DRAFT

PARSONS

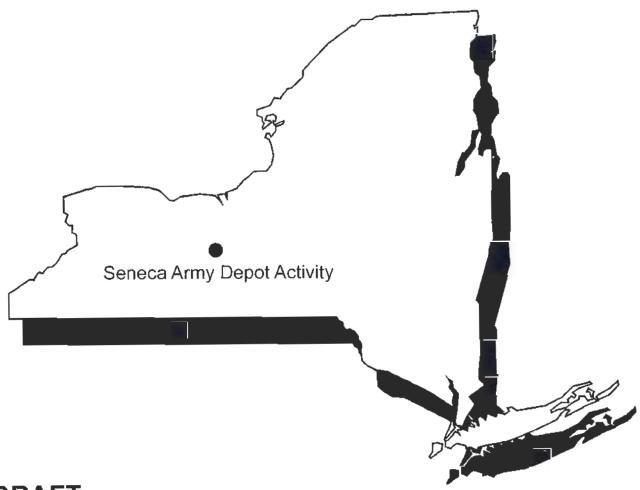
APRIL 2014

US Army, Engineering & Support Center Huntsville, AL 00713 Seneca Army Depot Activity Romulus, NY Seneca Army Depot Activity

DRAFTANNUAL REPORT 2013 – YEAR 6

ABANDONED DEACTIVATION FURNACE (SEAD-16) AND ACTIVE DEACTIVATION FURNACE (SEAD-17) SENECA ARMY DEPOT ACTIVITY

Contract No. W912DY-08-D-0003 Task Order No. 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006


PARSONS

April 2014

US Army, Engineering & Support Center Huntsville, AL

Seneca Army Depot Activity Romulus, NY

DRAFT ANNUAL REPORT 2013 – YEAR 6

ABANDONED DEACTIVATION FURNACE (SEAD-16) AND ACTIVE DEACTIVATION FURNACE (SEAD-17) SENECA ARMY DEPOT ACTIVITY

Contract No. W912DY-08-D-0003 Task Order No. 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

PARSONS

April 2014

		•

DRAFT

ANNUAL REPORT 2013 - YEAR 6

FOR THE ABANDONED DEACTIVATION FURNACE (SEAD-16) AND THE ACTIVE DEACTIVATION FURNACE (SEAD-17) SENECA ARMY DEPOT ACTIVITY, ROMULUS, NY

Prepared for:

U.S. ARMY CORPS OF ENGINEERS, ENGINEERING AND SUPPORT CENTER, HUNTSVILLE, ALABAMA

and

SENECA ARMY DEPOT ACTIVITY
ROMULUS, NY

Prepared by:

PARSONS 100 High Street Boston, MA 02110

Contract Number W912D4-08-D-003 Task Order 0015 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

TABLE OF CONTENTS

List of Tables	ii
List of Figures	ii
List of Appendices	ii
1.0 INTRODUCTION	1-1
2.0 SITE BACKGROUND	2-1
2.1 Site Description	2-1
2.2 Site Hydrology	2-2
2.2.1 SEAD-16	2-2
2.2.2 SEAD-17	2-2
2.3 Pre-Remedial Action Soil and Groundwater Conditions for SEAD-16	2-2
2.4 Pre-Remedial Action Soil and Groundwater Conditions for SEAD-17	2-3
2.5 Remedial Action Summary	2-4
3.0 LONG TERM MONITORING RESULTS	3-1
3.1 Summary of Year 5 LTM Event	
3.2 Year 6 LTM Event	3-1
3.2.1 Year 6 Groundwater Elevations for SEAD-16 and SEAD-17	3-1
3.2.2 Year 6 LTM Sample Collection	3-2
3.2.3 Year 6 LTM Sample Filtering	3-3
3.2.4 Summary of Year 6 Groundwater Data Analysis for SEAD-16	3-3
3.2.5 Summary of Year 6 Groundwater Data Analysis for SEAD-17	3-4
3.2.6 Groundwater Data Trends	3-5
3.3 Routine Inspections of SEAD-16 and SEAD-17 Monitoring Wells	3-9
4.0 REMEDY EVALUATION	4-1
5.0 CONCLUSIONS AND RECOMMENDATIONS	5-1
5.1 Conclusions	5-1
5.2 Recommendations	5-1
5.0 REFERENCES	6-1

LIST OF TABLES

Table 1	SEAD-16 - Groundwater Table Elevations Summary
Table 2	SEAD-17 - Groundwater Table Elevations Summary
Table 3A	SEAD-16 - Year 6 Filtered and Unfiltered Groundwater Analyses
Table 3B	SEAD-17 - Year 6 Filtered and Unfiltered Groundwater Analyses

LIST OF FIGURES

Figure 1	Location Map
Figure 2	Location of SEAD-16 and SEAD-17 at Seneca Army Depot Activity
Figure 3	SEAD-16 Site Plan
Figure 4	SEAD-17 Site Plan
Figure 5	SEAD-16 and SEAD-17 Groundwater Flow Trend

LIST OF APPENDICES

Appendix A	Pre-Remedial Action Monitoring Data
Appendix B	SEDA Background Groundwater Data Summary
Appendix C	Field Forms - Year 6 LTM Groundwater Sampling Activities
Appendix D	Post-Remedial Action Monitoring Results (Years 1 through 6)
Appendix E	Laboratory Analytical Report
Appendix F	Data Validation

1.0 INTRODUCTION

This *Draft Annual Report* – *Year* 6 for the former Abandoned Deactivation Furnace (SEAD-16) and the former Active Deactivation Furnace (SEAD-17) sites at the Seneca Army Depot Activity (SEDA or the Depot) in Romulus, Seneca County, New York provides a review of annual groundwater monitoring data collected in December 2013, comparisons of the 2013 data to other pre- and post-remedial action (RA) groundwater sampling events, recommendations for future long-term monitoring (LTM) at SEAD-16 and SEAD-17, and the annual review of the effectiveness of the remedy implemented at the sites in 2007.

In accordance with the Record of Decision (ROD) for SEAD-16 and SEAD-17 (Parsons, 2006) and the Remedial Design Work Plan and Design Report (Parsons, 2007) (Final Work Plan), a RA was completed in August 2007 for SEAD-16 and SEAD-17, or the areas of concern (AOCs). The RA consisted of the excavation and disposal of soil contaminated with selected metals (antimony, arsenic, cadmium, copper, lead, mercury, thallium, and zinc) at levels above identified risk-based action levels from both AOCs. In addition, soil at SEAD-16 that was also contaminated with polyaromatic hydrocarbons (PAHs) at concentrations in excess of risk-based action levels was excavated and disposed at a licensed landfill. The RA implemented is documented in the Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17) (Parsons, 2008). The RA at SEAD-16 involved the removal of approximately 1,862 cubic yards (cy) of soil impacted with metals and PAHs. The RA at SEAD-17 involved the removal of approximately 2,565 cy of metals-impacted soil.

The ROD for SEAD-16 and SEAD-17 also requires the implementation, maintenance, inspection, and periodic reporting of land use controls (LUCs) prohibiting use of the land at the AOCs for residential purposes and access to and use of groundwater until applicable cleanup standards are met. Applicable cleanup standards refer to the lowest enforceable standard recorded either on New York State Class GA (NYS Class GA) Ambient Water Quality Standards or United States Environmental Protection Agency (EPA) maximum contaminant levels (EPA MCLs). Once groundwater cleanup standards are achieved, the groundwater use restrictions may be eliminated upon approval of the EPA and the New York State Department of Environmental Conservation (NYSDEC). SEAD-16 and SEAD-17 are located within the Planned Industrial/Office Development and Warehousing (PID) area, which has area-wide LUCs that prohibit the development and use of the property for residential housing, elementary and secondary schools, childcare facilities, and playgrounds; and, prohibits access to and use of groundwater until concentrations have been reduced to levels that allow for unlimited exposure and unrestricted use.

The Land Use Control Remedial Design (LUC RD) Addendum #4 identifies and implements the LUCs required by the SEAD-16 and SEAD-17 ROD at the identified AOCs, as well as other AOCs (SEADs 1, 2, 5, 59, 71, 121C, and 121I) in the PID area. The LUC objectives for SEAD-16 and SEAD-17 are to prevent access to or use of groundwater until New York State GA groundwater standards are achieved, and to prohibit residential housing, elementary and secondary schools, child care facilities and playground activities at the sites. Implementation of the LUCs at SEAD-16 and SEAD-17 may include lease restrictions, an environmental easement, deed restrictions, zoning, periodic certification, and a five-year review as is defined in the *Final Land Use Control Design for SEAD-27, 66, and 64A* (Army, 2006). The

LUC RD for SEAD-27, 66 and 64A is also known as the LUC RD for the Planned Industrial/Office Development or Warehousing Area that proposed the establishment of an area-wide set of land use restrictions for the PID/Warehouse Area to simplify institutional control implementation by having a single set of land use restrictions for the PID/Warehouse Area, which are consistent with its anticipated industrial land use. The periodic certification will be submitted to the NYSDEC and EPA to document that the LUCs at SEAD-16 and SEAD-17 are unchanged and that no activities have occurred that impair or violate the ability of the LUCs to protect public health and the environment.

Long-term groundwater monitoring is being performed at SEAD-16 and SEAD-17 as part of the post-closure monitoring and maintenance (PCMM) operations in accordance with the ROD and as outlined in the Final Work Plan. Results for the first year (Year 1) LTM event performed in December 2007 are documented in the Final Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and Active Deactivation Furnace (SEAD-17) (Parsons, 2008). The Year 2 LTM event was performed in December 2008, with results documented in the Final Annual Report – Year 2 (Parsons, 2009). Results for the Year 3 LTM sampling event conducted in November 2009 are documented in the Final Annual Report – Year 3 (Parsons, 2010). The Year 4 LTM sampling event was conducted in December 2010 for both AOCs, with the results presented in the Draft Final Annual Report – Year 4 (Parsons, 2011). No LTM sampling event was conducted in 2011 due to budgetary constraints. The Year 5 LTM event was performed in December 2012, with results documented in the Final Annual Report – Year 5 (Parsons, 2014). This report presents and discusses the results for Year 6's LTM event, which was conducted in December 2013.

2.0 SITE BACKGROUND

2.1 Site Description

SEDA, a 10,587-acre former military facility located in Seneca County near Romulus, New York, is located between Seneca Lake and Cayuga Lake in Seneca County, and is bordered by New York State Highway 96 to the east, New York State Highway 96A to the west, and sparsely populated farmland to the north and south. The facility was wholly owned by the United States Government and was operated by the Department of the Army between 1941 and 2000; since 2000, portions of the Depot have been transferred to other parties for reuse. SEDA's primary mission was the receipt, storage, maintenance, and supply of military items. A location map for SEDA is presented as Figure 1.

SEAD-16 and SEAD-17 are located in the cast-central portion of the SEDA, within SEDA's former ammunition storage area in an area where vehicular and pedestrian access is restricted. SEAD-16 and SEAD-17 are located in the portion of SEDA where land is presently designated for future PID uses. The locations of SEAD-16 and SEAD-17 are shown in Figure 2.

Both AOCs were historically used for the demilitarization of various small arms munitions. munitions deactivation process involved heating the munitions in a rotating steel kiln. The heat would cause the munitions to detonate once the detonation temperature was reached. The byproducts produced during this detonation were then either swept out of the kiln through the stack or expelled from the kiln as bottom ash or debris.

SEAD-16, the former Abandoned Deactivation Furnace, was used from approximately 1945 until the mid 1960s when its use ceased and the site was vacated. The site consisted of 2.6 acres of fenced land with grasslands in the north, east, and west; a storage area for empty boxes and wooden debris located to the west; and an unpaved roadway in the south. Building S-311, which previously housed the deactivation furnace, was located at the approximate center of this area, and was demolished as part of the RA at SEAD-16. Documentation of demolition activities is presented in the Building Cleaning and Building Demolition Completion Report (Parsons, 2008). Building S-366, known as the Process Support Building. is located to the northeast of former Building S-311, and is currently unused and vacant. In addition to Building S-366, two sets of SEDA railroad tracks and utilities are presently on-site.

SEAD-17, the former Active Deactivation Furnace, was constructed to replace the Abandoned Deactivation Furnace at SEAD-16. However, SEAD-17 was inactive after 1989 as a result of Resource Conservation and Recovery Act (RCRA) permitting issues. SEAD-17 formerly consisted of the deactivation furnace, associated air pollution control equipment, and a support building (Building S-367), which were demolished or dismantled during the RA. Details and results of the demolition are documented in the Building Cleaning and Building Demolition Completion Report (Parsons, 2008). The former SEAD-17 deactivation furnace facility and support building were surrounded by a crushed shale road, beyond which lie grasslands. An unpaved gravel road to the north permits vehicular access to SEAD-17.

February 2014 Page 2-1 P. PH Projects Huntsville Com W912DY:08-D-0003 TO:15 - FIXI and H C SEAD 16 and 17 FIXI Annual Report. Yr 6 Dec 2015 Draft Text Draft Yr6 S1617 Annual Report.doc

2.2 Site Hydrology

The hydrogeologic setting of SEAD-16 and SEAD-17 is described in detail in Sections 3.1.6 and 3.2.6, respectively, of the *Final Remedial Investigation (RI) Report at the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17)* (Parsons, 1999). A brief summary of hydrogeologic conditions and chemical impacts as described in the RI Report is presented below.

2.2.1 SEAD-16

Three groundwater monitoring wells (MW16-1, MW16-2, and MW16-3) were installed as part of the Expanded Site Investigation (ESI) conducted at SEAD-16 in 1993/1994. Four additional groundwater monitoring wells (MW16-4, MW16-5, MW16-6, and MW16-7) were installed during the RI. As summarized in the *Final Construction Completion Report for the Abandoned Deactivation Furnace* (SEAD-16) and Active Deactivation Furnace (SEAD-17) (Parsons, 2008), MW16-3 was destroyed during the RA construction activities, and was not replaced as groundwater conditions on the southwest side of Building S-311 are adequately characterized by MW16-2 and MW16-5. The locations of the six existing groundwater monitoring wells and the former MW16-3 are shown on Figure 3.

Prior to the completion of the RA in August 2007, depth to groundwater was measured at SEAD-16 three times (April 1994, August 1996, and December 1996). Groundwater flow generally trends to the west based on previous subsurface investigations conducted at SEDA. Data from previous investigations suggest that a groundwater divide exists near, and approximately parallel to, Route 96 near Romulus, New York, indicating that the groundwater in the SEAD-16 area flows west. Based on available groundwater elevation data, it appears that there may be a regional groundwater high southwest of former Building S-311, which may contribute to local fluctuations in groundwater flow for the Site.

Horizontal hydraulic conductivities were determined for five wells screened in the till/weathered shale zone at SEAD-16. The saturated thickness in the till/weathered shale aquifer measured less than 2 feet when tested in September 1996. Hydraulic conductivity values for the shallow till/weathered shale aquifer ranged from 2.8×10^{-3} cm/sec to 2.5×10^{-2} cm/sec; the geometric mean was 7.3×10^{-3} cm/sec.

2.2.2 SEAD-17

Four groundwater monitoring wells (MW17-1, MW17-2, MW17-3, and MW17-4) were installed as part of the ESI conducted at SEAD-17. One additional groundwater monitoring well, MW17-5, was installed during the RI. The locations of the five groundwater monitoring wells installed at SEAD-17 are shown on **Figure 4**. Prior to the completion of the RA, depth to groundwater was measured at SEAD-17 in April 1994, August 1996, and December 1996 (the same time groundwater levels were measured at SEAD-16). Interpretation of groundwater elevation data indicates that groundwater flows to the southwest.

A horizontal hydraulic gradient of 0.01ft/fl was calculated between monitoring wells MW17-1 and MW17-3. Hydraulic conductivities were found to range from 2.9×10^{-3} cm/sec to 1.4×10^{-2} cm/sec.

2.3 Pre-Remedial Action Soil and Groundwater Conditions for SEAD-16

Pre-Remedial Action Soil Conditions

The primary historic constituents of concern (COCs) at SEAD-16 for soil included arsenic, copper, lead,

and zinc. The highest concentrations of soil contamination resulted from operations that were performed within and in close proximity to the former Abandoned Deactivation Furnace Building (S-311) and the Process Support Building (Bld. 366). Carcinogenic PAHs were detected in soils found at discrete locations within the AOC, with the highest concentrations detected in the surface soil samples collected adjacent to the northwestern corner of the former Abandoned Deactivation Furnace Building. Metals (antimony, copper, lead, mercury, and zinc) were found at concentrations greater than the site-specific cleanup goals in soil located in portions of the surrounding man-made drainage ditches.

Pre-Remedial Action Groundwater Conditions

Prior to completion of the RA, three rounds of low-flow groundwater sampling were conducted at SEAD-16, including one round in April 1994 as part of the ESI investigation activities, and two rounds in August and December 1996 as part of the RI activities. Compounds detected in the groundwater samples are presented in **Appendix A** (Refer to the RI Report for complete groundwater analyses). Total metals were detected above either the applicable NYS Class GA standards or EPA MCLs. Concentrations exceeding applicable standards were less than or close to SEDA background concentrations, except for the exceedances of sodium. A summary of SEDA background groundwater data providing summary statistics (including maximum and average concentrations, the standard deviation for the collected data, and the frequency of detection) is provided in **Appendix B**. The Final Work Plan (Parsons, 2007) summarized that although metals had been detected in the groundwater above their respective standards during previous sampling events, the groundwater was not impacted by site activities. This conclusion was based on a comparison of results to the background groundwater data collected from unaffected parts of SEDA.

2.4 Pre-Remedial Action Soil and Groundwater Conditions for SEAD-17

Pre-Remedial Action Soil Conditions

The primary historic COCs in the soil at SEAD-17 were metals including antimony, arsenic, copper, lead, mercury, and zinc. The concentrations of metals were highest in samples collected closest to the location of the former Active Deactivation Furnace and its support building, particularly near the southwestern corner of the building.

Pre-Remedial Action Groundwater Conditions

Prior to the completion of the RA, three rounds of groundwater sampling were conducted at SEAD-17, concurrent with the sampling conducted at SEAD-16 as identified above. Compounds detected in the groundwater samples collected during the low-flow sampling events in 1996 for SEAD-17 are presented in **Appendix A**. Total metals were detected at concentrations above the applicable NYS Class GA standards or EPA MCLs; however, these concentrations were lower than SEDA background metal concentrations, except for sodium. (See SEDA background groundwater data summary in **Appendix B**.) The Final Work Plan summarized that, although metals had been detected in the groundwater above their respective standards during previous sampling events, the groundwater was not impacted by site activities. This conclusion is based on a comparison of results to groundwater data collected from non-impacted areas of SEDA.

February 2014 Page 2-3

2.5 Remedial Action Summary

The selected remedy for SEAD-16 and SEAD-17 required the following:

- Excavation of soil impacted with metals and PAHs at concentrations greater than the site-specific cleanup standards;
- Stabilization of excavated soil exceeding the toxicity characteristic leaching procedure;
- Disposal of the material in an off-site landfill;
- Backfilling the excavated areas with clean backfill;
- Performing groundwater monitoring for select metals until groundwater concentrations do not exceed the applicable NYS Class GA or EPA MCL standards;
- Establishing and maintaining LUCs to prevent access to or use of groundwater and to prevent residential use of the land until cleanup standards are met; and
- Performing a review of the selected remedy every five years to evaluate if the remedy remains
 protective of the public health and the environment in accordance with Section 121(e) of the
 Comprehensive Environmental Remediation and Cleanup Liability Act (CERCLA).

The excavation of the impacted soil at SEAD-16 and SEAD-17 began on July 9, 2007 and was completed on August 2, 2007. Approximately 1,862 cy of impacted soil was removed from SEAD-16 and approximately 2,565 cy of impacted soil was removed from SEAD-17. The limit of the excavations performed at SEAD-16 is shown on **Figure 3** and for SEAD-17 on **Figure 4**.

Soil was excavated from both SEAD-16 and SEAD-17 until confirmatory soil samples collected from the sidewalls (when appropriate), the excavation floor, and the perimeter yielded analytical results below site-specific cleanup standards. The depth of excavation completed at SEAD-16 varied from approximately 1 to 3 feet below ground surface (bgs) and the excavation depth at SEAD-17 varied from approximately 1 to 2 feet bgs. The impacted soil from SEAD-16 and SEAD-17 was transported off-site, and was disposed as non-hazardous material at the Ontario County Landfill in Flint, New York.

Deeper excavations at SEAD-16 and SEAD-17, including excavation areas surrounding the railroad tracks, were backfilled with clean bank-run gravel. SEAD-16 and SEAD-17 were graded to promote positive drainage. The areas at SEAD-17 that were vegetated prior to the RA were seeded to restore the vegetation. SEAD-16 was not seeded since it was not previously vegetated.

February 2014 Page 2-4

3.0 LONG TERM MONITORING RESULTS

3.1 Summary of Year 5 LTM Event

The Year 5 LTM groundwater sampling event was conducted at SEAD-16 and SEAD-17 between December 15, 2012 and December 17, 2012. The results of the Year 5 event were reported in *Final Annual Report Year* 5 (Parsons, 2014). For summaries of Year 1 through 4 LTM groundwater sampling events, refer to *Final Annual Report – Year* 5 (Parsons, 2014). Both filtered (i.e., dissolved) and unfiltered (i.e., total) samples were collected and characterized during this sampling event from the six monitoring wells located at SEAD-16, and from the five monitoring wells located at SEAD-17.

Concentrations of metals (including antimony, sodium, and iron) exceeding the applicable NYS Class GA standards were detected in the filtered samples collected from five of the six wells (MW16-1, MW16-2, MW16-4, MW16-5, and MW16-7) and unfiltered samples collected from the six wells at SEAD-16.

Antimony was detected above the applicable NYS Class GA standard for both the filtered and unfiltered samples collected from three wells (MW16-2, MW16-4, and MW16-7); sodium was detected above the applicable NYS Class GA standard in the unfiltered and filtered samples collected from MW16-1, MW16-4, and MW16-7; iron concentrations and the sum of iron and manganese compounds was detected above the applicable NYS Class GA standard in the unfiltered and filtered samples collected from MW16-5 and in the unfiltered sample analyzed from MW16-6. Concentrations of antimony and sodium were similar for unfiltered and filtered samples, with the highest concentrations of antimony and sodium detected in MW16-7 and MW16-4, respectively.

At SEAD-17, metal concentrations were detected below the applicable NYS Class GA and EPA MCL standards in both the filtered and unfiltered samples collected from the five monitoring wells with the exception of MW17-2. Antimony was the only metal detected above the applicable NYS Class GA standard in both unfiltered and filtered samples collected from MW17-2.

3.2 Year 6 LTM Event

The Year 6 post-RA LTM event was conducted at SEAD-16 and SEAD-17 from December 15, 2013 through December 17, 2013. Filtered and unfiltered groundwater samples were collected from six monitoring wells located at SEAD-16 and from five monitoring wells located at SEAD-17. This is the fourth sampling event that includes the collection of filtered and unfiltered samples. Field forms completed for the Year 6 sampling event are included in **Appendix C**. Groundwater data results for each LTM event are presented in **Appendix D**, and the laboratory analytical report for Year 6 included as **Appendix E**. A discussion of data validation results is presented in **Appendix F**; there were no non-compliance issues reported.

3.2.1 Year 6 Groundwater Elevations for SEAD-16 and SEAD-17

Prior to the collection of groundwater samples from each of the monitoring wells, groundwater elevation measurements were collected at each of the wells to be sampled. Groundwater elevation data for the Year 6 LTM event, as well as historic data, are presented in **Table 1** and **Table 2** for SEAD-16 and SEAD-17, respectively. Groundwater elevations were measured on December 9, 2013 at SEAD-16 and SEAD-17.

April 2014

Groundwater elevation data, including historic groundwater elevation data, for SEAD-16 and SEAD-17 is presented as **Table 1** and **Table 2**, respectively.

Groundwater elevation data collected during previous investigations indicate that groundwater generally flows to the southwest at SEAD-16; however, historical groundwater elevation data also indicate that localized variation in groundwater flow direction may be due to higher groundwater elevations observed to the northeast and southwest of the former Building S-311. During the most recent (Year 6) LTM event, and similar to the Year 4 and Year 5 LTM groundwater flow observations at SEAD-16, groundwater elevation data suggest that there is a groundwater low in the vicinity of the former Building S-311 location. The higher groundwater elevations to the northeast and southwest of the apparent groundwater low in the vicinity of Building S-311 result in two apparent local groundwater flow directions (to the southeast and northwest, respectively) as shown on **Figure 5**.

Based on the most recent elevation data (December 2013), groundwater at SEAD-17 appears to flow generally to the west-southwest as shown on **Figure 5**, which is consistent with historical groundwater flow observations at SEAD-17.

3.2.2 Year 6 LTM Sample Collection

Samples for the Year 6 LTM event were collected using low flow sampling techniques. A peristaltic pump was used in place of a bladder pump to collect the groundwater samples during this event due to winter weather conditions, including standing air temperatures below 32 degrees Fahrenheit (0 degrees Celsius). A peristaltic pump is recommended for freezing conditions since the bladder pump recharge cycle sequence allows water to freeze in the exposed portion of the sample tubing, which may inhibit sample collection efforts due to ice plugs forming in the tubing.

Sample collection, handling and custody, holding times, and field parameter collection procedures were conducted in accordance with the *Revised Final Sampling and Analysis Plan for Seneca Army Depot Activity* (SAP) (Parsons, 2006c). Samples collected from the six SEAD-16 wells and the five SEAD-17 wells were submitted to TestAmerica (Savannah, GA) for the following analyses:

- Total and dissolved Target Analyte List (TAL) metals, exclusive of mercury, by USEPA SW846
 Method 6020; and
- Total and dissolved mercury by USEPA SW846 7470A.

TestAmerica's Savannah, GA laboratory is certified by the Department of Defense's (DoD's) Environmental Laboratory Accreditation Program (ELAP) and the NELAC National Environmental Laboratory Accreditation Program (NELAP) for the above analyses/analytical methods for both potable and non-potable water.

Quality control (QC) samples, including one duplicate and one matrix spike/matrix spike duplicate (MS/MSD) pair, were collected at MW16-5. In the field, pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), conductivity, temperature, and turbidity data were collected from each well during the purging cycle.

