UG/L | .11 U | .11 Ü | .11 U | .11 U | .10 | | | Methoxychlor | UG/L | .56 U | .54 Ü | .57 Ū | .57 Ū | .5 U | | | Toxaphene | UG/L | 5.6 U | 5.4 U | 57U | 5.7 U | 5. U | | | Aluminum | UG/L | 103. J | 46.7 J | 28.4 U | 52 8 J | 284. | | | Antimony | UG/L | 2.4 U | 2.4 U | 2.4 U | 2.4 U | 2.4 U | | 600.000 | | UG/L | 2.9 J | 2.8 J | 3. J | 3.1 J | 2.5 U | | 600.000 | | UG/L | 30.7 J | 50.4 J | 39.8 J | 55.1 J | 71.2 J | | | Beryllium | UG/L | .2 U | .2 U | .2 U | .2 U | .210 | | | Cadmium | UG/L | .3 U | .3 U | .3 Ü | .3 U | .310 | | 600.000 | | UG/L | 87,800. | 106,000. | 175,000 | 104,000. | 117,000. | | | Chromium | UG/L | .84 J
.9 U | .96 J | .7 U | 13J | 1.8 J | | 600.000 | | UG/L | .9 U | | .9 Ü | .9 Ū | .910 | | 600.000 | | UG/L | 1.5 UJ | 1.5 UJ | 1.5 UJ | 171 | 2. J | | 600.000 | | UG/L | 10. U | 10. U | 10. U | 10. U | 10.10 | | 600.000 | | UG/L | 181. | 107. | 42 1 J | 85.7 J | 533. | | 600 000 | | UG/L | 1 B U | 1.6 U | 160 | 16U | 1.6 U | | | Magnesium | UG/L | 24,600. | 19,300. | 31,500 | 18,900 | 21,600. | | | Manganese | UG/L | 26.2 | 8.4 J | 63 4 | 5.1 J | 182. | | 600.000 | | UG/L | 1U | .1 U | .1 U | .1 U | .10 | | 600.000 | | UG/L | 1.3 U
2,100. J | 1.3 U | 1.3 U | 1.3 Ü | 1.8 J | | | Potassium | UG/L | | 2,850. J | 3,260. J | 3,370. J | 4,050. J | | | Selenium | UG/L | 2.3 UJ | 2.3 UJ | 2 3 UJ | 2.3 UJ | 2.3 | | 600.000 | | UG/L | 1.1 U | 1.3 J | 1.1 U | . 1.6 J | 1.5 J | | 600 000 | | UG/L | 4,160. J | 26,500. | 9,760. | 13,000. | 28,900. | | 600.000 | | UG/L | 2.5 J | 3.3 J | 1.9 U | 2.6 J | 1.9 L | | | Vanadium | UG/L | 1.2 U | 1.2 U | 1.2 U | 1.2 U | 1.3 J | | 600.000 | Zinc | UG/L | 3.2 J | 5.9 J | 33.4 | 2.2 J | 13.5 J | | | | STUDY ID: | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | |--------------|------------------------------|------------------|--------------|--------------|--------------| | | | SDG: | 81925 | 81925 | 81925 | | | | LOC ID: | MW11-6 | MW11-7 | MW11-6 | | | | SAMP_ID: | 112205 | 112206 | 112207 | | | | FIELD QC CODE: | SA | SA | DU | | | | SAMP. DEPTH TOP: | 8 | 7.2 | 8 | | | | SAMP. DEPTH BOT: | 8 | 7.2 | a | | _ | | MATRIX: | GROUNDWATER | GROUNDWATER | GROUNDWATER | | - | | SAMP. DATE: | 28-Feb-01 | 27-Feb-01 | 28-Feb-01 | | | | | | | | | ORT | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | | | 1,1,1,2-Tetrachloroethane | UG/L | .5 U | .5 U | 5 0 | | | 1,1,1-Trichloroethane | UG/L | .5 U | .5 U | .5 Ū | | | 1,1,2,2-Tetrachloroethane | UG/L | .5 U | .5 U | .5 U | | | 1,1,2-Trichloroethane | UG/L | .5 U | .5 U | .5 U | | | 1,1-Dichloroethane | UG/L | .5 U | .5 U | .5 U | | | 1,1-Dichloroethene | UG/L | .5 U | .5 U | 5 U | | 100.000 | 1,1-Dichloropropene | UG/L | .5 Ü | .5 U | .5 U | | 100.000 | 1,2,3-Trichlorobenzene | UG/L | .5 U | .5 U | .5 U | | | 1,2,3-Trichloropropane | UG/L | .5 U | .5 U | 5 Ū | | | 1,2,4-Trichlorobenzene | ŪG/L | .5 U | .5 U | 5 U | | | 1,2,4-Trimethylbenzene | UG/L | .5 U
.5 U | .5 U | .5 Ū | | | 1,2-Dibromo-3-chloropropane | UG/L | 5 0 | .5 Ū | .5 U | | | 1,2-Dibromoethane | UG/L | 511 | .5 U | 511 | | | 1.2-Dichlorobenzene | UG/L | .5 U | .5 U | 5 U | | | 1,2-Dichloroethane | UG/L | .5 U | .5 U | .5 U | | | 1,2-Dichloropropane | UG/L | .5 U | .50 | 5 0 | | | 1,3,5-Trimethylbenzene | UG/L | .5 U | .50 | | | | 1,3-Dichlorobenzene | UG/L | | .5 U | .5 U | | | | | .5 U | .5 U | 5 U | | | 1,3-Dichloropropane | UG/L | .5 U | .5 U | 5 0 | | | 1,4-Dichlorobenzene | UG/L | .5 U | .5 U | .5 U | | | 2,2-Dichloropropane | UG/L | .5 U | .5 U | .5 U | | | 2-Chlorotoluene | UG/L | .5 U | .5 U | .5 U | | | 2-Nitropropane | UG/L | 25. U | 25. U | 25 U | | | Acetone | UG/L | 5. U | 5. U | 5. U | | | Acrylonitrile | UG/L | .5 U | .5 U | 5 U | | | Allyl chloride | UG/L | 5 U | .5 Ū | .5 U | | | Benzene | ÜG/L | .5 U | .5 U | .5 U | | 100.000 | Bromobenzene | UG/L | .5 U | .5 U | .5 U | | 100.000 | Bromochloromethane | UG/L | .5 U | .5 U | .5 Ü | | 100.000 | Bromodichloromethane | UG/L | .5 U | .5 U | 5 U | | 100.000 | Bromoform | UG/L | .5 U | .5 U | .5 U | | 100.000 | Butyl chloride | UG/L | .5 U | .5 U | 5 U | | 100.000 | Carbon disulfide | UG/L | .5 U | .5 U | 5 Ü | | | Carbon tetrachloride | UG/L | .5 Ū ··· | .5 U | .5 U | | 1 T 40 TOTAL | Chloracetonitrile | UG/L | 25. U | 25. U | 25. U | | 100.000 | | UG/L | .5 U | .5 U | | | | Chlorodibromomethane | UG/L | .5 U | | .5 U | | | Chloroethane | UG/L | .5 U | .5 U | 5 U | | | Chloroform | | | .5 U | .50 | | | | UG/L | .5 U | .5 U | .5 U | | 100.000 | Cis-1,2-Dichloroethene | UG/L | .5 U | .5 U | .5 U | | 100.000 | Cis-1,3-Dichloropropene | UG/L | .5 U | .5 U | .5 U | | | Dichlorodifluoromethane | UG/L | .5 Ü | .5 U | .5 U | | | Dichloromethyl methyl ketone | UG/L | 25. UR | 25. UR | 25. UR | | | Ethyl benzene | UG/L | .5 U | .5 U | .5 U | | 100.000 | Ethyl ether | UG/L | .5 U | .5 Ü | .5 U | | | Ethyl methacrylate | UG/L | .5 U | .5 U | .5 U | | | Hexachlorobutadiene | UG/L | .5 U | .5 U | .5 U | | | | STUDY ID: | SEAD-11 EECA | | SEAD-11 EECA | | SEAD-11 EECA | | | |---------|-----------------------------|---
--|----------------|--------------|-----------|--------------|----|--------| | | | SDG: | 81925 | | 81925 | - | 81925 | | | | | | LOC ID: | MW11-6 | | MW11-7 | | MW11-6 | | | | | | SAMP ID: | 112205 | decide makes | 112206 | | 112207 | | - | | - | | FIELD QC CODE | SA | | SA | | DU | | | | | | SAMP, DEPTH TOP: | . 8 | | 7.2 | | 8 | - | -0-0- | | | | SAMP. DEPTH BOT: | 8 | | | The sales | - | | | | | | 4 to 100 100 to | The second second second | | 7.2 | | 8 | | | | - | | MATRIX: | GROUNDWATER | | GROUNDWATER | | GROUNDWATER | | _ | | | | SAMP. DATE: | 28-Feb-01 | | 27-Feb-01 | | 28-Feb-01 | | | | ODT - | | | | | | _ | | | | | ORT | PARAMETER | UNIT | VALUE | | VALUE | | VALUE | | | | | Hexachloroethane | UG/L | | Ú | .5 | U | 5 | U | | | | Isopropylbenzene | UG/L | | U | .5 | U | | U | | | | Meta/Para Xylene | UG/L | | Ü | .5 | Ü | .5 | Ū | | | | Methacrylonitrile | UG/L | | U | .5 | חז
ח | 5 | U | - | | | Methyl 2-propenoate | UG/L | .5 | UJ | 5 | UJ | 5 | ŨJ | de | | | Methyl Tertbutyl Ether | UG/L | .5 | Ü | .5 | U | 5 | U | | | | Methyl bromide | UG/L | .5 | U | 5 | U | 5 | U | | | 100.000 | Methyl butyl ketone | UG/L | | Ū | 2.5 | U | 25 | | | | 100.000 | Methyl chloride | UG/L | | Ū | | U | 5 | U | | | 100.000 | Methyl ethyl ketone | UG/L | | Ü | | U | 5 | u | | | | Methyl iodide | UG/L | | Ū | 5 | Ü | 5 | U | | | | Methyl isobutyl ketone | UG/L | 2.5 | | 2.5 | 111 | 25 | - | | | | Methyl methacrylate | UGAL | | Ü | .5 | U | 5 | | | | | Methylene bromide | UG/L | | ii | 5 | Ü | | | | | | Methylene chloride | UG/L | .5
.5 | | | | | U | | | | Naphthalene | UG/L | | Ü | .5 | U | 5 | | | | 100.000 | Nitrobenzene | UG/L | | U | | Ü | | U | | | | Ortho Xylene | UG/L | 25 | | | UR | 25 | UR | | | | | | | U _ | .5 | Ū | 5 | U | - | | | Pentachloroethane | UG/L | | U | | U | 5 | U | | | | Propionitrile | UG/L | | Ü | 25. | U | 25. | U | | | 100.000 | Propylbenzene | UG/L | | Ü | .5 | U | 5 | U | | | | Styrene | UG/L | .5 | U | | U | .5 | U | | | | Tetrachloroethene | UG/L | 2. | - The Military | .42 | | 1.9 | | | | | Tetrahydrofuran | UG/L | | U | 2.5 | | 25 | | | | | Toluene | UG/L | .5 | U | .5 | U | 5 | U | | | | Total Xylenes | UG/L | .5 | U | 5 | U | .5 | U | _ | | | Trans-1,2-Dichloroethene | UG/L | .5 | U | .5 | U | .5 | Ū | | | | Trans-1,3-Dichloropropene | UG/L | .5 | U | .5 | U | | U | | | | Trans-1,4-Dichloro-2-butene | UG/L | | U | .5 | Ü | .5 | u | - | | 100.000 | Trichloroethene | UG/L | 2.2 | | 5 | Ü | 22 | - | | | 100.000 | Trichlorofluoromethane | UG/L | | U | 5 | 11 | 5 | | - | | | Vinyl chloride | UG/L | .5 | Ü | .5 | ii . | .5 | | | | | n-Butylbenzene | UG/L | .5 | | | U | | | | | | p-Chlorotoluene | UG/L | | | .5 | | .5 | Ü | | | | p-Isopropyitoluene | UG/L | .5 | | .5 | | | | | | 100 000 | sec-Butylbenzene | UG/L | | U | | | | U | | | | tert-Butylbenzene | UG/L | | U | | | .5 | U | | | | 1,3,5-Trinitrobenzene | UG/L | | Ü | | | | U | | | | 1,3-Dinitrobenzene | UG/L | | | .25 | | .25 | | - | | | | | | U | .25 | | .25 | | | | | 2,4,6-Trinitrotoluene | UG/L | | Ū | .25 | | .25 | | | | | 2,4-Dinitrotoluene | UG/L | | U | .25 | | | U | | | | 2,6-Dinitrotoluene | UG/L | The second secon | U | .25 | | .25 | U | | | | 2-Nitrotoluene | UG/L | And the second s | U | .25 | U | .25 | | | | | 2-amino-4,6-Dinitrotoluene | UG/L | .25 | U | .25 | | 25 | | 107-00 | | | 3-Nitrotoluene | UG/L | .25 | U | .25 | | .25 | | | | 300.000 | 4-Nitrotoluene | UG/L | .25 | | .25 | | .25 | | - | | 300,000 | 4-amino-2.6-Dinitrotoluene | UG/L | .25 | | .25 | | .25 | | | | | | STUDY ID: | SEAD-11 EECA
81925 | | SEAD-11 EECA
81925 | | SEAD-11 EECA
81925 | | |---------|-----------------------------|------------------|-----------------------|----|-----------------------|---|-----------------------|------| | | | LOC ID: | MW11-6 | - | MW11-7 | | | | | | | SAMP ID: | 112205 | | | | MW11-6 | | | - | | | | | 112206 | | 112207 | | | | | FIELD QC CODE: | SA | | SA | | DU | | | | | SAMP. DEPTH TOP: | 8 | | 7.2 | | 8 | | | | | SAMP. DEPTH BOT: | 8 | | 7.2 | | 8 | | | | | MATRIX: | GROUNDWATER | | GROUNDWATER | | GROUNDWATER | | | | | SAMP. DATE: | 28-Feb-01 | | 27-Feb-01 | | 28-Feb-01 | _ | | ORT | PARAMETER | UNIT | VALUE | 0 | VALUE | 0 | VALUE | 0 - | | 300.000 | HMX | UGAL | 25 | | | U | 25 | | | | Nitrobenzene | UG/L | .25 | | | Ü | .25 | | | 300.000 | | UG/L | .25 | | | Ù | .25 | | | 300.000 | | UG/L | .25 | | | Ū | 25 | | | | 1.2.4-Trichlorobenzene | UG/L | 1. | | 1.1 | | - 25 | | | | 1.2-Dichlorobenzene | UG/L | | | | | | - | | | 1.3-Dichlorobenzene | UG/L | | Ü | | U | 1. | | | | 1,4-Dichlorobenzene | UG/L | | | | U | | Ü | | | | | 1. | U | | U | | U | | | 2,4,5-Trichlorophenol | UG/L | | U | | U | 25 | U | | | 2,4,6-Trichlorophenol | UG/L | | U | | U | 1. | Ü | | | 2,4-Dichlorophenol | UG/L | | U | 1.1 | | 1. | U | | | 2,4-Dimethylphenol | UG/L | | U | 1.1 | | | U | | | 2,4-Dinitrophenol | UG/L | 2.5 | | 2.8 | | 25 | nn . | | | 2,4-Dinitrotoluene | UG/L | 1. | Ü | 1.1 | | 1 | U | | | 2,6-Dinitrotoluene | UG/L | 1. | Ü | 1.1 | | 1. | U | | | 2-Chloronaphthalene | UG/L | 1. | UJ | 11 | | 1. | UJ | | | 2-Chlorophenol | UG/L | 1. | U | 1.1 | U | 1 | U | | | 2-Methylnaphthalene | UG/L | 1. | U | 1.1 | U | 1. | U | | 400.000 | 2-Methylphenol | UG/L | 1. | U | 11 | U | 1 | Ü | | 400.000 | 2-Nitroaniline | UG/L | 2.5 | U | 28 | Ü | 25 | | | 400 000 | 2-Nitrophenol | UG/L | | Ü | 11 | U | 1 | U | | 400.000 | 3,3'-Dichlorobenzidine | UG/L | 1. | U | 1.1 | | 1. | U | | 400.000 | 3-Nitroaniline | UG/L | 2.5 | UJ | 2.8 | | 2.5 | | | 400.000 | 4,6-Dinitro-2-methylphenol | UG/L | 2.5 | | 2.8 | | 2.5 | | | | 4-Bromophenyl phenyl ether | UG/L | 1. | Ü | 1.1 | | 1 | U | | | 4-Chloro-3-methylphenol | UG/L | 1. | Ü | | Ü | 1. | Ü | | | 4-Chloroaniline | UG/L | 1. | Ü | 1.1 | | | | | | 4-Chlorophenyl phenyl ether | UG/L | 1. | U | 1.1 | | 1. | | | | 4-Methylphenol | UG/L | 1. | Ü | 1.1 | | | U | | | 4-Nitroaniline | UG/L | 2.5 | | 2.8 | | | U | | | 4-Nitrophenol | UG/L | 2.5 | | 2.8 | | 2.5 | | | | Acenaphthene | UG/L | 1. | | | | 2.5 | | | | Acenaphthylene | UG/L | 1. | Ü | 1.1 | | 1. | U | | | Anthracene | UG/L | THE PERSON NAMED IN | | 1.1 | | 1. | U | | | | | 1. | U | 1.1 | | | U | | | Benzo(a)anthracene | UG/L | | U | 1.1 | | | U | | | Benzo(a)pyrene | UG/L | 1. | | 1.1 | | | U | | | Benzo(b)fluoranthene | UG/L | | U | 1.1 | | | U | | | Benzo(ghi)perylene | UG/L | 1. | U | 1.1 | | | U | | | Benzo(k)fluoranthene | UG/L | 1. | | 1.1 | | | Ū | | | Bis(2-Chloroethoxy)methane | UG/L | 1. | | 1.1 | | 1 | Ü | | 400.000 | Bis(2-Chloroethyi)ether | UG/L | | U | 1.1 | U | 1. | U | | 400.000 | Bis(2-Chloroisopropyl)ether | UG/L | | U | 1.1 | U | 1. | U | | | Bis(2-Ethylhexyl)phthalate | UG/L | | U | 1. | U | 1. | | | | Butylbenzylphthalate | UG/L | | U | 1.1 | U | 1. | | | | Carbazole | UG/L | 1. | Ü | 1.1 | | 1. | | | 400.000 | Chrysene | UG/L | 1. | U | 1.1 | | 1. | | | | Di-n-butylphthalate | UG/L | 1. | U | 1.1 | | 1. | | | | | STUDY ID: | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | |---------|---------------------------|------------------|---|--------------|--------------| | | | SDG: | 81925 | 81925 | 81925 | | | | LOC ID: | MW11-6 | MW11-7 | MW11-6 | | | | SAMP_ID: | 112205 | 112206 | 112207 | | | | FIELD QC CODE | SA | SA | DU | | - | | SAMP. DEPTH TOP: | 8 | 7.2 | 8 | | | | SAMP. DEPTH BOT: | 8 | 7.2 | 0 | | - | | MATRIX: | GROUNDWATER | GROUNDWATER | CROUNDWATER | | | | SAMP, DATE: | 28-Feb-01 | | GROUNDWATER | | | | SAMP. DATE. | 20-F60-01 | 27-Feb-01 | 28-Feb-01 | | ORT | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | | | Di-n-octylphthalate | UG/L | 1. U | 1.1 U | | | | Dibenz(a,h)anthracene | UG/L | 1.0 | | .062 J | | | Dibenzofuran | UG/L | THE PERSON NAMED IN CO. O. O | 1.1 0 | 1. U | | | | | | 1.1 U | 1.0 | | | Diethyl phthalate | UG/L | 1. U | 1.1 0 | 1. U | | | Dimethylphthalate | UG/L | 1 U | 1.1 U | 1 0 | | | Fluoranthene | UG/L | 1. U | 1.1 U | 1