3.2.3 Year 6 LTM Sample Filtering

As documented in previous reports some of the metal concentrations that exceed NYS Class GA or EPA MCL standards in SEAD-16 and SEAD-17 wells may be associated with the groundwater turbidity fluctuations encountered in the wells at the time of sampling. With this in mind, both an unfiltered and filtered samples were collected for the Year 6 LTM event: after the purging was complete, a sample was collected directly from the well as unfiltered samples, and then another sample was collected and filtered through a 0.45-micron membrane filter in the field and submitted as the filtered sample. Samples collected from the wells during the Year 6 monitoring event had low turbidity levels (i.e., less than or equal to 4.83 NTU, all but the two samples from MW17-1 were less than 2.66 NTU).

3.2.4 Summary of Year 6 Groundwater Data Analysis for SEAD-16

A summary of metals detected in groundwater during the Year 6 LTM event for SEAD-16 is presented in **Table 3A**. Groundwater data results for each LTM event are presented in **Appendix D**, and the laboratory analytical report for Year 6 included as **Appendix E**. A discussion of data validation results is presented in **Appendix F**; there were no non-compliance issues reported. Data validation utilized the EPA Region 2 Standard Operating Procedures (SOPs) revised in March 2013.

Concentrations of metals including antimony, iron, and sodium were detected above applicable NYS Class GA standards in both filtered and unfiltered samples; metals exceedances for the filtered samples was detected from five of the six wells, and unfiltered sample exceedances was detected from the six wells. Antimony exceeded the NYS Class GA standard of 3 µg/L for both the filtered and unfiltered samples collected from TWO wells (MW16-2, and MW16-7). The highest concentrations of antimony were found at well MW16-7, where concentrations of 15 J µg/L and 16 J µg/L, were found in the unfiltered and filtered samples, respectively. Antimony concentrations measured in the unfiltered versus filtered samples collected from MW16-2 were also comparable, with the unfiltered sample yielding a concentration of 3.2 J µg/L, and the filtered sample's concentration was 3.6 J µg/L. Note that the concentrations reported are followed by the "J" qualifier, which indicates that the reported value based on the data validation is estimated.

Iron exceeded the NYS Class GA standard (300 $\mu g/L$) in the unfiltered and filtered samples analyzed from two wells (MW16-4 and MW16-5), The highest concentrations of iron were found at well MW16-5 duplicate sample, with unfiltered and filtered sample concentrations of 530 J $\mu g/L$ and 490 J $\mu g/L$, respectively. The parent sample at MW16-5 had similar iron concentrations of 510 J $\mu g/L$ and 440 J $\mu g/L$, respectively. Iron concentrations measured in the unfiltered versus filtered samples collected from MW16-4 were also comparable, with the unfiltered sample yielding a concentration of 380 J $\mu g/L$, and the filtered sample's concentration was 350 J $\mu g/L$.

Concentrations of the sum of iron and manganese compounds detected in unfiltered and filtered samples collected from wells MW16-4, MW16-5, and MW16-5 duplicate also exceeded the combined NYS Class GA standard of 500 μ g/L with the primary contributing metal being iron. Although manganese was detected in the unfiltered and filtered groundwater samples collected from the six SEAD-16 wells, it was

not detected at concentrations above its NYS Class GA standard (300 µg/L) during the Year 6 LTM event.

Sodium was detected at concentrations above the NYS Class GA standard (20,000 µg/L) in unfiltered and filtered samples collected from wells MW16-1, MW16-2, MW16-4, and MW16-7. The highest concentrations were detected in the filtered and unfiltered samples collected from well MW16-4 at concentrations of 290,000 J µg/L and 270,000 J µg/L, respectively. Sodium exceedances were also found in the MW16-1 unfiltered and filtered samples at concentrations of 57,000 J µg/L and 60,000 J µg/L; respectively, in MW16-2 filtered and unfiltered samples at concentrations of 22,000 J µg/L and 21,000 J µg/L, respectively; and in the MW16-7 unfiltered and filtered samples at concentrations of 27,000 µg/L and 28,000 µg/L, respectively.

In summary, select metals (unfiltered and filtered) concentrations including antimony, iron, and sodium continue to be detected in the groundwater at SEAD-16 at levels that exceed NYS Class GA standards. In general, however, there is no evidence of an area-wide or expanding plume at SEAD-16, as illustrated by the stable occurrence of metals concentrations identified across the groundwater monitoring well network during the LTM sampling events. Access to and use of the groundwater is restricted at the AOC under the terms of the ROD and the groundwater is not being used as a potable water source. A non-groundwater sourced municipal water supply is available for SEDA and currently includes the PID area. The groundwater access/use restriction will remain in effect at SEAD-16 until the select metal concentrations in groundwater have been reduced to levels below applicable NYS Class GA and EPA MCL standards, and until data demonstrating acceptable groundwater quality in the AOC is provided to and approved by the applicable regulatory agencies.

3.2.5 Summary of Year 6 Groundwater Data Analysis for SEAD-17

A summary of metals detected in the Year 6 groundwater samples event for SEAD-17 is presented in **Table 3B**. Groundwater analytical results for each LTM event are presented in **Appendix D** and the laboratory analytical report for Year 6 is included as **Appendix E**. A discussion of data validation results is presented in **Appendix F**; there were no non-compliance issues reported. Data validation utilized the EPA Region 2 SOPs revised in March 2013.

Concentrations of metals in MW17-3 were detected below the applicable NYS Class GA and EPA MCL standards in both the filtered and unfiltered samples. Iron was detected at concentrations above the NYS Class GA standard (300 μ g/L) in unfiltered and filtered samples collected from SEAD-17 wells MW17-1, MW17-2, MW17-4, and in the filtered sample collected from MW17-5. The highest concentrations were detected in the unfiltered and filtered samples collected from well MW17-4 at a concentration of 810 (J) μ g/L in both samples. Iron exceedances were also found in MW17-1 unfiltered and filtered samples at concentrations of 680 J μ g/L and 800 J μ g/L, respectively, in MW17-2 unfiltered and filtered samples at concentrations of 470 J μ g/L and 520 J μ g/L, respectively; and in MW17-5 filtered sample at a concentration of 350 J μ g/L. The iron exceedances at MW17-1 and MW17-5 were the first iron exceedances at these wells post-remedial action.

Concentrations of the sum of iron and manganese compounds detected in unfiltered and filtered samples collected from wells MW17-1, MW17-2. MW17-4 also exceeded the combined NYS Class GA standard of 500 µg/L with the primary contributing metal being iron. The sum of iron and manganese did not exceed the NYS Class GA standard in the filtered sample at MW17-5. Although manganese was detected in the unfiltered and filtered groundwater samples collected from the five SEAD-17 wells, it was not detected at concentrations above its NYS Class GA standard (300 µg/L) during the Year 6 LTM event.

The SEAD-17 Year 6 data continues to demonstrate that the groundwater at SEAD-17 has not been impacted by metals released from the former Active Deactivation Furnace site. Although the concentrations of iron were above the applicable NYS Class GA standards and the results are greater than what has been observed historically at the site, there is not sufficient trend information to indicate that there is a significant change in groundwater conditions. Access to and use of the groundwater is restricted at the AOC under the terms of the ROD, and is not being used as a potable water source. A non-groundwater sourced municipal water supply is available for the Depot, and currently includes the PID area. The groundwater access/use restriction will remain in effect at SEAD-17 until select metal concentrations in groundwater have been reduced to levels below applicable NYS Class GA and EPA MCL standards, and until data demonstrating acceptable groundwater quality in the AOC is provided to and approved by the applicable regulatory agencies.

3.2.6 Groundwater Data Trends

A comparison of data collected during the Years 1 to 6 LTM events to groundwater conditions noted prior to the RA is provided for SEAD-16 and SEAD-17 in the following discussions. Summaries of metal exceedances detected during the Year 6 groundwater monitoring event for SEAD-16 and SEAD-17 is provided in **Table 3A** and **Table 3B**, respectively. The data results for Year 1 through Year 6 LTM events is included as **Appendix D**.

3.2.6.1 Review of Groundwater Trends for SEAD-16

ESI and RI Data

Review of SEAD-16 data presented in the RI Report indicated that one or more concentrations measured for 14 metals (including arsenic, antimony, barium, beryllium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, sodium, and thallium) in 19 unfiltered groundwater samples collected during the ESI (performed in 1993/1994) and/or the RI (performed in 1999) exceeded NYS Class GA or EPA MCL standards in effect at the time of analysis. Of the 39 total instances where groundwater concentrations exceeded NYS Class GA or EPA MCL standards, 22 exceedances were associated with samples collected with peristaltic pumps (e.g., for the ESI sampling event) while the remaining 17 exceedances were found in samples collected using low-flow bladder pumps. Sample turbidities recorded during the RI sampling events were significantly lower than those recorded during the ESI sampling event, and thus are believed to be more representative of the water quality located at the site prior to the RA. Examination of the RI groundwater data shows that six metals were detected at concentrations in excess of NYS Class GA or EPA MCL standards in effect at the time of analysis;

antimony (detected 2 times);

- iron (detected 5 times);
- lead (detected 1 time);
- manganese (detected 2 times);
- sodium (detected 3 times); and
- thallium (detected 4 times) EPA MCL.

Of these detections, antimony was detected at concentrations above the applicable NYS Class GA standard only in well MW16-3, with a maximum concentration of 12.3 μg/L. Iron was found at elevated concentrations in three wells: MW16-1 (at a maximum concentration of 2,400 J μg/L), MW16-2, and MW16-3. Lead was detected only in MW16-3 at a maximum concentration of 24.1 J μg/L; manganese was detected at elevated concentrations only in MW16-6 with a maximum level of 1,380 μg/L; sodium was detected in two wells (MW16-5 and MW16-6) with a maximum concentration of 409,000 μg/L detected at MW16-6; and thallium was detected in three wells including (MW16-2, MW16-5, and MW16-6), with a maximum concentration of 11 μg/L detected at MW16-6.

Post-Remedial Action Data

Over the six years since the completion of the RA at SEAD-16, a total of 70 groundwater samples, including 45 unfiltered and 25 filtered groundwater samples have been collected from the six wells located on SEAD-16. Filtered samples began being collected and analyzed during the Year 3 LTM event. Amongst the 70 characterized groundwater samples, there have been 99 exceedances of individual applicable NYS Class GA or EPA MCL standards (excluding duplicates). These exceedances were primarily distributed across five metals consisting of antimony (32 exceedances), iron (20 exceedances), lead (two exceedances), manganese (one exceedance), and sodium (44 exceedances). Of the 99 exceedances, 35 were detected in the filtered (dissolved) samples and 64 were detected in unfiltered (total) samples.

Antimony concentrations exceeding the NYS Class GA standard of 3 µg/L have been detected 32 times and most frequently have been detected in two wells, MW16-2 and MW16-7. Antimony detections above the NYS Class GA standards have inconsistently been found in well MW16-4 (five times, including two filtered from LTM events Year 4 and 5 and three unfiltered from LTM events Years 1, 3, and 5); and in MW16-5 (one unfiltered sample). Filtered and unfiltered sample results for antimony from wells MW16-2 and MW16-7 are generally comparable, suggesting that the metal is present as a dissolved species. The highest concentrations are found consistently in well MW16-7 where the overall maximum concentration (16.3µg/L) was detected in the sample/duplicate collected during the Year 3 sampling event in 2009. This maximum concentration is approximately equivalent to what was detected in the groundwater at the former MW16-3 prior to the RA. Antimony was detected in MW16-2 in Year 6 at concentrations less than in Years 1 through 5, and in MW16-7 at similar concentrations in Years 1-5.

Exceedances of the NYS Class GA standard for iron were noted 20 times, distributed across wells MW16-4 through MW 16-7 over the six LTM sampling events. Iron concentrations noted in filtered samples are generally lower than concentrations found in unfiltered samples indicating that the iron

April 2014 Page 3-6

concentrations are somewhat dependent on turbidity levels present in the groundwater at the time of sampling. The highest post RA concentration of iron detected in the groundwater at SEAD-16 is 1,300 μ g/L (MW16-5, Year 5 LTM sampling event), which is roughly half of what was detected in the groundwater at the site prior to the RA.

Lead has been detected less frequently (30 of 70 LTM samples) and at lower concentrations (two exceedances post RA) in groundwater during the six years of post-RA monitoring. The two noted post-RA exceedances of the lead EPA MCL both occurred in well MW16-7 during the first and second LTM sampling events. Both of these samples were unfiltered, and since the last exceedance at MW16-7, lead levels in both the filtered and the unfiltered samples collected from this well have trended downward.

Sodium is a persistent contaminant identified in SEAD-16 wells, as it has been detected in every sample collected from the site, and at levels in excess of its NYS Class GA standard in 44 of the 68 samples (sodium was analyzed for in 70 samples, but two of the results were rejected during data validation). Sodium concentrations detected in the groundwater are currently higher than what was found prior to the RA, with concentrations possibly affected by the known county highway salt pile operation that is operated by the Seneca County Highway Department (located approximately 1,000 feet upgradient to the east-northeast of SEAD-16). The location of the Seneca County Highway Department salt piles are indicated on **Figure 5**.

Although enough data points are available to perform a limited statistical analysis [e.g., using the combined SEAD-16 pre-RA (1 to 3 samples per well) and post-RA (6 samples per well) datasets], the overall limited availability of data points and the high percentage of non-detects in the metal constituents results would not be conducive to providing a comprehensive evaluation. A review of the EPA's *Groundwater Unified Guidance* (EPA 2009) document provides numerous statistical methodologies; however, although the present number of data points could be used to perform a statistical analysis. The guidelines recommend 10 to 15 distinct data points for accurate and meaningful results. Based on the limited data available the results would be inconclusive since there are at most six distinct data points for antimony in two of the wells (MW16-2 and MW16-7). Following the additional annual LTM events it is anticipated that a sufficient number of data points will be available to conduct a statistical analysis of the post-RA sampling data.

3.2.6.2 Review of Groundwater Trends at SEAD-17

ESI and RI Data

Review of SEAD-17 data presented in the RI Report indicated that one or more concentrations measured for four metals (i.e., iron, lead, sodium, and thallium) in 12 unfiltered groundwater samples exceeded NYS Class GA or EPA MCL standards in effect at the time of analysis. Of the 16 instances where groundwater concentrations exceeded the NYS Class GA or EPA MCL standards, 10 were associated with samples collected with a peristaltic pump (ESI sampling event) while the remaining six were found in samples collected using low-flow sampling with a bladder pump. As was indicated above for SEAD-16, sample water turbidities recorded during the RI sampling events were lower than those recorded during the ESI sampling event, and thus the analytical results from the RI samples are believed to be more

representative of the water quality present at SEAD-17. Examination of the RI groundwater data indicates that only three metals (iron, sodium, and thallium) were detected at concentrations above NYS Class GA or EPA MCL standards in effect at the time of analysis. Of these detections, iron was detected at an elevated concentration in one well (MW17-1 at a concentration of 572 J µg/L); sodium was detected in two wells (MW17-3, at a maximum concentration of 30,100 µg/L, and at MW17-4); and thallium was detected in two wells (MW17-1 at a maximum concentration of 7.1 µg/L, and at MW17-5).

Post-Remedial Action Data

Since the completion of the RA at SEAD-17, a total of 50 groundwater samples including 30 unfiltered and 20 filtered groundwater samples have been collected from the five wells located on SEAD-17. Filtered samples began being collected and analyzed during the Year 3 LTM event. Eighteen exceedances of NYS Class GA or EPA MCL standards primarily distributed across five metals have been detected, including antimony (four exceedances), iron (fourteen exceedances), lead (one exceedance), manganese (two exceedances), and sodium (four exceedances). Of the 25 NYS Class GA or EPA MCL standard exceedances, eight exceedances were detected in the filtered (dissolved) samples and 17 were detected in unfiltered (total) samples. Two exceedances of NYS Class GA or EPA MCL standards have been detected in well MW17-1 since the start of the post-RA LTM activities. Ten exceedances have been found in MW17-2; five exceedances have been found in well MW17-3 (with each of these exceedances of the NYS Class GA standard for iron); three exceedances in MW17-4; and three exceedances found in MW17-5.

Exceedances of the 3 μ g/L NYS Class GA standard for antimony were detected at MW17-2 in the unfiltered samples during the Year 1, 3, and 5 LTM events; and in the filtered sample only for Year 5 LTM event. The unfiltered sample from MW17-2 collected during the Year 3 event did not contain antimony concentrations in excess of the 3 μ g/L EPA MCL standard. The maximum concentration reported for antimony was detected in MWW17-2 during the Year 5 LTM event; a concentration of 4.4 J μ g/L detected in the MW17-2 Year 5 unfiltered sample and a concentration of 4.0 J was detected in the filtered sample.

Exceedances of the NYS Class GA standard for iron were noted fourteen times in samples collected from five wells (MW17-1 with two exceedances, MW17-2 with three exceedances; MW17-3 with five exceedances; MW17-4 with three exceedances, and one exceedance at MW17-5). The maximum iron concentration was detected in the unfiltered sample collected from MW17-2 during the Year 3 event. Iron was not detected in the filtered sample collected during this event. Iron concentrations detected in five samples collected from MW17-3 (including three unfiltered and two filtered samples) were above the applicable 300 μg/L NYS Class GA standard. In the Year 6 event, the concentration of the iron exceedance in the filtered samples at three wells (MW17-1, MW17-2, and MW17-4) were greater than or equal to the exceedance concentration in the unfiltered sample.

Lead has been detected above the EPA MCL standard of 15 μ g/L once on the site since the completion of the RA in MW17-2 (unfiltered sample collected during the Year 3 LTM sampling event in 2009). Lead was not detected in the filtered sample, as the lead concentration in this sample was non-detect.

Manganese concentrations exceeded the NYS Class GA standard of 300 μg/L for samples collected from MW17-2 (in the unfiltered sample collected during the Year 3 LTM sampling event in 2009) and MW17-4 (in the unfiltered sample collected during the Year 2 LTM sampling event in 2008). The sample collected from MW17-4 yielded the highest manganese concentration of 911 μg/L.

Sodium was detected at levels in excess of the 20,000 μ g/L NYS Class GA standard four times in samples collected from MW17-2, MW17-4 and MW17-5. Of these detections, the sample results from MW17-5 are the most notable as the filtered/unfiltered samples collected during the Year 3 LTM sampling event (2009) both were in excess of 360,000 μ g/L. Sodium results for the Year 2 (2008) and Year 4 (2010) LTM events for this well were below 10,000 μ g/L, suggesting the Year 3 (2009) results are possibly a scasonal anomaly.

In general, post-RA LTM results indicate that groundwater quality at SEAD-17 is not impacted by historic operations conducted in this area. Many of the identified groundwater quality exceedances of sodium appeared either as random occurrences (e.g., sodium at MW17-5 in Year 3) or may be attributable to iron and manganese groundwater concentrations that are identified regionally in Seneca County and consistent with the Seneca groundwater background levels presented in Appendix B. Similar to SEAD-16, based on the limited data for SEAD-17 including pre-RA (1 to 3 samples per well) and post-RA (5 samples per well) datasets, the generally limited available data points and the high percentage of non-detects in the metal constituents results would yield inconclusive results. A review of the EPA's Groundwater – Unified Guidance (EPA, 2009) document provides numerous statistical methodologies which recommend more data points than are presently available. Once a sufficient number of data points has been obtained, a statistical analysis of the post-RA sampling data can be conducted.

3.3 Routine Inspections of SEAD-16 and SEAD-17 Monitoring Wells

Observation of the wells at SEAD-16 and SEAD-17 during the Year 6 LTM event indicates that the wells located on the site are in acceptable condition. No root material or other obstructions were observed in the wells at SEAD-16 and SEAD-17 during the Year 6 sampling event.

4.0 REMEDY EVALUATION

As discussed above in Section 2.5, approximately 4,427 cy of metal and PAH impacted soil were removed from SEAD-16 and SEAD-17 during the RA conducted in the summer of 2007. The impacted soil was removed to minimize or eliminate the inigration of hazardous contaminants from soil to groundwater. Soil that exceeded the site-specific cleanup standards, as based on the confirmatory soil data, was removed from SEAD-16 and SEAD-17.

The long-term groundwater monitoring performed over six years following the completion of the 2007 RA shows that the soil removal remedy has been effective in minimizing the migration of select metals from soil to groundwater. Pre-RA groundwater quality concerns associated with arsenic, barium, beryllium, chromium, copper, iron, lead, mercury, nickel and thallium have been eliminated, as each of these metals, with the exception of iron and lead, have not been detected in the groundwater at SEAD-16 in excess of the applicable NYS Class GA or EPA MCL standards since the RA was completed. Lead was found twice at levels in excess of the applicable EPA MCL, but these exceedances were confined to a single well (MW16-7) during the Year 1 and Year 2 post-RA LTM sampling events; lead exceedances in MW16-7 have not been detected during subsequent sampling events. While iron and manganese concentrations in excess of NYS Class GA groundwater quality standards are still present, these results appear to be partially affected by turbidity issues or are attributable to the regional groundwater quality, and are not attributable to site activities. Noted sodium exceedances found in the groundwater at SEAD-16 appear to originate from the salt storage area located upgradient of SEAD-16 which is operated by the Seneca County Highway Department and arc not attributable to site activities. Antimony continues to be detected at concentrations above the applicable NYS Class GA standard, but these exceedances appear to be limited to two wells where concentrations have remained generally consistent since the RA was completed.

The groundwater quality at SEAD-17 appears to have improved since the completion of the RA. The few noted groundwater quality exceedances for metals other than iron and manganese appear to be limited to the initial Year 1 or Year 2 post-RA sampling events or to a sample where a turbidity impact is suspected (e.g., the sample collected from MW17-2 during the Year 3 LTM event), and where groundwater quality has improved since the exceedances were reported. Although the concentrations of iron were identified at concentrations above the applicable NYS Class GA standards and the results are greater than what has been observed historically at the site, there is not sufficient trend information to indicate that there a significant change in groundwater conditions. The noted iron exceedances reported for SEAD-17 at this time are isolated and are most likely attributable to regional groundwater quality and are not attributable to site activities.

The remedy for SEAD-16 and SEAD-17 includes the implementation and maintenance of LUCs consisting of:

 Prevention of residential housing, elementary and secondary schools, childcare facilities and playground activities; and Prevention of access to or uses of the groundwater until concentrations are below the NYS Class
 GA Groundwater or EPA MCL standards.

As part of the LTM program, SEAD-16 and SEAD-17 were inspected to determine if the LUCs are being maintained. During the Year 6 event, it was confirmed that no residential housing, elementary and/or secondary schools, childcare facilities, or playgrounds have been constructed or established in these AOCs, and no access to or use of groundwater, beyond that which is gained by the existing monitoring well network, was evident at either SEAD-16 or SEAD-17.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

- The soil excavation remedy at SEAD-16 and SEAD-17 has been effective controlling, and in some cases climinating, the migration of select metals from soil to groundwater based on evaluation of the results of the five post-RA LTM sampling events.
- The results of the Year 6 LTM event continue to demonstrate that field filtering may be an
 effective tool for identifying and evaluating an association between turbidity impacts and
 groundwater analytical data.
- Post-remediation groundwater monitoring results indicate that the groundwater has not been impacted by site activities, although concentrations were detected above the NYS Class GA or EPA MCL standards.
- The land use and groundwater use restrictions imposed at SEAD-16 and SEAD-17 are maintained and there are no signs of unauthorized use or access to the AOCs.

5.2 Recommendations

Based on evaluation of the pre-RA groundwater data and the data collected during Years 1 through 6 of the post-RA LTM program at SEAD-16 and SEAD-17, the Army recommends that groundwater monitoring continue on an annual basis at SEAD-16 and SEAD-17.

6.0 REFERENCES

- Army, 2006. Final Land Use Control Remedial Design for SEAD-27, 66, and 64A, Seneca Army Depot, Romulus, New York. December 2006.
- Army, 2010. Addendum 4 Addressing SEAD 1, 2, 5, 16, 17, 59, 71, 121C, and 121I, Land Use Control Remedial Design for SEAD 27, 66, and 64A, Seneca Army Depot Activity, Romulus, New York, April 2010.
- EPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530/R-09-007, March 2009.
- NYSDEC, 1998 with 2000 and 2004 Addendum. Ambient Water Quality Standard and Guidance Values and Groundwater Effluent Limitations
- Parsons, 1995. Final Expanded Site Inspection, Seven High Priority SWMUs, SEAD 4, 16, 24, 25, 26, and 45. December 1995.
- Parsons, 1999. Final Remedial Investigation (RI) Report at the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17). March 1999.
- Parsons, 2006. Record of Decision for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. March 2006.
- Parsons, 2006c. Revised Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP).
- Parsons, 2007. Remedial Design Work Plan and Design Report for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. July 2007.
- Parsons, 2008. Building Cleaning and Building Demolition Completion Report, SENECA Army Depot Activity, Romulus, New York, Draft Final. November 2008.
- Parsons, 2008. Construction Completion Report for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17), Final. September 2008.
- Parsons, 2009. Final Annual Report (Year 2) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2010. Final Annual Report (Year 3) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2011. Draft Annual Report (Year 4) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).
- Parsons, 2014. Final Annual Report (Year 5) for the Abandoned Deactivation Furnace (SEAD-16) and the Active Deactivation Furnace (SEAD-17).