0 | | | Fluorene | UG/L | 1. 0 | 1.1 U | 1. 0 | | | Hexachiorobenzene | UG/L | 1. U | 1.1 U | iU | | | Hexachlorobutadiene | UG/L | 1. UJ | 1.1 UJ | 1. ÜJ | | | Hexachlorocyclopentadiene | UG/L | 1.1 UJ | 1. 00 | 1. UJ | | | Hexachloroethane | UG/L | 1. U | 1.1 U | 1 U | | | Indeno(1,2,3-cd)pyrene | UG/L | 1. U | 1.1 U | 1. 0 | | 400.000 | Isophorone | UG/L | 1.0 | 1.1 U | 1. U | | 400.000 | N-Nitrosodiphenylamine | UG/L | 1. Ü | 1.1 U | 1 0 | | | N-Nitrosodipropylamine | UG/L | 1. U | 1.1 Ū | 1 0 | | 400.000 | Naphthalene | UG/L | 1. U | 1.1 0 | 1. Ü | | | Nitrobenzene | UG/L | 1. U | 1.10 | 1.10 | | 400,000 | Pentachlorophenol | UG/L | 2.5 UJ | 2.8 UJ | | | 400.000 | Phenanthrene | UG/L | 1 U | 1.1 U | 2.5 UJ | | 400.000 | Phenol | UG/L | 1. Ü | | 1. U | | | | | | 1.1 U | 1. U | | 400.000 | | UG/L | 1. Ü | 1.1 U | 1. U | | | 4,4'-DDD | UG/L | .11 U | .11 U | 11 0 | | | 4,4'-DDE | UG/L | .11 U | .11 U | .i1]u | | | 4,4'-DDT | UG/L | 11 U | .11 0 | .11 Ü | | 500.000 | | UG/L | .053 U | .054 U | 055 U | | | Alpha-BHC | UG/L | .053 U | .054 U | .055 U | | | Alpha-Chlordane | UG/L | .053 U | .054 U | .055 U | | | Aroclor-1016 | UG/L | 1.1 U | 1.1 U | 1.1 U | | | Aroclor-1221 | UG/L | 21 U | 2.2 U | 2.2 U | | 500.000 | Aroclor-1232 | UG/L | 1.1 U | 1.1 Ū | 1.1 U | | 500.000 | Aroclor-1242 | UG/L | 1.10 | 1.1 0 | 1.1 0 | | | Aroclor-1248 | UG/L | 110 | 1.1 U | 110 | | | Aroclor-1254 | UG/L | 1.1 U | 1.10 | 1.1 U | | | Aroclor-1260 | UG/L | 1.1 U | 1.1 U | 1.1 U | | | Beta-BHC | UG/L | .053 U | .054 U | | | | Detta-BHC | UG/L | .053 U | .054 U | .055 U | | | Dieldrin | UG/L | .11 U | | 055 U | | | Endosulfan I | UG/L | .053 U | | 11 U | | | Endosulfan II | UG/L | | .054 U | .055 U | | | Endosulfan sulfate | UG/L | 11 U | .11 U | 11 U | | | | | .11 Ü | 11 U | .11 U | | 500.000 | | UG/L | .11 U | .11 U | .11 U | | | Endrin aldehyde | UG/L | .11 U | .11 0 | .11 Ü | | | Endrin ketone | UG/L | .11 Ü | .11 U | .11 U | | | Gamma-BHC/Lindane | UG/L | .053 U | .054 U | .055 U | | 500.000 | Gamma-Chlordane | UG/L | .053 U | .054 U | .055 U | | 500.000 | Heptachlor | UG/L | .053 U | .054 U | .055 U | | | Heptachlor epoxide | UG/L | .053 U | .054 U | .055 U | | | | STUDY ID: | SEAD-11 EECA | SEAD-11 EECA | SEAD-11 EECA | |---------|-------------------|------------------|--------------|--------------|----------------| | | | SDG: | 81925 | 81925 | 81925 | | | | LOC ID: | MW11-6 | MW11-7 | MW11-6 | | | | SAMP_ID: | 112205 | 112206 | 112207 | | | | FIELD QC CODE: | SA | SA | DU | | | | SAMP. DEPTH TOP: | 8 | 7.2 | 8 | | | | SAMP. DEPTH BOT: | 8 | 7.2 | 8 | | | | MATRIX: | GROUNDWATER | GROUNDWATER | GROUNDWATER | | | 4- | SAMP. DATE: | 28-Feb-01 | 27-Feb-01 | 28-Feb-01 | | | PARAMETER | UNIT | VALUE | VALUE | VALUE | | 500 000 | Hexachlorobenzene | ÜG/L | .11 U | .11 U | .11 U | | 500.000 | Methoxychlor | UG/L | 53 U | .54 U | 55 U | | | Toxaphene | UG/L | 5.3 U | 5.4 U | 5 5 U | | | Aluminum | UG/L | 46.4 J | 165. J | 73.5 J | | | Antimony | UG/L | 2.4 U | 2.4 U | | | 600 000 | | UG/L | 39 J | 38 J | 2.4 U
3.4 J | | 600 000 | Barium | UG/L | 41.1 J | 39.6 J | 439 J | | 600 000 | Beryllium | UG/L | .2 U | .2 U | 2 U | | | Cadmium | UG/L | 3 Ü | .3 U | 32 J | | 600 000 | | UG/L | 184,000 | 193,000. | 192,000 | | | Chromium | UG/L | .7 U | .7 U | .7 U | | 600 000 | Cobalt | UG/L | 9 0 | .9 Ü | 9 U | | 600.000 | Copper | UG/L | 1.5 UJ | 1 5 UJ | 1 5 UJ | | 600.000 | Cyanide | UG/L | 10. Ü | 10. U | 10. U | | 600 000 | | UG/L | 95.1 J | 245. | 135. | | 600.000 | | UG/L | 1.6 U | 1.6 U | 2.1 J | | | Magnesium | UG/L | 33,200 | 35,800. | 34,600 | | | Manganese | UG/L | 6.7 J | 294. | 7.2 J | | | Mercury | UG/L | .1 U | .1 U | .1 U | | 600.000 | | UG/L | 1.3 U | 1.9 J | 141 | | | Potassium | UG/L | 6,080. | 3,150. J | 6,500 | | | Selenium | UG/L | . 2.3 UJ | 2 3 ŪJ | 2 3 ÜJ | | 600.000 | | UG/L | 16 J | 110 | 110 | | 600 000 | | UG/L | 9,060 | 13,300 | 9,680 | | | Thallium | UG/L | 4 2 J | 1.9 U | 190 | | | Vanadium | UG/L | 1.2 0 | 12 U | 1 2 U | | 600 000 | Zinc | UG/L | 8 U | 2111 | 1111 | ### SDG 79605 UNVALIDATED DATA | | STUDY ID: | LTTD | LTTD | LTTD | LTTD | LTTD | |--|------------------|----------|-----------|-----------|-----------|-----------| | | SDG: | 79605 | 79605 | 79605 | 79605 | 79605 | | | LOC ID: | LTTDK | LTTDW | LTTDK | LTTDL | LTTDH | | | SAMP_ID: | LT0000 | LT4000 | LT4001 | LT4004 | LT4005 | | | FIELD QC CODE: | DU | SA | SA | SA | SA | | an are auto- and de- | SAMP. DEPTH TOP: | 0 | 0 | 0 | 0 | 0 | | | SAMP. DEPTH BOT: | 0 | 0 | o o | 0 | 0 | | | MATRIX: | SOIL | SOIL | SOIL | SOIL | SOIL | | | SAMP. DATE: | 1-Sep-00 | 30-Aug-00 | 30-Aug-00 | 30-Aug-00 | 30-Aug-00 | | | | | | | | | | ORT PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE | VALUE Q | VALUE | | 400 1,2,4-Trichlorobenzene | UG/KG | 390 U | 360 U | 330 U | 340 U | 350 U | | 400 1,2-Dichlorobenzene | UG/KG | 390. U | 360. U | 330. Ü | 340. U | 350. U | | 400 1,3-Dichlorobenzene | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 1,4-Dichlorobenzene | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 2,4,5-Trichlorophenol | UG/KG | 980. U | 910. U | 830. U | 850. U | 880. U | | 400 2,4,6-Trichlorophenoi | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 2,4-Dichlorophenol | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 2,4-Dimethylphenol | UG/KG | 390. U | 360. U | 330. Ü | 340. U | 350. U | | 400 2,4-Dinitrophenol | UG/KG | . 980. U | 910. U | 830. U | 850. U | 880. U | | 400 2,4-Dinitrotoluene | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 2,6-Dinitrotoluene | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 2-Chloronaphthalene | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 2-Chlorophenol | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 2-Methylnaphthalene | UG/KG | 390. U | 29. J | 18. J | 41. J | 350. U | | 400 2-Methylphenol | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 2-Nitroaniline | UG/KG | 980. U | 910. U | 830. U | 850. U | 880. U | | 400 2-Nitrophenol | UG/KG | 390. U | 360. U | 330. U | · 340. U | 350. U | | 400 3,3'-Dichlorobenzidine | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 3-Nitroaniline | UG/KG | 980. U | 910. U | 830. U | 850. U | 880. U | | 400 4,6-Dinitro-2-methylphenol | UG/KG | 980. U | 910. U | 830. U | 850. U | 880. U | | 400 4-Bromophenyl phenyl ether | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 4-Chloro-3-methylphenol | UG/KG | 390. U | 360. U | 330. Ū | 340. U | 350. U | | 400 4-Chloroaniline | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 4-Chlorophenyl phenyl ether | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 4-Methylphenol | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 4-Nitroaniline | UG/KG | 980. U | 910. U | 830. U | 850. U | 880. U | | 400 4-Nitrophenol | UG/KG | 980. U | 910. U | 830. U | 850. U | 880. U | | 400 Acenaphthene | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 Acenaphthylene | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 Aniline | UG/KG | 980. U | 910. U | 830. U | 850. U | 880. U | | 400 Anthracene | UG/KG | 25. J | 21. J | 65. J | 340. U | 350. U | | 400 Azobenzene | UG/KG | 390. U | 360. U | 330. U | 340. U | 350. U | | 400 Benzidine | UG/KG | 980. U | 910.1U | 830. U | 69. J | 880. U | | 400 Benzo(a)anthracene | UG/KG | 40. J | 100. J | 480. | 340. U | 350. U | | 400 Benzo(a)pyrene | UG/KG | 32. J | 150. J | 560. | 18. J | 350. U | | 400 Benzo(b)fluoranthene | UG/KG | 36. J | 170. J | 660. | 340. U | 350. U | | 400 Benzo(ghi)perylene | UG/KG | 27. J | 160. J | 380. | 77. J | 350. U | | 400 Benzo(ghi)peryiene
400 Benzo(k)fluoranthene | UG/KG | 48. J | 140. J | 650. | 340. U | 350. U | | | STUDY ID: | LTTD | | LTTD | | LTTD | | LTTD | LTTD | |---|------------------|----------|-----|-----------|-----|-----------
--|--------|-----------| | | SDG: | 79605 | | 79605 | | 79605 | | 79605 | 79605 | | | LOC ID: | LTTDK | | LTTDW | | LTTDK | | LTTDL | LTTDH | | | SAMP_ID: | LT0000 | | LT4000 | 1 | LT4001 | | T4004 | LT4005 | | | FIELD QC CODE: | DU | - | SA | 1 | SA | | SA | SA | | | SAMP. DEPTH TOP: | 0 | | 0 | | O. | | 0 | 0 | | | SAMP. DEPTH BOT: | 0 | | 0 | - | 0 | | 0 | | | 12 22 24 24 24 24 24 24 24 24 24 24 24 24 | MATRIX: | SOIL | | SOIL | | SOIL | | SOIL | SOIL | | | SAMP. DATE: | 1-Sep-00 | | 30-Aug-00 | | 30-Aug-00 | - 1 20 | Aug-00 | 30-Aug-00 | | - shells directly to the same of | SAMP. DATE: | 1-Sep-00 | - | 30-Aug-00 | | 30-Aug-00 | 30- | nug-oo | 30-Aug-00 | | ORT PARAMETER | UNIT | VALUE | Q | VALUE | 2 | VALUE | Q | VALUE | VALUE Q | | 400 Benzoic Acid | UG/KG | 310. | J | 910. L | | 320. | J | 850. U | 880. U | | 400 Benzyl Alcohol | UG/KG | 390. | | 360. | j | 330. | U | 340. U | 350. U | | 400 Bis(2-Chloroethoxy)methane | UG/KG | 390. | ü | 360. | j | 330. | u | 340. U | 350. U | | 400 Bis(2-Chloroethyl)ether | UG/KG | 390. | u t | 360. 1 | | 330. | Ü | 340. U | 350. U | | 400 Bis(2-Chloroisopropyl)ether | UG/KG | 390. | ŭ - | 360. | | 330. | Ü | 340. U | 350. U | | 400 Bis(2-Ethylhexyl)phthalate | UG/KG | 44. | JB | 360. 1 | | 330. | Ü | 28. J | 350. U | | 400 Butylbenzylphthalate | UG/KG | 34. | | 360. | | 330. | ī | 340. U | 350. U | | 400 Carbazole | UG/KG | 32. | - | 360. | | 35. | - | 340. U | 350. U | | | UG/KG | 47. | 1 | 170. | | 660. | | 340. U | 350. U | | 400 Chrysene | | | | | | | | 340. U | | | 400 Di-n-butylphthalate | UG/KG | 43. | J | 360. I | | | U | | 350. U | | 400 Di-n-octylphthalate | UG/KG | 38. | J | 360. | 0 | 330. | Ü | 340. U | 350. U | | 400 Dibenz(a,h)anthracene | UG/KG | 28. | J | 60. | | 130. | J | 340. U | 350. U | | 400 Dibenzofuran | UG/KG | 390. | U | 18. | 1 | 17. | 1 | 41. J | 350. U | | 400 Diethyl phthalate | UG/KG | 26. | J | 360. 1 | U | 330. | U | 340. U | 350. U | | 400 Dimethylphthalate | UG/KG | 390. | U | | U | 330. | U | 340. U | 350. U | | 400 Fluoranthene | UG/KG | 41. | J | 170. | j i | 640. | | 140. J | 350. U | | 400 Fluorene | UG/KG | 390. | U | 21. | | 330. | U | 20. J | 350. U | | 400 Hexachlorobenzene | UG/KG | 390. | U | 360. | U | 330. | Ü | 340. U | 350. U | | 400 Hexachlorobutadiene | UG/KG | 390. | U | 360. | Ü | 330. | Ū | 340. U | 350. U | | 400 Hexachiorocyclopentadiene | UG/KG | 390. | Ū | 360. | Ū | 330. | Ü - | 340. U | 350. U | | 400 Hexachloroethane | UG/KG | 390. | U | | U | 330. | Ü | 340. U | 350. U | | 400 Indeno(1,2,3-cd)pyrene | UG/KG | 29. | j | 120. | | 370. | | 340. U | 350. U | | 400 Isophorone | UG/KG | 390. | U | 360. | | 330. | | 340. U | 350. U | | 400 N-Nitrosodimethylamine | UG/KG | 390. | U | 360. | | | u . | 340. U | 350. U | | 400 N-Nitrosodiphenylamine | UG/KG | 390. | U | | Ū - | 330. | U | 340. U | 350. U | | 400 N-Nitrosodipropylamine | UG/KG | 390. | u | 360. | | 330. | Ü | 340. U | 350. U | | | | 390. | U | 23. | | 330. | THE RESIDENCE OF THE PARTY T | | 350. U | | 400 Naphthalene | UG/KG | | U | 360. | | | U | 16. J | | | 400 Nitrobenzene | UG/KG | 390. | | | | 330. | U | 340. U | 350. U | | 400 Pentachlorophenol | UG/KG | 980. | U | | U | 830. | U | 850. U | 880. U | | 400 Phenanthrene | UG/KG | 33. | J | 120. | | 410. | | 300. J | 350. U | | 400 Phenol | UG/KG | 25. | | | U | 330. | U | 340. U | 350. U | | 400 Pyrene | UG/KG | 39. | | 210. | | 570. | | 270. J | 350. U | | 400 Pyridine | UG/KG | 390. | | 360. | | 330. | U | 340. U | 350. U | | 500 Aroclor-1016 | UG/KG | 20. | | 18. | | 17. | U | 17. U | 18. U | | 500 Arodor-1221 | UG/KG | 20. | U | 18. | U | 17. | Ü | 17. U | 18. U | | 500 Aroclor-1232 | UG/KG | 20. | | 18. | | 17. | | 17. U | 18. U | | 500 Aroclor-1242 | UG/KG . | 20 | | 18. | | 17. | | 17. U | 18. U | | 500 Aroclor-1248 | UG/KG | 20 | 11 | 18. | | 17. | | 17. U | 18. U | | | | STUDY ID: | LTTD | | LTTD | | LTTD | | LTTD | | LTTD | | |---|--------------|------------------|----------|-----|------------|----|-----------|---------------|--------------|-----|-----------------|----------| | m. co.phgrousir | | SDG: | 79605 | | 79605 | | 79605 | | 79605 | | 79605 | - | | | | LOC ID: | LTTDK | | LTTDW | 1 | LTTDK | | LTTDL | - | LTTDH | | | | | SAMP_ID: | LT0000 | | LT4000 | | LT4001 | | LT4004 | | LT4005 | | | | - | FIELD QC CODE: | DU | | SA | 1 | SA | | SA | 1 | SA | | | | | SAMP. DEPTH TOP: | 0 | | 0 | | 0 | | 0 | | 0 | | | desiration of the last | | SAMP. DEPTH BOT: | 0 | | 0 | | Ö | | 0 | | 0 | | | | | MATRIX: | SOIL | | SOIL | | SOIL | | SOIL | | SOIL | | | | | SAMP. DATE: | 1-Sep-00 | | 30-Aug-00 | | 30-Aug-00 | | 30-Aug-00 | | 30-Aug-00 | violen . | | ORT | PARAMETER | UNIT | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | Q | VALUE | 2 | | 500 | Aroclor-1254 | UG/KG | 20. | U | 19. | | 17. | U | 17. | U | 18. L | J | | 500 | Aroclor-1260 | UG/KG | 20. | U | 23. | | 17. | U | 17. | U | 18. (| J | | AND THE PARTY OF | Diesel Oil | MG/KG | 7.8 | | 23.
92. | Y | 29. | Y | 88. | Υ 1 | 18. U | 1 | | | Motor Oil | MG/KG | 22. | Y | 420. | Y | 120. | Y | 72. | Y | 7.1 | J | | 600 | Aluminum | MG/KG | 12,200. | | 9,710. | | 8,370. | | 1,850. | | 27,600. | | | 600 | Antimony | MG/KG | 4.1 | BN | .93 | UN | 1.2 | BN | 30.3 | N | 16.7 | V | | 600 | Arsenic | MG/KG | 5.7 | N | 4. | N | 4.3 | N | 16.3 | N | 5.9 | V | | 600 | Barium | MG/KG | 103 | • | 85. | • | 75.8 | • | 214. | • | 269. | | | 600 | Beryllium | MG/KG | .9 | | .73 | | .68 | | .66 | | 1.2 | | | 600 | Cadmium | MG/KG | 1.3 | • | .38 | B. | 1.5 | • | 5.1 | • | 4.2 | | | 600 | Calcium | MG/KG | 9,190 | | 69,500. | | 116,000. | | 5,980. | | 50,500. | | | 600 | Chromium | MG/KG | 24.8 | N° | 17. | N° | 15.8 | N° | 214. | N* | 87.7 | N* | | | Cobalt | MG/KG | 11.5 | | 10. | | 7.9 | | 21.5 | | 10.7 | | | 600 | Copper | MG/KG | 53.4 | N | 31.8 | N | 37.3 | N | 3,500. | N | 3,980. | N | | 600 | Iron | MG/KG | 26,500 | • | 20,100. | • |
18,300. | • | 515,000. | • | 26,500. | | | 600 | Lead | MG/KG | 315 | E* | 61.6 | E* | 152. | E. | 384. | E. | 816. | E* | | 600 | Magnesium | MG/KG | 15,100 | • | 12,400. | • | 14,100. | | 1,630. | • | 11,800. | | | 600 | Manganese | MG/KG | 573 | • | 484. | • | 396. | • | 2,280. | • | 553. | | | 600 | Mercury | MG/KG | .02 | U | .02 | | .01 | | .02 | U | .02 (| J | | | Nickel | MG/KG | 39.6 | | 30.5 | E | 27.7 | E | 192. | E | 137. | Ē | | | Potassium | MG/KG | 2,030 | | 1,530. | • | 1,280. | • | 664. | • | 9,140. | | | | Selenium | MG/KG | | UN | | UN | .2 | UN | 10.3 | | .26 | | | | Silver | MG/KG | | BN | .16 | UN | .34 | | 1.1 | | | N | | | Sodium | MG/KG | 168 | | 133. | В | 140. | | 466. | 8 | 820. | | | | Thailium | MG/KG | 2.4 | | 2.3 | | 1.9 | As assessment | 37.5
22.9 | | 2.7 | | | | Vanadium | MG/KG | 21.1 | | 15.7 | • | 12.9 | | 22.9 | • | 54. ¹
167. I | | | 600 | Zinc | MG/KG | 135 | .N° | 102. | N° | 93.7 | N° | 645. | N° | 167. 1 | N. | | | STUDY ID: | LTTD | NONE | LTTD | LTTD | LTTD | |---|------------------|-----------------|-----------------|----------|--|-----------| | - | SDG: | 79605 | 79605 | 79605 | 79605 | 79605 | | | LOC ID: | LTTDW | NONE | LTTDK | LTTDK | LTTDK | | the fact of the second | SAMP_ID: | LT4006 | LT4006RE | LT4007 | LT4007MS | LT4007MSD | | | FIELD QC CODE: | SA | NONE | SA | MS | MSD | | - | SAMP. DEPTH TOP: | 0 | NONE | 0 | 0 | 0 | | | SAMP. DEPTH BOT: | 0 | NONE | 0 | Ō | 0 | | | MATRIX: | SOIL | NONE | SOIL | SOIL | SOIL | | | SAMP. DATE: | 1-Sep-00 | | 1-Sep-00 | 1-Sep-00 | 1-Sep-00 | | | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE | VALUE | | ORT PARAMETER | UG/KG | 370 U | 370 U | 330 U | 880 | 850 | | 400 1,2,4-Trichlorobenzene | UG/KG | 370. U | 370. U | 330. U | 830. | 770. | | 400 1,2-Dichlorobenzene | UG/KG | 370. U | 370. U | 330. U | 850. | 800. | | 400 1,3-Dichlorobenzene | UG/KG | 370. U | 370. U | 330. U | 860. | 800. | | 400 1,4-Dichlorobenzene | UG/KG | 920. U | 920. U | 830. U | 1.600. | 1,600. | | 400 2,4,5-Trichlorophenol | UG/KG
UG/KG | 370. U | 370. U | 330. U | 1,600. | 1,600. | | 400 2.4,6-Trichlorophenol | UG/KG | 370. U | 370. U | 330. U | 850. | 810. | | 400 2,4-Dichlorophenol | | 370. U | 370. U | 330. U | 410. | 550. | | 400 2,4-Dimethylphenol | UG/KG
UG/KG | 920. U | 920. U | 830. U | 200. J | 200. J | | 400 2,4-Dinitrophenol | | 370. U | 370. U | 330. U | 890. | 830. | | 400 2,4-Dinitrotoluene | UG/KG | | 370. U | 330. U | 930. | 900. | | 400 2,6-Dinitrotoluene | UG/KG | 370. U | | 330. U | 910. | 890. | | 400 2-Chloronaphthalene | UG/KG | 370. U | 370. U | | 810. | 750. | | 400 2-Chlorophenol | UG/KG | 370. U | 370. U
29. J | | 870. | 760. | | 400 2-Methylnaphthalene | UG/KG | 28. J
370. U | 370. U | 330. U | 800. | 770. | | 400 2-Methylphenol | UG/KG | 920. U | 920. U | 830. U | 1,900. | 1,700. | | 400 2-Nitroaniline | UG/KG | 370. U | 370. U | 330. U | 860. | 860. | | 400 2-Nitrophenol | UG/KG | | | | 95. J | 390. | | 400 3,3'-Dichlorobenzidine | UG/KG | 370. U | | 330. U | 570. J | | | 400 3-Nitroaniline | UG/KG | 920. U | 920. U | 830. U | Annual Contract of the Contrac | 710. J | | 400 4,6-Dinitro-2-methylphenol | UG/KG | 920. U | 920. U | 830. U | 840. | 850. | | 400 4-Bromophenyl phenyl ether | UG/KG | 370. U | 370. U | 330. U | 920. | 900. | | 400 4-Chloro-3-methylphenol | UG/KG | 370. U | 370. U | 330. U | 950. | 880. | | 400 4-Chloroaniline | UG/KG | 370. U | 370. U | 330. U | 93. J | 170. J | | 400 4-Chlorophenyl phenyl ether | UG/KG | 370. U | 370. U | 330. U | 930. | 890. | | 400 4-Methylphenol | UG/KG | 370. U | 370. U | 330. U | 1,500. | 1,400. | | 400 4-Nitroaniline | UG/KG | 920. U | 920. U | 830. U | 1,100. | 1,100. | | 400 4-Nitrophenol | UG/KG | 920. U | 920. U | 830. U | 1,700. | 1,500. | | 400 Acenaphthene | UG/KG | 22. J | 24. J | 330. U | 880. | 830. | | 400 Acenaphthylene | UG/KG | 370. U | 370. U | 330. U | 770. | 780. | | 400 Aniline | UG/KG | 920. U | 920. U | 830. U | 8.2 J | 41. J | | 400 Anthracene | UG/KG | 55. J | 57. J | 330. U | 880. | 850. | | 400 Azobenzene | UG/KG | 370. U | 370. U | 330. U | 820. | 800. | | 400 Benzidine | UG/KG | 920. U | 920. U | 830. U | 830. U | 830. U | | 400 Benzo(a)anthracene | UG/KG | 170. J | 180. J | 330. U | 870. | 850. | | 400 Benzo(a)pyrene | UG/KG | 220. J | 230. J | 330. U | 740. | 710. | | 400 Benzo(b)fluoranthene | UG/KG | 320. J | 300. J | 330. U | 740. | 740. | | 400 Benzo(ghi)perylene | UG/KG | 250. J | 250. J | 330. U | 600. | 590. | | 400 Benzo(k)fluoranthene | UG/KG | 270. J | 290. J | 330. U | 800. | 810. | | | STUDY ID: | LTTD | NONE | LTTD | LTTD | LTTD | |---------------------------------|------------------|----------|---|----------|----------|-----------| | | SDG: | 79605 | 79605 | 79605 | . 79605 | 79605 | | - | LOC ID: | LTTDW | NONE | LTTDK | LTTDK | LTTDK | | | SAMP_ID: | LT4006 | LT4006RE | LT4007 | LT4007MS | LT4007MSD | | | FIELD QC CODE: | SA | NONE | SA | MS | MSD | | | SAMP. DEPTH TOP: | 0 | NONE | 0 | 0 | 0 | | | SAMP. DEPTH BOT: | 0 | NONE | 0 | 0 | 0 | | | MATRIX: | SOIL | NONE | SOIL | SOIL | SOIL | | | SAMP. DATE: | 1-Sep-00 | | 1-Sep-00 | 1-Sep-00 | 1-Sep-00 | | ORT PARAMETER | UNIT | VALUE | VALUE | VALUE Q | VALUE Q | VALUE Q | | 400 Benzoic Acid | UG/KG | 920. U | 920. U | 830 U | 580. J | 400. J | | 400 Benzyl Alcohol | UG/KG | 370. U | 370. U | 330. U | 1,000. | 920. | | 400 Bis(2-Chloroethoxy)methane | UG/KG | 370. U | | 330 U | 850. | 820. | | 400 Bis(2-Chloroethyl)ether | UG/KG | 370. U | 370. U | 330. Ū | 780. | 690. | | 400 Bis(2-Chloroisopropyl)ether | UG/KG | 370. U | 370. U | 330. U | 1,000. | 970. | | 400 Bis(2-Ethylhexyl)phthalate | UG/KG | 220. J | B 220. JB | 330. U | 900. | 900. | | 400 Butylbenzylphthalate | UG/KG | 370. U | | 330. U | 910. | 950. | | 400 Carbazole | UG/KG | 51. J | 34. J | 330. U | 820. | 810. | | 400 Chrysene | UG/KG | 340. J |
350. J | 330. U | 940. | 920. | | 400 Di-n-butyiphthalate | UG/KG | 370. U | 370. U | 330. U | 890. | 890. | | 400 Di-n-octylphthalate | UG/KG | 370. U | | 330. Ü | 940. | 900. | | 400 Dibenz(a,h)anthracene | UG/KG | 89. J | 110. J | 330. U | 690. | 670. | | 400 Dibenzofuran | UG/KG | 20. J | | 330. U | 900. | 850. | | 400 Diethyl phthalate | UG/KG | 370. L | | 330. U | 960. | 860. | | 400 Dimethylphthalate | UG/KG | 370. L | | 330. U | 920. | 910. | | 400 Fluoranthene | UG/KG | 270. J | | 330.U | 840. | 830. | | 400 Fluorene | UG/KG | 25. J | 28. J | 330. U | 910. | 860. | | 400 Hexachlorobenzene | UG/KG | 370. L | | 330. U | 910. | 860. | | 400 Hexachlorobutadiene | UG/KG | 370. L | | 330. U | 840. | 830. | | 400 Hexachlorocyclopentadiene | UG/KG | 370. L | | 330. U | 370. | 340. | | 400 Hexachloroethane | UG/KG | 370. L | | 330. U | 860. | 820. | | 400 Indeno(1,2,3-cd)pyrene | UG/KG | 200. J | 190. J | 330. U | 660. | 640. | | 400 Isophorone | UG/KG | 370. L | 370. U | 330. U | 820. | 800. | | 400 N-Nitrosodimethylamine | UG/KG | 370. L | | 330. Ū | 760. | 760. | | 400 N-Nitrosodiphenylamine | UG/KG | 370. L | | 330. U | 900. | 930. | | 400 N-Nitrosodipropylamine | UG/KG | 370. L | | 330. U | 950. | 900. | | 400 Naphthalene | UG/KG | 28. J | 29. J | 330. U | 850. | 810. | | 400 Nitrobenzene | UG/KG | 370. L | | 330. U | 820. | 840. | | 400 Pentachlorophenol | UG/KG | 920. L | | 830. U | 1,000. | 1,100. | | 400 Phenanthrene | UG/KG | 170. J | 170. J | 330. U | 910. | 870. | | 400 Phenol | UG/KG | 370. | 1 AT 100 1 10 10 10 10 10 10 10 10 10 10 10 | 330. U | 930. | 820. | | 400 Pyrene | UG/KG | 330. | 370. | 330. U | 990. | 960. | | 400 Pyridine | UG/KG | 370. L | | 330. U | 230. J | 150. J | | 500 Aroclor-1016 | UG/KG | 18. 1 | | 17. U | 17. U | 17. U | | 500 Aroclor-1016 | UG/KG | 18. (| | 17. U | 17. U | 17. U | | 500 Aroclor-1221 | UG/KG | 18. 1 | | 17. U | 17. U | 17. U | | | | 18. (| | 17. U | 17. U | 17. U | | 500 Aroclor-1242 | UG/KG | | | | | | | 500 Aroclor-1248 | UG/KG | 18. (| | 17. U | 17. U | 17. U | | | | STUDY ID: | LTTD | | NONE | LTTD | LTTD | | LTTD | |-----|---------------------------------|------------------|----------|----|----------|----------|------------|-----|-----------| | | | SDG: | 79605 | | 79605 | 79605 | 79605 | - | 79605 | | | make the short relations assume | LOC ID: | LTTDW | | NONE | LTTDK | LTTDK | | LTTDK | | - | | SAMP_ID: | LT4006 | | LT4006RE | LT4007 | LT4007MS | | LT4007MSD | | | | FIELD QC CODE: | SA | | NONE | SA | MS | | MSD | | | | SAMP. DEPTH TOP: | 0 | | NONE | 0 | 0 | | 0 | | | | SAMP. DEPTH BOT: | 0 | | NONE | 0 | 0 | | 0 | | | | MATRIX: | SOIL | | NONE | SOIL | SOIL | | SOIL | | | | SAMP. DATE: | 1-Sep-00 | | | 1-Sep-00 | 1-Sep-00 | | 1-Sep-00 | | ORT | PARAMETER | UNIT | VALUE | Q | VALUE Q | VALUE Q | VALUE | Q | VALUE Q | | 500 | Aroclor-1254 | UG/KG | 18. | U | | 17. U | 17. | U | 17. U | | 500 | Arodor-1260 | UG/KG | 21. | | | 17. U | 140. | | 140. | | | Diesel Oil | MG/KG | 140. | Y | | 14. Y | | | 75. | | | Motor Oil | MG/KG | 630. | Y | | 60. Y | 68.