TABLES

Table 1	SEAD-16 - Groundwater Table Elevations Summary
Table 2	SEAD-17 - Groundwater Table Elevations Summary
Table 3A	SEAD-16 - Year 6 Filtered and Unfiltered Groundwater Analyses
Table 3B	SEAD-17 - Year 6 Filtered and Unfiltered Groundwater Analyses

Table 1
SEAD-16 - Groundwater Table Elevations Summary
Draft Annual Report - Year 6 for SEAD-16 and SEAD-17
Seneca Army Depot Activity

Pre-Remedial Action Groundwater Elevation Data

	Top of PVC	April 4, 1994		August	27, 1996	December 6, 1996		
Monitoring	Flevation (1)	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table	
	(feet)	water	Elevation	Water	Elevation	Water	Elevation	
		(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	
MW 16-1	735.54	3.52	732.02	6,45	729,09	3.25	732.29	
MW 16-2	734.56	3,65	730.94	4,50	730,06	3.71	730.85	
MW 16-3	735.48	4.60	730.88	5.43	730,05	4.64	730.84	
MW 16-4	733.93	NA	NA	4.83	729,10	2.93	731.00	
MW 16-5	733.40	NA	NA	4.76	728,64	2.20	731.20	
MW 16-6	733.56	NA	NA NA	4.54	729.02	2,90	730,66	
MW 16-7	734.42	NA	NA NA	5.06	729.36	4.23	730,19	

Post-Remedial Action Groundwater Elevation Data

Top of PVC		December 20, 2007		2008 Top of	December 9, 2008		Novembe	er 13, 2009	December 13, 2010	
Monitoring	1devation (1)	Depth to	Water Table	PVC	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table
Well	(feet)	Water	Flevation	Elevation (3, 5)	Water	Elevation (4,5)	Water	Elevation (5)	Water	Elevation (5)
		(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW [6-1	735.54	4.25	731.29	735,54	4.28	731.26	5.76	729.78	3.16	732.38
MW 16-2	734,56	4.20	730.36	733.48	4,20	729.28	4.35	729.13	4.08	729,40
MW 16-3	735,48	NA	NA	735.48	NA	NA NA	NA.	NA	NA	NA.
MW 16-4	733.93	3.00	730,93	733.93	3.42	730.51	3.91	730.02	2.78	731.15
MW 16-5	733.40	1.90	731,50	735.82	3.32	732.50	3.10	732.72	1.68	734.14
MW 16-6	733.56	2.66	730.90	733,56	3.47	730.09	3.68	729,88	2.53	731.03
MW 16-7	734.42	4.45	729,97	734.42	4.63	729.79	4.75	729,67	4.41	730.01

	2012 Fop of	Decembe	er 10, 2012	December 9, 2013		
Monitoring	PVC	Depth to	Water Table	Depth to	Water Table	
Well	Elevation (b)	Water	lifevation (6)	Water	Flevation 51	
	(feet)	(feet)	(feet)	(feet)	(feet)	
MW 16-1	735.53	3.15	732.38	2.94	732.59	
MW 16-2	734.86	4.08	730.78	4.18	730,68	
MW 16-3	NA	NA.	NA	NA	NA	
MW 16-4	734.51	2.71	731.80	2.64	731.87	
MW 16-5	735.36	1.63	733,73	2.26	733.10	
MW 16-6	734.25	2.37	731,88	2.65	731.60	
MW 16-7	734.96	4.28	730.68	4.38	730.58	

- (1) Elevations are relative to the North American Vertical Datum (NAVD) 1988.
- (2) April 4, 1994 data were collected as a part of the LSI and August 1996 and December 1996 were collected during the Remedial Investigation phase.
- (3) Monitoring well MW16-3 was destroyed during the remedial action conducted at SEAD-16.
- (4) PVC riser pipe for wells MW16-2 and MW16-5 was necessary to be cut during December 2008 sampling event due to the PVC preventing the metal easing lid from opening.
- (5) MW16-2 and MW16-5 were re-surveyed in Dec 2008 and this data was used for water table elevation calculations for December 9, 2008 through December 13, 2010. MW16-2 Top of PVC elevation is 733.48 ft, and MW16-5 Top of PVC elevation is 735.82 ft.
- (6) Wells were re-surveyed with GPS RTK equipment in November 2012. New ground surface and top of the PVC elevations were used for the December 2012 water table elevation calculation. NA Not Available.

Table 2 SEAD-17 - Groundwater Table Elevations Summary Draft Annual Report - Year 6 for SEAD-16 and SEAD-17 Seneca Army Depot Activity

Pre-Remedial Action Groundwater Elevation Data

			April 4, 1994		August	29, 1996	December 6, 1996	
Monitoring	2008 Top of	Top of PVC	Depth to	Water Table	Depth to	Water Table	Depth to	Water Table
Well	PVC	Elevation (1)	Water	Elevation	Water	Elevation	Water	Elevation
	Elevation	(feet)	(feet)	(feet)	(feet)	(fect)	(feet)	(feet)
MW 17-1		736.30	2.80	733.50	7.64	728.66	3.01	733.29
MW 17-2		733.75	3.19	730.56	7.24	726.51	3.45	730.30
MW 17-3	732.625	732.15	2.38	729.77	7,14	725.01	2.47	729.68
MW 17-4		734.59	3.00	731.59	7.23	727.36	3.13	731.46
MW 17-5] .	733.58	NΑ	NΛ	6.92	726.66	2.65	730.93

Post Remedial Action Groundwater Elevation Data

		December 19, 2007			December 9, 2008		November 11, 2009		December 13, 2010	
Monitoring Well	Top of PVC Elevation (1)	174901100	Water Table Elevation	2008 Top of PVC Elevation	Depth to Water	Water Table Elevation (3.4)	Depth to Water	Water Table Elevation ⁽⁴⁾	Depth to Water	Water Table Elevation (4)
	(feet)	(feet)	(feet)		(feet)	(feet)	(feet)	(feet)	(feet)	(fcet)
MW 17-1	736.30	3.33	732.97	736.30	4.25	732.05	5.60	730.70	3.32	732.98
MW 17-2	733.75	3.31	730.44	733.75	4.07	729.68	5.27	728.48	2.2	731.55
MW 17-3	732.15	2.67	729.48	732.625	3.96	728.67	6.15	726.48	2.51	730.12
MW 17-4	734.59	3.40	731.19	734.59	4.05	730.54	5.75	728.84	3.4	731.19
MW 17-5	733.58	2.90	730,68	733,58	3.46	730.12	4.65	728.93	2.79	730.79

	2012 Top of	Decembe	r 10, 2012	Decembe	r 9, 2013
Monitoring	PVC	Depth to	Water Table	Depth to	Water Table
Well	Elevation (3)	Water	Elevation (5)	Water	Elevation (5)
	(feet)	(feet)	(feet)	(feet)	(feet)
MW 17-1	736.39	3.19	733.20	3.52	732.87
MW 17-2	733.65	2.79	730.86	3.15	730.50
MW 17-3	732.05	2.4	729.65	2.73	729.32
MW 17-4	734.62	3.18	731,44	3.2	731.42
MW 17-5	734.12	2.64	731.48	2.79	731.33

Notes:

- (1) Elevations are relative to the North American Vertical Datum (NAVD) 1988.
- (2) April 4, 1994 data were collected as a part of the ESI and August 1996 and December 1996 were collected during the Remedial Investigation Phase.
- (3) PVC riser pipe for MW17-3 was necessary to be cut during December 2008 sampling event due to the PVC preventing the metal casing lid from opening.
- (4) MW17-3 was re-surveyed in December 2008 and this data was used for water table elevation calculations for December 9, 2008 through December 13, 2010, MW17-3 Top of PVC elevation is 732,63 ft.
- (5) Wells were re-surveyed with GPS RTK equipment in November 2012. New ground surface and top of the PVC elevations were used for December 2012 water table elevation calculation.
- NA = Not Available.

Table 3A SEAD-16 - Year 6 Filtered and Unfiltered Groundwater Results Annual Report - Year 6 for SEAD-16 and SEAD-17 Seneca Army Depot Activity

Arca			SEAD-16	SEAD-16						
Loc ID			MW16-1	MW16-1	MW16-2	MW16-2	MW16-4	MW16-4	MW16-5	MW16-5
Matrix		- 39	GW	GW						
Sample ID			16LM20035F	16LM20035U	16LM20036F	16LM20036U	I6LM20037F	16LM20037U	161.M20038F	16LM20038U
Sample Date			12/17/2013	12/17/2013	12/16/2013	12/16/2013	12/17/2013	12/17/2013	12/16/2013	12/16/2013
QC Type			SA	SA						
Study ID			LTM	LTM						
Sample Round			6	6	6	6	6	6	6	6
Filtered Status:			Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total
		Criteria								
Parameter	Units	Level	Value Qual	Value Qua						
Aluminum	UG/L		23 UJ	50 UJ	23 UJ	50 UJ	23 UJ	50 UJ	23 UJ	50 UJ
Antimony	UG/L	3	2.3 U1	2 UJ	3.6 J	3.2 J	2.3 UJ	2 UJ	2.3 UJ	2 UJ
Arsenic	UG/L	10	1.3 UJ	1,3 UJ	1.3 (1)					
Barium	UG/L	1,000	63 J	69 J	70 3	66 J	140 J	150 1	40 J	38 J
Beryllium	UG/L	4	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 UJ	0.15 111	0.25 UJ	0.15 UJ
Cadmium	UG/L	5	0.095 (3)	0.13 UJ	0.095 UJ	0.13 UJ	0.095 UJ	0.15 J	0.095 UJ	0.13 UJ
Calcium	UG/L		140,000 J	130,000 J	120,000 J	100.000 3	210,000 J	1 000,001	100,000 J	\$8,000 J
Chromium	UG/L	50	2.5 UJ	2.5 UJ	2.5 111	2.5 UJ	2.5 UJ	3.6 J	2.5 UJ	2.5 UJ
Cobalt	UG/I		(),9 J	0.94 J	0.23 J	0.23 J	1.1	0.94 1	0.15 UJ	0.12 UJ
Copper	UG/L	200	1.2 J	1.1 UJ	4 J	4.7 J	1.2 J	1.5 3	1.1 UJ	1,1 UJ
Iron	UG/L	300	260 J	280 J	33 UJ	44 UJ	350 J	380 J	440 J	510 J
Iron and Manganese	UG/L	500	352 J	378 J	19 J	19 J	580 J	590 J	670 J	680 J
Lead	UG/L	15	0.2 UJ	0.5 U3	0.38 J	1.1.1	0.28 J	0.65 J	0.2 UJ	0,5 UJ
Magnesium	UG/L		22,000 J+	22,000 J	14,000 J+	13,000 J	33.000 J+	31,000 J	10,000 J+	9.500 J
Manganese	UG/L	300	92 J	98 J	19 J	19 J	230 J	210 J	230 J	170 J
Mercury	UG/L	0.7	0.091 UJ	UJ 190.0	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.091 []]	0.091 UJ
Nickel	UG/L	100	3.6 J	2 111	2 UJ	2 UJ	3.3 J	2.9 J	2 111	2 UJ
Potassium	UG/L		810 J	790 J	1.800 3	1,700 J	2,500 J	2,400 J	2.300 J	1.900 J
Selenium	UG/L	10	I UJ	L1 UJ	1 UJ	1.1 UJ	1 UJ	1.1 UJ	1 (1)	1.1 (//
Silver	UG/L	50	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 111	0.18 UJ
Sodium	UG/L	20,000	57,000 J	60,000 J	22,000 J	21,000 J	290,000 J	270,000 J	1.400 J	1.300 1
Thallium	UG/L	2	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ
Vanadium	UG/L		3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 UJ	3.2 (1)
Zinc	UG/L		8.3 UJ	8.4 UJ	24 J	12 J	8.3 UJ	8.4 []]	8.3 19	8.4 171

Notes:

- 1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998) and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 2. Shading indicates a concentration above the GA or MCL groundwater standard.
- 3. Dissolved samples were field filtered using a 0.45 micro filter.
- 4. A blank in the Criteria Level column indicates no standard established for that compound.
- U = compound was not detected

- SA = Sample
- J = the reported value is an estimated cocentration

DU = Duplicate Sample

- J+ = result is an estimated quantity, biased high

Table 3A
SEAD-16 - Year 6 Filtered and Unfiltered Groundwater Results
Annual Report - Year 6 for SEAD-16 and SEAD-17
Seneca Army Depot Activity

Area			SEAD-16	SEAD-16	SEAD-16	SEAD-16	SEAD-16	SEAD-16
Loc ID			MW16-5	MW16-5	MW16-6	MW16-6	MW16-7	MW16-7
Matrix			GW	GW	GW	GW	GW	GW
Sample ID			16LM20039F	16LM20039U	16LM20040F	16LM20040U	16LM20041F	16LM20041U
Sample Date			12/17/2013	12/17/2013	12/17/2013	12/17/2013	12/17/2013	12/17/2013
QC Type			DU	DU	SA	SA	SA	SA
Study ID			LTM	LTM	LTM.	LTM	LTM	LTM
Sample Round			6	6	6	6	6	6
Filtered Status:			Dissolved	Total	Dissolved	Total	Dissolved	Total
		Criteria				Wesserta		
Parameter	Units	Level	Value Qual	Value Qua				
Aluminum	UG/L		23 UJ	50 UJ	23 UJ	50 UJ	23 UJ	50 UJ
Antimony	UG/L	3	2.3 UJ	2 UJ	2.3 UJ	2 UJ	16 J	15 J
Arsenic	UG/L	10	1.3 UJ					
Barium	UG/L	1,000	41 J	41 J	53 J	58 J	100 J	100 J
Beryllium	UG/L	4	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ
Cadmium	UG/L	5	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ
Calcium	UG/L		110,000 J	95,000 J	92,000 J	84,000 J	120,000 J	110,000 J
Chromium	UG/L	50	2.5 UJ	2.5 UJ	2.5 til	2.5 UJ	2.5 UIJ	2.5 UJ
Cobalt	UG/L		0.15 UJ	0.12 UJ	0.35 J	0.34 J	0.19 J	0.2 J
Copper	UG/L	200	1.1 UJ	1.1 UJ	1.1 (1)	1.1 UJ	3.4 1	2.5 1
Iron	UG/L	300	490 J	530 J	180 J	210 J	33 UJ	44 UJ
Iron and Manganese	UG/L	500	710 J	720 J	340 J	360 J	16 J	15 J
Lead	UG/L	15	0.22 J	0.5 UJ	0.2 UJ	0.54 J	1.9 J	6 J
Magnesium	UG/L		11,000 J+	10,000 J	9.500 J-	9.500 J	26,000 1+	27,000 J
Manganese	UG/L	300	220 J	190 J	1 001	150 J	16 J	15 J
Mercury	UG/L	0.7	0.091 UJ					
Nickel	UG/L	100	2 UJ					
Potassium	UG/L		2,300 J	2.100 J	1,900 1	1,800 J	3,100 J	2,900 J
Selenium	UG/L	10	1 UJ	L1 UJ	1 UJ	1.1 UI	1 UJ	1.1 UJ
Silver	UG/L	50	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ
Sodium	UG/L	20,000	1,400 J	1,300 J	14,000 J	13,000 J	28,000 J	27,000 J
Thallium	UG/L	2	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ
Vanadium	UG/L		3.8 []]	3.2 UJ	3.8 UJ	3.2 UЛ	3.8 UJ	3.2 UJ
Zine	UG/L		8.3 UJ	8.4 UJ	8.3 100	8.4 UJ	8.3 UJ	8.4 UJ

Notes:

- 1. The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998)
- and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 2. Shading indicates a concentration above the GA or MCL groundwater standard.
- 3. Dissolved samples were field filtered using a 0.45 micro filter.
- 4. A blank in the Criteria Level column indicates no standard established for that compound.
- U = compound was not detected
- J = the reported value is an estimated cocentration
- J+ = result is an estimated quantity, biased high

Table 3B
SEAD-17 - Year 6 Filtered and Unfiltered Groundwter Analyses
Annual Report - Year 6 for SEAD-16 and SEAD-17
Seneca Army Depot Activity

Area		T	SEAD-17									
Loc II)		- 1	MW17-1	MW17-1	MW17-2	MW17-2	MW17-3	MW17-3	MW17-4	MW17-4	MW17-5	MW17-5
Matrix			GW									
Sample ID		- 1	17LM20025F	17LM20025U	17LM20026F	17LM20026U	17LM20027F	17LM20027U	17LM20028F	17LM20028U	17LM20029F	17LM20029U
Sample Date		- 1	12/15/2013	12/15/2013	12/15/2013	12/15/2013	12/15/2013	12/15/2013	12/15/2013	12/15/2013	12/15/2013	12/15/2013
QC Type		- 1	SA									
Study ID		- 1	LTM	MT.3	LTM	LTM	LTM	LTM	MI.3	1.FM	LTM	LTM
Sample Round			6	6	6	6	6	6	6	6	6	6
Filtered Status			Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Lotal
		Criteria										
Parameter	Units	Level	Value Qual	Value Qua								
Aluminum	UG/L		23 UJ	50 UJ	23 LU	50 UJ	23 UJ	50 UJ	23 UJ	50 UJ	23 UJ	50 UJ
Antimony	UG/L	3	2.3 UJ	2 UJ	2.3 (IJ	2 UJ						
Arsenic	UG/L	10	1.3 J	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	1.3 (1)	1.3 UJ	1.3 UJ	1.3 [1]	1.3 UJ
Barium	UG/L	1,000	60 J	56 J	46 J	47 3	52 J	53 J	20 J	23 J	75 J	85 J
Beryllium	UG/L	4	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.25 UJ	0.15 IJJ	0.25 UJ	0.15 UJ
Cadmium	UG/L	5	0.095 LU	0.13 UJ	0.095 UJ	0.13 UJ	0.095 LU	0.13 []]	0.095 UJ	0.13 UJ	0.095 UJ	0.13 1/1
Calenm	UG/L		120,000 J	91,000 J	180,000 1	150,000 J	130,000 J	110,000 J	96,000 J	93,000 J	110,000 J	100.000 J
Chromium	UG/L	50	2.5 UJ	2,5 UJ	2.5 ()]	2.5 UJ	2.5 UJ	2.5 UJ				
Cobalt	UG/L		0.34 J	0.29 J	0.44 J	0.38 J	0.31 J	0.3 J	1 1	1.1 J	0.2 J	0.22 J
Copper	UG/L	200	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.3 J	1.1 J	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
Iron	UG/L	300	800 J	680 J	520 J	470 J	33 UJ	110 J	810 J	810 J	350 J	140 J
Iron and Manganese	DG/L	500	897 J	765 J	594 J	534 J	2.3 J	112 J	1,090 J	1,090 J	374 J	167 J
Lead	UG/L	15	0.2 UJ	0.5 UJ	0.2 UJ	0.5 UJ	0.35 J	0,5 1/3	0.2 UJ	0.5 UJ	0.2 UJ	0.5 UJ
Magnesium	UG/L		24,000 J+	19,000 J	24,000 J+	22,000 J	15.000 J-	15.000 J	15,000 J+	15,000 J	18,000 J+	17,000 J
Manganese	UG/L	300	97 J	85 J	74-1	64 J	2.3 J	2 J	280 J	280 J	24 J	27 J
Mercury	UG/L	0.7	0.091 UJ	0.091 UJ	0.091 UJ	0.091 LiJ	0.091 []]	0.091 UJ	0.091 (7)	0.091 UJ	0.091 111	0.091 UJ
Nickel	UG/L	100	2 UJ	2 []]	2 UJ	2 UJ	2 UJ	2 UJ				
Potassium	UG/L		500 J	400 J	1.100 J	1.000.1	870 J	840 J	450 J	430 J	1.200 J	F.100 3
Selenium	UG/L	10	LUJ	1.1 137	1 (1)	1.1 UJ	1 UJ	1.1 13	1 LJJ	1.1 UJ	I UJ	1.1 07
Silver	UG/L	50	0.25 UJ	0.18 13	0.25 UJ	0.18 (1)	0.25 LU	0.18 [7]	0.25 UJ	0.18 LIJ	0.25 UJ	0.18 UJ
Sodium	UG/L	20,000	6,000 J	4.800 J	16,000 1	14,000 1	11.000 J	10,000 3	7.800 J	7.800 J	5.400 3	5,300 J
Thallium	UG/L	2	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.5 UJ	0.25 1/J	0.5 UJ	0.25 10	0.5 UJ	0.25 (1)
Vanadium	UG/I.		3.8 1)]	3.2 UJ	3.8 UJ	3.2 Ui	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	3.8 UJ	3.2 1/1
Zing	UG/I		8.3 UJ	8.4 171	1T J	9.3 J	35 J	33 J	8.3 UJ	8.4 UJ	8.3 1/1	8.4 113

The criteria values (where available) are NYS Class GA Groundwater Standards (TOGS 1.1.1, June 1998) and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

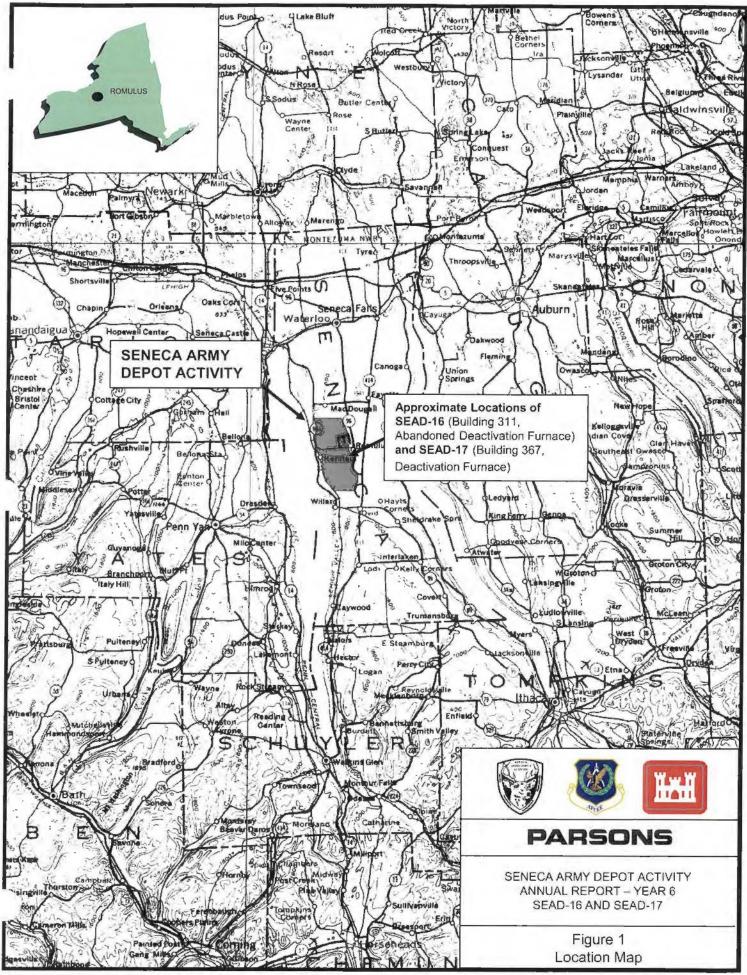
SA = Sample

DU = Duplicate Sample

^{2.} Shading indicates a concentration above the GA or MCL groundwater standard.

^{3.} Dissolved samples were field filtered using a 0.45 micro filter.

^{4.} A blank in the Criteria Level column indicates no standard established for that compound.


U = compound was not detected

J = the reported value is an estimated cocentration

Je = result is an estimated quantity, biased high

FIGURES

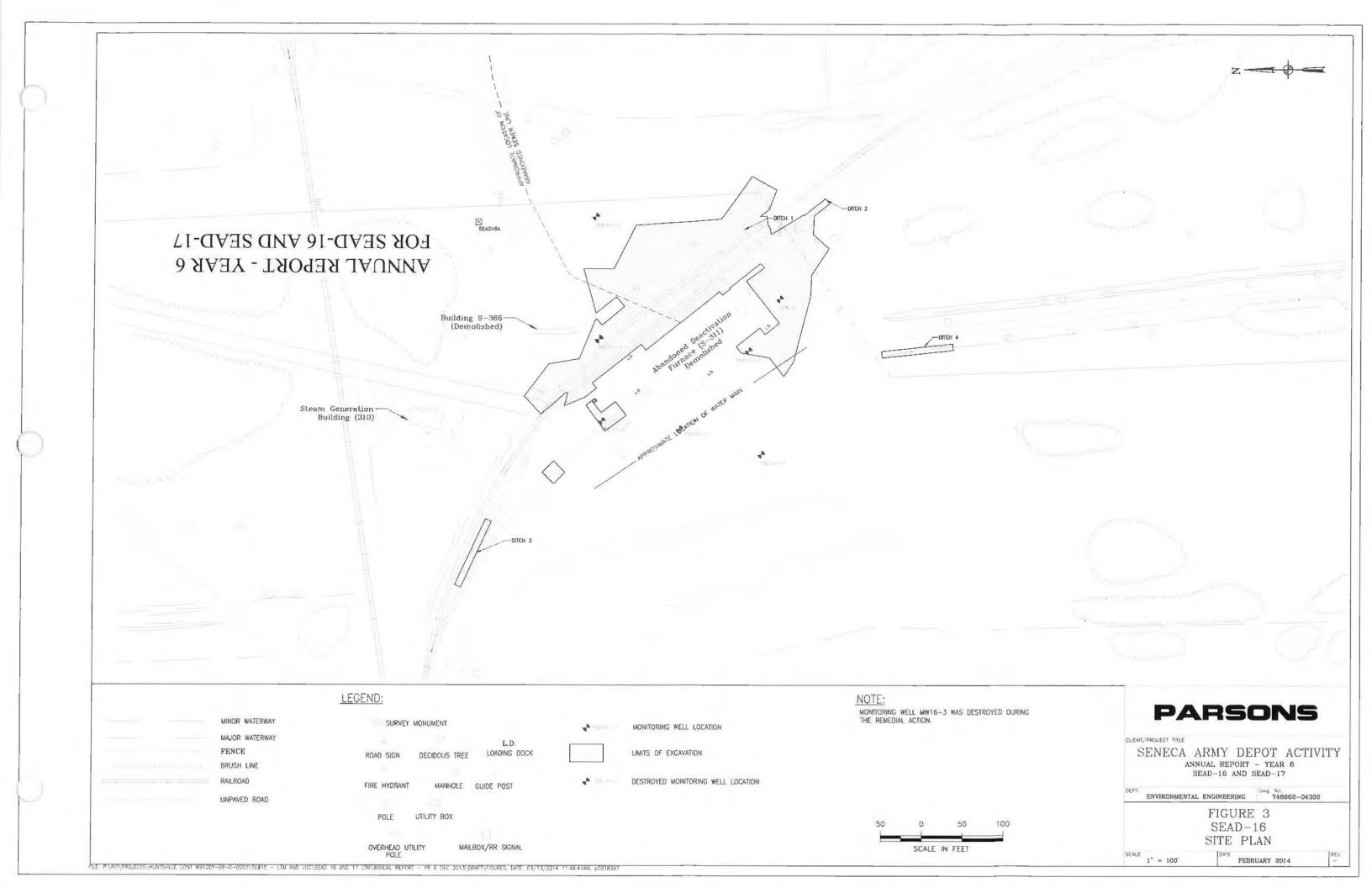
Figure 1	Location Map
Figure 2	Location of SEAD-16 and SEAD-17 at Seneca Army Depot Activity
Figure 3	SEAD-16 Site Plan
Figure 4	SEAD-17 Site Plan
Figure 5	SEAD-16 and SEAD-17 Groundwater Flow Trend