27. | Y | 22. Y | | 600 | Aluminum | MG/KG | 10,100. | | | 9,830. | | - 1 | | | | Antimony | MG/KG | .99 | UN | | 2.4 BN | | | | | | Arsenic | MG/KG | 4.6 | N | | 4.1 N | | | - | | | Barlum | MG/KG | 79.6 | • | | 87.2 | - | - | | | 600 | Beryllium | MG/KG | .73 | | 1 1 | .73 | | | | | 600 | Cadmium | MG/KG | .47 | | | .69 • | | | | | 600 | Calcium | MG/KG | 75,500. | | | 78,300. | | | | | 600 | Chromium | MG/KG | 18.9 | N° | | 19.8 N° | | | | | 600 | Cobalt | MG/KG | 9.7 | | | 9.2 | | | | | 600 | Copper | MG/KG | 41.8 | N | | 53.3 N | | - | | | 600 | Iron | MG/KG | 20,300. | • | | 20,400. | | | | | 600 | Lead | MG/KG | 105. | E. | | 185. E* | | | | | 600 | Magnesium | MG/KG | 14,300. | • | | 12,200. | | - | | | 600 | Manganese | MG/KG | 497. | • | | 443. | | | | | | Mercury | MG/KG | .02 | | | .01 U | | | | | 600 | Nickel | MG/KG | 30. | E | | 31.8 E | | - | | | | Potassium | MG/KG | 1,610. | | | 1,540. | | | | | | Selenium | MG/KG | | UN | | .21 UN | | | | | | Silver | MG/KG | | UN | | .15 UN | | | | | | Sodium | MG/KG | 135. | | | 135. B | | | | | | Thallium | MG/KG | 2.3 | | | 2.3 | | | | | | Vanadium | MG/KG | 16.2 | | | 15.7 * | | | | | 600 | Zinc | MG/KG | 98.2 | N* | | 105. N° | | | | | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | ARAMETER 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4,6-Trichlorophenol | SDG: LOC ID: SAMP_ID: FIELD QC CODE: SAMP, DEPTH TOP: SAMP, DEPTH BOT: MATRIX: SAMP, DATE: UNIT UG/KG UG/KG UG/KG UG/KG UG/KG | 79605
LTTDL
LT4010
SA
0
0
SOIL
1-Sep-00
VALUE
370
370. | Ü | 79605
LTTDH
LT4011
SA
0
0
SOIL
1-Sep-00
VALUE
350 | | |--|--
--|--|-----|--|-------------| | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4-Dichlorophenol | SAMP_ID: FIELD QC CODE: SAMP. DEPTH TOP: SAMP. DEPTH BOT: MATRIX: SAMP. DATE: UNIT UG/KG UG/KG UG/KG UG/KG | LT4010
SA
0
0
SOIL
1-Sep-00
VALUE
370
370. | Ü | LT4011
SA
0
0
SOIL
1-Sep-00
VALUE
350 | | | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4-Dichlorophenol | FIELD QC CODE: SAMP. DEPTH TOP: SAMP. DEPTH BOT: MATRIX: SAMP. DATE: UNIT UG/KG UG/KG UG/KG UG/KG | SA
0
0
SOIL
1-Sep-00
VALUE
370
370. | Ü | SA
0
0
SOIL
1-Sep-00
VALUE
350 | | | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4-Dichlorophenol | SAMP. DEPTH TOP: SAMP. DEPTH BOT: MATRIX: SAMP. DATE: UNIT UG/KG UG/KG UG/KG UG/KG | 0
0
SOIL
1-Sep-00
VALUE
370
370. | Ü | 0
0
SOIL
1-Sep-00
VALUE
350 | | | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4-Dichlorophenol | SAMP. DEPTH BOT: MATRIX: SAMP. DATE: UNIT UG/KG UG/KG UG/KG UG/KG UG/KG | 0
SOIL
1-Sep-00
VALUE
370
370. | Ü | 0
SOIL
1-Sep-00
VALUE
350 | | | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4-Dichlorophenol | MATRIX: SAMP. DATE: UNIT UG/KG UG/KG UG/KG UG/KG UG/KG | SOIL
1-Sep-00
VALUE
370
370. | Ü | SOIL
1-Sep-00
VALUE
350 | | | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4-Dichlorophenol | SAMP. DATE: UNIT UG/KG UG/KG UG/KG UG/KG | 1-Sep-00
VALUE
370
370. | Ü | 1-Sep-00
VALUE
350 | | | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4-Dichlorophenol | UNIT
UG/KG
UG/KG
UG/KG
UG/KG | VALUE
370
370. | Ü | 1-Sep-00
VALUE
350 | | | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4-Dichlorophenol | UG/KG
UG/KG
UG/KG | 370
370. | Ü | 350 | | | 400 1,
400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2.4-Trichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4-Dichlorophenol | UG/KG
UG/KG
UG/KG | 370
370. | Ü | 350 | | | 400 1,
400 1,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2,
400 2, | 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 4-5-Trichlorophenol 4-6-Trichlorophenol 4-Dichlorophenol | UG/KG
UG/KG
UG/KG | 370. | 1 | | | | 400 1,:
400 1,:
400 2,:
400 2,:
400 2,:
400 2,:
400 2,:
400 2,: | 3-Dichlorobenzene 4-Dichlorobenzene 4,5-Trichlorophenol 4,6-Trichlorophenol 4-Dichlorophenol | UG/KG
UG/KG | - | | 350. | - | | 400 1,400 2,400
2,400 2, | 4-Dichlorobenzene 4,5-Trichlorophenol 4,6-Trichlorophenol 4-Dichlorophenol | UG/KG | | Ü | Deliver - Color Colo | U | | 400 2, | 4,5-Trichlorophenol
4,6-Trichlorophenol
4-Dichlorophenol | A Long Street American Street Street, Street Street, S | 370. | | | Ü | | 400 2,
400 2,
400 2,
400 2,
400 2, | 4,6-Trichlorophenol
4-Dichlorophenol | | 930. | Ü | | Ü | | 400 2,
400 2,
400 2,
400 2, | 4-Dichlorophenol | UG/KG | | | manufacture of the second of the second | Ü | | 400 2,4
400 2,4
400 2,4 | | UG/KG | 370. | Ū | | Ü | | 400 2,4
400 2,4 | 4-Dimethylphenol | UG/KG | 370. | Ü | the Street County of the Count | Ü | | 400 2,4 | 4-Dinitrophenol | UG/KG | 930. | U | | u | | | 4-Dinitrotoluene | UG/KG | 370. | Ū . | 350. | _ | | | .6-Dinitrotoluene | UG/KG | 370. | | 350. | | | 400 2- | -Chioronaphthalene | UG/KG | 370. | U | | Ü | | | -Chlorophenol | UG/KG | 370. | U | 350. | | | | -Methylnaphthalene | UG/KG | 110. | J | 350. | ARRIV HOUSE | | | -Methylphenol | UG/KG | 370. | | 350. | U | | | -Nitroaniline | UG/KG | 930. | U | | Ü | | | -Nitrophenol | UG/KG | 370. | | 350. | 1 | | | 3'-Dichlorobenzidine | UG/KG | 370. | U | | U | | | -Nitroaniline | UG/KG | 930. | U | | U | | | ,6-Dinitro-2-methylphenol | UG/KG | 930. | U | | e we | | | -Bromophenyl phenyl ether | UG/KG | 370. | Ü | 350. | | | | -Chloro-3-methylphenol | UG/KG | 370. | U | | Ü | | | -Chloroaniline | UG/KG | 370. | | 350. | 1 | | | -Chlorophenyl phenyl ether | UG/KG | 370. | u + | 350. | U | | | -Methylphenol | UG/KG | 370. | | to state the deplace white was the first | u | | | -Nitroaniline | UG/KG | 930. | U | CONTRACT NAME AND ADDRESS OF THE PARTY OF | Ü | | | -Nitrophenol | UG/KG | 930. | | | U | | | cenaphthene | UG/KG | 370. | U | | Ü | | | cenaphthylene | UG/KG | 370. | | 350. | | | 400 Ar | | UG/KG | 930. | U | | Ü | | | nthracene | UG/KG | 370. | 4 | 350. | Ü | | | zobenzene | UG/KG | 370. | U | 350. | ū | | | enzidine | UG/KG | 930. | 1 | | - | | | The second secon | UG/KG | | | | U | | | enzo(a)anthracene
enzo(a)pyrene | UG/KG | 17. | | THE STREET STREET, ST. S. LEWIS CO., LANSING, ST. S. LEWIS CO., LANSING, LANS | U | | | enzo(a)pyrene
enzo(b)fluoranthene | UG/KG | 41. | | The second of the second of the second | U | | | | | 30. | | The second secon | U | | - | lenzo(ghi)perylene
lenzo(k)fluoranthene | UG/KG
UG/KG | 270.
21. | | 350. | U | | | | STUDY ID: | LTTD | | LTTD | | |------------------------|-----------------------------|------------------|--|-----|----------|-----| | | | SDG: | 79605 | | 79605 | | | | | LOC ID: | LTTDL | | LTTDH | | | | | SAMP_ID: | LT4010 | | LT4011 | | | | | FIELD QC CODE: | SA | | SA | | | | | SAMP. DEPTH TOP: | 0 | | 0 | | | | | SAMP. DEPTH BOT: | 0 | | 0 | | | | - | MATRIX: | SOIL | | SOIL | | | | | SAMP. DATE: | 1-Sep-00 | - | 1-Sep-00 | _ | | | | | | | | | | ORT | PARAMETER | UNIT | VALUE | Q | VALUE | Q | | 400 | Benzoic Acid | UG/KG | 930. | Ü | 870. | Ü | | | Benzyl Alcohol | UG/KG | 370. | Ū | 350. | U | | 400 | Bis(2-Chloroethoxy)methane | UG/KG | 370. | U | 350. | U | | | Bis(2-Chloroethyl)ether | UG/KG | 370. | Ū | 350. | U | | | Bis(2-Chloroisopropyl)ether | UG/KG | 370. | U | 350. | U | | | Bis(2-Ethylhexyl)phthalate | UG/KG | 370. | Ū | 350. | Ü | | | Butylbenzylphthalate | UG/KG | 370. | Ü | 350. | U | | 400 | Carbazole | UG/KG | 370. | U | 350. | Ü | | | Chrysene | UG/KG | 36. | J | 350. | U | | 400 | Di-n-butylphthalate | UG/KG | 370. | U | 350. | Ü | | 400 | Di-n-octylphthalate | UG/KG | 370. | Ü | 350. | U | | | Dibenz(a,h)anthracene | UG/KG | 370. | Ü | 350. | ū - | | | Dibenzofuran | UG/KG | 140. | 1 | 350. | Ü | | | Diethyl phthalate | UG/KG | 370. | Ü | 350. | ū | | | Dimethylphthalate | UG/KG | 370. | Ü | 350. | Ü | | | Fluoranthene | UG/KG | 420. | | 350. | ű | | | Fluorene | UG/KG | 52. | J | 350. | Ü | | | Hexachlorobenzene | UG/KG | 370. | U | 350. | U | | - IN COLUMN 2 I wheels | Hexachlorobutadiene | UG/KG | 370. | Ū - | 350. | Ü | | | Hexachlorocyclopentadiene | UG/KG | 370. | ũ | 350. | Ü | | | Hexachloroethane | UG/KG | 370. | U | 350. | U | | | Indeno(1,2,3-cd)pyrene | UG/KG | 37. | 7 | 350. | U | | | Isophorone | UG/KG | 370. | Ü | 350. | Ü | | | N-Nitrosodimethylamine | UG/KG | 370. | U | | | | | N-Nitrosodiphenylamine | UG/KG | 370. | Ü | 350. | U | | | N-Nitrosodipropylamine | UG/KG | THE RESERVE AND THE PARTY | Ü | 350. | U | | | Naphthalene | UG/KG | 370.
41. | - | 350. | U | | | Nitrobenzene | UG/KG | | J | 350. | U | | | Pentachlorophenol | UG/KG | | U | 350. | U | | | Phenanthrene | UG/KG | 930. | U | 870. | U | | | Phenol | UG/KG | 740. | | 350. | U | | | Pyrene | | AND DESCRIPTION OF THE PARTY | 0 | 350. | U | | | Pyridine | UG/KG
UG/KG | 540. | Ū | 350. | U | | | Aroclor-1016 | | 370. | ~ - | 350. | U | | | | UG/KG | 19. | U | 18. | Ū | | | Arocior-1221 | UG/KG | 19. | U | 18. | U | | | Arodor-1232 | UG/KG | 19. | Ū | 18. | U | | | Aroclor-1242 | UG/KG | 19. | U | 18. | U | | 500 | Arodor-1248 | UG/KG | 19. | U | 18. | U | | | | STUDY ID: | LTTD | | LTTD | | |---------------------|--------------|------------------|----------|-------
--|----| | | | SDG: | 79605 | | 79605 | | | | | LOC ID: | LTTDL | | LTTDH | | | | | SAMP_ID: | LT4010 | | LT4011 | | | | | FIELD QC CODE: | SA | | SA | | | | | SAMP. DEPTH TOP: | 0 | | 0 | | | | | SAMP. DEPTH BOT: | 0 | | 0 | | | | | MATRIX: | SOIL | | SOIL | | | | | SAMP. DATE: | 1-Sep-00 | | 1-Sep-00 | | | SORT | PARAMETER | UNIT | VALUE | Q | VALUE | 0 | | 500 | Aroclor-1254 | UG/KG | 19. | | 18. | Ü | | 500 | Aroclor-1260 | UG/KG | 19. | | 18. | Ū | | 525 | Diesel Oil | MG/KG | | Y | 9.3 | | | 525 | Motor Oil | MG/KG | 65. | 1 - 1 | The state of s | Y | | 600 | Aluminum | MG/KG | 3,750. | - | 32,200. | | | 600 | Antimony | MG/KG | 39.5 | N | 8.6 | N | | | Arsenic | MG/KG | 19.3 | | | N | | | Barium | MG/KG | 343. | | 284. | | | | Beryllium | MG/KG | .63 | 1 | 1.4 | - | | | Cadmium | MG/KG | 7.3 | • | 2.5 | | | | Calcium | MG/KG | 10,000. | | 59,900. | | | | Chromium | MG/KG | 197. | N° | 52.6 | N° | | | Cobalt | MG/KG | 23.5 | | 11.3 | - | | | Copper | MG/KG | 3,600. | N | 8,710. | N | | | Iron | MG/KG | 591,000. | • | 26,900. | | | | Lead | MG/KG | 657. | E* | 527. | E. | | | Magnesium | MG/KG | 2,270. | • | 14,100. | • | | 600 | Manganese | MG/KG | 2,030. | • | 603. | • | | 600 | Mercury | MG/KG | .03 | | .02 | U | | THE RESERVE THE RES | Nickel | MG/KG | | E | 67. | E | | | Potassium | MG/KG | 1,270. | • | 10,200. | • | | | Selenium | MG/KG | | N | .28 | UN | | | Silver | MG/KG | 1.9 | | | BN | | | Sodium | MG/KG | 431. | В | 894. | | | | Thallium | MG/KG | 41.6 | | 2.8 | | | | Vanadium | MG/KG | 29.9 | | 63.1 | • | | 600 | Zinc | MG/KG | 874. | N* | 160. | N° | | | | STUDY ID: | LTTD | LTTD: | LTTD | LTTD | LTTD | LTTD | |-----|-----------------------------|------------------|-----------|-----------|-----------|------------------|-----------|-----------| | | | SDG: | 79890 | 79890 | 79890 | 79890 | 79890 | 79890 | | | 1 | LOC ID: | LTTDW | LTTDW | LTTDW | LTTDW | LTTDK | LTTDB | | | 1- | SAMP ID: | LT4012 | LT4012MS | LT4012MSD | LT4013 | LT4014 | LT4016 | | - | 1 | FIELD QC CODE: | SA | MS | MSD | DU | SA | SA | | | | SAMP. DEPTH TOP: | 0 | 0 | 0 | . 50 | 0 | 0 | | | - | SAMP. DEPTH BOT: | | | | | 010 | | | | | MATRIX: | SOIL | SOIL | SOIL | 1 201 | 0 | 0 | | | | | | | | SOIL | SOIL | SOIL | | | | SAMP. DATE: | 20-Sep-00 | 20-Sep-00 | 20-Sep-00 | 20-Sep-00 | 20-Sep-00 | 20-Sep-00 | | ORT | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE Q | VALUE | VALUE | | | 1,2,4-Trichlorobenzene | UG/KG | 360. U | 780. | 670 | | VALUE | VALUE Q | | | 1,2-Dichlorobenzene | UG/KG | 380. U | | | 380 U | 330. U | 330 U | | | | UG/KG | 360. U | 650. | 570 | 380. U | 330 Ū | 330. U | | | 1,3-Dichlorobenzene | | | 650. | 530 | 380. U | 330. U | 330. U | | | 1,4-Dichlorobenzene | UG/KG | 380. U | 670. | 810. | 380 U | 330. U | 330. U | | | 2,4,5-Trichlorophenol | UG/KG | 890. U | 1,600. | 1,400. | 940. U | 830. U | 840. U | | | 2,4,6-Trichlorophenol | UG/KG | 360. U | 1,500. | 1,400. | 380. U | 330. U | 330. U | | | 2,4-Dichlorophenol | UG/KG | 360. U | 840. | 690. | 380. U | 330. U | 330. U | | 400 | 2,4-Dimethylphenol | UG/KG | 360. U | 650. | 480 | 380. U | 330. U | 330. U | | | 2,4-Dinitrophenol | UG/KG | 890. U | 380. J | 1,000 | 940. U | 830 U | 840. U | | | 2,4-Dinitrotoluene | UG/KG | 360. U | 740. | 680. | 380. U | 330. U | 330. U | | | 2,6-Dinitrotoluene | UG/KG | 360. U | 920. | 790. | 380. U | 330. U | 330. U | | | 2-Chloronaphthalene | UG/KG | 360. U | 820. | 730. | 380. U | 330. U | 330. U | | | 2-Chlorophenol | UG/KG | 360. U | 720. | 660 | 380. U | 330. U | 330. U | | | 2-Methylnaphthalene | UG/KG | 360. U | 740. | 650. | 380. U | 330. U | 39. J | | | 2-Methylphenoi | UG/KG | 360. U | 820. | 650 | 380. U | 330. U | | | | 2-Nitroaniline | UG/KG | 890. U | 1,800. | | | | 330. U | | | | | | | 1,600. | 940. U | 830. U | 840. U | | | 2-Nitrophenol | UG/KG | 360. U | 810. | 700. | 380. U | 330. U | 330. U | | | 3,3'-Dichlorobenzidine | UG/KG | 360. U | 1,700. | 1,200 | 380. U | 330. U | 330. U | | | 3-Nitroaniline | UG/KG | 890 U | 1,400. | 1,100. | 940. U | 830. U | 840. U | | 400 | | UG/KG | 890. U | 1,200. | 1,200 | 940. U | 830. U | 840. U | | | 4-Bromophenyl phenyl ether | UG/KG | 360. U | 920. | 690 | 380. U | 330. U | 330. U | | | 4-Chloro-3-methylphenol | UG/KG | 360 U | 910. | 760. | 380 U | 330. U | 330. U | | 400 | 4-Chloroaniline | UG/KG | 360. U | 860. | 550 | 360 U | 330. U | 330. U | | 400 | 4-Chlorophenyl phenyl ether | UG/KG | 360. U | 760. | 680 | 380. U | 330. U | 330. U | | 400 | 4-Methylphenol | UG/KG | 360. U | 1,400. | 1,200 | 380 U | 330. U | 330. U | | | 4-Nitroaniline | UG/KG | 890. U | 1,400. | 1,200. | 380. U
940. U | 830. U | 840. U | | 400 | 4-Nitrophenol | UG/KG | 890. U | 1,900. | 2,200. | 940. U | 830. U | 840. U | | 400 | Acenaphthene | UG/KG | 360. U | 670. | 610. | 17. J | 330. U | 330. U | | | Acenaphthylene | UG/KG | 380. U | 730. | 630. | 380. U | 330. U | 84. J | | | Aniline | UG/KG | 890. U | 440. J | 180. J | 940. U | 830. U | | | 400 | Anthracene | UG/KG | 360. U | 770 | 850 | 23. J | | 840. U | | | Azobenzene | UG/KG | 380. U | 880. | 650 | | 330. U | 24. J | | | Benzidine | UG/KG | 890. U | 78. J | | 380. U | 330. U | 330. U | | | Benzo(a)anthracene | UG/KG | | | 120 J | 940. U | 830. U | 840. U | | | | UG/KG | 120. J | 800. | 720 | 130. J | 16. J | 72. J | | | Benzo(a)pyrene | | 160. J | 770. | 690 | 170. J | 17. J | 120. J | | | Benzo(b)fluoranthene | UG/KG | 140. J | 700. | 720 | 180. J | 55. JY | 260. JY | | | Benzo(ghi)perylene | UG/KG | 160. J | 720. | 790. | 180. J | 32. J | 710. | | | Benzo(k)fluoranthene | UG/KG | 190. J | 940. | 680. | 230. J | 330. U | 330. U | | | Benzoic Acid | UG/KG | 890. U | 210. J | 730. J | 940. U | 120. J | 840. U | | | Benzyl Alcohol | UG/KG | 360. U | 910. | 770. | 380. U | 330. U | 330. U | | | Bis(2-Chloroethoxy)methane | UG/KG | 360. U | 760. | 630. | 380. U | 330. U | 330. U | | | Bis(2-Chloroethyl)ether | UG/KG | 360. U | 600. | 580. | 380. U | 330. U | 330. U | | | Bis(2-Chloroisopropyl)ether | UG/KG | . 360. U | 870. | 760. | 380. U | 330. U | 330. U | | 400 | Bis(2-Ethylhexyl)phthalate | UG/KG | 36. JB | 660. | 620. | 360. U | 330. U | 46. J | | | Butylbenzylphthalate | UG/KG | 360. U | 720. | 690 | 380 U | 330. U | | | | Carbazole | UG/KG | 360. U | 760 | 700 | 380 U | | 330. U | | | Chrysene | UG/KG | 180. J | 830 | 800 | | 330. U | 330. U | | | Di-n-butylphthalate | UG/KG | 360. U | 870. | | 230. J | 38. J | 140. J | | | | UG/KG | | | 610. | 380. U | 330. U | 330. U | | | Di-n-octylphthalate | | 360. U | 720. | 630. | 380. U | 330. U | 330. U | | | Dibenz(a,h)anthracene | UG/KG | 55. J | 700. | 710. | 48. J | 330. U | 330. U | | | Dibenzofuran | UG/KG | 360. U | 760. | 680 | 380. U | 330. U | 27. J | | | Diethyl phthalate | UG/KG | 380. U | 750 | 700 | 380. U | 330. U | 330. U | | 400 | Dimethylphthalate | UG/KG | 360. U | 860. | 770. | 380. U | 330. U | 330. U | | | | STUDY ID: | LTTD | LTTD | LTTD | LTTD | LTTD | LTTD | |-----|---------------------------|------------------|--------------|-----------|-----------|------------|-----------------|---------------| | , | | SDG: | 79890 | 79890 | 79890 | 79890 | 79890 | 79890 | | | | LOC ID: | LTTDW | LTTDW | LTTDW | LTTDW | LTTDK | LTTDB | | | | SAMP_ID: | LT4012 | LT4012MS | LT4012MSD | LT4013 | LT4014 | LT4016 | | | | FIELD QC CODE: | SA | MS | MSD | DU | SA | SA | | | | SAMP. DEPTH TOP: | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | | SAMP. DEPTH BOT: | 0 | 0 | o | Ö | ō | Ö | | | | MATRIX: | SOIL | SOIL | SOIL | SOIL | SOIL | SOIL | | - | | SAMP. DATE: | 20-Sep-00 | 20-Sep-00 | 20-Sep-00 | 20-Sep-00 | 20-Sep-00 | 20-Sep-00 | | | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE | VALUEQ | VALUE | | | Fluoranthene | UG/KG | · 180. J | 660. | 690 | 180. J | 50. J | 610. | | | Fluorene | UG/KG | 360. U | 680. | 620 | 380 U | 50. J
330. U | 41. J | | 400 | Hexachlorobenzene | UG/KG | 360 U | 740 | 600 | 380. U | 330. U | 330 U | | | Hexachlorobutadiene | UG/KG |
360. U | 720. | 640. | 380. U | 330. U | 330. U | | 400 | Hexachlorocyclopentadiene | UG/KG | 360. U | 1,000. | 860 | 380. U | 330. U | 330. U | | 400 | Hexachloroethane | UG/KG | 360. U | 750. | 630 | 380 U | 330. U | 330. U | | 400 | Indeno(1,2,3-cd)pyrene | UG/KG | 120. J | 740 | 760 | 160 J | 24. J | 250 J | | 400 | Isophorone | UG/KG | 360. U | 730. | 620 | 380 U | 330.U | 330. U | | 400 | N-Nitrosodimethylamine | UG/KG | 360. U | 610. | 500. | 380. U | 330. U | 330. U | | | N-Nitrosodiphenylamine | UG/KG | 360. U | 1,000 | 780 | 380 U | 330.0 | 330. U | | 400 | N-Nitrosodipropylamine | UG/KG | 360. U | 900. | 740 | 380. U | 330 U | 330 U | | 400 | Nachthalana | UG/KG | 360. U | 640. | 590 | 380. U | 330. U | 35. J | | 400 | Nitrobenzene | UG/KG | 360. U | 830. | 730. | 380. U | 330. U | 330. U | | 400 | Pentachlorophenol | UG/KG | 890. U | 590. J | 720. J | 940. U | 830. U | 840. U | | 400 | Phenanthrene | UG/KG | 72. J | 820. | 740. | 110. J | 28. J | 670 | | | Phenol | UG/KG | 360 Ü | 720. | 670. | 380. U | 330. U | 570.
63. J | | | Pyrene | UG/KG | 250. J | 840. | 910 | 310. J | 31. J | 900. | | 400 | Pyridine | UG/KG | 360. U | 400. | 330. J | 380. Ū | 330. U | 330. U | | 500 | Aroclor-1016 | UG/KG | 18. U | 18. U | 18. U | 19. U | 16. U | 330. 0 | | | Arodor-1221 | UG/KG | 18. U | 18. U | 18. U | 19. U | 16. U | 17. U | | | Aroclor-1232 | UG/KG | 18. U | 18. U | 18.0 | 19. U | | 17. U | | | Arodor-1242 | UG/KG | 18. U | 18. U | 18. U | 19. U | 16. U | 17. U | | | Aroclor-1248 | UG/KG | 18. U | 18. U | 18. U | 19. U | | 17. U | | | Aroclor-1254 | UG/KG | 18. | 28 | 27. | 18. J | 18. U | 17. U | | 500 | Aroclor-1260 | UG/KG | 27. | 150. | | | 18. U | 17. U | | | Diesel Oil | MG/KG | 43. | 280. | 140. | 24. | 16. U | 17. Ū | | | Motor Oil | MG/KG | 5.3 | 820. | | . 68. | 5.7 J | 24. | | | Aluminum | MG/KG | 8,600 E* | 620. | 520 | 480 | 90. | 95. | | | Antimony | MG/KG | 1.4 BN | | | 12,000. E* | 11,700. E* | 42,900. E | | | Arsenic | MG/KG | 2.9 ° | | | 1.1 BN | 4.8 BN | 13.6 N | | | Barium | MG/KG | | | | 3.5 | 3.7 * | 16.6 * | | | Beryllium | MG/KG | 78.6 | | | 113. | 98.5 | 391. * | | | Cadmium | MG/KG | .62
.22 B | | | 78 | 77 | 1.7 | | | Calcium | MG/KG | .22 B | | | 2.3 | .38 B | 13.8 | | | Chromium | | | + | | 83,200 | 69,900. | 89,200. | | | Cobatt | MG/KG | 15.7 E* | | | 20.9 E° | 22.9 E* | 88.5 E | | | | MG/KG | 8.4 | | | 10.5 | 10.3 | 14.6 | | 800 | Copper | MG/KG | 39.3 EN | | | 51.1 EN | 60.6 EN | 152. E | | 600 | | MG/KG | 17,000 E° | - | | 23,800. E° | 22,900. E° | 33,500. E | | | Lead | MG/KG | 165. E | | | 171. E | 1,120. E | 1,670. E | | | Magnesium | MG/KG | 12,100. * | | | 14,400. | 16,900. * | 20,000. | | 600 | Manganese | MG/KG | 486. | | | 554. | 500. | 667. | | | Mercury | MG/KG | .03 B | | 1 | .03 B | .02 U | .37 | | | Nickel | MG/KG | 25.1 * | | | 33 4 * | 33.4 * | 58.7 * | | | Potassium | MG/KG | 1,840. | | | 1,970. | 2,250. | 20,600. | | | Selenium | MG/KG | . 22 U | | | .24 U | .26 U | 2. | | | Silver | MG/KG | .32 BN | | | .25 BN | .33 BN | 2.5 N | | | Sodium | MG/KG | 104. B | | | 121. B | 93.1 8 | 1,440. | | | Thallium | MG/KG | 2.3 | | | 2.9 | 2.2 | 4.4 | | | Vanadium | MG/KG | 20.2 E° | | | 27.7 E* | 25. E* | 102. E° | | 600 | Zinc | MG/KG | 101. EN | | | 175. EN | 130. EN | 403. El | LTTD SDG 79890 UNVALIDATED DATA | | | STUDY ID: | LTTD | LTTD | LTTD: | NONE | LTTD | LTTD | |-----|--|------------------|-----------|-----------|-----------|----------|-----------|-----------| | | | SDG: | 79890 | 79890 | 79890 | 79890 | 79890 | 79890 | | | | LOC ID: | LTTDL | LTTDH | LTTDW | NONE | | | | | | SAMP_ID: | LT4018 | LT4019 | LT4020 | LT4020RE | | LT4022 | | _ | | FIELD QC CODE: | | SA | SA | | | | | | | | SA | | | NONE | | 1 11 | | | | SAMP. DEPTH TOP: | 0 | 0 | 0 | NONE | | | | | | SAMP. DEPTH BOT: | . 0 | 0 | 0 | NONE | | 0 | | | | MATRIX: | SOIL | SOIL | SOIL | NONE | SOIL | SOIL | | | AND IN PERSON OF THE PERSON AND ADDRESS OF THE PERSON T | SAMP. DATE: | 20-Sep-00 | 20-Sep-00 | 21-Sep-00 | - | 21-Sep-00 | 21-Sep-00 | | | | | | | | | | | | ORT | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE | Q VALUE | Q VALUE | Q VALUE Q | | | 1,2,4-Trichiorobenzene | UG/KG | 330. U | 330. U | 360 | | | | | | 1,2-Dichlorobenzene | UG/KG | 330. U | 330. U | 360. | Ü 360 | | Ü 330.U | | | | | | | | | | | | | 1,3-Dichlorobenzene | UG/KG | 330. U | 330. U | 360. | U 360. | U . 330 | | | | 1,4-Dichlorobenzene | UG/KG | 330. U | 330. U | | Ŭ 360 | 330 | | | 400 | 2,4,5-Trichlorophenol | UG/KG | 840. U | 830. U | | U 900. | | | | 400 | 2,4,6-Trichlorophenol | UG/KG | 330. U | 330. U | | U 360. | U 330 | U 330. U | | 400 | 2,4-Dichlorophenol | UG/KG | 330. U | 330. U | 360. | U 360 | U 330 | U 330. U | | 400 | 2,4-Dimethylphenol | UG/KG | 330. U | 330. U | | Ü 360 | U 330 | | | | 2,4-Dinitrophenol | UG/KG | 840. U | 830. U | | Ü 900 | | | | 400 | 2,4-Dinitrotoluene | UG/KG | 330. U | 330. U | | U 360 | | | | | 2,6-Dinitrotoluene | UG/KG | 330. U | 330. U | | Ü 360 | U 330 | | | | | UG/KG | 330 U | 330. U | | U 360 | U 330 | | | | 2-Chloronaphthalene | | | | | | | | | | 2-Chlorophenol | UG/KG | 330. U | 330. U | | Ú 360 | | | | | 2-Methylnaphthalene | UG/KG | 38. J | 330. U | | U 360 | | | | 400 | 2-Methylphenol | UG/KG | 330. U | 330. U | 360. | U 360 | U 330 | U 330. U | | | 2-Nitroanikne | UG/KG | 840. U | 830. U | 900. | U 900 | 820 | | | 400 | 2-Nitrophenol | UG/KG | 330. U | 330. U | 360. | U 360 | | | | | 3,3'-Dichlorobenzidine | UG/KG | 330. U | 330 U | 360. | U 360 | | | | | | UG/KG | 840. Ü | 830. Ú | | 0 300 | 330 | 330.10 | | | 3-Nitroaniline | | | | | U 900 | U 820 | | | 400 | 4,6-Dinitro-2-methylphenol | UG/KG | 840. U | 830 U | 900. | U 900 | 820 | | | | 4-Bromophenyl phenyl ether | UG/KG | 330 U | 330. U | | U 360 | U 330 | | | 400 | 4-Chloro-3-methylphenol | UG/KG | 330. U | 330. U | | U 360 | U 330 | U 330. U | | 400 | 4-Chloroaniline | UG/KG | 330. U | 330. U | 360. | U 360 | U 330 | 330. U | | 400 | 4-Chiorophenyl phenyl ether | UG/KG | 330. U | 330. U | 360. | U 360 | | | | 400 | 4-Methylphenol | UG/KG | 330. U | 330. U | 360. | U 360 | | | | | 4-Nitroaniline | UG/KG | 840. U | 830. U | 900. | U 900 | | | | | 4-Nitrophenol | UG/KG | 840. U | 830. U | 900. | | | | | | Acenaphthene | UG/KG | | 330. U | | | | | | | | | | | 360. | | | | | | Acenaphthylene | UG/KG | 330. U | 330. U | 360. | U 360 | | | | | Aniline | UG/KG | 840. U | 830. U | 900. | U 900 | | | | | Anthracene | UG/KG | 330. U | 330. U | 43. | J 41 | J 330 | U 330. U | | 400 | Azobenzene | UG/KG | 330. U | 330. U | 360. | U 360 | U 330 | | | 400 | Benzidine | UG/KG | 840. U | 830. U | 900. | U 900 | | | | | Benzo(a)anthracene | UG/KG | 330. U | 330. U | 180. | J 200 | | | | | Benzo(a)pyrene | UG/KG | 330. U | 330. U | 250. | 3 250 | | J 330 U | | 400 | Benzo(b)fluoranthene | UG/KG | 330. U | 330. U | 310 | J 320 | | JY 87. JY | | | Benzo(ghi)perylene | UG/KG | 330. U | 330 U | 280. | | | | | | Benzo(k)fluoranthene | UG/KG | 330. U | 330. U | | J 320 | | | | | | | | | 270. | J 290 | | | | | Benzoic Acid | UG/KG | 840. U | 830. U | 900. | U 900 | | | | | Benzyl Alcohol | UG/KG | 330. U | 330. U | 360. | | | | | | Bis(2-Chloroethoxy)methane | UG/KG | 330. U | 330. U | 360. | U 360 | U 330. | U 330. U | | 400 | Bis(2-Chloroethyl)ether | UG/KG | 330. U | 330. U | 380. | U 360 | 330. | | | 400 | Bis(2-Chloroisopropyl)ether | UG/KG | 330. U | 330. U | 380. | U 360 | | | | | Bis(2-Ethylhexyl)phthalate | UG/KG | 330. U | 330. U | 47. | J 47 | | | | | Butylbenzylphthalate | UG/KG | · 330. U | 330. U | 360. | | | | | | Carbazole | UG/KG | 330. U | 330. U | 360. | | | | | | | | | | 36. | J 43 | | | | | Chrysene | UG/KG | 330. U | 330. U | 320. | J 340 | | | | | Di-n-butyiphthalate | UG/KG | 330. U | 330. U | 360. | U 360 | | | | | Di-n-octylphthalate | UG/KG | 330. U | 330. U | 360. | U 360 | | | | | Dibenz(a,h)anthracene | UG/KG | 330. U | 330. U | 85. | J 91 | | | | | Dibenzofuran | UG/KG | . 28. J | 330. U |
360. | U 360 | | | | | Diethyl phthalate | UG/KG | 330. U | 330. U | 360. | U 380 | | | | | Dimethylphthalate | UG/KG | 330. U | | | | | | | | i Parient Album in 191912 | UNIVO | 330. 0 | 330. U | 360. | U 360 | U 330 | U 330. U | | | STUDY ID: | LTTD | LTTD | LTTD | NONE | LTTD | LTTD | |-------------------------------|------------------|--|------------|-------------------------|----------|------------|------------| | | SDG: | 79890 | 79890 | 79890 | 79890 | 79690 | 79890 | | | LOC ID: | LTTDL | LTTDH | LTTDW | NONE | LTTDK | LTTOB | | | SAMP_ID: | LT4018 | LT4019 | LT4020 | LT4020RE | LT4021 | LT4022 | | | FIELD QC CODE: | SA | SA | SA | NONE | SA | SA | | | SAMP. DEPTH TOP: | 0 | 0 | 0 | NONE | 0 | 0 | | | SAMP. DEPTH BOT: | 0 | 0 | 0 | NONE | ō | 0 | | | MATRIX: | SOIL | SOIL | SOIL | NONE | SOIL | SOIL | | - | SAMP. DATE: | 20-Sep-00 | 20-Sep-00 | 21-Sep-00 | | 21-Sep-00 | 21-Sep-00 | | RT PARAMETER | UNIT | VALUE Q | VALUE | VALUE Q | VALUE | VALUE | VALUE | | 400 Fluoranthene | UG/KG | 59. J | 330 U | 360 | 350 J | 73. J | 290. J | | 400 Fluorene | UG/KG | 330. U | 330. U | | 20. J | | | | 400 Hexachlorobenzene | UG/KG | 330. U | 330. U | | | | | | | UG/KG | AND ADDRESS OF THE PARTY | | 360. U | 360. U | 330. U | 330. U | | 400 Hexachlorobutadiene | | | | 360. U | 360. U | 330. U | 330. U | | 400 Hexachlorocyclopentadiene | UG/KG | 330. U | 330. U | 360. U | 360. U | 330 U | 330. U | | 400 Hexachloroethane | UG/KG | 330. U | 330. U | 360. U | 360 U | 330 U | 330. U | | 400 Indeno(1,2,3-cd)pyrene | UG/KG | 330. U | 330 U | 230. J | 280. J | 34. J | 50. J | | 400 Isophorone | UG/KG | 330. U | 330. U | 360 U | 380. U | 330. U | 330. U | | 400 N-Nitrosodimethylamine | UG/KG | 330. U | 330. U | 360. U | 360. U | 330. Ū | 330. U | | 400 N-Nitrosodiphenylamine | UG/KG | 330. U | 330. U | 360. U | 360. U | 330. U | 330. U | | 400 N-Nitrosodipropylamine | UG/KG | 330. U | 330 U | 360. U | 360. U | 330. U | 330. U | | 400 Naphthalene | UG/KG | 330. U | 330. U | 16. J | 17. J | 330. U | 330. U | | 400 Nitrobenzene | UG/KG | 330. U | 330. U | 360. U | 360. U | 330. Ü | 330. U | | 400 Pentachlorophenol | UG/KG | 840. U | 830. U | 900 U | 900. U | 820. Ü | 830. U | | 400 Phenanthrene | UG/KG | 330. J | 330. U | 210. J | 220. J | 46. J | 150. J | | 400 Phenol | UG/KG | 330. U | 330. U | 360. U | 360. U | 330. U | 330. U | | 400 Pyrene | UG/KG | 48. J | 330. U | 420. | 450 | 52. J | 280. J | | 400 Pyridine | UG/KG | 330. U | 330. U | 380. U | 360. U | 330. U | | | 500 Aroclor-1016 | UG/KG | 17 U | 17. U | 18. U | 360.10 | 17. U | 330. U | | 500 Aroclor-1221 | UG/KG | 17. Ü | 17. U | 10.10 | | | 18. U | | 500 Aroclor-1232 | UG/KG | 17. U | | 18. U
18. U