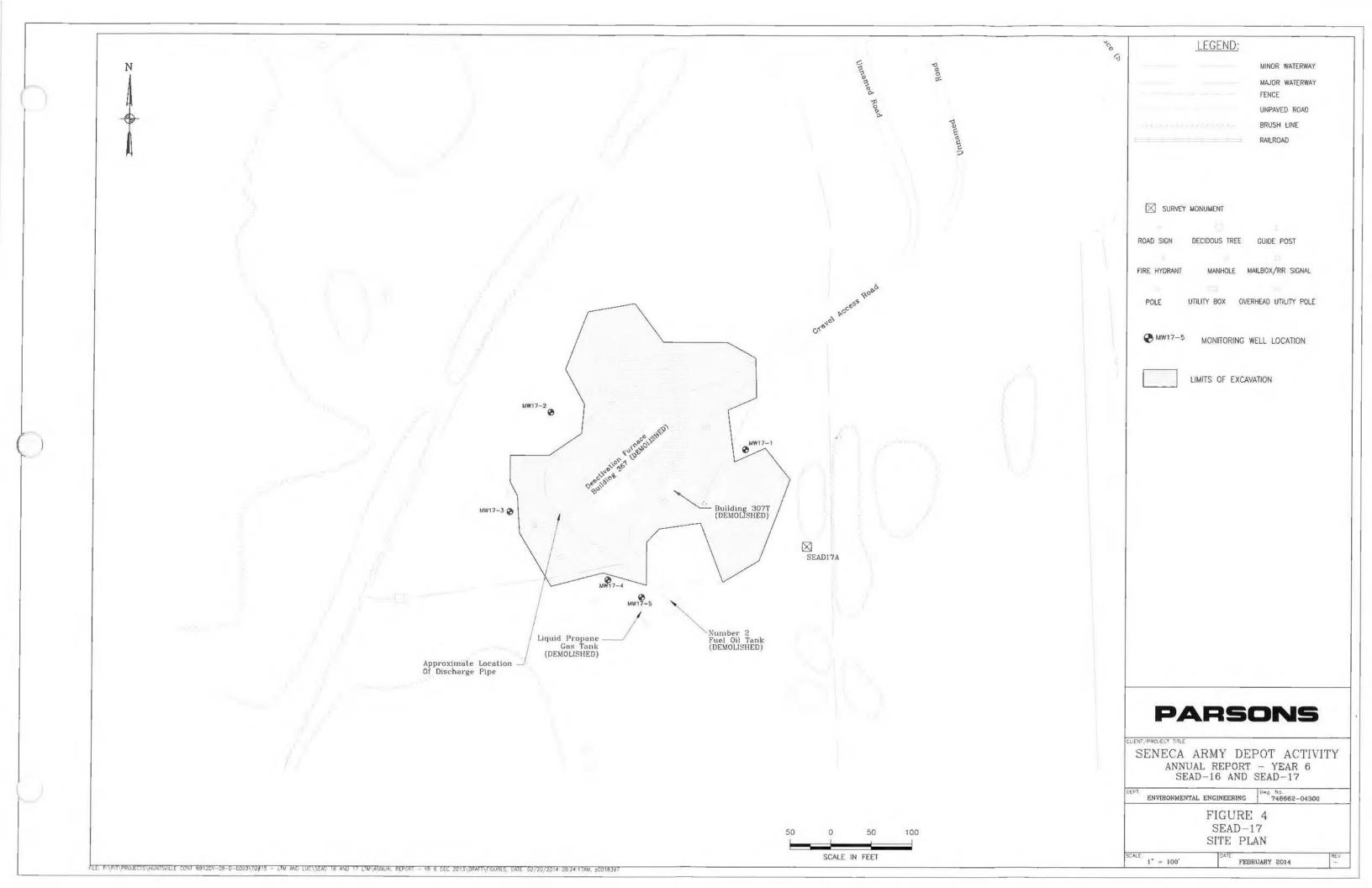
1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 Feet

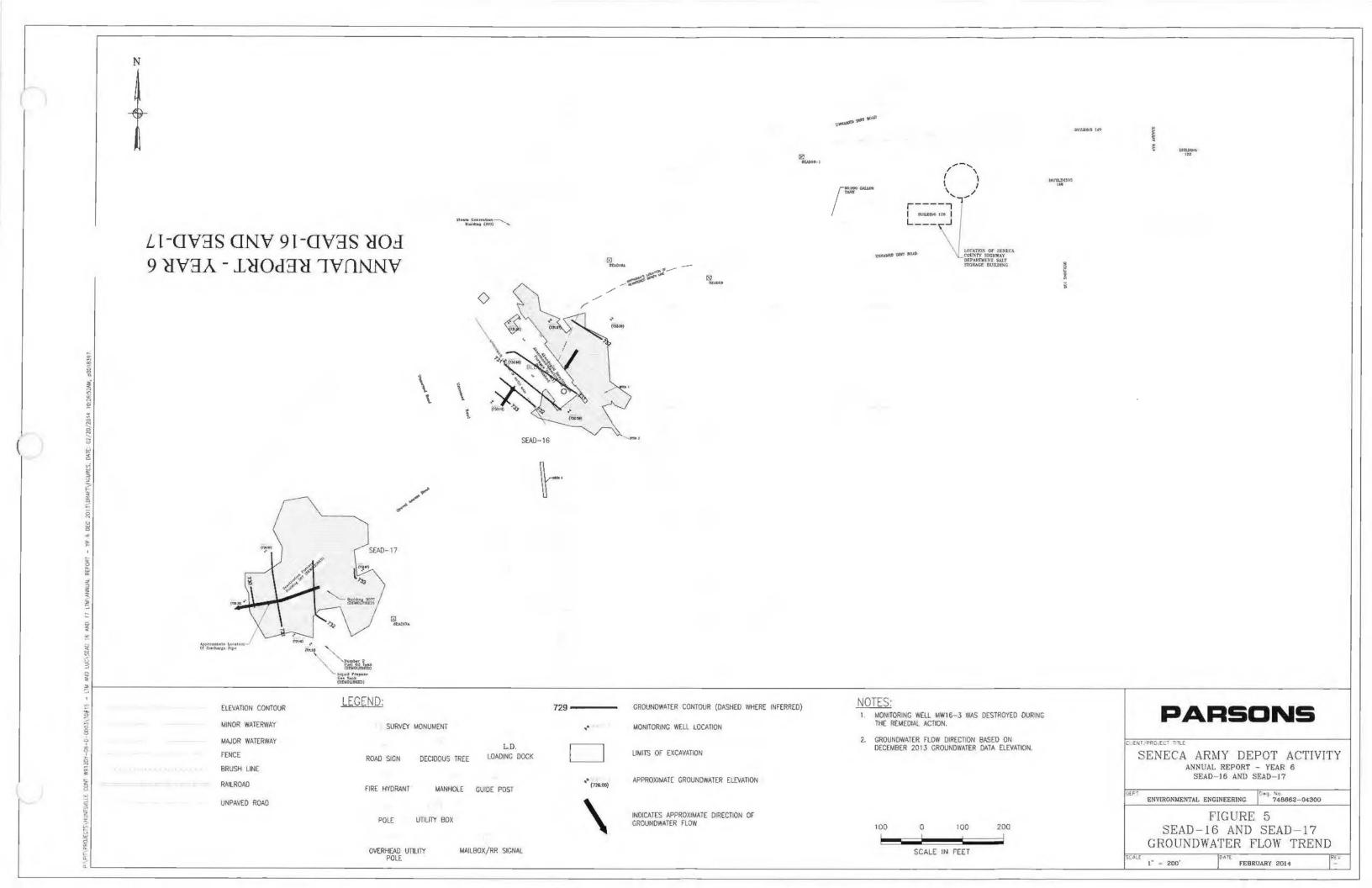
Area Covered by PID-wide Land Use Restrictions

 Prohibit the development and use of property for residential housing, elementary and secondary schools, childcare facilities and playgrounds.

 Prevent access to or use of the groundwater until the NYS Class GA Groundwater Standards are met.






PARSONS

SENECA ARMY DEPOT ACTIVITY ANNUAL REPORT - YEAR 6 FOR SEAD-16 AND SEAD-17

> FIGURE 2 Location of SEAD-16 and SEAD-17 at Seneca Army Depot Activity

APPENDICES

Appendix A	Pre-Remedial Action Monitoring Data
Appendix B	SEDA Background Groundwater Data Summary
Appendix C	Field Forms - Year 6 LTM Groundwater Sampling Activities
Appendix D	Post-Remedial Action Monitoring Results (Years 1 through 6
Appendix E	Laboratory Analytical Report
Appendix F	Data Validation

APPENDIX A

PRE-REMEDIAL ACTION MONITORING DATA

	•		

Appendix A
Pre-Remedial Action Groundwater Monitoring Results
Draft Annual Report - Year 6 for SEAD-16 and SEAD-17
Seneca Army Depot Activity

	ACHON	LOC_ID: SAMP ID: QC CODE: STUDY ID: MATRIX: SAMPLE DATE		MW16-1 16101 SA RI ROUNDI GW 8/27/1996	MW16-1 16152 SA RI ROUND2 GW 12/7/1996	MW16-2 16102 SA RI ROUNDI GW 8/27/1996	MW16-2 16150 SA RI ROUND2 GW 12/6/1996	MW16-3 16110 SA RI ROUND1 GW 8/30/1996	MW16-3 16165 SA RI ROUND2 GW 12/10/1996	MW16-4 16105 SA RI ROUNDI GW 8/28/1996	MW16-4 16156 SA RI ROUND2 GW 12/7/1996	MW16-5 16162 SA RI ROUND2 GW 12/9/1996	MW16-6 16111 SA RI ROUND1 GW 9/3/1996	MW16-6 16155 SA RI ROUND2 GW 12/8/1996	MW16-7 16104 SA RI ROUND1 GW 8/28/1996	MW16-7 16158 SA RI ROUND2 GW 12/8/1996	MW16-7 16159 DU RI ROUND2 GW 12/8/1996
PARAMETER	LEVEL	SOURCE (t)	UNIT	VALUE O	VALUE O	VALUE O	VALUE C	VALUE C	VALUE C	VALUE C	VALUE O	VALUE O	VALUE O	VALUE C	VALUE C	O VALUE O	VALUE Q
SEMIVOLATILE ORGANICS																	
3-Nitroaniline	5	GA	UG/L	26 UJ	25 U	26 U	25 11	25 U	25 U	25 U	25 J	25 U	25 U				
4-Chloroaniline	5	GA	UG/L	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 J	10 U	10 U				
Benzo[ghi]perylene			UG/L	10 UJ	10 U	10 U	10 U	1.3	10 U	10 U	10 U	10 U	10 U	10 U	10 U	J 10 U	10 U
Dibenz[a,h]anthracene			UG/L	10 UJ	10 U	10 13	10 U	0.7 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Diethyl phthalate			UG/L	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U	J 10 U	10 U				
Indeno[1,2,3-cd]pyrene OTHER ANALYSES			UG/L	10 UJ	10 U	10 U	10 U	0.6 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	J 10 U	10 U
Nitrate/Nitrite Nitrogen	10	GA	MG/L	0.02	0.01 U	0.67	2	0.04	0.64	0.29	0.26	1.4	0.01 U	0.01 €1	0.83	0.24	0.23
Percent Solids (Metals)				0	0	0	0	0	0	0	0	O	0	0	0	0	0
Total Petroleum Hydrocarbons NITROAROMATICS			MG/L	0.44 U	0,4 U	0.4 U	0.36 U	0.41 U	I	0.41 U	0.42 U	0.91	0.89	0.73	0.41 U	0.46 U	1.3
1,3-Dinitrobenzene	5	GA	UG/L	0.26 U	0.26 U	1.8 J	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U	0.26	0.26 U	0.26 U
2,4-Dinitrotoluene	5	GA	UG/L	0.26 U	0.26 U	0.26 U		0.26 U		0.68 J	0.26 U	0.26 U	0.26 U	0.26 U	0.26 U		
METALS																	
Aluminum			UG/L	1850	143 U	1010	490	336	36.1 U	24.9	36.1 U	148 U	208	170 U	12.4	67.4 U	52.9 U
Antimony	3	GA	UG/L	2 U	3 U	2 U	3 U	7.5	5.3 U	2 U	3 U	3 U	2 U	3 U	15.7 U	J 8.9 U	10 U
Arsenic	10	MCL	UG/L	2.7 U	4.4 U	2.7 U	4.4 U	2.7 U	4.4 U	2.7 U	4,4 U	4.4 U	2.7 U	4.4 U	4 U	J 4.4 U	
Barium	1,000	GA	UG/L	74.2	48.2 U	48.1	31.4 U	64.4	57.4 U	97.4	55.2 U	67.6 U	86.4	80.2 U	89.2	59.1 U	
Beryllium	4	MCL	UG/L	0.23	0.2 U	0.22	0.2 U	0.21	0.2 U	0.21	0.2 U	0.2 U	0.1 U	0.2 U	0.21	0.2 U	
Cadmium	5	GA	UG/L	0.3 U	0.6 U	0.3 U	0.6 U	0.3 U	0.6 U	0.3 U		0,6 U	0.3 U	0.6 ⊔	0.3 U		
Calcium			UG/L	157,000	116,000	193,000	164,000	99,800	85,500	130,000	158,000	90,000	44600	84,900	109,000	114,000	117,000
Chromium	50	GA	UG/L	2.7	1 U	2.3	1.1 U	1 ()				1 U	1.5	1 U	1	1 U	
Cobalt			UG/L	2.1	1.3 U	1.5	1.3 U	1.2 U		1.2 U		1.3 U	1.2	1.3 U	1.2	1.3 U	
Copper	200	GA	UG/L	4.9	1.9 U	7.9	2.9 U	19.2	11.4 U	3.6	1.1 U	1.1 U	4.4	LI U	5.1	1.4 U	
Iron	300	GA	UG/L	2,400 J	296	1,720 J	923 J	432 J	77.8 U		126	211	273 J	290	23.4	174	160
Lead	15	MCL	UG/L	1.7 U	1.5 U	5.9	6.8	6.1	1.5 U	1.7 U		3 U	1.7 U	1.5 U	8.4	9.9	9.2
Magnesium	200		UG/L	23,300	17,600	23,700	20,900	11,600	10,000	17,700	22,900	11,800	6370	12,800	16,900	22,600	23,200
Manganese	300	GA	UG/L	210	64.2	129	65.2	130	5.9 U	132	66.9	51	545	1,380	85.7	43.2	44.3
Mercury	0.7	GA	UG/L	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U							
Nickel	100	GA	UG/L	4.7	2.5 U	11	3.1 U	3	2.5 U	2.2	2.5 U	2.5 U	4.1	2.5 U	2.2	2.5 U	
Potassium	10	64	UG/L	1670	998 U	4760	3410 U	2740	1900 U	4040	1660 U	18800	3530	2230 U	3220	2090 U	
Selenium Sodium	20,000	GA GA	UG/L	2.4 U	4.7 UJ		4.7 UJ		4.7 UJ			4.7 UJ	2.4 U 396000	4.7 UJ 409,000	2.4 U 12.000	J 4.7 UJ 9,940	J 4.7 UJ 10,200
Thallium	20,000	MCL.	UG/L UG/L	8,750 4.2 U	3,870 U	19,100	17,000	9,480	7,660	17,200	12,300	49,500 6.9 U	6,2	409,000 4.1 U	4.2	9,940	10,200 4.1 U
Vanadium	4	WICL	UG/L	3.3	5.9 U 1.6 U	9.2 2.9	9.6 U 1.6 U	4.2 U 1.2 U	4.1 U 1.6 U	4.2 U 1.2 U		1.6 U	2.9	1.6 U	1.2	1.6 U	_
Zinc			UG/L	15.6 R	5.8 U	37.4 R		32.4 R		4.5 R		6.3 U	13.2 R	1.6 U	2.9 R		
Zanc			UO/L	13.0 K	3.8 U	37.4 K	13.5 U	32.4 K	42	4.5 K	3.1 0	0,3 U	13.2 K	10.5 U	2.9 K	2.2 U	7.3 U

Notes:

- The criteria values are NYSDEC Class GA Groundwater Standards (TOGS 1.1.1, June 1998) and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html
- 2. Shading indicates a concentration above groundwater standard.
- 3. A blank in the action level column indicates no Class GA and/or MCL standard or standard is a secondary value.
- 4. Reported metals results are for total metals.

U = compound was not detected

- J = the reported value is and estimated concentration
- R = the compound was rejected
- SA = Sample
- DU = Duplicate

Appendix A Pre-Remedial Action Groundwater Monitoring Results Draft Annual Report - Year 6 for SEAD-16 and SEAD-17 Seneca Army Depot Activity

						200700000000000000000000000000000000000			201000	J.									
			LOC_ID: SAMP ID: QC CODE: STUDY ID: MATRIX: SAMPLE DATE:	MW17-1 16108 SA RI ROUNDI GW 8/29/1996		MW17-1 16109 DU RI ROUNDI GW 8/29/1996		MW17-1 16171 SA RI ROUND2 GW 12/11/1996		MW17-2 16163 SA RI ROUND2 GW 12/9/1996		MW17-3 16166 SA RI ROUND2 GW 12/10/1996		MW17-4 16169 SA RI ROUND2 GW 12/11/1996		MW17-5 16106 SA RI ROUNDI GW 8/29/1996		MW17-5 16170 SA RI ROUND2 GW 12/11/1996	
2121122	ACTION	716																	
PARAMETER	LEVEL	SOURCE (1)	UNIT	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q	VALUE	Q
SEMIVOLATILE ORG	ANICS		£181.0	6.7		10	1.4	1.0		7.0		174				AV.			
Benzo[a]pyrene			UG/L	0.7	J	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Benzo[ghi]perylene			UG/L	2	J	1	J	10	U	10	U	10	U	10	U	10	U	10	U
Dibenz[a,h]anthracene Indeno[1,2,3-cd]pyrene			UG/L	2	J	0.9	J	10	U	10	U	10	IJ	10	U	10	U	10	U
OTHER ANALYSES			UG/L	4	J	1	J	10	U	10	U	10	U	10	U	10	U	10	U
Nitrate/Nitrite Nitrogen	10	GA	MG/L	0.24		0.23		0.2		0.04		0.05		0.02		0.04		0.02	
Percent Solids (Metals) NITROAROMATICS				0		0		0		0		0		0		.0		0	
Tetryl			UG/L	0.26	U	0.26	U	0.26	U	0.26	U	0.26	U	0.26	U	0.26	U	0.26	U
METALS																	-		
Aluminum			UG/L	90.4		54.6		386		85.3	U	36.1	U	41.9	U	39.9		59	U
Antimony	3	GA	UG/L	2	U	2	U	3	U	3	U	3	U	3	U	2	U	3	IJ
Arsenic	10	MCL	UG/L	2.7	U	2.7	U	4.4	U	4.4	U	4.4	U	4.4	U	2.7	U	4.4	U
Barium	1,000	GA	UG/L	85		87		90.4	U	66.1	U	27.4	U	27.4	U	92.5		62.6	U
Beryllium	4	MCL.	UG/L	0.26		0.21		0.2	U	0.2	U	0.2	U	0.2	U	0.23		0.2	U
Cadmium	5	GA	UG/L	0.3	U	0.31		0.6	U	0.6	U	0.6	U	0.6	U	0.3	U	0.6	U
Calcium			UG/L	108000		110000		104000		118000		108000		92000		108000		81100	
Chromium	50	GA	UG/L	1	U	1.5		1	U	1	U	1	U	1	U	1	U	1	U
Cobalt			UG/L	1,2	U	1.4		2	U	1.3	()	1.3	U	1.3	U	1.2	U	1.3	U
Copper	200	GA	UG/L	3.1		4.3		1,1	U	2,6	U	1.1	U	1.1	U	3.3		1.3	U
Iron	300	GA	UG/L	119		90.6		572	J	214		53.1	U	96.4	U	56.8		134	
Lead	15	MCL.	UG/L	1.7	U	1.7	U	1.5	U	1.9	U	1.5	U	3	U	1.7	U	1.5	U
Magnesium			UG/L	22600		23000		22900		14600		15200		14200		17700		13600	
Manganese	300	GA	UG/L	21.3		20		9.7	U	73.8		0.7	U	22.5		73.2		62	
Mercury	0.7	GA	UG/L	0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0,1	U	0.1	U	0.1	U
Nickel	100	GA	UG/L	1.8		2.2		2.5	U	2.5	U	2.5	U	2.5	U	2.4		2.5	U
Potassium			UG/L	472		574		843	U	5320		772	U	1330	U	853		1070	U
Selenium	1.0	GA	UG/L	2.4	U		U		UJ		UJ	- 4 -	UJ		UJ	2.4	U		UJ
Silver	50	GA	UG/L	1.3	U	2.3		1.5	U	1.5	U	1.5	U	1.5	U	1.3	U	1.5	U
Sodium	20,000	GA	UG/L	9,290		9,620		8,190		18,700		30,100		22,300		11,700		8,970	
Thallium	2	MCL	UG/L	4.40		7.1		4.1	U	4.7	U	4.4	11	6.2	U	4.7		8.6	U
Vanadium			UG/L	1.2	U	1.4		1.6	U	1.6	U		()	1.6	U	1.2	U		U
Zine			UG/L	2.5	R	3.2	R	14.4	U	63.9		7.7	U	8.3	U	6.2	R	4.4	U

Notes:

The criteria values are NYSDEC Class GA Groundwater Standards (TOGS 1.1.1, June 1998) and EPA Maximum Contamination Limit (MCL), Source http://www.epa.gov/safewater/mcl.html#inorganic.html

^{2.} Shading indicates a concentration above groundwater standard.

^{3.} A blank in the action level column indicates no Class GA and/or MCL standard or standard is a secondary value.

^{4.} Wells MW17-2, MW17-3, and MW17-4 were not sampled in August 1996 since they were dry.

^{5.} Reported metals results are for total metals.

U = compound was not detected

J = the reported value is and estimated concentration

R = the compound was rejected

SA = Sample

DU = Duplicate

APPENDIX B

SEDA BACKGROUND GROUNDWATER DATA SUMMARY

Appendix B SEDA Background Groundwater Concentrations Draft Annual Report - Year 6 for SEAD-16 and SEAD-17 Seneca Army Depot Activity

					FREQUENCY		TYPE	NUMBER	NUMBER	NUMBER
	l		AVERAGE	STANDARD	OF	CRITERIA	OF	OF	OF	OF
PARAMETER	UNIT	MAXIMUM	CONCENTRATION	DEVIATION	DETECTION	VALUE	CRITERIA	EXCEEDENCES	DETECTS	ANALYSES
Aluminum	ÚG/L	42,400	2,732	8,207	87%	50	MCL	25	27	. 31
Antimony	UG/L	52.7	8.2	13.9	13%	3	GΛ	3	-1	31
Arsenic	UG/L	10	1.7	2.2	13%	10	MCL	2	-1	31
Barium	UG/L	337	78.2	62.6	94%	1000	GA	0_	29	31
Beryllium	UG/L	2.2	0.2	0.4	13%	4	MCL	0	_ 4	31
Cadmium	UG/L	0	0.5	0.5	0%	5	GΛ	0	0	31
Calcium	UG/L	181,000	115.619	25,274	100%			0	31	31_
Chromium	UG/L	69.4	4.7	13.4	48%	50	GA	1	15	31
Cobalt	UG/L	34.6	3.7	7.4	45%			0	14	31
Copper	UG/L	32.5	3.3	6.9	48%	200	GΛ	0	15	31
Cyanide	UG/L	2.8	NA_	NA	3%	200	GA	0	1	31
Iron	UG/L	69,400	4,476	13,429	100%	300	GA	22	31	31
Lead	UG/L	34.8	2.5	6.3	32%	15	MCL	1	10	31
Magnesium	UG/L	58,200	28,568	13,848	100%_			0	31	31
Manganese	UG/L	1120	224	254	97%	300	SEC	22	30	31
Mercury	UG/L	0.06	0.04	0.02	23%	0.7	GA	0	7	31
Nickel	UG/L	99.8	7.3	18.7	61%	100	GA	0_	19	31
Potassium	UG/L	10,200	3,833	3,010	94%			0	29	31
Sclenium	UG/L	3.6	1.5	0.7	19%	10	GA	0	6	31
Silver	UG/L	0.98	1.0	1.0	6%	50	GA	0	2	31
Sodium	UG/L	59,400	14,601	13,877	97%	20000	GA	7	30	31
Thallium	UG/L	4.7	1.5	1.2	13%	2	MCL_	4	4	31
Vanadium	UG/L	70.8	5.2	13.5	52%			0	16	31
Zinc	UG/L	143	23.1	34.5	84%	5000	MCL	0	26	31

GA NYSDEC Ambient Water Quality Standards for a source of Drinking Water from Groundwater (TOGS 1.1.1)

MCL Maximum Contaminant Level - Drinking Water Standards and Health Advisory (EPA 822-B-00-001)

SEC Secondary Drinking Water Regulations - Drinking Water Standards and Health Advisory (EPA 822-B-00-001)

APPENDIX C

FIELD FORMS - YEAR 6 LTM GROUNDWATER SAMPLING ACTIVITIES

PAGE 1 OF /

PROJECT:	SEAD-	-16/17	LTM	CLIENT:				Р	DATE: 12/9/15 ROJECT NO: NSPECTOR: BBO /SD
	EQUIPMENT	BGD	TME	REMARKS	WATER LEV		CORRECT		overcest, overnz let dustes of snow
WELL	TIME	DEPT	TH TO BOTTOM	CORRECTED WATER LEVEL	MEASURED POW	INSTALLED FOW	PRODUCT SPEC GRAV.	dissiz 8	WELL STATUS / COMMENTS
16-2	1324	4,18	5.78					PVC 1:	tel, purely not right lod appear
16-6	1326	2.65	6.87					loched	
6-4	1329	2.64	7.05					locked	, no well cap, stack in protective case
16-1	1331	2.94						loched	
16-7	1336	4.38	6.74					loched	, cell cap fough to pull of, so
6-5	1339	2.26						loched	
17-2	1344	3.15	7.68					Locker	1
7.3	1346	2.73	7.47					locked	
7-4	1348	3,20	8,40						no well cap, glove on istal
17-5	1350	2.74	10.13					locked	
17-1		3.52							l, no well cap