18. U | | 17. Ü | 16. U | | 500 Aroclor-1232 | UG/KG | 17. U | 17. U | 18. 0 | | 17. U | 16. U | | 500 Arodor-1242 | UG/KG | 17. U | | 18. U | - | 17. U | 16. U | | | | | 17. U | 18. U | | 17. U | 16. U | | 500 Aroclor-1254 | UG/KG | 17. U | 17. U | 25. | | 17. U | 16. U | | 500 Aroclor-1260 | UG/KG | 17. U | 17. U | 41. | | 17. U | 16. U | | 525 Diesel Oil | MG/KG | 68. | 6.7 U | | | 13. | 9.6 | | 525 Motor Oil | MG/KG | 47. | 8.7 U | 680. | | 100. | 40. | | 600 Aluminum | MG/KG | 19,600. E* | 28,400. E* | 9,980. E* | | 10,600. E* | 43,200. E° | | 600 Antimony | MG/KG | 15.4 N | 12.3 N | 2. BN | | 1.8 BN | 10.5 N | | 600 Arsenic | MG/KG | 1.3 * | 3.8 | 3.4 | | 3.3 * | 16.1 * | | 600 Barium | MG/KG | 237. | 283. • | 99 9 | | 93.9 | 386. | | 600 Beryllium | MG/KG | .98 | 1.2 | 68 | | 73 | 1.7 | | 600 Cadmium | MG/KG | .03 U | 3.2 | 37 8 | | .16 8 | 10.4 | | 600 Calcium | MG/KG | 35,300 * | 55,000. | 102,000 | | 92,500. | 93,800. | | 600 Chromium | MG/KG | 90.7 E* | 97.5 E* | 17.7 E* | 1 - | 19.1 E* | 93,800. | | 600 Cobalt | MG/KG | 17.2 | 13.2 | 9.5 | - | 9.7 | | | 600 Copper | MG/KG | 663. EN | 2,430. EN | 53.7 EN | | | 14.3 | | 600 Iron | MG/KG | 316,000. E* | 77,400. E* | 19,700. E° | | 49.7 EN | 140. EN | | 600 Lead | MG/KG | 479. E | 60.3 E | 243. E | * | 20,700. E* | 30,700. E° | | 600 Magnesium | MG/KG | 6,960. | 13,200. | 15,700. | | 227. E | 1,410. E | | 600 Manganese | MG/KG | 1,340. | 718. | | | 13,800. * | 21,900. ° | | 600 Mercury | MG/KG | THE RESERVE OF THE PARTY | | 451. | | 471. | 635. | | | | .09 | .02 U | .03 B | - | .02 U | .47 | | 600 Nickel | MG/KG | 62.2 * | 103. * | 29. | | 30.2 * | 54.3 ° | | 600 Potassium | MG/KG | 6,210. | 11,200. | 2,120 | | 2,350. | 20,900. | | 600 Selenium | MG/KG | 6.5 | .22 U | .25 U | | 27 U | 2.6 | | 600 Silver | MG/KG | 1.1 N | 1.2 N | .25 BN | | .38 BN | 2.1 N | | 600 Sodium | MG/KG | 78. B | 790. | 127. B | | 181. B | 1,440. | | 600 Thallium | MG/KG | 19.4 | 5.6 | 2.3 | 1 | 2.5 | 3.6 | | 600 Vanadium | MG/KG | 51.1 E* | 63.1 E° | 21.4 E* | 1 | 21.8 E° | 99.5 E° | | 600 Zinc | MG/KG | 481. EN | 214. EN | 119. EN | | 122, EN | 368. EN | | | | STUDY ID: | LTTD | NONE | LTTD | LTTD | NONE ! | LTTD | |------|-----------------------------|------------------|-----------|---------------------|-----------|-----------|------------------|-----------------| | | | SDG: | 79890 | 79890 | 79890 | 79890 | 79890 | 79890 | | | | LOC ID: | LTTOL | NONE | LTTDH | LTTDW | NONE | LTTDK | | | | SAMP ID: | LT4028 | LT4026RE | LT4027 | LT4029 | LT4029RE | LT4030 | | | | FIELD QC CODE: | SA | NONE | SA | DU | NONE | | | | | SAMP. DEPTH TOP: | 0 | | 0 | | | SA | | | | | 0 | NONE | 1 - | 0 | NONE | 0 | | | | SAMP, DEPTH BOT: | | NONE | 0 | 0 | NONE | 0 | | | | MATRIX: | SOIL | NONE | SOIL | SOIL | NONE | SOIL | | | | SAMP. DATE: | 21-Sep-00 | | 21-Sep-00 | 22-Sep-00 | | 22-Sep-00 | | | | | | | | | | | | SORT | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE | VALUE | VALUE | | 400 | 1,2,4-Trichlorobenzene | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | 400 | 1,2-Dichlorobenzene | UG/KG | 340. U | 340. U | 330. U | 360 U | 360. U | 330. U | | 400 | 1,3-Dichlorobenzene | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | 400 | 1,4-Dichlorobenzene | UG/KG | 340. U | 340. U | 330 U | 360 U | 360. U | 330. U | | 400 | 2,4,5-Trichlorophenol | UG/KG | 850. U | 850. U | 820 U | 910. U | 910. U | 830. U | | | 2,4,6-Trichlorophenol | UG/KG | 340. U | 340. U | 330 U | 360. U | 360. U | 330. U | | | 2,4-Dichlorophenol | UG/KG | 340. U | 340. U | 330 U | 360 U | 360. U | 330. U | | | 2,4-Dimethylphenol | UG/KG | 340 U | 340. U | 330 U | | | | | | 2,4-Dinitrophenol | UG/KG | 850. U | 850. U | 820. U | | 360. U
910. U | 330. U | | 400 | 2,4-Dinitrophenol | UG/KG | 340 U | | | | | 830 U | | | 2,6-Dinitrotoluene | UG/KG | 340 U | No. and Co. and Co. | 330 U | 360 U | 360. U | 330. U | | | | | | | 330. U | 360 U | 360. U | 330. U | | | 2-Chloronaphthalene | UG/KG | 340 U | 340. U | 330 U | 360 U | 360. Ü | 330. Ü | | | 2-Chlorophenol | UG/KG | 340. U | 340. U | 330. U | 380. U | 360. U | 330. U | | | 2-Methylnaphthalene | UG/KG | · 31. J | 15. J | 330. U | 24 J | 25. J | 330. U | | 400 | 2-Methylphenol | UG/KG | 340. U | 340. U | 330 U | 380. U | 360. U | 330. U | | 400 | 2-Nitroaniline | UG/KG | 850. U | 850. U | 820 U | 910. U | 910. U | 830. U | | 400 | 2-Nitrophenol | UG/KG | 340 U | 340. U | 330 U | 360 U | 360. U | 330. U | | | 3,3'-Dichlorobenzidine | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | | 3-Nitroaniline | UG/KG | 850 U | 850. U | 820. U | 910. U | 910. U | 830. U | | | 4,6-Dinitro-2-methylphenol | UG/KG | 850. U | 850. U | 820. U | 910. U | 910. U | 830. U | | 400 | 4-Bromophenyl phenyl ether | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | | 4-Chloro-3-methylphenol | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | | 4-Chloroaniline | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330 U | | 400 | 4-Chlorophenyl phenyl ether | UG/KG | 340. U | 340. U | 330 U | 360. U | 360. U | 330. U | | 400 | 4-Methylphenol | UG/KG | 340 U | 340. U | 330. U | 360. U | 360. U | 330. U | | 400 | 4-Nitroaniline | UG/KG | 850. U | 850. U | 820. U | 910. U
 910. U | 830. U | | 400 | 4-Nitrophenol | UG/KG | 850. U | 850. U | 820. U | 910. U | 910. U | 830. U | | 400 | Acenaphthene | UG/KG | 340. U | 340. U | 330 U | 56. J | 58. J | 330. U | | | Acenaphthylene | UG/KG | 340. U | 340. U | 330. U | 360 U | 360. U | 330. U | | 400 | Anitine | UG/KG | 850. U | 850. U | 820 U | 910 U | 910. U | 830. U | | 400 | Anthracene | UG/KG | 340. U | 340. U | 330 U | 91. J | 88. J | 330. U | | | Azobenzene | UG/KG | 340. U | 340. U | 330 U | 360. U | 360. U | 330. U | | 400 | Senzidine | UG/KG | 850. U | 850. U | 820 U | 910. U | 910 U | | | | Benzo(a)anthracene | UG/KG | 340. U | 340. U | 330. U | 300 J | 320. J | 830. U
66. J | | | Benzo(a)pyrene | UG/KG | 340. U | 340. U | 330 U | 360 J | 350. J | 73. J | | | Benzo(b)fluoranthene | UG/KG | 340. U | 340. U | 330 U | 490. | 420. | | | | Benzo(ghi)perylena | UG/KG | 340. U | 340. U | 330. U | 430 | | 200. JY | | | Benzo(k)fluoranthene | UG/KG | 340. U | 340. U | 330. U | | 390. | 120. J | | | Benzoic Acid | UG/KG | 850. U | 850. U | | 440. | 440. | 330. U | | | Benzyl Alcohol | UG/KG | 340. U | | 820. U | 910. U | 910. U | 230. J | | | | | | 340. U | 330. U | 360. U | 360. U | 330. U | | | Bis(2-Chloroethoxy)methane | UG/KG | 340. U | 340. U | 330. U | 380. U | 360. U | 330. U | | | Bis(2-Chloroethyl)ether | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | | Bis(2-Chloroisopropyl)ether | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | | Bis(2-Ethylhexyl)phthalate | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | 400 | Butylbenzylphthalate | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | | Carbazole | UG/KG | 340. U | 340. U | 330. U | 73. J | 70. J | 330. U | | | Chrysene | UG/KG | 340. U | 340. U | 330. U | 440. | 480. | 110. J | | | Di-n-butylphthalate | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | | Di-n-octylphthalate | UG/KG | 340. U | 340. U | 330. U | 360. U | 360. U | 330. U | | | Dibenz(a,h)anthracene | UG/KG | 340. U | 340. U | 330. U | 140. J | 150. J | 50. J | | | Dibenzofuran | UG/KG | 21. J | 340. U | 330. U | 36. J | 42. J | 330. U | | 400 | Diethyl phthalate | UG/KG | 340. U | 340. U | 330. U | 360. U | 380. U | 330. U | | | Dimethylphthalate | UG/KG | 340. U | 340 U | 330. U | 360 U | 000.10 | 330.10 | | | | STUDY ID: | LTTD | NONE | LTTD | | LTTD | | NONE | LT | | |-----|------------------------------------|------------------|------------|--------------------------------|--------------|------|-----------|-----|----------------------------|---------|--------| | | - | SDG: | 79890 | 79890 | 79890 | 1 | 79890 | i | 79890 | 798 | 90 | | | | LOC ID: | LTTDL | NONE | LTTDH | | LTTDW | | NONE | LTT | DK: | | | | SAMP_ID: | LT4026 | LT4026RE | LT4027 | | LT4029 | | LT4029RE | LT40 | 30 | | | | FIELD QC CODE: | SA | NONE | SA | | DU | | NONE | | SA | | | | SAMP. DEPTH TOP: | 0 | NONE | 0 | | 0 | - | NONE | | 0 | | - | | SAMP. DEPTH BOT: | ol | NONE | 0 | | 0 | - | NONE | | 0 | | | | MATRIX: | SOIL | NONE | SOIL | - | SOIL | | NONE | SC | • | | - | | SAMP. DATE: | 21-Sep-00 | HOILE | 21-Sep-00 | 1 | | - | NONE | | | | - | | GAMIT. DATE. | 21-049-00 | | 21-3ep-00 | | 22-Sep-00 | - | | 22-Sep- | 00 | | DRT | PARAMETER | UNIT | VALUE | VALUE | VALUE | 0 | VALUE | | VALUE | | | | | Fluoranthene | UG/KG | 98. J | 340 U | 330. | G I | | ų | | | UEQ | | | Fluorene | UG/KG | 340. U | 340. U
340. U | 330. | 0 | 600 | | 570 | | 10 1 | | | Hexachlorobenzene | UG/KG | 340. U | 340. U | 330.
330. | U | 55. | 1 | 55. J | | 30. U | | | Hexachlorobutadiene | UG/KG | 340. U | 340. U | 330. | U | 360. | U | 360. U | | 30. U | | | Hexachlorocyclopentadiene | UG/KG | 340. U | | 330. | U | 360 | n _ | 360. U | | 30. U | | 400 | Hexachlorocyclopentaciene | UG/KG | 340. U | 340. U | 330. | | 360 | U | 360. U | 33 | 30. U | | | Indeno(1,2,3-cd)pyrene | UG/KG | | 340. U | 330. | U _ | 360 | U | 360. U
340. J
360. U | 33 | 30. U | | | | | | | | | 360. | | 340. J | 10 | 00. J | | | Isophorone | UG/KG | 340. U | 340. U | 330. | | 360. | U | 360. U | | 30. U | | | N-Nitrosodimethylamine | UG/KG | 340. U | 340. U | 330. | Ū | 360 | U | 360 U | | 30 U | | 400 | N-Nitrosodiphenylamine | UG/KG | 340 U | 340. U | 330 | U | 360. | U | 360. U | | 30. U | | 400 | N-Nitrosodipropylamine | UG/KG | 340. U | 340. U | 330. | U | 360. | U | 360. U | | 30. U | | 400 | Naphthalene
Nitrobenzene | UG/KG | 340. U | 340. U | 330
330 | U | 42. |) | 46. J | | 30. U | | 400 | Nitrobenzene | UG/KG | 340. U | 340 U | 330. | Ü | 360 | U | 360. U | | 30. U | | 400 | Pentachlorophenol | UG/KG | 850. U | 850 U | 820 | lu 1 | 910. | Ū | 910. U | 8: | 30. U | | 400 | Phenanthrene | UG/KG | 230. J | 140. J | 330 | lu I | 440 | - | 440. | | 88. J | | 400 | Phenol | UG/KG | 340. Ü | 340 U | 330 | Ü | 360. | i) | 360 U | | 30. U | | 400 | Pyrene
Pyridine
Aroclor-1016 | UG/KG | 69. J | 340 U | 330 | iŭ i | 680. | - | 790. | | 20. J | | 400 | Pyridine | UG/KG | 340 U | 340 U | 330 | 11 | 360. | 11 | 360. U | | | | 500 | Aroclor-1016 | UG/KG | 17. U | 210 10 | 17. | - | | Ü - | 300. 0 | | | | 500 | Aroclor-1221 | ÜG/KG | 17. Ü | - | 17 | 0 | 18. | | | | 16. U | | 500 | Aroclor-1232 | UG/KG | 17. U | | 17. | 10 | 18. | - | | | 16. U | | 500 | Aroclor-1242 | UG/KG | 17. U | | 17. | 0 | | | | | 16. U | | 500 | Aroclor-1248 | UG/KG | 17. U | | | 0 | 18. | | | | 16. U | | | Aroclor-1254 | UG/KG | 17. U | | 17. | U | 18. | 0 | | | 16. U | | | Aroclor-1260 | UG/KG | | | 17. | U | 24. | | | | 16. U | | | Diesel Oil | MG/KG | 17. U | | 17. | U _ | 34. | | | | 16. U | | | Motor Oil | | 35.
20. | | | | 81. | | | | 19. J | | | | MG/KG | | | 6.7 | U | 720. | | | 30 | 30. | | 600 | Aluminum | MG/KG | 22,700. E* | | 26,600. | | 11,600. | E° | | 10,80 | 00. E° | | 600 | Antimony | MG/KG | 13.6 N | | 8.2 | N | 2.1 | BN | | | 3.7 BN | | | Arsenic | MG/KG | 4.9 * | | 4.1 | | 3.4 | • | | | 3.6 | | 600 | Barium | MG/KG | 273. * | | 255. | • | 98 1 | | | | 9. | | 600 | Beryllium | MG/KG | 1.1 | | 12 | | .76 | | | 10 | 71 | | 600 | Cadmium | MG/KG | .04 U | | 15 | | .26 | В | | | 39 | | 600 | Calcium
Chromium | MG/KG | 45,000. | | 62,100 | | 62,600. | | - | 65,20 | | | 600 | Chromium | MG/KG | 100 E* | | 68.7 | E. | 20.6 | E. | | | | | 600 | Cobalt | MG/KG | 17.2 | _ | 12.6 | 1- | 10.6 | - | - | | 1.3 E* | | 600 | Copper | MG/KG | 1,050. EN | | 3,150 | EN | | EN | Authority speeds | | | | 600 | Iron | MG/KG | 222.000 E* | | | E | 22,700. | E. | | | 2.3 EN | | 600 | Iron
Lead | MG/KG | 527 E | | | E | 257. | ž | | | X0. E* | | | Magnesium | MG/KG | 9.530 | | 13,100. | - | 16,700 | - | - | 32 | | | | Manganese | MG/KG | 1,160. | for blacking to the control of | 589. | | | - | | 18,70 | | | | Mercury | MG/KG | .07 | | .02 | - | 506. | | | 46 | | | | Nickel | MG/KG | 82.9 | | | | .03 | 8 - | | | 02 U | | | Potassium | MG/KG | | | 85.2 | | 32 9 | | | | 0.4 * | | | Selenium | MG/KG | 7,080. | | 8,010. | | 2,190. | | | 2,20 | 0. | | | Silver | | 3.1 | | | BN | .28 | | | | .2 U | | | | MG/KG | 1.9 N | | .61 | BN | .29 | | | | 32 BN | | | Sodium | MG/KG | 372 B | | 837. | | 97.1 | 8 | | | 3. B | | | Thallium | MG/KG | 13.2 | | 3. | | 2.2 | | | | .3 | | | Vanadium | MG/KG | 52.7 E° | | 54.8 | E. | 21.6 | E. | | | .6 E° | | 600 | Zinc | MG/KG | 412. EN | | 198. | | 139. | | | | 5. EN | LTTD SDG 79890 UNVALIDATED DATA | | | STUDY ID | LTTD | LTTD | LTTD | LTTD | LTTD | LTTD | |-----|--|------------------|-----------|-----------|-----------|-----------|------------------|--| | | | SDG: | 79890 | 79890 | 79890 | 79890 | 79890 | 79890 | | | | LOC ID: | LTTDB | LTTDL | LTTDH | LTTDW | LTTDK | LTTDB | | | | SAMP ID: | LT4032 | LT4034 | LT4035 | LT4036 | LT4037 | LT4038 | | | | FIELD QC CODE: | · SA | SA | SA | SA | SA | SA | | | ton and | SAMP. DEPTH TOP: | 0 | 0 | 0 | 0 - | 0 | 0 | | | | SAMP. DEPTH BOT: | 0 | 0 | 1 | | 0 | | | | | MATRIX: | SOIL | SOIL |
SOIL | SOIL | SOIL | SOIL | | | | SAMP. DATE: | 22-Sep-00 | 22-Sep-00 | 22-Sep-00 | 23-Sep-00 | 23-Sep-00 | 23-Sep-00 | | | | | | | 22.000 | 200cp 00 | 25-04-00 | 23-3ep-00 | | ORT | PARAMETER | UNIT | VALUE Q | VALUE Q | VALUE Q | VALUE | VALUE Q | VALUE | | | 1,2,4-Trichlorobenzene | UG/KG | 330. U | 330. U | 330 U | 360 U | 330. U | 340 U | | | 1,2-Dichlorobenzene | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | | 1,3-Dichlorobenzene | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | | 1,4-Dichlorobenzene | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | | 2,4,5-Trichlorophenol | UG/KG | 830. U | 830. U | 830. U | 900. U | 830. U | 850. U | | | 2,4,6-Trichiorophenol | UG/KG | 330. U | 330. U | 330. U | 360 U | 330. U | 340. U | | 400 | 2,4-Dichlorophenol | UG/KG | 330 U | 330. U | 330. U | 360. U | 330. U | 340. U | | | 2,4-Dimethylphenol | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | 400 | 2,4-Dinitrophenol | UG/KG | 830. U | 830. U | 830. U | 900. U | | | | 400 | 2,4-Dinitrotoluene | UG/KG | 330. U | 330. U | 330. U | 360. U | 830. U
330. U | 850. U
340. U | | | 2,6-Dinitrotoluene | UG/KG | 330. U | 330. U | 330.0 | 360. U | 330. U | 340. U | | | 2-Chloronaphthalene | UG/KG | 330. U | 330. U | 330 U | 360 U | 330. U | | | 400 | 2-Chlorophenol | UG/KG | 330. U | 330 U | 330. U | 360. U | 330. U | 340. U | | | 2-Methylnaphthalene | UG/KG | 330. U | 330. U | 330 U | 360. U | 330. U | 340. U | | | 2-Methylphenol | UG/KG | 330. U | 330. U | 330 U | 360 U | 330. U | AND DESCRIPTION OF THE OWNER, NAME AND ADDRESS N | | | 2-Nitroanitine | UG/KG | 830. U | 830. U | 830 U | 900. U | 830. U | | | | 2-Nitrophenol | UG/KG | 330 U | 330. U | 330 U | 360.0 | 330. U | 850. U | | 400 | 3,3'-Dichlorobenzidine | UG/KG | 330. U | 330. U | 330 U | 360 U | | 340. U | | | 3-Nitroaniline | UG/KG | 830. U | 830. U | 830 U | 900 U | | 340. U | | | 4,6-Dinitro-2-methylphenol | ÜG/KG | 830. U | 830. U | 830 U | 900. U | 830. U | 850. U | | 400 | 4-Bromophenyl phenyl ether | UG/KG | 330 U | 330. U | 330 U | 1 | | 850. U | | 400 | 4-Chloro-3-methylphenol | UG/KG | 330. U | 330. U | 330 U | 360. U | 330. U | 340. U | | | 4-Chloroaniline | UG/KG | 330. U | 330. U | 330. U | | 330. U | 340. U | | | 4-Chlorophenyl phenyl ether | UG/KG | 330. U | 330. U | 330. U | 360 U | 330. U | 340. U | | | 4-Methylphenol | UG/KG | 330. U | 330. U | 330. U | 360 U | 330. U | 340. U | | 400 | 4-Nitrosniline | UG/KG | 830. U | 830. U | 830. U | 900 U | 330. U | 340. U | | | 4-Nitrophenol | UG/KG | 630. U | 830. U | 830. U | 900. U | 630. U | 850. U | | | Acenaphthene | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 850. U | | | Acenaphthylene | UG/KG | 330. U | 330. U | 330. U | 360 U | 330. U | 340. U | | | Aniline | UG/KG | 830. U | 830. U | 830. U | 900. U | 830. U | | | 400 | Anthracene | UG/KG | 330. U | 330. U | 330 U | 36. J | 330. U | 850. U | | 400 | Azobenzene | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | | Benzidine | UG/KG | 830. U | 830. U | 830 U | 900. U | 830. U | | | | Benzo(a)anthracene | UG/KG | 330. U | 330. U | 330 11 | 120. J | 330. U | 850. U | | | Benzo(a)pyrene | UG/KG | 330. U | 330. U | 330. U | 120. J | 330. U | 340. U | | | Benzo(b)fluoranthene | UG/KG | 57. JY | 330. U | 330 U | 130. J | | 340. U | | | | UG/KG | 57. J | 330. U | 330 U | 110. J | 330. U | 340. U | | 400 | Benzo(ghi)perylene
Benzo(k)fluoranthene | UG/KG | 330. U | 330. U | 330 U | 130. J | 330. U | 340. U | | 400 | Benzoic Acid | UG/KG | 830. U | 830. U | 830. U | 900. U | 330. U | 340. U | | | Benzyl Alcohol | UG/KG | 330. U | 330. U | 330. U | 360. U | 830. U
330. U | 850. U | | | Bis(2-Chloroethoxy)methane | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | 400 | Bis(2-Chloroethyl)ether | UG/KG | 330. U | 330. U | 330 U | 360. U | 330. U | 340. U | | | Bis(2-Chloroisopropyl)ether | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | 400 | Bis(2-Ethylhexyl)phthalate | UG/KG | 37. J | 330. U | 330. U | 360. U | 330. U | | | | Butylbenzylphthalate | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | | Carbazola | UG/KG | 330. U | 330 U | 330. U | 360. U | 330. U | 340. U | | | Chrysene | UG/KG | 39. J | 330. U | 330.U | 150 J | | 340. U | | | Di-n-butylphthalate | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | | Di-n-octylphthalate | UG/KG | 330. U | 330. U | 330. U | | 330. U | 340. U | | | Dibenz(a,h)anthracene | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | | Dibenzofuran | UG/KG | 330. U | 330. U | | 39. J | 330. U | 340. U | | | Diethyl phthalate | UG/KG | 330. U | 330. U | 330 U | 360. U | 330. U | 340. U | | 700 | Dimethylphthalate | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | , | | STUDY ID: | LTTD | LTTD | LTTD | LTTD | LTTD | LTTD | |-----|---------------------------|------------------|------------|--------------|------------|------------|------------|------------| | | | SDG: | 79890 | 79890 | 79890 | 79890 | 79890 | 79890 | | | | LOC ID: | LTTDB | LTTOL | LTTDH | LTTDW | LTTDK | LTTDB | | | | SAMP_ID: | LT4032 | LT4034 | LT4035 | LT4036 | LT4037 | LT4038 | | | | FIELD QC CODE: | SA | SA | SA | SA | SA | SA | | i | | SAMP. DEPTH TOP: | 0 | | 0 | | 0 | | | | | SAMP. DEPTH BOT: | 0 | | | | | 0 | | | | MATRIX: | SOIL | SOIL | 201 | 0 | 0 | 0 | | | | SAMP. DATE: | | | SOIL | SOIL | SOIL | SOIL | | | | SAMP. DATE: | 22-Sep-00 | 22-Sep-00 | 22-Sep-00 | 23-Sep-00 | 23-Sep-00 | 23-Sep-00 | | | PARAMETER | UNIT | VALUE | VALUE | VALUE | VALUE Q | VALUE | VALUE | | | Fluoranthene | UG/KG | 180. J | 330. U | 330 U | 300 J | 330. U | 340 U | | 400 | Fluorene | UG/KG | 330. U | 330. U | 330. U | 360 U | 330 U | 340. U | | 400 | Hexachlorobenzene | UG/KG | 330. U | 330. U | 330. U | 360 U | 330 U | 340. U | | 400 | Hexachlorobutadiene | UG/KG | 330. U | 330. U | 330. U | 360 Ü | 330. U | 340. U | | 400 | Hexachlorocyclopentadiene | UG/KG | 330. U | 330 U | 330. U | 360 U | 330. U | | | 400 | Hexachloroethane | UG/KG | 330. U | 330. U | 330. U | | | 340. U | | | Indeno(1,2,3-cd)pyrene | UG/KG | 20. J | 330 U | 330. U | | 330. U | 340. U | | | Isophorone | UG/KG | 330. U | 330 U | | 98. J | 330. U | 340. U | | | N-Nitrosodimethylamine | UG/KG | 330. U | | 330. U | 380. U | 330 U | 340. U | | | | | | | 330. U | 360. U | 330. U | 340 U | | | N-Nitrosodiphenylamine | UG/KG | 330. U | 330. U | 330 U | 360 U | 330. U | 340. U | | | N-Nitrosodipropylamine | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | | Naphthalene | UG/KG | 330. U | 330 U | 330. U | 360. U | 330. U | 340. U | | | Nitrobenzene | UG/KG | 330. U | 330. U | 330. U | 360. U | 330 U | 340. U | | | Pentachlorophenol | UG/KG | 830. U | 830. U | 830 U | 900 U | 830. U | 850. U | | 400 | Phenanthrene | UG/KG | 97. J | 100. J | 330. U | 210. J | 330. U | 40. J | | 400 | Phenol | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | 340. U | | 400 | Pyrene | UG/KG | . 130. J | 330. U | 330. U | 300. J | 330. U | 340. U | | 400 | Pyridine | UG/KG | 330. U | 330. U | 330. U | 360. U | 330. U | | | 500 | Aroclor-1018 | UG/KG | 16. U | 16. U | 17. U | 18. U | | 340 U | | 500 | Aroclor-1221 | UG/KG | 16. U | 18. U | 17. Ü | 18. U | 17. U | 17. U | | | Aroclor-1232 | UG/KG | 16. U | 16. U | 17. U | | 17. U | 17. U | | | Aroclor-1242 | UG/KG | 16. U | 18. U | 17. U | 18. U | 17. U | 17. U | | | Aroclor-1248 | UG/KG | 18. U | 16. U | | 18. Ú | 17. U | 17. U | | | Arodor-1254 | UG/KG | 18. U | - 1 | 17. U | 18. U | 17. U | 17. U | | | Aroclor-1260 | UG/KG | 16. U | | 17. U | 16. U | 17. U | 17. U | | | Diesel Oil | | | 18. U | 17. Ú | 18. Ü | 17. U | 17. U | | 525 | Motor Oil | MG/KG | 6.2 J | 12 | 6.6 U | 18. | 6.6 U | 8.6 | | | | MG/KG | 52. | 7.5 | 6.6 U | 93. | 6.6 U | 32. | | | Aluminum | MG/KG | 40,300 E° | 25,800. E° | 30,400. E* | 11,100 E° | 11,500. E* | 41,300. E° | | | Antimony | MG/KG | 11.4 N | 9.8 N | 5.8 N | .57 BN | 2.4 BN | 8.8 N | | | Arsenic | MG/KG | 13.8 * | 3.2 ° | 4.3 * | 3.9 | 3.5 | 13.7 ° | | | Barium | MG/KG | 358. * | 355. | 251. | 72.2 | 76.4 ° | | | | Beryllium | MG/KG | 1.6 | 1.1 | 1.3 | 73 | .73 | 357. * | | 600 | Cadmium | MG/KG | 11.6 | .03 U | 82 | .03 U | | 1.7 | | | Calcium | MG/KG | 85,000. | 54,200. | 62,200 | | 5.9 | 9.6 | | | Chromium | MG/KG | 83.4 E* | | | 61,400. | 68,000. | 100,000. | | | Cobalt | MG/KG | 13.5 | 108. E* | 53.9 E* | 21.4 E° | 22.1 E° | 85. E* | | | Copper | MG/KG | | | 12.9 | 11.2 | 11.2 | 13.8 | | 600 | | | 136. EN | | 4,720. EN | 32 EN | 42.9 EN | 113. EN | | | | MG/KG | 29,800. E° | 102,000. 2 | 34,100. E* | 23,800. E* | 21,500. E* | 27,800. E* | | | Lead | MG/KG | 1,310. E | 53.9 E | 40.2 E | 32.7 E | 270. E | 1,230. E | | | Magnesium | MG/KG | 22,400. | 10,700. * | 12,800. | 15,300. | 14,200. | 26,100. * | | | Manganese | MG/KG | 602. | 932. | 607. | 528. | 486. | 682. | | | Mercury | MG/KG | .48 | .08 | .02 U | .02 U | .02 U | | | | Nickel | MG/KG | 50.4 ° | 67.2 ° | 60.6 | 30.5 | 29.5 | .21 | | | Polassium | MG/KG | 18,000. | 7.480 | 9.050. | 1,760. | 2,800. | 45.6 | | 600 | Selenium | MG/KG | 2.8 | 1.4 | .25 U | 1,760. | | 18,900. | | 600 | Silver | MG/KG | 2.4 N | .63 N | .49 BN | | .22 U | 3.3 | | | Sodium | MG/KG | 1,310. | 668. | 927. | .17 BN | 1.3 N | 1.9 N | | 600 | Theilium | MG/KG | 3.1 | 9.5 | | 91.3 B | - 185. B | 1,510. | | | Vanadium | MG/KG | 91.1 E* | | 3.7 | 2.5 | 2.3 | 4.3 | | 600 | | MG/KG | | | 62.3 E° | 20.1 E* | 20.5 E* | 92.2 E° | | 300 | LIFE | MONG | 340. EN | 336. EN | 150. EN | 67.3 EN | 71.3 EN | 262. EN | LTTD SDG 79890 UNVALIDATED DATA | | | STUDY ID | NONE | | LTTD | | |--------
--|------------------|--------------|-----|--------------|-----| | | 1 | SDG: | 79890 | | 79890 | 1 | | | | LOC ID: | NONE | [[| LTTDC | | | 10.000 | 100000000000000000000000000000000000000 | SAMP_ID: | LT4038RE | | LT4039 | L | | _ | | FIELD QC CODE: | NONE | | SA | | | | | SAMP. DEPTH TOP: | NONE | | 0 | | | | | SAMP DEPTH BOT: | NONE | | 0 | | | | | MATRIX: | NONE | - 1 | SOIL | 1 | | | | SAMP. DATE: | | | 23-Sep-00 | | | | | | | | | - | | ORT | PARAMETER | UNIT | VALUE | Q | VALUE | o - | | 400 | 1,2,4-Trichlorobenzene | UG/KG | 340. | u | 330. | U | | 400 | | UG/KG | 340. | U | 330. | Ü | | 400 | 1,3-Dichlorobenzene | UG/KG | 340. | Ü | 330 | u | | 400 | 1,4-Dichlorobenzene | UG/KG | 340. | Ū - | 330 | u | | | 2,4,5-Trichlorophenol | UG/KG | 850. | Ü | 820. | Ū | | | 2,4,6-Trichlorophenol | UG/KG | 340. | Ü | 330 | U | | | 2,4-Dichlorophenol | UG/KG | 340 | Ü | 330. | U | | | 2,4-Dimethylphenol | UG/KG | 340. | Ü | 330. | Ü | | | 2,4-Dinitrophenol | UG/KG | 850. | Ü | 820. | Ü | | | 2,4-Dinitrotoluene | UG/KG | 340. | U | 330. | U | | | 2,6-Dinitrotoluene | UG/KG | 340. | Ü | 330. | U | | | 2-Chloronaphthalene | UG/KG | 340. | Ū- | 330. | U | | | 2-Chlorophenoi | UG/KG | 340. | U | 330. | U | | | 2-Methylnaphthalene | UG/KG | 340. | U | 330. | U | | | 2-Methylphenol | UG/KG | 340. | Ü | 330. | Ü | | | 2-Nitroaniline | UG/KG | 850. | U | | | | | 2-Nitrophenol | UG/KG | | | 820. | U | | 400 | | UG/KG | 340 | U | 330. | U | | | 3-Nitroaniline | UG/KG | 340 | U | 330. | U | | | | | 850. | U | 820. | U | | | 4,6-Dinitro-2-methylphenol | UG/KG | 850. | U | 820. | U | | | 4-Bromophenyl phenyl ether | UG/KG | 340. | U | 330 | U | | | 4-Chloro-3-methylphenol 4-Chloroaniline | UG/KG | 340. | U | 330. | U | | | | UG/KG | 340. | U | 330. | U | | | 4-Chlorophenyl phenyl ether | UG/KG | 340. | U | 330. | U | | | 4-Methylphenol | UG/KG | 340. | U | 330. | U | | | 4-Nitroaniline | UG/KG | 850. | U | 820. | U | | | 4-Nitrophenol | UG/KG | 850. | U | 820. | U | | | Acenaphthene | UG/KG | 340. | U | 330. | U | | | Acenaphthylene | UG/KG | 340. | U | 330. | U | | | Aniline | UG/KG | 850. | U | 820. | U | | | Anthracene | UG/KG | 340. | U | 330. | U | | | Azobenzene | UG/KG | 340. | U | 330. | U | | | Benzidine | UG/KG | 850. | U | 820 | U | | 400 | the same of sa | UG/KG | 340. | U | 330. | U | | | Benzo(a)pyrene | UG/KG | 340. | Ü | 330. | U | | | Benzo(b)fluoranthene | UG/KG | 340. | U | 330. | U | | | Benzo(ghi)perylene | UG/KG | 340. | U | 330. | U | | | Benzo(k)fluoranthene | UG/KG | 340. | U | 330. | U | | | Benzoic Acid | UG/KG | 850. | U | 820. | U | | | Benzyl Alcohol | UG/KG | 340. | Ū | 330. | U | | 400 | Bis(2-Chloroethoxy)methane | UG/KG | 340. | U | 330. | U | | | Bis(2-Chloroethyl)ether | UG/KG | 340. | U | 330. | U | | | Bis(2-Chloroisopropyl)ether | UG/KG | 340. | U | 330. | U | | | Bis(2-Ethylhexyl)phthalate | UG/KG | 340. | U | 330. | u | | | Butylbenzylphthalate | UG/KG | • 340. | U | 330. | U | | | Carbazole | UG/KG | 340. | U | 45. | J | | | Chrysene | UG/KG | 340. | U | 330. | U | | | Di-n-butylphthalate | UG/KG | 340. | Ü | 330. | U | | | Di-n-octylphthalate | UG/KG | 340. | U | 330. | U | | | Dibenz(a,h)anthracene | UG/KG | 340. | Ü | 330. | U | | | Dibenzofuran | UG/KG | 340. | U | | | | | Diethyl phthalate | UG/KG | | | 330. | U | | 700 | Dimethylphthalate | UG/KG | 340.