(ALL DEFTH MEASUREMENTS FROM MARKED LOCATION ON RISKR)

SE	ENECA	ARMY D	EPOT ACTIVITY		P	AR	501	IS		WELL #: ML	
PR	OJECT: CATION		SEAD-16/17 L		dwater San LUS, NY	npling	- Roun	d 6		DATE: [Z INSPECTORS:] PUMP #: Parse	BBU
WW.72	e redec	/ EIELD (CONDITIONS CHEC	KLIST	(REC	ORD	MAJOR	CHANG	iES)	SAMPLE ID #:	
W	EATHER	FIELD	OMMITONS CILLO	REL.	WIND			GROUN		16 TW 500	35 U/F
TI	ME	TEMP	WEATHER	HUMIDITY			ECTION			MONITO	
	HR)	(APPRX)	(APPRX)	(GEN)	(APPRX		- 360)	6-10		INSTRUMENT	DETECTOR
104	12	~12F	snowing		5-10	26.	-1/1	6-10	SANC		
GA	METER (II ALLONS / I LITERS/FO	NCHES); FOOT:	0.25 1 2 0.0026 0.041 0.163 0.610 0.151 0.617	TORS 3 4 0.307 0.63 1.389 2.473		ONE	WELL VO	LUME IGA X V	I.) = J(POW VELL DIAM	STABILIZED WATER LI LIER FACTOR (GALIPT)	l
			DEPTH TO POINT OF WILL		CONTRACTOR OF THE PARTY	CREEN ENGTH	D	WELL	NT	DEVELOPMENT	WELL DEVELOPMENT
3	HISTORIC I	DATA	(TOC)	SCRI	EN(TOC)	(FI)		TURSIDIT	y	pH	SPEC COND
			+.4+		DEPTH TO			DEPTH CO	y	DEPHI TO PUMP	PUMPING STAF
DAT	A COLLEC		PID READING (OPENING WELL)	W	STATIC ATER LEVEL (TOC)		STABILIZE ER LEVEL	D	INTAKU (TOC)	TIME
	WELL 20		Therefore adminis		3.35	TOR					
RADI	IATION SCI	REENING	PLIMP PRIOR TO SAMPLING (cps)		121	2		PUMP AFTI AMPLING I			
		MON	ITORING DATA	COLLE	CTED I	DURI				ERATIONS	
TIME	WATER	PUMPING	CUMULATIVE VOL.	DISSOL	VED	TEMP	SPEC	COND		ORP	TURBIDIT
(mim)		RATE (ml/min)	(GALLONS)	OXYGEN	(mg/L)	(C)	(tri	uhos)	pff	[mV]	(NTE)
04	4.15	1>+ 14	the well	VET	- 1	/S+	U.	L	u.J	11.1	Hah 7
105		Kump	Started	7.4 2.4		15t	Her		6.9.		14.0
115	4.38	2106		1,1-1,1	-	7.1	0.8				
120	4.40			2.3		7.2	0.8		6.8		4.85
125	4.40	Im.		1.9		7.3	0.8		6.73		6.5
130	-	n 156	m = 1	1,7		2.4	0.8		6-7		4.60
	4,39		20.5 yals		-	7.4	C. 8		6.7		3.28
	4.38		~0.6	1.1-		7.4		22	6.6		3.32
145	4.39		~ 1.05 als	1.17			0.8		6.6		2.23
150	4.37	~118		0.8			0.8		6.6:		1,56
1	1.39		21.53263	0.7				32	6.61	6 28	1.28
122	4.39		21.75326	0.6			0.8	33	6.6		1.23
			22.0326	0.5	5 7	7.5	0.8	35	6.6	6 24	1.03
200						7.6	0.8	39	6.6	7 24	0.7
200	4.40	2180	22.255als	0.	1 1			539	6.7		1.45
200 205 210	4.40 4.43	2180	~2.25gals	0.4	4 7	2.5	0.0		0		
200 205 210 215	4.40 4.43 4.44	~180	~Zit gals	0.4	4 7			47	6.7	3 19	0.68
200 205 210 215 220	4.40 4.43 4.44 4.39	2180	~2.5 gals 22.6 gals	0.4	4 7 7	7.5 7.6	0.8	47	6.7		
200 210 215 220 225	4.40 4.43 4.44	~180	~Zit gals	0.4	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5	0.8	147	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 15	0.80
200 210 215 220 225 230	4.40 4.43 4.44 4.39 4.38 4.38		~2.5 gals ~2.6 gals ~2.75 gals	0.4 0.3 0.3	4 7 7 7 0 7	7.5	0.8	147	6.7 6.8 4.7 Geld	1 15 1 14 Affared	0.80
200 210 215 220 225	4.40 4.43 4.44 4.39 4.38 4.38	also	~2.5 gals ~2.6 gals ~2.75 gals	0.4 0.3 0.3 0.3	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7.5 7.6 7.6 F	0.8	51 50	6.7	1 15 7 14 Fallared	0.80

S	ENEC	ARMY D	EPOT ACTIVITY				PAR	SON	IS		WELL #: M	W16-2
	CATIO:	-	SEAD-16/17 U		rounds OMUL			- Roun	d 6		DATE: \\\ INSPECTORS: PUMP #: Page	16/13 180
W	EATHE	R/ FIELD C	CONDITIONS CHEC	1	1		ECORD				SAMPLE ID #:	
		Salar mark			EL.	WIN				D/SITE	16LM 20	ORING
	IME LHR)	(APPRX)	WEATHER (APPRX)	1,07		(APP	RX) /0	- 360)	1.000	FACE ITIONS	INSTRUMENT	DETECTOR
	14	28 23		(4)	,		15 54				Libertaine	
G	METER (I ALLONS / LITERS/F	FOOT:	0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	TORS 3 0.367 1.389		6 147 5.564	ONE	WELLYO			- STABILIZED WATER ETER FACTOR (GALF)	
			DEPTH TO POINT OF WELL		DEPT		SCREEN.	DI	WELL	ENT	WELL OF VELOPMENT	DEVELOPMENT
	TISTORIC	DATA	(TOC)		SCREEN		(F1)	1.377	TURBIDIT		149	SPEC COND
			5.78'									
DA	A COLLEG		PID READING (OPENING WELL)		WATE		L (TOC)		DEPTH TO STABILIZE ER LEVEL	D	DEPTH TO PUMP INTAKE (FOC)	PLEMPING START TIME
					4	.25	5					
RAD	DATA		PUMP PRIOR TO SAMPLING (cps)						MPLING (
		MONI	TORING DATA	COL	LLEC	TED	DURI	NG P	URGI	NG OP	ERATIONS	
IME (min)	WATER LEVEL	PUMPING RATE (mbmin)	CEMULATIVE VOI. (GALLONS)		YGEN (in		TEMP (C)		COND	lle	ORP (mV)	TURBIDITY
27	-	YS+	n the well	37.0	7 55 55 5 55 5		100				(32.7	(2114)
127		Pura	Started	>	SI		YSI	Hor.	lea	Harile	a Horlan	Huch T
	4.29	~15Z			.02		4.6	0.4	-	6.97		
	4.29				.14		4.6	0.4	-	7.0		15.1
		2118		_	.83		4.6	0.4		7.05		-
	428			***	.22		4.6	0.5		7.08		3.76
	4.29		~1.0 gal		.05		4.6	0.5		7,10		207
	4.29		~1.39 els		83				-	7.11		0.99
	4.29		~1.6526		56					7.12		0.16
101	100		116765		90		1.0	- 10	46 1	7-(10		0.10
114	<	Samples	Collected	1.6	01 1	17	003	<u>/ </u>	-	1414	field &	711.
1 1 1		Jampus	Contract							1418	- 41	
				10		120	036	, u		1710	Cut-184	Rel
23		Red	eded Flow	(.	//			D.	-0	. /-	ellection	C. D.
	4,30	NE COM	~ Zi3 gals		23	0	9et 4.5			711	253	0.84
CO	7110		- Ci Jais	F.	-)		113	0,3	U	4711	253	0.07
									-			
	-			-								-
				1	-							
- 1												

The second of the second	A ARMY D	DEPOT ACTIVITY				PAF	150	N5		W	ELL #: M	W 16-4
PROJECT LOCATIO		SEAD-16/17 L			water S US, NY		g - Rou	nd 6			SPECTORS:	2/17/13 Dilluman 19002
WEATHE	R/ FIELD	CONDITIONS CHEC	KLIST		(R			R CHAN		SA	MPLE IĎ #:	16LM 20
			RE	I.	WIN) GROU		0.	ssulved & 7	
TIME	TEMP	WEATHER	HUM!		(APP)	TTY DI	RECTIO) - 360)	000	RFACE DITIONS	IN	MONITO	DETECTOR
(24 HR)	(APPRX)	Way Clade Flor	(GI	(n)	10-	_		+ san			ATKOME, CT	THE COL
),),							1211111111111		BILIZEO WATER I.	CALLY.
DIAMETER GALLONS LITERS/	(INCHES): / I'OOT;	UMF CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	.1	4 0,651 2,475	6 1.47 3,564	ON	E WELL	X	WELL DIAM	LETER	(FACTOR (GAL/FT)	I
		DEPTH TO POINT OF WILL		TO	TH TO P OF	SCREEN LENGTI		WELL DEVELOPA	Les constitution and	g	WELL DEVELOPMENT	WELL DEVELOPMEN'I SPEC COND
HISTORIC	DATA	7.10		SCREE	N(TOC)	(FI)	+-	TURBIDE	IV	-	pH	SPEC COND
DATA COLLI		PID READING (OPENING WELL)		WAI	DEPTH STATE ER LEVI	C,	W	DEPTILT STABILIZ ATER LEVE	ED	Di	EPTH TO PUMP INTAKE (TOC)	PUMPING STAR
11,000				2	.90							
RADIATION S		PUMP PRIOR TO SAMPLING (cpu)						PUMP AF SAMPLING				
		ITORING DATA	COL	LEC	TED	DUR	ING	PURGI	ING OI	PER	ATIONS	
TIME WATER	PUMPING	CUMELATIVE VOL	D	ISSOLV YGEN (ED	TEMP (C)	SPI	C. COND	Па		(AV)	TURBIDET
(atin) LEVEL 120 290	S-tarte	(GALLONS)	-	ST	ang, c. j	VSI	_	rika	Heret	7	Horibac	HachT
45 2,94	140	p and	-	-40	í.	5.7	2.	54	6.9.		123	
150 2.94	140			, 3 9		5.6	2	50	6.80	1	98	
55 239	140			12		5,4	2	.49	6.8	4	35	7,7
200 294	140		0	21		5.3	2	.51	6.84	,	19	7.81
205 Z.94	140		0	19		5,3	7	.51	6.8	3	7	8. 2
210 1.94	140		1	.16		5.3	12	.52	6.8		1	8.69
215 2.94	146		0,	15	r	5.3	12	53	6.8	0	-10	4,99
220 294	146			15		5.3	TO THE TOTAL	.53	6.8		~ [[3.06
25 2,99	146	Zgol.		13		5.3		52	6.30		~ 16	2.5
230 294	146	,		.12		5.3	12.	52	6,50	1.0	-20	2.13
235 294	148			.12		5.3	2	51	6.80	-	-22	1.92
240 2.94				. 10		5,3	2	.51	6.80	100	-23	1.91
245 2.94		3 gol	0	. 11	Ç	5.3	12	152	6.8	1	-23	1.8
150 299)	1	. 1		5.2	- 2	152	6.8		-17	1.82
259 2.94	150		D	.1	2_	5.2	- 2	.50	6.8		-24	1.87
300 294				, φ α		5.2	. 2	.50	6.8		-24	1.90
										•		
310	Sumple	d well				037				إعل	filtered	
			11/	AA	701	237	-//1	1310	3	1	14 1	
			16	~/~/	cere	121	Ju	1210	LL	iti	Itered	

C:\Documents and Settings\c0010112\My Documents\Field Forms\Field Forms for OB & S-25 GW.xls

12/15/2013

S	ENEC	A ARMY	DEPOT ACTIVITY			PAF	1501	15		WELL #: n	16-5
P	ROJECT	'n	SEAD-16/17 I	TM Gro	undwater	Sampling	g - Round	J 6		DATE:	12/16/13
LC	CATIO	N:		RON	ILLUS, N	Y				INSPECTORS:	Dillman
- 11	ar verm	O / CIET D	CONDITIONS CHEC	VI ICT	(D	ECORD	MATOR	CHAN	TOTES:	SAMPLE ID #:	002 Perittal
11	EATHE	R/ FIELD	CONDITIONS CHEC	REL					ND/SITE	16LM 20	038 AA
1	IME	TEMP	WEATHER	HUMIDI	TY VELO	CTTY DIR	ECTION	SUR	FACE		ITORING
(2	4 HR)	(APPRX)		(GEN			- 360)	COND	ITIONS	INSTRUMENT	DETECTO
		16	windy Partly Su	my 9	0 10-	15 1	JW)	Then	, lovere		
		WELLVOI	UME CALCULATION FAC	TOPS		lost	WELLYD	LEME 62	111 = 100000	STABILIZED WATER	PERFE
	METER (INCHES):	0.25 1 2 0.0026 0.041 0.163	3	4 6		***************************************			ETER FACTOR (GAL/I	
	LITERS/I		0.010 0.151 0.617	1.389 2	475 5,564						1
			DEPTH TO POINT OF WILL		TOP OF	SCREEN LENGTH		WELDEN OPA		WELL DEVELOPMENT	DEVELOPMENT
	HSTORIC	DATA	(100)	Se	CREEN (TOC)	(let)		TURBIDIT	Y	pli	SPEC COND
			5.07								
DA	TA COLLEG		PID READING		STATI	C	9	DEPTH IS STABILIZE	-13	DEPTH TO PEMP INVAKE	PUMPING STAR
	WLLL S	118	(OPENING WELL)	-	Z.oC		WAT	ER LEVEI	States	(TOC)	+
RAL	NATION SC	REENING	PUMP PROOR TO		2,00	-	P	UMP AFT	ER		
	DATA		SAMPLING (cps)					MPLING I			
TIME	WATER	MON	CUMULATIVE VOL.		ECTED	DURI		COND	NG OP	ERATIONS	I Services
(min)	-C17-9C12-279	RATE (od/min)	(GALLONS)	2000000	EN (mg/L)	(C)		has)	Hg	ORP (mV)	(NTU)
315	2.00		Star Pung	133	5 YSE	210	Hori	ball	12#1	5 800	Hoch 19
340	2.50	150	, 4		56	4.3	0.3	55	6.7	3 -102	_
345	2,80	90		0,,	58	3.8	0.3	14	6.91	-100	
350	3.14	102		0.1	65	3.3	0,3	29	7,05	-91	10.1
355	3.26	1024		01:	55	3.3	0.31	26	7.15	-93	5.81
400	3.30	104		0,0	51	3.3	0,3		7.21	-102	- 11
405	3,38	108	Q.7 54P	0.7	57	3.4	0.3	-	7.2	1 -107	2.8
		108		0.2		3.6	0.3	4-07-	7,23		3.2
	3.51	108		0.7		3.6	0.3	A STATE OF	7,25	- 116	2.85
	3,59	108		0.2		3.7	0,3		7.26		2.54
	3.67	108		0.7		3,8			7,29		0
	3.16	108		6,2		3.9	0.3		7,24		
	3.83	103	1.85al	0.1		4,0	0.3	38	7,2		
	396	108	110300	0.1		4.1			7 1	3 -121	2.07
			Sa Mar				0,		7.2	P 101	2.07
44		cilect	5 mple	0 144		DUP	est.			FOR TOTAL &	Sissalved pre
1 46	4.41	108	,	0.1	Ρ	4.6	0,4	10	7.20	-148	116 62
	- 11	1 0	1/1					11	0		- 24
-	011	ected	16 LM 20031				unf				Water of
			16 LM 200	30F	_	1455	fre	14	Hered		Sampl
_											

		ELL #: ML	W	MY DEPOT ACTIVITY PARSONS						SENECA ARMY DEPOT ACTIVITY					
	The second secon	DATE: \Z		nd 6	ling - Rou	water San	f Groundy	SEAD-16/17 LT		OJECT	PR				
		SPECTORS: 1				US, NY	ROMUL			CATION					
-	n Perstette	MPLE ID #:		R CHANG	PD MAIC	(DEC)	ICT	TOTAL CHICA							
	240	LA ZOC		-	(FROM	WIND	CONDITIONS CHECK	WEATHER/ FIELD COND							
コ		MONIT		N SURI	DIRECTIO	VELOCIT	REL.	WEATHER	TEMP	ME	т				
4	DETECTOR	STRUMENT			(0 - 360)	(APPRX	(GEN)	(APPRX)	(APPRX)	and the second second					
4			SMILL	48-10	SEAM	5-10		such	~12	15	8				
4	LEVEL) - Le I-	BILIZED WATER L	L) = (IPOW - STA	COLUME (CA	CAME WALL Y	-:-	100	UNIE CALCULATION FAC	1000						
	01 2000	FACTOR (GAL/FT)	TELL DIAMETER	XV	757 54	6	3 4 367 0.654	0.25 1 (2)	(CHES):	TETER (
		Tsale X3	- 0.6	k, 163		5.564	389 2.475	0.010 0.151 0.617		LLONS/ .ITERS#					
	WELL DEVELOPMENT	WELL EVELOPMENT	7.7.7.	DEVELOPME	GTH	OF LE	TOP	OF WELL							
\dashv	SPEC COND	pli		TURBIDITY	FT)	N (10C)	SCREE	(TOC)	ATA	ISTORIC	1				
	PUMPING START	Taxel 197 may at		0.44				6.87							
1	TIME	PIH TO PUMP INTAKE	0	DEPTR TO STABILIZED		DEPTH TO STATIC		PID READING	C. B. C.		DAT				
-		(ioc)		ATER LEVEL	C) W	ER LEVEL (1	(OPENING WELL)	Y.	WELL S					
=			er I	PLIMP AFTE		00	1 0	PUMP PRIOR TO	EENING I	ATION SC	D40				
-				SAMPLING (SAMPLING (cps)		DATA					
	TURBIDITY	ATIONS	G OPER	ING PURGING OF			DISSOLV	MONITORING DATA		later and the					
	(NTU)	(mV)	pH4	mupos)	200		OXYGEN (n	(GALLONS)	PEMPING ATE (ml/min)	WATER LEVEL	TIME (=is)				
_								athe well	YST	2,83	824				
W,	Hech Tur	Hor-ban	Heriba	· Le	I Ha	f 18	# YS	Started	Pump	2,68	724				
	19.2	243	6.97	347	00.	6	2.76		/	3.65	36				
	12.6	242	7.06	354	90.	5 5	2.23		180	3.95	44				
٦	10.9	230	7.08	358	90.	5	2.01		-100	4.08	49				
	7.02	220	7.07	364	00.	10	1.81			4.16	54				
٦	5.51	181	7.06	367	00	6	1.90	0.5 gals		1.23					
٦		145	7.05				1.49		174	4.29	04				
	5.84	208	7.04				1.40		-84	4.35	09				
_	324	136	7.03				1.32	21.0gals	-108	443	114				
	2.48	144	7.03				1.21			4.48					
	2,64	208	7.03	385			1.0	21.25 gals		456					
_	1.88	238	7.01	387			1.17	21.599/5	-102						
	2.15	232	7.01	394			1.0	113 2413	-102	4.69					
\dashv						-		2175 /	-94	1197	24				
-	1.73 2.35	132	6.97	403	-		1.17	~ 1.75 gals	.54	4.44	51				
_		78	6.96	409	_			27 2 /		7.00	44				
	1.46	43	6.94	418			0.88	22.0gels	167	4.93					
-	3,17	33	6.89		2 0.	9 4	0.72	. 7 4	-102						
4	1.13	18	6.87	429		-	0.7	~2.253019		5,05					
1	1.08	11	6.86	433	30.	3 4	0.62			5,12	-				
1	No.	CHarl	freld		PI			d Flow Cell	unplus		010				

10 17 521 Reconstruct Flow Cell for Post Sagle Collection See Rosas, C: Documents and Settings 100101121My Documents Field Forms For OB & S-25 GW.xls
1022 5.35 22.5 943 0.69 6.4 0.440 7.07 - 14

0.69 6.4 0.440 7.07

12/15/2013 2.28

SENE	CA ARMY D	EPOT ACTIVITY		PARSONS					WELL #: " 16-7					
PROJEC		SEAD-16/17 L	TM Gro	oundwater S	iampling	- Roun	16			DATE: /3	2/17/13			
LOCATI				MULUS, NY						SPECTORS:	Sillman.			
		COMPETIONS CHEC	VI IST	(R)	CORD	MAIOR	CHAN	GEST		MP#: (5 MPLE ID #:	9002			
WEATH	ER/ FIELD	CONDITIONS CHEC	. WIN	ECORD MAJOR CHANGES) ND (FROM) GROUND/SITE			E 16LM 2004/4/F							
TIME	TEMP	WEATHER	HUMID	MIDITY VELOCIT		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		FACE		MONITO				
(24 HR)	(APPRX)	(APPRX)	(GE		1	- 360)	1 7		IN	STRUMENT	DETECTOR			
8: 35	14°E	ilevdy, light inch	100	10-1	5 1	West	Srow	Covere.	5 1-					
	WELL VOL	UME CALCULATION FAC			ONE	WELL VO	LUME (G.	L) = [(PON	- STA	BILIZED WATER L FACTOR (GAL/FT)	EVEL)			
GALLON	E (INCHES): S/FOOT:	0.25 1 2 0.0026 0.041 0.163		4 6			X.	NETT THEAT	e i e n	PALIDE (GALFI)				
LITER	S/FOOT	0.010 0.151 0.617 DEPTH TO POINT	1.389	2.475 5.564 DEPTH TO	SCREEN	T	WELL			WHI	WELL			
IDSTOR	IC DATA	OF WELL (TOC)		TOP OF SCREEN (TOC)	(FT)	D	EVELOPME TURBIDIT		13	PH PH	SPEC COND			
		6.86												
				DEPTH			DEPTH TO		Di	PTH TO PUMP INTAKE	PUMPING START			
The state of the s	COLLECTED AT PID READING OPENING WELLS			WATER LEVE		STABILIZED WATER LEVEL (TO		Transcond to the second			1 total			
				4.48		1		avia .						
RADIATION SCREENING DATA										PUMP AFT AMPLING				
	MON	ITORING DATA						NG OF	ER	ATIONS				
IME WATE		CUMULATIVE VOL (GALLONS)		SSOLVED GEN (mg/L)	TEMP (C)	The state of the state of	COND	pH		ORP (mVI	TURRIDITY (NTU)			
135 Se		Start Pur	1)	455 85 3	210	1-6	riba	152	15	300	Hock			
40	100		4 5	,54	6.0	0.6	62	/1	9	228				
454.6			5	.70	5.7	0.0	77	6.8	6	230	6.85			
:50 4.6			5	.46	6.0	0 . 1	680	6.9	0	235	5.98			
155 46	160		5	.27	5.9	0.6	92	6.9	9	234	4,91			
1004,7	100		Ч.	97	4.99	0.7	113	7.90		235	3.67			
.05 4.7	1 100		4,	56	5.3	0	128	7.0		233	3.01			
104.7			4	10	6.0	0.	138	7.0		233	2.17			
15 4.7				97	6,1	0.7	150	7.0	1	235	1.42			
12045			3	79	6,1		755	7.0	-	237	1.85			
25 4.77	100		3,	67	6.1	0.7	60	7.0		232	1,73			
304,7		1.2006	3,	42	6.2	0.7	69	7.02		233	1.90			
35 4.1		7	3,	31	6,2	0.7	72	7.0		230	1,70			
404.7			3	.19	6.3	0,7	76	7.0		229	1,92			
4541			3.	00	6.3	0,	180	7.0		229	1.70			
5041	*1		2	74	6.3	0.7	-	7.08		225	147			
55 4.7	1		7	(6.1	6.3		190	708		225	167			
10049	H		2	151	6,3	07	97	7.0	7	224	1.60			
2054.9	-	2.1996		.28	6.3	100	97	7,09	-	221	1111			
1.10		2.1940		23	6,3	2 7	92	7,00		221	1.59			
1 110		2.5 ckl		.13	0.3		33	7, 10		219	3.17			
17 40	culect 90			Tal Mes				1 11 10	Sec.	CII	15011			
		-				-)	CAR ALL			Abstracts			
Docum	onts and Settin	3 1 gal		Field Forms	1/Field F	orms for	OB&S	3-25 GW	XIS	219	12/15/2013			