340. | U | 330.
330. | U | | | | STUDY ID: | NONE | !!! | LTTD | | |-----|---------------------------|--|----------|-----|-----------|----| | | | SDG: | 79890 | | 79890 | | | | | LOC ID: | NONE | | LTTDC | | | | | SAMP_ID: | LT4038RE | | LT4039 | | | | | FIELD QC CODE: | NONE | | SA | | | | | SAMP. DEPTH TOP: | NONE | | 0 | | | | | SAMP. DEPTH BOT: | NONE | | 0 | | | | | MATRIX: | NONE | | SOIL | | | - | | SAMP DATE: | | | 23-Sep-00 | - | | - | | | | | | | | RT | PARAMETER | UNIT | VALUE | 0 | VALUE | 0 | | | Fluoranthene | UG/KG | 340. | U | 53. | J | | | Fluorene | UG/KG | 340. | U | | U | | | Hexachlorobenzene | UG/KG | 340. | U | 330. | U | | | Hexachlorobutadiene | UG/KG | 340. | U | 330. | | | | | UG/KG | 340. | | | U | | | Hexachlorocyclopentadiene | | | U | 330 | U | | | Hexachloroethane | UG/KG | 340. | U | | U | | | Indeno(1,2,3-cd)pyrene | UG/KG | 340. | U | | U | | | Isophorone | UG/KG | 340. | Ü | 330. | U | | | N-Nitrosodimethylamine | UG/KG | 340. | U | | U | | | N-Nitrosodiphenylamine | UG/KG | 340. | U | | U | | 400 | N-Nitrosodipropylamine | UG/KG | 340. | U | 330. | U | | | Naphthalene | UG/KG | 340. | U | 330. | U | | | Nitrobenzene | UG/KG | 340. | U | 330. | U | | | Pentachiorophenol | UG/KG | 850. | U | 820. | U | | | Phenanthrene | UG/KG | 39. | j | 140. | J | | | Phenol | UG/KG | 340. | U | | U | | | Pyrene | UG/KG | 340. | U | | J | | | Pyridine | UG/KG | 340. | U | 330. | Ū | | | Aroclor-1016 | UG/KG | | | 17. | Ü | | | Aroclor-1221 | UG/KG | | | 17. | U | | 500 | Aroclor-1232 | UG/KG | | | | Ū | | 500 | Aroclor-1242 | UG/KG | | | 17. | | | 500 | Aroclor-1248 | UG/KG | | | 17. | | | 500 | Aroclor-1254 | UG/KG | | 1 | 17. | U | | 500 | Aroclor-1260 | UG/KG | | 1 | 17. | U | | | Diesel Oil | MG/KG | | | 23. | | | | Motor Oil | MG/KG | | | 16. | | | 600 | Aluminum | MG/KG | | | 35,700. | E | | 600 | Antimony | MG/KG | | | 8.9 | | | 600 | Arsenic | MG/KG | | 1 | 3.9 | | | 600 | Barium | MG/KG | | | 343. | | | 600 | Beryllium | MG/KG | | 1 | 1.4 | | | | Cadmium | MG/KG | | | 4.1 | | | | Calcium | MG/KG | | 1 | 981. | | | | Chromium | MG/KG | | 1 | 48.9 | E. | | | Cobalt | MG/KG | | | 13.8 | - | | | Copper | MG/KG | | | 150. | EN | | | Iron | MG/KG | | | 60,000. | | | | Lead | MG/KG | | | 855. | | | | Magnesium | MG/KG | | | 17,700. | • | | | Manganese | MG/KG | | | 700. | | | | Marcury | MG/KG | | | .11 | - | | | Nickel | MG/KG | | 1 | 38.6 | | | | Potassium | MG/KG | | | | | | | Selenium | MG/KG | | | 184. | | | | Silver | The second secon | | | 4. | | | | | MG/KG | | | 1.3 | N | | |
Sodium | MG/KG | | | 1,190. | | | | Thallium | MG/KG | | 1 | 4.6 | | | | Vanadium | MG/KG | 4 | | 76.9 | E. | | 800 | Zinc | MG/KG | | | 231. | EN | | | - mare | STUDY ID: | LTTD | LTTD | LTTD | LTTD | LTTD | |-----|-----------------------------------|------------------|-----------|-----------|-----------|-----------|-----------| | | | SDG. | 79894 | 79894 | 79894 | 79894 | 79894 | | _ | | LOC ID: | LTTDW | LTTDW | LTTDW | LTTDL | LTTDH | | | | SAMP_ID: | LT4028 | LT402BMS | LT4028MSD | LT4040 | LT4041 | | | | FIELD QC CODE: | SA | MS | MSD | SA | SA | | | | SAMP. DEPTH TOP: | 0 | 0 | 0 | 0 | 0 | | | | SAMP. DEPTH BOT: | 0 | 0 | 0 | 0 | 0 | | | | MATRIX: | SOIL | SOIL | SOIL | SOIL | SOIL | | - | | SAMP. DATE: | 22-Sep-00 | 22-Sep-00 | 22-Sep-00 | 23-Sep-00 | 23-Sep-00 | | | | | | | | 25-360-30 | 23-340-00 | | RT | PARAMETER | UNIT | VALUE Q | VALUEQ | VALUEQ | VALUE | VALUE | | | 1,2,4-Trichlorobenzene | UG/KG | 360. U | 820. | 740. | 330 U | 330. U | | 400 | 1,2-Dichlorobenzene | UG/KG | 360. U | 540. | 630. | 330. U | | | | 1,3-Dichlorobenzene | UG/KG | 360. U | 530. | 610. | 330. U | | | | | UG/KG | 360. U | 590 | 680. | | | | | 2,4,5-Trichlorophenol | UG/KG | 910. U | 1,400. | 1,600. | | 330. U | | | 2,4,6-Trichlorophenol | UG/KG | 360. U | | | 830 U | - 840. U | | | | | | 1,400. | 1,600. | 330. U | 330. U | | | 2,4-Dichlorophenol | UG/KG | 360. U | 640. | 760. | 330. U | 330. U | | | 2,4-Dimethylphenol | UG/KG | 360. U | 420. | 460. | 330. U | 330. U | | 400 | 2,4-Dinitrophenol | UG/KG | 910. U | 1,100. | 1,500. | 830. U | 840. U | | | 2,4-Dinitrotoluene | UG/KG | 360. U | 600. | 740. | 330 U | 330. U | | | 2,6-Dinitrotoluene | UG/KG | 360. U | 760. | 910. | 330. U | 330 U | | 400 | 2-Chioronaphthalene | UG/KG | 360. U | 780. | 850. | 330 U | 330 U | | 400 | 2-Chlorophenol | UG/KG | 360. U | 660. | 740. | 330 U | 330 U | | 400 | 2-Methylnaphthalene | UG/KG | 360. U | 580. | 730. | 22 j | 330 U | | | 2-Methylphenol | UG/KG | 360. U | 590. | 680. | 330 U | 330. U | | | 2-Nitroaniline | UG/KG | 910. U | 1,800. | 1,800. | 830 U | 840. U | | | 2-Nitrophenol | UG/KG | 360. U | 720. | 800. | 330 U | 330 U | | | 3,3'-Dichlorobenzidine | UG/KG | 360. U | 900. | 1,300. | 330 U | 330 U | | 400 | 3-Nitroaniline | UG/KG | 910. U | 810. J | 1,200. | 630.U | 840. U | | 400 | 4,6-Dinitro-2-methylphenol | UG/KG | 910. U | 1,500. | 1,600. | 830 U | 840. U | | 400 | 4-Bromophenyl phenyl ether | UG/KG | 360. U | 730. | 800. | 330 0 | | | 400 | 4-Chloro-3-methylphenol | UG/KG | 360. U | 560. | 730. | 330 U | | | | 4-Chloroaniline | UG/KG | 360. U | 450. | 630. | | 330. U | | | 4-Chlorophenyl phenyl ether | UG/KG | 360. U | 580. | | 330 U | 330. U | | | 4-Methylphenol | UG/KG | 360. U | | 760. | 330 U | 330. U | | 400 | 4-Nitroaniline | UG/KG | | 1,100. | 1,300. | 330. U | 330 U | | | | | 910. U | 1,000. | 1,500. | 830. U | 840. U | | | 4-Nitrophenol | UG/KG | 910. U | 1,100. | 1,600. | 830. U | 840. U | | | Acenaphthene | UG/KG | 35. J | 630. | 710. | 330. U | 330. U | | | Acenaphthylene | UG/KG | 360. U | 650. | 730. | 330. U | 330. U | | | Aniline | UG/KG | 910. U | 190. J | 240. J | 830. U | 840. U | | 400 | Anthracene | UG/KG | 84. J | 720. | 790. | 330 U | 330. U | | | Azobenzene | UG/KG | 360. U | 720. | 740. | 330. U | 330. U | | | Benzidine | UG/KG | 910. U | 920. U | 920. U | 830 U | 840. U | | | Benzo(a)anthracene | UG/KG | 210. J | 860. | 930. | 330. U | 330. U | | 400 | Benzo(a)pyrene | UG/KG | 220. J | 900. | 950. | 330 U | 330. U | | 400 | Benzo(b)fluoranthene | UG/KG | 290. J | 910. | 1,000 | 330 U | 330. U | | 400 | Benzo(ghi)perylene | UG/KG | 210. J | 830. | 740. | 330.0 | 330. U | | 400 | Benzo(k)fluoranthene | UG/KG | 210. J | 940. | 1,000. | 330.0 | 330. U | | | Benzoic Acid | UG/KG | 910. U | 660. J | 780. J | 830. U | | | | Benzyl Alcohol | UG/KG | 360. U | 690. | 750. | 330 U | 840. U | | | Bis(2-Chloroethoxy)methane | UG/KG | 360. U | 720. | 800. | | 330. U | | 400 | Bis(2-Chloroethyi)ether | UG/KG | 360. U | 600. | | 330. U | 330. U | | 400 | Bis(2-Chloroisopropyl)ether | UG/KG | 360. U | | 750. | 330 U | 330. U | | 400 | Bis(2-Ethylhexyl)phthalate | UG/KG | 360. U | 730. | 850. | 330 U | 330. U | | | | UG/KG | | 630. | 680. | 330 U | 230. J | | 400 | Butylbenzylphthalate
Carbazole | | 360. U | 670. | 740. | 330. U | 330. U | | | | UG/KG | 42. J | 690. | 800. | 330. U | 330. U | | | Chrysene | UG/KG | 300. J | 960. | 1,000. | 330. U | 330. U | | 400 | Di-n-butylphthalate | UG/KG | 360. U | 570. | 640. | 330. U | 330. U | | 400 | Di-n-octylphthalate | UG/KG | 360. U | 630. | 630. | 330. U | 330. U | | | Dibenz(a,h)anthracene | UG/KG | 45. J | 660. | 600. | 330. U | 330. U | | | Dibenzofuran | UG/KG | 17. J | 650. | 770. | 16. J | 330. U | | | Diethyl phthalate | UG/KG | 360. U | 550. | 720. | 330. U | . 330. U | | | Dimethylphthalate | UG/KG | 360. U | 740. | 830. | 330. U | 330. U | | | Fluoranthene | UG/KG | 470. | 970. | 930. | 36. J | 330. U | | 400 | Fluorene | UG/KG | 28. J | 560. | 710. | 330. U | 330. U | | | Hexachlorobenzene | UG/KG | 360. U | 600. | 850. | 330. U | | | | Hexachlorobutadiene | UG/KG | 360. U | 530. | 630. | 330. U | 330. U | | | | | | | | | | | | | STUDY ID: | LTTD | LTTD | LTTD | LTTD | LTTD | |-----|------------------------|------------------|----------------|-----------|---------------|---------------|----------------------------------| | | | SDG: | 79894 | 79894 | 79894 | 79894 | 79894 | | i | | LOC ID: | LTTDW | LTTDW | LTTDW | LTTDL | LTTDH | | | | SAMP ID: | LT4028 | LT4028MS | LT4028MSD | LT4040 | LT4041 | | 1 | | FIELD QC CODE: | SA | MS | MSD | E14040 | SA | | | | SAMP. DEPTH TOP: | 0 | 0 | | 30 | | | 1 | With the second | SAMP. DEPTH BOT: | | | | | | | | | MATRIX: | SOIL | SOIL | SOIL | - 0 | 0 | | | | SAMP DATE: | 22-Sep-00 | 22-Sep-00 | | SOIL | SOIL | | | - | SAME DATE. | 22-3ep-00 | 22-Sep-00 | 22-Sep-00 | 23-Sep-00 | 23-Sep-00 | | ORT | PARAMETER | UNIT | VALUEQ | VALUE Q | VALUEQ | VALUEQ | VALUE Q | | 400 | Hexachloroethane | UG/KG | 360. U | 560. | 640. | 330 U | | | | Indeno(1,2,3-cd)pyrene | UG/KG | 180. J | 780. | 720. | 330 U | | | 400 | Isophorone | UG/KG | 360. U | 650. | 750. | 330 U | 330 U | | 400 | N-Nitrosodimethylamine | UG/KG | 360. U | 660. | 740. | | | | 400 | N-Nitrosodiphenylamine | UG/KG | 360. U | 1.000 | | 330. U | 330. U | | 400 | N-Nitrosodipropylamine | UG/KG | 360. U | 700. | 1,100. | 330 U | 330. U | | 400 | Naphthalene | UG/KG | 360. U | 590 | 780. | 330 U | 330. Ü | | | Nitrobenzene | UG/KG | 360. U | | 680. | 330 U | 330 U | | | Pentachlorophenol | UG/KG | | 730. | 820 | 330 U | 330 U
840 U | | 400 | Phenanthrene | | 910. U | 730. J | 950. | 830 U | | | 400 | Phenol | UG/KG | 310. J | 950. | 980. | 140. J | 330 U
330 U
330 U
330 U | | 400 | Prienoi | UG/KG | 380. U | 710. | 810. | 330 U
21 J | 330 U | | 400 | Pyrene
Pyridine | UG/KG | 480. | 1,100. | 1,100. | 21 J | 330. U | | 400 | Pyndine | UG/KG | 360. U | 490. | 550.
18. U | 330. Ü | 330. U | | | Aroclor-1016 | UG/KG | 18. U | 18. U | 18. U | 17. 0 | 17. U | | | Aroclor-1221 | UG/KG | 18. U | 18. U | 18. U | 17. U | 17. U | | | Arodor-1232 | UG/KG | 18. U | 18. U | 18. U | 17. U | 17. U | | | Aroclor-1242 | UG/KG | 18. U | 18. U | 18. U | 17.U | 17. U | | | Arodor-1248 | UG/KG | 18. U | 18. U | 18. U | 17. U | 17. U
17. U
17. U | | | Aroclor-1254 | UG/KG | 26. | 32. | 36. | 17. U | 17 1 | | | Aroclor-1260 | UG/KG | 38. | 130. | 130. | 17. Ū | 17 11 | | | Diesel Oil | MG/KG | 84. | 150 | 170. | 16. | 6.7 U | | | Motor Oil | MG/KG | 5.3 | 800. | 960. | 12 | 6.711 | | | Aluminum | MG/KG | 10,400. E | | | 22,300 E | 6.7 U
21,500. E | | | Antimony | MG/KG | 2.7 BN | | | 13.5 N | 12.1 N | | | Arsenic | MG/KG | 3.9 | | | 4.9 | 4.2 | | | Barium | MG/KG | 105. | | | 247. | 192 | | | Beryllium | MG/KG | .55 | | 1 | .76 | | | 600 | Cadmium | MG/KG | 1.5 | | | ./6 | .77 | | 600 | Calcium | MG/KG | 58,000 E° | | | 38,200 E° | 4.5 | | 600 | Chromium | MG/KG | 18.2 | | 1 | | 44,100 E* | | 600 | Cobalt | MG/KG | 9.4 | | | . 111 | 49 4 | | 600 | Copper | MG/KG | 77. N° | 1 | | 11. | 7.9 | | 600 | Iron | MG/KG | 22,900. E | | | 1,180. N° | 5,910. N° | | | Lead | MG/KG | 222. E | | | 176,000. E | 32,000 E | | | Magnesium | MG/KG | 14,100. E° | | | 449. E | 582 E | | 600 | Manganese | MG/KG | | | | 9,000. E* | 10,300. E*
474 E | | 600 | Mercury | MG/KG | 428. E | | | 898. E | 474 E | | 800 | Nickel | | .02 U
31. E | | | .04 | .02 U | | 600 | Potassium | MG/KG | | | | 85.2 E | 74.6 E | | | Selenium | MG/KG | 1,950. E | | | 7,240. E | 8,870. E | | | | MG/KG | 27 U | | | 1.7 | .37 8 | | | Silver | MG/KG | .36 BN | | | .6 BN | .37 B | | | Sodium | MG/KG | 88.3 B | | | 477. B | 947. | | | Thallium | MG/KG | 3.1 | | | 12 | 33 | | | Vanadium | MG/KG | 16.8 | | | 12. | 40.
113. EN | | 600 | Zinc | MG/KG | 129. EN | | | 319 EN | 113 EN | | - 1 | |-----| | 11 | | | | (1) | | T | | | | | | | | В | | | | | | |