	NECA	ARMY I	EPOT ACTIVITY			PAF	1901	15		WELL #: ML	17-1	
PROJECT: SEAD-16/17							DATE: 12/15/13					
LOC.	ATIO	V:		RC	MULUS, N	Y			- 1	INSPECTORS: PUMP #:	1900 2	
WE	ATHE	R / FIELD	CONDITIONS CHEC	KLIST	(R	ECORD	MAJOR	CHAN	(GES)	SAMPLE ID #:	17LM2	
				RE					i i	U ans		
TIM		TEMP	WEATHER	HUMI	SARY WILL TO LANGUE	CONTRACT BUILD	RECTION	L LANGE	FACE	MONIT	ORING DETECTOR	
(24 1)	IR)	(APPRX)	(APPRX)	9 C			1-360)		OITIONS	INSTRUMENT	DETECTOR	
	-	27°	way, classly	16	13-73	7 / / /	- 40	Irana "	20 41 26			
GAL	ETER (LONS / TERS/F	INCHES): FOOT:	UME CALCULATION FAC 0.25 1 2 0.0026 0.041 0.163 0.010 0.151 0.617	3	4 6 0.654 1.47 2.475 5.564	ON	WELL VO	X		- STABILIZED WATER I ETER FACTOR (GAL/FT	01	
			DEPTH TO POINT OF WELL		TOP OF	LENGTH	b	WELL DEVELOPMENT		WELL DEVELOPMENT	DEVELOPMENT	
915	STORC	DATA	(TOC)	-	SCREEN (TOL)	(FI)	-	TURBIDITY		p) I	SPEC COND	
			10.22									
	DATA COLLECTED AT		PID READING		STATI	STATIC TER LEVEL (TOC)		DEPTH T STABILIZE	ED	DEPTH TO PUMP INTAKE	PUMPING STAR	
,	WELL S	ITE.	(OPENING WELL)		3,68		79/33	ER LEVE	L(roc)	(foc)		
RADIA	TION SO	REENING	PUSH PRICE TO SAMPLING (28)		2,00			PLSIP AFT	TR			
	17/3.47		ITORING DATA	COL	LECTED	DUR		URGI		ERATIONS		
	WATER	PUMPING	CEMULATIVE VOL	91	SSOLVED GEN (mg/L)	TEMP (C)	SPEC.	COND		ORP	TURBIDITY	
-	3.68	RATE (mb/min)	(GALLONS)		SI	YSI	Hovi		Hariba	(asv)	Hech 7	
100	-1.07	-	liques yenny		,22	74	0.4	-	7.37			
	4.10	130			-14	7.3	0,4		7.32			
	1,09	140			.10	7.2	0.41		731	-76	27.4	
	4.09	140			-10	7.1	0,4		7,30	- 81	28.9	
	909	140		_	209	7.1	0,4		7.29	-83	26.5	
	4,09	140	1.100		.08	7.1		72	7,28	- 85	19.8	
	1.13	140	1.1 %		. 0	7.1	0.4		7,28	- 36	19.7	
500		140			.10	7.2			7,26		19.4	
55 4		140	2 94		. 10	74	0,48		7.28		15.8	
:00 4		140	-)=\		/	7,3	0.48		7,2		12.9	
05 U		140			11	13	0.49		1.27		9,47	
110 4	1.20	140			12	7.3	0 4		27	The second secon	7.56	
115 4	170	140	3 901	6	.12	13	0.5		1,27		525	
		140	2)4	0	,12	7,3	0.5		701		6.45	
	3	140	10		- 11	1.3	0.5	and the second	7.27	-16		
1204	120				- 11				200	-75	4.74	
120 4 15 4	20	140	35	6	.12	I U						
25 4 30 4	1,20	170	3,5		12	7.4	0.5		7.27		542	
20 4 25 4 30 4	1,20	140	3,5	0	.13	72	0.5	19	7,30	-66		
120 4 130 4 10 4	1,20	170	3,5 45×1	0		1		19		-69	5,13 5,18 7,41	

		The state of the s	LING R			P	AR!	50N	5		WE	LL #: /4	W17-	- 2
			SEAD-16/17 L	TM G	roundw	ater Sai	upling	- Round	16			DATE: 12	15/13	3_
	CATION		Since Face		MUL					1		PECTORS:	REGUL	71_
			COMPLETONS CHEC	W1 197	17	(01:0	d go:	MAJOR	CHAN	GES)		APLE ID #:	1201	
W	EATHE	R / FIELD	CONDITIONS CHEC		iL.	WIND			GROUN		17	LM 200		/F
Т	IME	TEMP	WEATHER	100000000000000000000000000000000000000		VELOCI	-			FACE		MONIT		PEZAL
	(HR)	(APPRX)	(APPRX)	(G	EN)	CO-5	-	-360) -フモ		Suo	108	TRUMENT	DETEC	TO
	38	26F	overcast/cleans			(-)	-		6 6	Suon				
43	MICTER (I ALLONS / LITERS/F	NCHES): FOOT:	UME CALCULATION EAS 0.25 1 2 0.0026 0.041 (163) 0.010 0.151 0.617	CTORS 3 4.367 1.389	4 0.654 2.475	6 1.47 5.564	ONE	WELL VO				DILIZED WATER L FACTOR (GALJET)		
	T.L. C. C. C.	0.01	DEPTH TO POINT OF WELL		DEPT		ENGTH	D	WELL EVELOPMI	INT	D	WELL EVELOPMENT	DEVELOP	
	INSTORIC	DATA	(TOC)		SCREEN	The state of the s	((1)		TURBIOIT	77.74		Ug	SPIC 4	OND
			7.68									Mark Course and	THE PARTY OF	Draw Co.
DA	TA COLLE		PID READING			DEPTH TO STATIC			DEPTH TO STABILIZE	O .	DE	PTH TO PUMP INTAKE	POMPING	
	WELL S	TE	(OPENING WELL)		3.	45	(IOC)	WAT	TER LEVEL	(10C)		(TOC)		
RAD	HATION SC		PUMP PRIOR TO		21	45			PUMP AFT					_
	DATA		ITORING DATA	CO	LIEC	TED	DURI		URGI		or D	ATIONS		
TIME	WATER	PUMPING	CUMULATIVE VOL	T	ISSOLVE	CD C	TEMP	SPEC	COND		1510.	ORP	17.42312	BIDIT
150	3.60	RATE (ml/min)	(GALLONS)	OX	YGEN on	g/L)	(C)	(ue	abus)	Htq	-	(mV)	- (8	VTU)
750	7.00	P	Stal	Y	SI		YST	Hora	Day.	Horb	-	Hariba	H	sch
	4.38	~104	-1-01 =-(J.C.	57		6.7	0.7		6.80	-	233	13	
005	1.52	280		Ī	.17		8.8		43	6.9	2	707		.3
1010	467			0	87		1.8	0.7	57	70		111	10	
	4,80	2100			80		2.9	0.7	70	7.0	_	46	5.4	_
020	4.92		20.5 gels		79		0.9	0.7	77	7.00	_	17	7.4	-
	4.99	080			50	- 1	e.9	0.7		7.02		3	4.0	
	5.12	90			28		1.9		786	7.00		-4		39
		-115			38		2.1	0.8		7.0	_	-9		97
	5.44	100	2 1.0 gels		23	6	.1		95	7.0		-11		75
	5,49			0.	32	6	0.9		196	7.0		-13	2,	
050	5.54			0	. 27	-	0.9	0.8	01	7.00		-14		44
055	5,58		21.25gals	0	17	- 1	0.9	0.8	04	7.0	6	-14	1,3	
100	5.59			0.	17		7.6	0,7	98	7.00	0	-15	2,	
	5.63		~1.59als		15		1,0	0.8		7.0		-16	1.0	
110	5.67		~ 1.63ck	0	17	. 5	2,0	0.8	502	6.90	1	-15	0,	7
11.1		- 1	(11)	1 = 2	Lar			TRA						
116		mydee	Collected			2002				uncl	4			
101		0	17.0			2002				fueld	4	leeved		
124	5.76	ce - Long	rected flower	0	Ger	108	>	ANTE	Cell-	stan (04	Paran		

SI	ENEC	A ARMY I	DEPOT ACTIVITY				PAF	102F	15		W	ELL #W	1-	5
PR	OJEC	Γ:	SEAD-16/17 L					g - Roun	d 6		1000	DATE:	2-/	15/1
LO	CATIO	N:		R	OMUI	US, NY	ř				-	SPECTORS: MP #:	19.	002
W	EATER	R / FIELD	CONDITIONS CHEC	KLIS	r	(Ri	ECORD	MAJOR	CHAN	GES)		MPLE ID #:	1.7.	
					EL.	WIN		(FROM)				17LM 20		
	ME	TEMP	WEATHER	9/2/9/2/10	IDITY	(APP	100000	RECTION 0 - 360)	U	FACE ITIONS	IN	MONIT STRUMENT		G TECTO
(24	HR)	(APPRX)	Breezy, Flories		5 5	5-15		VW		evered	14.5	311034434	.,,,	TEX. TO
			mee cy, 1 roverses											
G/	HETER ALLONS	(INCHES): / FOOT:	UNIE CALCULATION FAC 9.25 I 2 0.0026 0.041 0.163 6.010 0.151 9.617	TORS 3 4 367 1 389	4 0.651 2.475	6 1 47 5 564	ON	F WFLL VO	RUME (GA X)	L) = [(POW WELL DIAM	- STA	BILIZED WATER I R FACTOR (GALIFT	EVEL)	
ı	ustoric	DATA	DEPTH TO POINT OF WELL, (TOC)		TO	TILTO POF N(TOC)	SCREEN LENGTI (FD)		WELL FVELOPAR TURBIDIT		4	WELL SEVELOPMENT JEL		MELL WELL
			7,35											
DAT	A COLL	CTED AT	PID READING (OPENING WELL)		WAI	DEPTH STATE TER LEVE	P	WA	DEPTH TO STABILIZE TER LEVEL	D	101	EPTIL TO PUMP (NTAKE (TOC)	PUMI	PING STA
					- 7	3.71			PLAP AFT	179				
RAD	DAT	CREENING	FUMP PRIOR TO SAMPLING (GPS)						AMPLING					
		11.2.2.1.1	CEMULATIVE VOL		LLEC	TED	DUR		COND	NG OF	ER	ATIONS		TURBIDI
TIME (min)	WATER	PUMPING RATE (ml/min)	THE RESERVE TO STREET AND ADDRESS OF THE PARTY.	1	YGEN		(C)	(151	nkas)	pH	OF.	[mV]		(NTU)
1000	3.91		Start Pump	Y5.	287	32	10	-	IBA	-	144	744	1	ILEL Z
1010	5,50	110	,	3	<u>, 09</u>		6,7	0,4	48	6.8	-	222	-	5.1
1015	5.56	110		7	., 80		6.9	0.4	54	6.74		219	-	7.6
1020	5.55	110			3.10	3	6.9	0.4	63	6.90		218	-	3.49
1025	5,57	100		2	-, 91	!	7.0	0. 4	79,	7.0	0	214	-	2,9
1030	5,51	100		2	-17	1	1.1	0.4		1.0 2	-	217	-	2.5
1035	5,61	100		1	.71		1.1	6.4		7,07	_	215	-	2.2
1040				-	,5		7.1	0.5		7,01	1	2/3		2.3
1045		100		_	215		7.2			7,0	-	212	-	2.3
1050			00.		- 14			0,5		7,00	1	210	+	2.1
1055		95	1.8 gal		2,34		7.2		40	7.0		203	+	1.99
1100	5.70	98			2		7.2		56	7.0		205	+	1,80
1105					04		7.3	,	552	7,01		202	-	2-11
1110					100		7,3	-	160	7,00		201	-	1.76
(115	5.81		001	-	2,0	*	7.3	1	63	7,09		198	+	1.76
1120			2.854			00	7.5		70	7.1	0	199	+	1.71
1125		101			1,96		7.3		86	7-1		200	-	1.31
1130				1	.7		7,3		92	7.11	_	199	_	7.7
1135	5.93		0 1		. 70		7.3		- 1	7.11	-	199	-	1.73
1140		101	3.1 gal		-7:		7.7			7.11		199	-	1.79
	6.00		3,3 200		1-4		1.4	0.6		7./3	_	195		1,79
CND0	ocumen	its and Settin	or Total and agrico0101121My Docu 3,5 gil	ments	s\Field	Forms	Field I	Forms for	OB &	5-25 GW. 7, 1	xls	205		/15/201 1.79

5	ENEC	A ARMY	DEPOT ACTIVITY	Y			PAF	1901	VS		WELL #:	41	U17-4
	ROJEC DCATIC	374(11)	SEAD-16/17			water US, N	_	g - Roun	d 6	-	DATE		/15/13
LA	CATIC)N:		K	OMEGI	.U5, N	1			- 1	INSPECTO	usor	3 Peristatta
V	EATH	ER/ FIELD	CONDITIONS CHEC	CKLIS	ſ	(R	ECORD	MAJOR	CHAN	(GES)	SAMPLE II) #:	
				R	EL.	WI	ND (FROM)	GROU	ND / SITE	17472	20C	8
	IME	TEMP	WEATHER		IDITY	VELO	CHIEF TO BE SHOW	RECTION	T. Contraction	FACE			ORING
	4 HR)	(APPRX)	111	(G	EN)	(APP		1 - 360)	1000		INSTRUME	NT	DETECTOR
14	25	26	sky devty	-	-	0-1	0 5	-7N	6-10	SHEW		-	
_	-	WELL VOI	UNICALCULATION PA	CTORS			ON	WELLYO	LUMEIG	ALI = HPOW -	STABILIZEDW	ATER C	EVELI
	METER ALLONS LITERS	(INCHES): / FOOT:	0.0026 0.041 0.163 0.010 0.151 0.617) 3 0.367 1.389	4 0.654 2.475	6 1 47 5 564					TER FACTOR (G		
			DEPTH TO POINT OF WILL		110,000	HITO P OF	SCREEN	D	WELL	ENT	DEVELOPME	45	DEATH OWNERS
	INSTORIC	DATA	rion			20 (2000)	(FI)		TURBURE		DEALCOPAR	"	SPEC COND
			8.40'										
DA	EA COLL	ECTED AT	PID READING			DEPTH			DEPTH TO		DEPTH TO PU	SEP	PEMPING STAR
	WELL	SITE	(OPENING WILL)	-		THE LEVE			ER LEVIS	The state of the s	(TOC)	-	
	I s Nacre o	Christian				.34	-		with the Da				
RAI	DAT	A CREENING	PUMP PRIOR TO SAMPLING (cps)						OMP AFT				
		MON	ITORING DATA	CO	LLEC	TED	DUR	NG P	URGI	NG OPI	ERATION	S	
TIME (unin)	WATER	PUMPING RATE (mbain)	(GALLONS)		YGEN D		TEMP (C)	1,000	COND	рН	Of		TURBIDIT
430	3.22	Yst m	11 11		2 22003 (1)		(6.)	(min	.,)	jiri	im	.1	(410)
435	100	Purp	Started	V	SI		YSI	House	2	Horiba	Her	O-L	Hech "
	3.68	2120		2	.68	A	6.3	0.4		7.25	80	1	11.2
449	3.67	~130		2	.64		6.7	0.5		7.1	-	1	8.5
454	3.69			2	.08		4.1	0.5		7.05			5,13
459	3.70			1.	72		6.2	0.5	03	6.99	17		3,75
504	3.72		20,5 gels	1.	59		6.2	0.5	03	6.95			3.25
509	374			l	43		6.2	0.5	06	6.93	-(2.71
514	3,74		~1.0 gals	1	. 44		6.2	0.5	06	6.92	-6		2,90
511	3,75			1	.14		6.3	0.5	08	6.90			3.16
524	3.70		21.25 gals	0	.90		6.3	0.5	07	6.90	-17		2,19
729	5,80			0	.70)	6.3	0.5	06	6.87	- 13		1.47
534	3.85		~1.75gals		76		6.2	0.50	08	6.86	, -14		1,49
	3.81	-118			. 78		G.Z	0.5	09	6.85	-15		1.23
	3,85		22.09ds		.63	_	6.3	0.50	08	6.84	-16	,	1.08
	388				,52		6.3			6.83			1.32
554	3,88		~ 2.25 gals	0.	36		6.3	0.5	06	6.83			1.41
								TIME					
602		Simples	Collected	17-1	NZ	00	284	160		unfol	mel		
				174	MZ	002	8F	160	Z	foeld	Celleral		
607			neeted Flow										de Penas

SENEC.	A ARMY I	DEPOT ACTIVITY				PAI	RSOF	NS		WEL	L#: M	W17-5
PROJECT LOCATIO	_	SEAD-16/17 I		rounds OMUL			ng - Roun	ıd 6	-	INSPE	CTORS: 7	/15/13 380 n Resistato
WEATHE	R / FIELD	CONDITIONS CHEC	KLIST	r	(RE	CORE	MAJOI	CHAN	GES)		LE ID #:	
			y	čL.	WIN	D	(FROM)	GROUN	D/SITE	17-6	4200	29
TIME	TEMP	WEATHER	HUM	IDITY	VELOC	ITY DI	RECTION	1 The State of the	FACE.		MONIT	
(24 HR)	(APPRX)	(APPRX)	(G	EN)	(APPE		0 - 360)		ITIONS	INSTR	UMENT	DETECTO
1209	26F	cloudy	_		000	-	-7N	6-8	SHRU			
1330	203	mostly charly	TORS		5-1	-)-7E	DE UNDE (GA)	Lin territy	STARR D	TED WATER I	EVELY
DIAMETER (GALLONS LITERS/I	INCHES): FOOT:	0,25 1 2 0.0026 0.041 0.163 0,010 0.151 0.617	0.367 1.389	4 0.654 2.475	6 1.47 5.564			X		ETER FAC	TOR (GAL/FT	1]
	117	DEPTH TO POINT OF WELL		DEPT		SCREEN		WELL SEVELOPAR	ENT		DPMENT	WELL DEVELOPMEN
HISTORIC	DATA	(700)	•	SCREEN	CASA TOWN	(FT)	-	TURBIDIT	7.00		pět	SPEC COND
		10.3'										
DATA COLLE	CIED AL	PID READING			DEPTH T			DEPTH TO			TO PUMP	PLAIPING STAI TIME
WELL S	ALC: Yes	(OPENING WELL)			R LEVE	L (TOC)	WA	TER LEVEL			IOC)	
				_ Z	.87							
RADIATION SO		PUMP PRIOR TO SAMPLING (cps)						PEMP AFT AMPLING (
	MON	ITORING DATA	COI	LLEC	TED	DUR	ING I	URGI	NG OP	ERAT	IONS	
IME WATER	PUMPING	CUMULATIVE VOL	D	ISSOLVE	D	TEMP (C)	SPEC	COND			ORP	TURBIDIT
78 2.87	RATE (ml/min)	the well	OX	YGEN (m	2/8/1	(6)	(8)	≡lios)	pH		(mV)	(NIII)
3	Punp	Harted	Y	SI		YSI	Hov	iba	Hor. 6	- 14	er.br	Hech 7
39 293	,			.62		7.5	0.5		7.10		39	124
44 2.93	~108		-	1, 21		7.6		28	7.06		46	64.8
49 245	100		0			7.6		525	7.04		56	28
54 2.17		20.5 rals	0			7.6		25	7.07		61	18.9
592.87		010 320		.10		7.7	-	524	7.0	_	64	14.9
		210-1		11			0.		7.00		64	
04 297		21.0gals										9.83
09 294	-130	21.45als		146			0,5		7,0		62	6.31
142.96		1 == 7	1	37			0.5		7.00		59	13.8
19 2.96	11	21.75 gals	-	.26			0.5		6.99		54	6.42
24 2.96	~140	~2,0 gals		28					7,00		49	6.63
29 2.96		~ 2.25gels		.30			0.			5	50	5.19
334 2.17		22,59915		.30			0.5		6.95		53	4.22
39 296		2 7.75 mls	0	,28		8.Z	0.5	24	6.91		55	3,54
14 2.96		~2.75gals		26		8.2			6.97		-4	2,65
50	Simples	Collected	172	MZ	00 2	9F	13	51	freld	Follo	W	
	,			MZ		-		54	unf	-		
	0	A 4 0:				, .			- /	,		asams
58		efed flow	cel				Sam		47		/ V	7 1

APPENDIX D

POST-REMEDIAL ACTION MONITORING RESULTS (YEARS 1 THROUGH 6)

Area Loc ID Matrix Sample Date Cortena Cor					
Parameter	SEAD-16 MW/16-1 GW/ 16LM20013 12/9/2008 SA/ LTM/ 2 Yotal	SEAD-16 MW16-1 GW 16LM20014FIL 11/13/2009 SA LTM 3 Dissolved	SEAD-16 MW16-1 GW 16LM20014UNFIL 11/13/2009 SA LTM 3 Total	SEAD-16 MW16-1 GW 16LM20021FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-16 MW16-1 GW 16LM20021UNF 12/16/2010 SA LTM 4 Total
Inorganics Ino	ual Value Qual	Value Qual	Value Quai	Value Qual	Makin Our
Antimony UG/L GA 3 32 39 70 1 U 1.02 Arsenic UG/L MCL 10 0 6 70 42 U 4.2 U Barrium UG/L GA 1,000 0 70 70 80.4 59 Beryllium UG/L MCL 4 0 0 0 70 70 107.000 J 0.27 U Cadmium UG/L GA 5 0 3 70 0.38 U 0.38 U Cadmium UG/L GA 5 0 0 5 70 107.000 J 105.000 J Chromium UG/L GA 50 0 5 70 0.84 U 0.84 U Cobalt UG/L 29 70 0.89 U 0.89 U Cobalt UG/L 29 70 0.89 U 0.89 U Cobalt UG/L 29 70 1.3 U 1.3 U Corper UG/L GA 300 20 49 70 35.8 J 68.3 Fron-Manganese UG/L GA 500 19 66 70 39 J 73 Lead UG/L MCL 15 2 30 70 2.9 U 2.9 U Magnesium UG/L GA 300 1 66 70 39 J 73 Manganese UG/L GA 300 1 66 70 3.3 5 5 Mercury UG/L GA 300 1 66 70 3.3 5 5 Mercury UG/L GA 70 0 38 70 0.12 U 0.12 U Manganese UG/L GA 100 0 38 70 0.12 U 0.12 U Colassium UG/L GA 100 0 38 70 0.12 U 0.12 U Colassium UG/L GA 100 0 38 70 0.12 U 0.12 U Colassium UG/L GA 100 0 70 61 U 6.1 U Colassium UG/L GA 100 0 70 61 U 6.1 U Colassium UG/L GA 20,000 44 68 68 24,200 J 25,300 J Colambia UG/L GA 20,000 44 68 68 24,200 J 25,300 J Colambia UG/L MCL 2 0 1 70 0.03 U 0.03 U	1000 400	value Gual	value Qual	value Qual	Value Qua
Arsenic UG/L MCL 10 0 6 70 42 U 4.2 U 32 U	148 J	24 U	45 J	23 U	50 U
Barium	0.95 J	1 U	1 U	2.3 U	2 U
Parium		3.7 U	3.7 U	1.3 U	13 U
Addition	125	105	104	110	97 J
idefinium UG/L action GA 5 0 3 70 0.38 U 0.36 U out	0.33 U	0.3 U	03 U	0.25 U	0 15 U
Alcium	0.33 U	0.3 U	03 U	0.095 U	0 13 U
Chromium	176,000	111,000 J	110,000 J	140,000	130,000
Cobper	0.88 U	0.9 U	0.9 U	25 U	2.5 U
Depper	1.1 U	1.1 U	1.1 U	1.1	1.1
Control UG/L GA 300 20 49 70 35.8 J 68.3 73 73 73 73 73 73 73	1.3 U	1.6 J	1.6 J	1.1 U	1.1 U
on+Manganese UG/L ead GA 500 19 66 70 39 J 73 ead ead UG/L MCL 15 2 30 70 2.9 U 3.3 S 5 6.6 E 6.0 E 6.0 E 3.3 S 5 5 6.0 E 3.3 S 5 5 6.0 E 3.3 S 5 5 6.0 E 3.7 S 3.3 S 5 5 6.0 E 3.0 S 7.0 I 1.2 U 0.12 U 0.03 U	93.3	19 UJ	19 UJ	77 J	100 J
ead UG/L MCL 15 2 30 70 2.9 U 2.9 U flagnesium UG/L Model 60 60 60 16,100 J 15,900 J flanganese UG/L GA 300 1 66 70 3.3 5 fercury UG/L GA 0.7 0 3 70 0,12 U 0,12 U fickel UG/L GA 100 0 38 70 1,2 U 1,2 U fotassium UG/L GA 64 64 886 R 907 R 8 felenium UG/L GA 50 0 0 70 61 U 61 U filver UG/L GA 50 0 0 70 1 U 1 U 1 U foldum UG/L GA 20,000 44 68 68 24,200 J 25,300 J hallium UG/L GA 20 0 1 70 0.03 U 0.03 U	105	1 J	2.4 J	131 J	152 J
Aagnesium UG/L 60 60 60 16,100 J 15,900 J Aanganese UG/L GA 300 1 66 70 3.3 5 Vercury UG/L GA 0.7 0 3 70 0.12 U 0	2.9 U	29 U	29 U	0.2 U	05 U
Alanganese UG/L GA 300 1 66 70 3.3 5 Mercury UG/L GA 0.7 0 3 70 0.12 U 0.12 U Icidel UG/L GA 100 0 38 70 1.2 U 1.2 U 1.2 U Icidessium UG/L 64 64 886 R 907 R	25,800	18,000	17,900	21,000	20.000 J
No. No.	11.8	1 J	2.4 J	54	
Aickel UG/L GA 100 0 38 70 1,2 U	0.12 U	0.1 U	0.1 U	0.091 U	52 0.091 U
Votassium UG/L 64 64 886 R 907 R elenium UG/L GA 10 0 0 70 61 U 61 U iliver UG/L GA 50 0 0 70 1 U 1 U 1 U odium UG/L GA 20,000 44 68 68 24,200 J 25,300 J hallium UG/L MCL 2 0 1 70 0.03 U 0.03 U 0.03 U	1 U	18 J	1.2 J	2.8 J	
Selenium	1,340 J	1,110	1,100	1,200	27 J
iliver UG/L GA 50 0 0 70 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	6.1 U	6 t U	61 U		1,100
odium UG/L GA 20,000 44 68 68 24,200 J 25,300 J hallium UG/L MCL 2 0 1 70 0,03 U 0,03 U	1.3 U	1.3 U	1,3 U	1 U	1.1 U
hallium US/L MCL 2 0 1 70 0.03 U 0.03 U	182,000	8,000 J	8.000 J	0.25 U 170,000 J	0.18 U
0.00 0	0.09 U	0.2 U	0.2 U	0.5 U	160,000 3
/anadium UG/L 7 70 0.78 U 0.78 U	0.98 U	1 U	0.2 U	3.8 U	0.25 U
Zinc UG/L 28 70 4.4 J 7.8 J	58 J	3.6 U	3.5 U	83 U	32 U 88 J

Notes:

- 1 The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et at.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2 Data validation qualifier

[empty cell] = data is not qualified

- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated
- 3. Shading indicates a concentration above the identified criteria value. SA = Sample
- DU = Duplicate Sample
- 4 Rejected values are not included in the number of samples analyzed

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria ¹		Number of	Number of Times	Number of Samples	SEAD-16 MW16-1 GW 16LM20028F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-1 GW 16LM20028U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-1 GW 16LM20035F 12/17/2013 SA LTM 6 Dissolved	SEAD-16 MW16-1 GW 16LM20035U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-2 GW 16LM20002 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-2 GW 16LM20007 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-2 GW 16LM20015FIL 11/11/2009 SA LTM 3 Dissolved
Parameter Inorganics		Unit	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Aluminum		UG/L				27	70	23 UJ	50 UJ	23 UJ	50 UJ	98.8 J	97.1 J	24 U
Antimony		UG/L	GA	3	32	39	70	2.3 UJ	2 UJ	2.3 UJ	2 UJ [3.36	5.53	3,6
Arsenic		UG/L	MCL	10	0	6	70	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	4.2 U	3.7 U	3.7 U
Barium		UG/L	GA	1,000	Q	70	70	78 J	78 J	63 J	69 J	64.6	69.7	71.9
Beryllium		UG/L	MCL	4	0	0	70	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.27 U	0.33 U	0.3 U
Cadmium		UG/L	GA	5	0	3	70	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.36 U	0.33 U	0.3 U
Calcium		UG/L				70	70	120,000 J	120,000 J	140,000 J	130,000 J	143,000 J	138.000	118,000 J
Chromium		UG/L	GA	50	0	5	70	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	0.84 U	0.88 U	0.9 U
Cobalt		UG/L				29	70	0.15 UJ	0.16 J	0.9 J	0.94 J	0.89 U	1.1 U	1.1 U
Copper		UG/L	GA	200	O.	51	70	5.2 J	5 UJ	1.2 J	1.1 UJ	4.5 J	4 1	3.4 J
Iron		UG/L	GA	300	20	49	70	33 UJ	44 UJ	260 J	280 J	49.5 J	26.1 J	19 UJ
Iron+Mangane	se	UG/L	GA	500	19	66	70	34 UJ	46 UJ	352 J	378 J	53 J	27	39.5
Lead		UG/L	MCL	15	2	30	70	0.2 UJ	0.5 UJ	0.2 UJ	0.5 UJ	2.9 U	2.9 U	2.9 U
Magnesium		UG/L				60	60	18,000 J	18,000 J	22,000 J+	22,000 J	15,600 J	15,700	12,600
Manganese		UG/L	GA	300	1	66	70	1 UJ	2 UJ	92 J	98 J	3.4	0.84 J	39.5
Mercury		UG/L	GA	0.7	0	3	70	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.12 U	0.148 J	0.1 U
Nickel		UG/L	GA	100	0	38	70	2.3 J	2 UJ	3.6 J	2 UJ	1.2 U	1.6 J	2.2 J
Polassium		UG/L				64	64	900 J	870 J	810 J	790 J	2,050 R	2.410 J	3,170
Selenium		UG/L	GA	10	O-	O	70	1 UJ	1.1 UJ	1 UJ	1,1 UJ	6.1 U	6.1 U	6.1 U
Silver		UG/L	GA	50	0	0	70	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	1 U	1.3 U	1.3 U
Sodium		UG/L	GA	20,000	44	68	68	63,000 J	62,000 J	57,000 J	60,000 J	49,600 J	63,500	19,500 J
Thallium		UG/L	MCL	2	0	1	70	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.03 U	0.09 U	0.2 U
Vanadium		UG/L				7	70	3.8 UJ	3.2 UJ	3.8 UJ	3,2 UJ	0.78 U	0.98 U	1 U
Zinc		UG/L				28	70	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ	82 1	10.2	11/1

Notes:

(empty cell] = data is not qualified

^{1.} The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)

or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safowater/incl.html#inorganic.html

is used. A blank cell indicates no criteria value available.

² Data validation qualifier.

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, brased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

^{3.} Shading indicates a concentration above the identified criteria value.

SA = Sample

DU = Duplicate Sample

^{4.} Rejected values are not included in the number of samples analyzed

Parameter	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered	Unit	Critena Source	Criteria Level	Number of	Number of Times	Number of Samples	SEAD-16 MW16-2 GW 16LM20015UNFIL 11/11/2009 SA LTM 3 Total	SEAD-16 MW16-2 GW 16LM20022FiL 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-2 GW 16LM20022UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-2 GW 16LM20023FiL 12/15/2010 DU LTM 4 Dissalved	SEAD-16 MW16-2 GW 16LM20023UNF 12/15/2010 DU LTM 4 Total	SEAD-16 MW16-2 GW 16LM20029F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-2 GW 16LM20029U 12/15/2012 SA LTM 5 Total
Inorganics		Othe	Source	revei	Exceedances	Detected	Analyzed	Value Qual	Value Quat	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Aluminum		UG/L				27	70	205	20.11	******	04179			
Antimony		UG/L	GA	3	32	39	70	3.6	23 U	50 U	23 U	50 U	23 UJ	50 UJ
Arsenic		UG/L	MCL	10	0	6	70	3.6 J	6.1	6.6	6.1	6	7.8 J	7.1 J
Banum		UG/L	GA	1,000	o	70	70		1.3 U	1.3 U	1.3 U	1.3 U	1.3 UJ	1.3 UJ
Beryllium		UG/L	MCL	4	0	D	70	72 7	68	77 J	67	69 J	65 J	62 J
Cadmium		UG/L	GA	5	o	3	70	0.3 U	0.25 U	0 15 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ
Calcium		UG/L	On	44		70	70	0.3 U	0.095 U	0.13 U	0.095 U	0.13 U	0.095 UJ	0 13 UJ
Chromium		UG/L	GA	50	0	5	70	117,000 J	100,000 J	110,000 J	96,000	100,000	110,000 J	100,000 J
Cobalt		UG/L	90	30	0	29	70	0.9 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ
Copper		UG/L	GA	200	0	51	70	1.1 U	0,15 U	0.12 U	0.15 U	0.12 U	0.15 UJ	0.12 UJ
ron		UG/L	GA	300	20	49	70	5.1 J	4.4 J	5.9	4.5 J	5.1	4.5 J	5 J
ron+Manganes	92	UG/L	GA	500	19	65	70	197 J	33 U	89 J	33 U	63 J	33 UJ	44 UJ
_ead	40	UG/L	MCL	15	2	30	70	260.7 J	12	105 J	12	76 J	34 UJ	46 UJ
Magnesium		UG/L	MOL		2	60	60	2.9 U	0.21 J	1.3 J	0.2 U	0.97 J	0.24 J	0 66 J
Manganese		UG/L	GA	300	1	66	70	12,300	12,000	14,000 J	11,000	12,000 J	13,000 J	11,000 J
viercury		UG/L	GA	0.7	o	3	70	63 7	12	16	12	13	1 UJ	2 UJ
Vickel		UG/L	GA	100	0	38	70	0.1 U	0,091 U	0.091 U	0.091 U	0.091 U	0,091 UJ	0.091 UJ
Potassium		UG/L	Un	100	· ·	64	64	26 J	2 U	2 J	2.2 J	2.2 J	2,2 J	2 UJ
Selenium		UG/L	GA	10	0	0	70	3,140	2,300 J	2,500 J	2,200 J	2,200 J	2,200 J	1,900 J
Silver		UG/L	GA	50	o	Ö	70	6.1 U 1.3 U	1 U	1.1 U	1 0	1,1 U	1 UJ	1.1 UJ
Sodium		UG/L	GA	20,000	44	88	68	18.800 J	0.25 U	0.18 U	0.25 U	0.16 U	0.25 UJ	0.18 UJ
Thallium		UG/L	MCL	20,000	0	1	70	0.2 U	33,000 J	34,000 J	31,000 J	32,000 J	20,000 J	17,000 J
/anadium		UG/L		~	· ·	7	70		0.5 U	0.25 U	0.5 U	0.25 U	0.5 UJ	0.25 UJ
Zinc		UG/L				28	70	1 U 11.3	3.8 U	3.2 U	3.8 U	3.2 U	3.8 UJ	3.2 UJ
		4016				20	70	11.3	11 J	14 J	12 J	12 J	9.5 J	68 J

¹ The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1898, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewaier/mcl-bimi#inorganic.html

is used. A blank cell indicates no criteria value available

² Data validation qualifier

[[]enapty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J> = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

W a detection fimit is estimated

³ Shading indicates a concentration above the identified enteria value

SA = Sample

DU = Duplicate Sample

⁴ Rejected values are not included in the number of samples analyzed

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria ¹	Criteria ¹	Number of	Number of Times	Number of Samples	SEAD-16 MW16-2 GW 16LM20036F 12/16/2013 SA LTM 6 Dissolved	SEAD-16 MW16-2 GW 16LM20036U 12/16/2013 SA LTM 6 Total	SEAD-16 MW16-4 GW 16LM20003 12/20/2007 SA LTM 1 Total	SEAD-16 MW15-4 GW 16LM20008 12/9/2008 SA LTM 2 Total	SEAD-16 MW16-4 GW 16LM20009 12/9/2008 DU LTM 2 Total	SEAD-16 MW16-4 GW 16LM20016FIL 11/17/2009 SA LTM 3 Dissolved	SEAD-16 MW16-4 GW 16LM20016UNFIL 11/17/2009 SA LTM 3 Total
Parameter		Unit	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics						42	-					404.1	24.11	
Aluminum		UG/L	0.4		20	27 39	70	23 UJ	50 UJ	167 J	104 J	101 J	24 U	68 J
Antimony		UG/L	GA	3	3.2	39 6	70 70	3.6 J	3.2 J	5.11	2.69	2.94		
Arsenic		UG/L	MCL	10				1.3 UJ	1.3 UJ	4.2 U	3.7 U	3.7 U	3.7 U	3.7 U
Barium		UG/L	GA	1,000	0	70	70	70 J	66 J	44.5	290	279	129	123
Beryllium		UG/L	MCL	4	0	0	70	0.25 UJ	0.15 UJ	0.27 U	0.33 U	0.33 U	0.3 U	0.3 U
Cadmium		UG/L	GA	5	0	3	70	0.095 UJ	0.13 UJ	0.36 U	0.33 U	0.33 U	0,3 U	0.3 U
Calcium		UG/L	44.			70	70	120,000 J	100,000 J	87,100 J	275,000	267,000	130,000 J	125,000 J
Chromium		UG/L	GA	50	0	5	70	2.5 UJ	2.5 UJ	1 J	U 88.0	0.88 U	0.9 U	0.9 U
Cobalt		UG/L				59	70	0.23 J	0.23 J	0.89 U	1,1 U	1,1 U	1.8 J	2 J
Copper		UG/L	GA	200	0	51	70	4 J	4.7 J	5.4 J	4.4 J	4.2 J	2.4 J	6.2 J
Iron		UG/L	GA	300	20	49	70	33 UJ	44 UJ	95.4	57 J	38.4 J	329 J	419 J
Iron+Mangane	ese	UG/L	GA	500	19	66	70	19 J	19 J	127	65	46 J	417.7 J	513.5 J
Lead		UG/L	MCL	15	2	30	70	0.38 J	1/1 J	2.9 U	2.9 U	2.9 U	2.9 U	29 U
Magnesium		UG/L			Y Y	60	60	14,000 J+	13,000 J	9.440 R	35,200	34,500	16,800	16,000
Manganese		UG/L	GA	300	1	66	70	19 J	19 J	31.2	7.7	8	88.7	94.5
Mercury		UG/L	GA	0.7	0	3	70	0.091 UJ	0.091 UJ	0,12 U	0.12 U	0,12 U	0.1 U	0,1 U
Nickel		UG/L	GA	100	0	38	70	2 UJ	2 UJ	1.2 U	2.2 J	1,9 J	1.7 J	1,4 J
Potassium		UG/L				64	64	1,800 J	1,700 J	1,300 R	3,830 J	3,690 J	3,270	3,270
Selenium		UG/L	GA	10	0	0	70	1 UJ	1.1 UJ	6.1 U	6 1 U	6.1 U	6.1 U	61 U
Silver		UGAL	GA	50	0	D	70	0.25 UJ	0.18 UJ	1 U	13 U	1.3 U	1.3 U	1.3 U
Sodium		UGAL	GA	20,000	44	68	68	22,000 J	21,000 J	40,800 J	434,000	419,000	380,000 J	363,000 J
Thallium		UG/L	MCL	2	0	1	70	0.5 UJ	0.25 UJ	0.03 U	0.09 U	0.09 U	0.2 U	0.2 U
Vanadium		UG/L				7	70	3.8 UJ	3.2 UJ	0.78 U	0.98 U	U 89.0	1.1 J	1,1 J
Zinc		UG/L				28	70	24 J	12 J	5.3 J	14.6 J	981	36 U	36 U

- 1. The lowest value for either the New York Class GA Groundwaler Standards (TOGS 1.1.1. June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier
- (empty cell) = data is not qualified
- U = compound not detected at concentration listed J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations UJ = delection limit is estimated
- 3. Shading indicates a concentration above the identified criteria value.
 - SA = Sample
- DU = Duplicate Sample
- 4 Rejected values are not included in the number of samples analyzed

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Coteria 3	Colorin 1	Number of	Number of Times	Number of Samples	SEAD-16 MW16-4 GW 16LM20024FiL 12/16/2010 SA LTM 4 Dissolved	SEAD-16 MW16-4 GW 16LM20024UNF 12/16/2010 SA LTM 4 Total	SEAD-16 MW16-4 GW 16LM20030F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-4 GW 16LM20030U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-4 GW 16LM20037F 12/17/2013 SA LTM 6 Dissolved	SEAD-16 MW16-4 GW 16LM20037U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-5 GW 16LM20004 12/20/2007 SA LTM 1 Total
Parameter		Unit	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Makes Occ
inorganics										raide wool	Foliac Qual	Agine Mai	value Qual	Value Qua
Aluminum		UG/L				27	70	23 U	50 U	23 UJ	50 UJ	23 UJ	50 UJ	160 J
Antimony		UG/L	GA	3	32	39	70	2.3 U	2 U [4 J	3.9 J	2.3 UJ	2 UJ	1.82
wsenic		UG/L	MCL	10	0	6	70	1.3 U	1.3 U	1.5 J	1.3 J	1.3 UJ	13 UJ	4.2 U
Barium		UG/L	GA	1,000	G	70	70	220	240 J	240 J	230 J	140 J	150 J	38.9
leryllium		UG/L	MCL	4	0	0	70	0.25 U	0 15 U	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.27 U
admium		UG/L	GA	5	O	3	70	0.095 U	0.13 U	0.095 UJ	0.23 J	0.095 UJ	0 15 J	0.36 U
Calcium		UG/L				70	70	210,000	210,000	230,000 J	220,000 J	210,000 J	190,000 J	89,000 J
Chronium		UG/L	GA	50	0	5	70	2.5 U	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	3.6 J	1.1 J
Cobalt		UG/L				29	70	0.7	0.71	1.9 J	1.9 J	1 J	0.94 J	0.89 U
opper		UG/L	GA	200	0	51	70	14 J	2.8 J	4 1 J	11 J	1.2 J	1.5 J	3.1 J
on		UG/L	GA	300	20	49	70	130 J	150 J	130 J	140 J [350 J	380 J	1,200
on+Mangane:	se	UG/L	GA	500	19	66	70	260 J	290 J	270 J	280 J	580 J	590 J	1,238
ead		UG/L	MCL	15	2	30	70	0.7 J	3	0.2 UJ	3.4 J	0.28 J	0.65 J	2.9 U
Magnesium		UG/L				60	60	31,000	32,000 J	34,000 J	32,000 J	33,000 J+	31.000 J	9.380 R
langanese		UG/L	GA	300	1	66	70	130	140	140 J	140 J	230 J	210 J	9,380 R 37.6
Mercury		UG/L	GA	0.7	0	3	70	0.091 U	0.091 U	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0.12 U
lickel		UG/L	GA	100	0	38	70	22 1	2.3 J	2.6 J	3.2 J	33 J	2.9 J	
otassium		UG/L				64	64	2,600 J	2,600 J	3.200 J	3,100 J	2.500 J	2.400 J	1.2 U
Selenium		UG/L	GA	10	0	O	70	1 U	1.1 U	1 UJ	1.1 UJ	2,500 J	1.1 UJ	4,420 R
Silver		UG/L	GA	50	0	0	70	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	6.1 U
odium		UG/L	GA	20,000	44	68	68	540,000 J	550,000 J	340,000 J	310,000 J	290,000 J	270,000 J	1 U
hallium		UG/L	MCL	2	0	1	70	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	8,410 R 0.03 U
/anadium		UG/L				7	70	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	
inc		UG/L				28	70	9.2 J	13 J	12 J	11 J	8.3 UJ	8 4 UJ	12 J 34 4

- 1 The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/sa/swater/mcl.html/shorganic.html.is.used. A blank cell indicates no criteral value available.
- 2 Data validation qualifier
- [empty cell] = data is not qualified
- U = compound not delected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = delection limit is estimated
- 3 Shading indicates a concentration above the identified criteria value
- SA = Sample
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria ¹	Criteria ¹	Number of	Number of Times	Number of Samples	SEAD-16 MW16-5 GW 16LM20010 12/10/2008 SA LTM 2 Total	SEAD-16 MW16-5 GW 16LM20017FIL 11/16/2009 SA LTM 3 Dissolved	SEAD-16 MW16-5 GW 16LM20017UNFIL 11/16/2009 SA LTM 3 Total	SEAD-16 MW16-5 GW 16LM20025FIL 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-5 GW 16LM20025UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-5 GW 16LM20031F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-5 GW 16LM20031U 12/15/2012 SA LTM 5 Total
Parameter		Unit	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics														22.00
Aluminum		UG/L				27	70	563	24 U	164 J	23 U	160	23 UJ	50 UJ
Antimony		UG/L	GA	3	32	39	70	4.23	1 U	1 U	2.3 U	2 U	2.3 UJ	2 UJ
Arsenic		UG/L	MCL	10	0	6	70	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	2.6 J	2.7 J
Barium		UG/L	GA	1,000	0	70	70	22	42.8	42	34	33 J	34 J	39 J
Beryllium		UG/L	MCL	4	0	Ð	70	0.33 U	0.3 U	0.3 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ
Cadmium		UG/L	GA	5	0	3	70	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0,095 UJ	0.13 UJ
Calcium		UG/L				70	70	53,100	115,000 J	110,000 J	90,000	86,000	97,000 J	96,000 J
Chromium		UG/L	GA	50	O.	5	70	1.2 J	0.9 U	0.9 U	2.5 U	2.5 U	2,5 UJ	2.5 UJ
Cobalt		UG/L				29	70	1.1 U	1.1 U	1.1 U	0.15 U	0.12 U	0.22 J	0.23 J
Copper		UG/L	GA	200	0	51	70	10.6	1.3 U	1.3 U	1.1 U	1.1 U	1.1 J	5 UJ
Iron		UG/L	GA	300	20	49	70	699	800 J	1,150 J	480 J	650 J	1,100 J	1,300 J
Iron+Mangane	se	UG/L	GA	500	19	66	70	731	970 J	1,323 J	L 089	620 J	1,230 J	1,430 J
Lead		UG/L	MCL	15	2	30	70	10,1	2.9 U	2.9 U	0.2 U	0,77 J	0.2 UJ	0.5 UJ
Magnesium		UG/L				60	60	6.050	12,200	11,800	10,000	9,700 J	9,900 J	9,800 J
Manganese		UG/L	GA	300	1	66	70	32 4	170	173	200	160	130 J	130 J
Mercury		UG/L	GA	0.7	0	3	70	0.12 U	0.1 U	0.1 U	0,091 U	0.091 U	0.1 J	0.091 UJ
Nickel		UG/L	GA	100	O	38	70	2.6 J	1.8 J	2 J	2 U	2 U	2.1 J	2 UJ
Potassium		UG/L				64	64	2,610 J	2,370	2,380	2,200 J	2,100 J	2,100 J	2,100 J
Selenium		UG/L	GA	10	Q	0	70	6,1 U	6.1 U	61 U	1 U	1.1 U	1 UJ	1.1 UJ
Silver		UG/L	GA	50	0	0	70	1,3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ
Sodium		UG/L	GA	20,000	44	68	88	2,180	2,700 J	2,800 J	1,800 J	1,800 J	1,600 J	1,500 J
Thallium		UG/L	MCL	2	0	1	70	0.09 U	0.2 U	0,2 U	0.5 U	0.25 U	0.5 UJ	0.25 UJ
Vanadium		UGAL				7	70	2.3 J	1 U	1.1 J	3.8 U	3.2 U	3.8 UJ	3.2 UJ
Zinc		UG/L				28	70	10.3	3.6 U	3.6 U	8.3 U	84 U	83 UJ	8 4 UJ

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1996, et al.)
- or the EPA Maximum Contominant Limit (MCL), source hitp://www.epa.gov/safewaler/incl.html/knorganic.html
 is used. A blank cell indicates no criteria value available.
- 2 Data validation qualifier
- [empty coll] = data is not qualified
- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated.
- 3. Shading indicates a concentration above the identified criteria value
 - SA = Sample
 - DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria ¹		Number of	Number of Times	Number of Samples	SEAD-16 MW16-5 GW 16LM20038F 12/16/2013 SA LTM 6 Dissolved	SEAD-16 MW16-5 GW 16LM20038U 12/16/2013 SA LTM 6 Total	SEAD-16 MW16-5 GW 16LM20039F 12/17/2013 SA LTM 6 Dissolved	SEAD-16 MW16-5 GW 16LM20039U 12/17/2013 SA LTM 6 Total	SEAD-16 MW16-6 GW 16LM20005 12/20/2007 SA LTM 1 Total	SEAD-16 MW15-6 GW 15LM20011 12/9/2009 SA LTM 2 Total	SEAD-16 MW16-6 GW 16LM20018FIL 11/17/2009 SA LTM 3 Dissolved
Parameter		Unit	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Quat	Value Qual	Value Quat	Value Qual
Inorganics						0.5		*****	*****	88.117	FR (1)	400 1	400 1	407.1
Aluminum		UG/L				27	70	23 UJ	50 UJ	23 UJ	50 UJ	168 J	189 J	107 J 09 J
Antimony		UG/L	GA	3	32	39	70	2.3 UJ	2 UJ	2.3 UJ	2 UJ	1 0	0 92 J	37 U
Arsenic		UG/L	MCL	10	D	6	70	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	4.2 U	3.7 U	
Banum		UG/L	GA	1,000	0	70	70	40 J	38 J	41 J	41 J	31.8	39 1	78.5
Beryllium		UG/L	MCL	4	O .	0	70	0 25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0.27 U	0 33 U	0.3 U
Cadmium		UG/L	GA	5	0	3	70	0 095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.36 U	0.33 U	0.3 U
Calcium		UG/L				70	70	100,000 J	88,000 J	110,000 J	95,000 J	80,400 J	84,300	112,000 J 0.9 U
Chromium		UG/L	GA	50	0	5	70	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	0.84 U	0 88 U	
Cobalt		UG/L				29	70	0.15 UJ	0.12 UJ	0.15 UJ	0.12 UJ	0.89 U	1.1 U	11 U
Copper		UG/L	GA	200	0	51	70	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	3.4 J	21 J	1,9 J
Iron		UG/L	GA	300	20	49	70	440 J	510 J	490 J	530 J	418	153	55 J
Iron+Mangane	ese	UG/L	GA	500	19	68	70	670 J	680 J	710 J	720 J	441	158	153.4 J
Lead		UG/L	MCL	15	2	30	70	0.2 UJ	0.5 UJ	0.22 J	0.5 UJ	2.9 U	2.9 U	2.9 U
Magnesium		UG/L				60	60	10,000 J+	9,500 J	11,000 J+	10,000 J	7,100 R	7,360	9.970
Manganese		UG/L	GA	300	1	66	70	230 J	170 J	220 J	190 J	23.3	4.8	98 4
Mercury		UG/L	GA	0.7	0	3	70	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ	0 12 U	0 12 U	0.1 U
Nickel		UG/L	GA	100	0	38	70	2 UJ	2 UJ	2 UJ	2 UJ	1.2 U	1 U	1.2 J
Potassium		UG/L				84	54	2 300 J	1,900 J	2,300 J	2.100 J	2,690 R	2,310 J	2,380
Selenium		UG/L	GA	10	0	0	70	1 03	1.1 UJ	1 UJ	1.1 UJ	6.1 U	61 U	6 1 U
Silver		UG/L	GA	50	0	0	70	0.25 UJ	0.18 UJ	0.25 UJ	U 81 0	1 U	1.3 U	13 U
Sodium		UG/L	GA	20,000	44	68	68	1,400 J	1,300 J	1,400 J	1,300 J	6,110 R	9,200	22,000 J
Thallium		UG/L	MCL	2	O	1	70	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0 03 U	0.09 U	0 008 U
Vanadium		UG/L				7	70	3.8 UJ	3.2 UJ	3.8 UJ	3.2 UJ	0.86 J	0.98 U	1 U
Zinc		UG/L				28	70	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ	5.5 J	37 J	3.6 U

¹ The lowest value for either the New York Class GA Groundwaler Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/incl.html#inorganic.html is used. A blank cell indicates no criteria value available.

² Data validation qualifier

⁽empty ceil) = data is not qualified

U = compound not detected at concentration tisted

J = the reported value is an estimated concentration Jr = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = delection limit is estimated

³ Shading indicates a concentration above the identified criteria value

SA = Sample

DU = Duplicate Sample

⁴ Rejected values are not included in the number of samples analyzed

Parameter	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria Source	¹ Criteria ¹ Level	Number of Exceedances	Number of Times Detected	Number of Samples Analyzed	SEAD-16 MW16-6 GW 16LM20018UNFIL 11/17/2009 SA LTM 3 Total	SEAD-16 MW16-6 GW 16LM20026FIL 12/15/2010 SA LTM 4 Dissolved	SEAD-16 MW16-6 GW 16LM20026UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-6 GW 16LM20032F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-6 GW 16LM20032U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-6 GW 16LM20040F 12/17/2013 SA LTM 6 Dissolved	SEAD-16 MW16-6 GW 16LM20040U 12/17/2013 SA LTM 6 Total
Inorganics		Orm	COUNCE	POACI	Exceedinces	Detected	Milalyaco	Value (200)	Value (200)	V4100 C(001	70100 0001	voige deal	voice addi	voide dual
Aluminum		UG/L				27	70	442	23 U	61 J	23 UJ	300 J	23 UJ	50 UJ
Antimony		UG/L	GA	3	32	39	70	1 U	2.3 U	2 U	23 UJ	2 UJ	2.3 UJ	2 UJ
Arsenic		UG/L	MCL	10	0	6	70	3.7 U	1.3 U	13 U	1.3 UJ	1,3 J	1.3 LU	1.3 UJ
Barium		UG/L	GA	1,000	0	70	70	80.2	44	50 J	41 J	45 J	53 J	58 J
Beryllium		UG/L	MCL	4	0	0	70	0.3 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0 15 UJ
Cadmium		UG/L	GA	5	D	3	70	0.3 U	0.095 U	0.13 U	0 095 UJ	0.13 UJ	0 095 UJ	0 13 UJ
Calcium		UG/L				70	70	112,000 J	68,000	78,000	70,000 J	74,000 J	92,000 J	84,000 J
Chromium		UG/L	GA	50	0	5	70	0.9 U	2.5 U	2.5 U	2.5 UJ	2.5 UJ	25 UJ	2 5 UJ
Cobalt		UG/L				29	70	1.1 U	0.15 U	0 12 U	0.18 J	D.43 J	0.35 J	0.34 J
Copper		UG/L	GA	200	0	51	70	2.5 J	15 J	2 J	4.5 J	5 UJ	1 1 UJ	1.1 UJ
Iron		UG/L	GA	300	20	49	70	440 J	33 U	110 J	33 J	790 3	180 J	210 J
Iron+Mangane	se	UG/L	GA	500	19	66	70	515 J	2.1 J	113.5 J	43 J	B16 J	340 J	360 J
Lead		UG/L	MCL	15	2	30	70	2.9 U	0,2 U	0,5 U	0,2 UJ	0.5 UJ	0.2 UJ	0.54 J
Magnesium		UG/L				60	60	9,950	6,600	7.800 J	7,200 J	7,600 J	9,500 J+	9,500 J
Manganese		UG/L	GA	300	1	66	70	75	2 1 J	3.5 J	10 J	26 J	160 J	150 J
Mercury		UG/L	GA	0.7	0	3	70	0.1 U	0.091 U	0 091 U	0.091 UJ	0.091 UJ	0.091 UJ	0.091 UJ
Nicke1		UG/L	GA	100	0	38	70	2.6 J	2 U	2 U	2 UJ	2 J	2 UJ	2 UJ
Polassium		UG/L				64	64	2,580	1,500	1,600	2,400 J	2,400 J	1,900 J	1,800 J
Selenium		UG/L	GA	10	0	0	70	6.1 U	1 U	1.1 U	1 UJ	1.1 UJ	1 UJ	1.1 UJ
Silver		UG/L	GA	50	0	0	70	1.3 U	0,25 U	0.18 U	0,25 UJ	0.18 UJ	0.25 UJ	0.18 UJ
Sodium		UG/L	GA	20,000	44	68	68	20,600 J	7,600 J	8,400 J	8,700 J	8,000 J	14,000 J	13.000 J
Thallium		UG/L	MCL	2	0	1	70	0.008 U	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ
Vanadium		UG/L				7	70	1.3 J	3.8 U	3 2 U	3.8 0.1	3.2 UJ	38 UJ	3 2 UJ
Zinc		UG/L				28	70	3.6 U	8.3 U	8 4 U	8.3 UJ	8.4 UJ	8.3 UJ	8 4 UJ

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.)
- or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html
- is used. A blank cell indicates no criteria value available.
- 2 Data validation qualifier
- [empty cell] = data is not qualified
- U = compound not detected at concentration listed
- J = The reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
 R = the result was rejected due to QA/QC considerations
- R = The result was rejected due to QAVQC considerations
- Us = detection limit is estimated
- 3. Shading indicates a concentration above the identified criteria value
- SA = Sample
- DU = Duplicate Sample
- 4 Rejected values are not included in the number of samples analyzed

Parameter	Area Loc ID Matrix Sample Dale GC Type Study ID Sample Round Filtered	Hor	Criferia ¹ Source	Criteria 1	Number of Exceedances	Number of Times Detected	Number of Samples	SEAD-16 MW16-7 GW 16LM20006 12/20/2007 SA LTM 1 Total	SEAD-16 MW16-7 GW 16LM20012 12/10/2008 SA LTM 2 Total	SEAD-16 MW16-7 GW 16LM20019FIL 11/12/2009 SA LTM 3 Dissolved	SEAD-16 MW16-7 GW 16LM20019UNFIL 11/12/2009 SA LTM 3 Total	SEAD-16 MW16-7 GW 16LM20020FIL 11/12/2009 DU LTM 3 Dissolved	SEAD-16 MW16-7 GW 16LM20020UNFIL 11/12/2009 DU LTM 3 Total	SEAD-16 MW16-7 GW 16LM20027FIL 12/15/2010 SA LTM 4 Dissolved
Inorganics		Olik	Cource	rever	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Aluminum		UG/L				27	70	45.9 J	577	32 J	182 J	25 J	116 J	2- 0
Antimony		UG/L	GA	3	32	39	70	9.58	13.6	15.2	15.7	13.9	16.3	23 U
Arsenic		UG/L	MCL	10	0	8	70	42 U	3.7 U	3.7 ⊔	3.7 U	3.7 U	3.7 U	15
Barium		UG/L	GA	1,000	0	70	70	170	122	83.6	81.6	83.9	80.3	13 U
Beryllium		UG/L	MCL	4	0	0	70	0.27 U	0.33 U	0.3 U	0.3 U	0.3 U	0.3 U	69
Cadmium		UG/L	GA	5	O	3	70	0.46 J	0.33 U	0.3 U	0.3 U	0.3 U	0.3 U	0.25 U
Calcium		UG/L				70	70	194,000	133,000	85.000 J	84,600 J	81,900 J		0.095 U
Chromium		UG/L	GA	50	0	5	70	0.84 U	1.6 J	0.9 U	0.9 U	0.9 U	82,800 J 0.9 U	B2,000
Cobalt		UG/L				29	70	1.6 J	1.1 J	1.1 U	1.1 U	11 U	0.9 U	2.5 U
Copper		UGIL	GA	200	0	51	70	34.7	20.2	3.1 J	5 J	3.5 J		0.15 U
Iron		UG/L	GA	300	20	49	70	29.2 J	770	19 UJ	135 J	19 UJ	4.1 J 61 J	1.8 J
Iron+Mangane	se	UGIL	GA	500	19	66	70	660 J	990	136	244 J	152		33 U
Lead		UG/L	MCL	15	2	30	70	26.5	88.8	4.4 J	12.1	49 J	168 J 9.4	35
Magnesium		UG/L				60	60	32,000 J	25,100	15.900	16.500	14.800	16,200	1 J
Manganese		UG/L	GA	300	1	66	70	631	220	136	109	152	107	18,000
Mercury		UG/L	GA	0.7	0	3	70	0.507	0.12 U	0.1 U	0.1 U	0 1 U	0.1 U	35
Nickel		UG/L	GA	100	O	38	70	5.5 J	2.6 J	1.9 J	1.7 J	2 J		0.091 U
Potassium		UG/L				64	64	5.480 J	5.670 J	6.520	5.760	7,010	1.1 』	2 U
Selenium		UG/L	GA	10	0	0	70	61 U	61 U	6.1 U	6 1 U	6.1 U	5,630 6.1 U	2,800 J
Silver		UG/L	GA	50	0	0	70	1 U	1.3 U	1.3 U	1.3 U	1.3 U	13 U	1 U
Sodium		UG/L	GA	20,000	44	68	68 F	68,400 J	74,900	52,100 J	47,100 J	55,900 J	46,100 J	0.25 U
Thallium		UG/L	MCL	2	0	1	70	0.03 J	0.09 U	0.2 U	02 U	0.2 U	02 U	29,000 J
Vanadium		UG/L				7	70	0.78 U	0.98 U	1 U	1 U	1 U	1 U	0.5 U
Zinc		UG/L				26	70	3.6 U	86 J	3.6 U	3.6 U	3.6 U	1.0	3.8 U

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1996, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mci.html#inorganic.html is used. A blank cell indicates no criteria value available.
- 2 Data validation qualifier
- [empty cell] = data is not qualified
- U = compound not delected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = The result was rejected due to QA/QC considerations
- UJ = detection limit is estimated
- 3 Shading indicates a concentration above the identified criteria value SA = Sample

 - DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Fittered		Criteria ¹		Number of	Number	Number of Samples	SEAD-16 MW16-7 GW 16LM20027UNF 12/15/2010 SA LTM 4 Total	SEAD-16 MW16-7 GW 16LM20033F 12/15/2012 SA LTM 5 Dissolved	SEAD-16 MW16-7 GW 16LM20033U 12/15/2012 SA LTM 5 Total	SEAD-16 MW16-7 GW 16LM20034F 12/15/2012 DU LTM 5 Dissolved	SEAD-16 MW16-7 GW 16LM20034U 12/15/2012 DU LTM 5 Total	SEAD-16 MW16-7 GW 16LM20041F 12/17/2013 DU LTM 6 Dissolved	SEAD-16 MW16-7 GW 16LM20041U 12/17/2013 DU LTM 6 Total
Parameter			Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics					_									
Aluminum		ŲG/L				27	70	50 U	23 UJ	50 UJ	23 UJ	50 UJ	23 UJ	50 UJ
Antimony		UG/L	GA	3	32	39	70	16	13 0	13 J	13 J	14 J	16 J	15 J
Arsenic		ŲG/L	MCL	10	0	6	70	1.3 U	1.3 J	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ
Barium		UG/L	GA	1,000	0	70	70	71 J	100 J	10D J	99 J	100 J	100 J	100 J
Beryllium		UG/L	MCL	4	0	0	70	0 15 U	0 25 UJ	0.15 UJ	0 25 UJ	0 15 UJ	0 25 UJ	0 15 UJ
Cadmium		UG/L	GA	5	0	3	70	0 13 U	0.095 UJ	0 13 UJ	0.095 UJ	0 13 UJ	0.095 UJ	0.13 UJ
Calcium		UG/L				70	70	86,000	110.000 J	100,000 J	100,000 J	110,000 J	120,000 J	110,000 J
Chromium		UG/L	GA	5 0	0	5	70	2.5 U	2 5 U.J	2.5 UJ	25 UJ	2 5 UJ	2.5 UJ	25 UJ
Cobalt		UG/L				29	70	0.12 U	0.23 J	0.22 J	0.24 J	0.24 J	0 19 J	0.2 J
Copper		UG/L	GA	200	0	51	70	27 J	4 1 J	8.3 J	17 J	5.6 J	3.4 J	25 J
Iron		UG/L	GA	300	20	49	70	45 J	33 UJ	44 UJ	33 UJ	44 UJ	33 UJ	44 UJ
Iron+Mangane	ese	UG/L	ĢΑ	500	19	66	70	79 J	92 J	90 J	98 J	91 J	16 J	15 J
Lead		UG/L	MCL	15	2	30	70	6.3	13 J	2.5 J	2 3 J	26 J	19 J	6 J
Magnesium		UG/L				60	60	19,000 J	21,000 J	21 000 J	20,000 J	22,000 J	26.000 J+	27.000 J
Manganese		ŲG/L	GA	300	1	66	70	34	92 J	90 J	98 J	91 J	16 J	15 J
Mercury		UG/L	GA	0.7	0	3	70	0.091 U	0 Q91 UJ	Q 091 UJ	0 091 UJ	0.091 UJ	0 091 UJ	0.091 UJ
Nickel		UG/L	GA	100	O O	38	70	2 U	2 UJ	2 2 J	2 UJ	243	2 UJ	2 UJ
Potassium		UG/L				64	64	2,700 J	5,300 J	5,200 J	5,100 J	5,400 J	3,100 J	2,900 J
Selenium		UG/L	GA	10	0	0	70	1,1 U	1 UJ	1.1 UJ	1 UJ	1 1 UJ	1 UJ	1 1 UJ
Silver		UG/L	GA	50	0	Q	70	0 18 U	0.25 UJ	0 16 UJ	0 25 UJ	0 18 UJ	0.25 UJ	0.18 UJ
Sodtum		UG/L	GA	20,000	44	66	68	28,000 J	L 900,88	32,000 J	33,000 J	32,000 J	28,000 J	27,000 J
Thallium		UG/L	MCL	2	0	1	70	0.25 U	0 5 UJ	0 25 UJ	0.5 UJ	0.25 UJ	0.5 UJ	0 25 UJ
Vanadium		UG/L				7	70	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	3 2 UJ	3.8 UJ	3.2 UJ
Žinc		UG/L				28	70	84 U	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ	8.3 UJ	8.4 UJ

- 1. The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Confaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html
- is used. A blank cell indicates no criteria vatue available
- 2 Data validation qualifier
- [empty cell] = data is not qualified
- U = compound not delected at concentration listed
- J = the reported value is an ostimated concentration J+ = result is an estimated quantity, biased high
- Rin the result was rejected due to QAQC considerations.
- 1JJ = detection limit is estimated
- 3. Shading indicates a concentration above the identified criteria value.
 - SA = Sample
 - DU = Duphcate Sample
- 4. Rejected values are not included in the number of samples analyzed

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Fiftered		Critena ¹	Cotena ¹	Number of	Number of Times	Number of Samples	SEAD-17 MW17-T GW 17LM20000 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-1 GW 17LM20005 12/11/2008 SA LTM 2 Total	SEAD-17 MW17-1 GW 17LM20010FIL 11/1B/2009 SA LTM 3 Dissolved	SEAD-1? MW17-1 GW 17LM20010UNFIL 11/18/2009 SA LTM 3 Yatai	SEAD-17 MW17-1 GW 17LM20016FIL 12/17/2010 SA LTM 4 Dissolved	SEAD-17 MW17-1 GW 17LM20016UNF 12/17/2010 SA LTM 4 Total	SEAD-17 MW17-1 GW 17LM20020F 12/11/2012 SA LTM 5 Dissolved
Parameter		Unit	Source	Lével	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Quat	Value Qual	Value Qual	Value Qual	Value Quat
Inorganics Aluminum						_								Tailed Glass
Antiniony		UG/L UG/L				21	50	204	219	37 J	59 J	23 ⊔	50 LI	23 UJ
Arsenic		UGIL	GA MCL	3	4	12	50	1 U	1 ↓	1 11	1 บ	23 U	2 U	23 UJ
Barium		UG/L		10	Ú	2	50	42 U	37 ∪	37 U	3.7 U	13 U	1 3 LJ	13 ப
Beryltiom		UGAL	GA	1 000	П	48	50	70	79	99.1	99	61	63 J	28 J
Cadmism		UG/L	MČL GA	4 5	Ü	ì	50	0 27 U	0 33 U	03 U	03 U	0.25 U	0 15 🗆	0.25 UJ
Calcium		UG/L	GA	Þ	U	2	50	0.36 U	0 33 U	03 U	0.3 U	0 095 U	0.13 LJ	0.095 UJ
Chromium						48	50	98 300 J	95,600	109,000 J	108.000 J	96.000	100,000	53 000 J
Cobali		UG/L	GA	50	0	4	50	0.84 U	U 88 0	09 U	09 U	2 5 U	25 U	25 UJ
Copper		UG/L			_	31	50	0 89 U	1 1 U	110	1 1 U	0 15 U	03 J	0 32 J
		UG/L	GA	200	Ð	23	50	13 U	1.3 U	1.3 ⊍	13 U	1 1 U	11 J	47 3
iron iron+Mangane		UG/L	GA	300	14	38	50	106	126	19 UJ	42 J	33 U	270 J	47 J
	:56	UG/L	GA	500	13	46	50	119	141	38.9	67 G J	4.2 J	312 J	54 2 J
Lead		UG/L	MCL	15	1	8	50	2.9 Ų	29 U	29 U	29 U	02 U	0.5 U	0.2 UJ
Magnesium		ŲG/L			_	41	43	21,800 J	20,600	24,300	24,000	19,000	20 000 J	7,20D J
Manganese		UG/L	GA	30D	2	46	50	13 2	14 9	38.9	25 6	4.2 J	42	7 2 J
Mercury		UG/L	GA	0.7	0	2	50	0 12 U	0 12 U	010	DiU	0.091 U	0.091 U	0 14 J
Nickel		UG/L	GA	100	0	14	50	12 U	1.3 J	1 U	\$ U	2 U	2 U	2 UJ
Polassium		UG/L		_		43	45	614 R	462 J	260 J	254 J	690	690 J	380 J
Setenium		UG/L	GA	10	0	0	50	6 1 U	81 U	61 U	61 U	1 U	11 U	1 UJ
Silver		UG/L	GA	50	0	Ò	50	1 U	13 U	13 U	13 U	0 25 U	0 18 U	0.25 UJ
Spdiam		UG/L	GA	20.000	4	44	46	7,790 R	8 380	7 300 J	7 400 J	6,000 J	6.200 J	2.400 J
Thallium		UG/L	MCL	2	O	2	50	0.03 U	0.09 U	U 800 0	U 800 0	0 5 U	0 25 U	0.5 UJ
Vanadium		UG/L				2	50	0.78 U	Ú.98 LI	1 Ư	1 U	38 🖟	32 U	3 8 UJ
Zinc		UG/L				27	50	47 J	4 J	3.6 ↓	36 U	83 U	84 U	83 UJ
							1	dalae						

Notes

[empty cell] data is not qualified

- U compound not detected at concentration listed
- I = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated
- 3. Shading indicates a concentration above the identified criteria value
- SA = Sample
- DU Dupficate Sample
- 4. Rejected values are not included in the number of samples analyzed

^{1.} The lowest value for either the New York Class CA Groundwater Standards (TGGS 1.1.1, June 1998, et al.) or the EPA Maxinum Contaminant Limit (MCL), Source http://www.epa.gov/salewater/hich.html#roorganic.html.is-used. A blunk cell indicates no pricera value available.

² Data validation qualifier

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered				Number	Number	Number	SEAD-17 MW17-1 GW 17LM20020U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-1 GW 17LM20025F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-1 GW 17LM20025U 12/15/2013 SA LTM 6 Total	SEAD-17 MW17-2 GW 17LM20001 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-2 GW 17LM20006 12/10/2008 SA LTM 2 Total	SEAD-17 MW17-2 GW 17LM20011FiL 11/17/2009 SA LTM 3 Dissolved	SEAD-17 MW17-2 GW 17LM20011UNFIL 11/17/2009 SA LTM 3 Total
Parameter		Unit	Criteria		of	of Times Detected	of Samples	Makin Our	Makes Count	Makes Over	Makes Court	(4) - O	Make O al	Val 0 -
Inorganics		UTHL	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Quat	Value Qual	Value Qual
Aluminum		UG/L				21	50	50 UJ	23 UJ	50 UJ	110 J	142 J	88 J	19,600
Antimony		UG/L	GA	3	4	12	50	2.7 J	2.3 UJ	2 UJ [3,44	2.76	22	3.7
Arsenic		UG/L	MCL	10	0	2	50	1.3 UJ	1.3 J	1.3 UJ	4.2 U	3.7 U	3.7 U	7.8 J
Barium		UG/L	GA	1.000	0	48	50	28 J	60 J	56 J	58.8	51.8	82.3	251
Beryllium		UG/L	MCL	4	0	1	50	0.15 UJ	0.25 UJ	0.15 UJ	0.27 U	0.33 U	0.3 U	1.2 J
Cadmium		UG/L	GA	5	0	2	50	0.44 J	0.095 UJ	0.13 UJ	0.36 U	0.33 U	0.3 U	1.7
Calcium		UG/L				48	50	55,000 J	120,000 J	91,000 J	110,000 J	112.000	154,000 J	195,000 J
Chromium		UG/L	GA	50	0	4	50	2.5 UJ	2.5 UJ	2.5 UJ	0.84 U	2.9 J	0.9 U	37.2
Cobalt		UG/L				31	50	0.37 J	0.34 J	0.29 J	0.89 U	1.1 U	1.1 U	10.5
Copper		UG/L	GA	200	0	23	50	5.4 J	1.1 UJ	1.1 UJ	6.2 J	4.4 J	2.9 J	46.7
Iron		UG/L	GA	300	14	38	50	90 J	800 J	660 J	140	115	19 UJ	25,500 J
Iron+Mangan	ese	UG/L	GA	500	13	46	50	98.1 J	897 J	765 J	160	121	15 J	25,929 J
Lead		UG/L	MCL	15	1	8	50	11 J	0.2 UJ	0.5 UJ	2.9 U	29 U	2.9 U	103
Magnesium		UG/L				41	43	7,700 J	24,000 J+	19,000 J	11,000 R	11,200	18,200	23,300
Manganese		UG/L	GA	300	2	46	50	8.1 J	97 J	85 J	20.5	6.1	1.5 J	429
Mercury		UG/L	GA	0.7	0	2	50	0.091 UJ	0.091 UJ	0.091 UJ	0.12 U	0 12 U	01 U	0.1 U
Nickel		UG/L	GA	100	D.	14	50	2 UJ	2 UJ	2 UJ	1,2 U	2.8 J	1.2 J	34
Potassium		UG/L				43	45	410 J	500 J	400 J	1,690 R	1,250 J	2,390	7.810
Selenium		UG/L	GA	10	D	0	50	1.1 UJ	1 UJ	1.1 UJ	6.1 U	6.1 U	6.1 U	6.1 U
Silver		UG/L	GA	50	0	0	50	0 18 UJ	0.25 UJ	0.18 UJ	1 U	1.3 U	1.3 U	1.3 U
Sodium		UG/L	GA	20,000	4	44	46	2,500 J	6,000 J	4,800 J	6,620 R	7,860	19,800 J	20,300 J
Thallium		UG/L	MCL	2	0	2	50	0.25 UJ	0.5 UJ	0.25 UJ	0.03 U	0.09 U	0 008 U	0.2 U
Vanadium		UG/L				2	50	3 2 UJ	3.8 UJ	3.2 UJ	0.78 U	0.98 U	1 U	32.8
Zinc		UG/L				27	50	8.4 UJ	83 UJ	8.4 UJ	72 J	27.6	28.6	935

Notes

[empty cell] = data is not qualified

 $U \simeq compound$ not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated

3. Shading indicates a concentration above the identified criteria value

SA = Sample

DU = Duplicate Sample

4 Rejected values are not included in the number of samples analyzed

The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mct.html/linorganic.html is used. A blank cell indicates no criteria value available.

² Data validation qualifier

Parameter	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria Source	Criteria 1	Number of Exceedances	Number of Times Detected		SEAD-17 MW17-2 GW 17LM20015FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-2 GW 17LM20015UNF 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-2 GW 17LM20021F 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-2 GW 17LM20021U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-2 GW 17LM20026F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-2 GW 17LM20026U 12/15/2013 SA LTM 6 Total	SEAD-17 MW17-3 GW 17LM20002 12/20/2007 SA LTM 1 Total
Inorganics		OTH	Dodi Ce	F6.601	Expecualices	Detected	Arialyzeu	Value Qual	Value Qual	Value Quat	Value Qual	Value Qual	Value Qual	Value Qual
Aluminum		UG/L				21	50	23 U	51 J	23 UJ	50 UJ	23 UJ	50 111	
Antimony		UG/L	GA	3	4	12	50	23 U	2 U	4 1	4.4 J	2.3 UJ	50 UJ	106 J
Arsenic		UG/L	MCL	10	0	2	50	1.3 U	1.3 U	1.3 UJ	1.3 UJ		2 UJ	1 0
Barium		UG/L	GA	1,000	0	48	50	54	58 J	69 J	68 J	1.3 UJ	1.3 UJ	4 2 U
Beryllium		UG/L	MCL	4	0	1	50	0.25 U	0 15 U	0.25 UJ	0 15 UJ	46 J	47 J	39
Cadmium		UG/L	GA	5	0	2	50	0 095 U	0.13 U	0.095 UJ	0 13 UJ	0.25 UJ	0.15 UJ	0 27 U
Calcium		UG/L				48	50	140,000	150,000	120,000 J	120,000 J	0,095 UJ	0.13 UJ	0 36 U
Chromium		UG/L	GA	50	0	4	50	25 U	2.5 U	2.5 UJ	2.5 UJ	180,000 J	150,000 J	69,000 J
Cobalt		UG/L				31	50	0.32 J	0.46 J	0.39 J		2.5 UJ	2.5 UJ	0 84 U
Соррег		UG/L	GA	200	0	23	50	15 4	1.9 J	7.7 J	0.42 J 7.8 J	0.44 J	0.38 J	089 U
Iron		UG/L	GA	300	14	38	50	33 U	130 J	33 UJ		1,1 UJ	1.1 UJ	2.6 J
Iron+Mangane	ese	UG/L	GA	500	13	46	50	23	173 J	12 J	44 UJ	520 J	470 J	133
Lead		UG/L	MCL	15	1	B	50	02 U	0.6 J	0.2 UJ	14 J	594 J	534 J	170
Magnesium		UG/L				41	43	18,000	19,000 J	12.000 J	0.99 J	0.2 UJ	0.5 UJ	2.9 ∪
Manganese		UG/L	GA	300	2	46	50	23	43	12,000 J	12,000 J	24,000 J+	22,000 J	7,560 R
Mercury		UG/L	GA	0.7	0	2	50	0.091 U	0.091 U		14 J	74 J	64 J	36 7
Nickel		UG/L	GA	100	0	14	50	5 f	2 U	0.091 UJ	0.091 UJ	0,091 UJ	0.091 UJ	0 12 U
Potassium		UG/L			1.6	43	45	1,300 J	1,300	2 UJ	2 UJ	2 UJ	2 UJ	1.2 U
Selenium		UG/L	GA	10	0	0	50	1,300 J	1,300 1,1 U	2,500 J	2,500 J	1,100 J	1,000 J	2,620 R
Silver		UG/L	GA	50	0	0	50	0.25 U		1 03	1,1 UJ	1 UJ	1.1 UJ	6 1 U
Sodium		UG/L	GA	20,000	4	44	46	14,000 J	0.18 U	0.25 UJ	0.1B UJ	0.25 UJ	0.18 UJ	1 U
Thallium		UG/L	MCL	2	0	2	50	0.5 U	14,000 J	8,400 J	8,400 J	16,000 J	14,000 J	4,550 R
Vanadium		UG/L		-		2	50	3.8 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0 03 U
Zinc		UG/L				27	50	17 J	3/2 U	3.8 M	3.2 UJ	3 8 NY	3.2 UJ	0 78 U
		u dr L				21		Tr J	21	24 J	26 J	11 J	93 J	27 J

[empty cell] = data is not qualified

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ a detection limit is estimated

3 Shading indicates a concentration above the identified criteria value SA = Sample

DU = Ouplicate Sample

4 Rejected values are not included in the number of samples analyzed

The lowest value for either the New York Class GA Groundwater Standards (TOGS 1 1 1, June 1998, et al.) or the EPA Maximum Conforminant Limit (MCL), source http://www.epa.gov/safewater/nick.html/kinorganic.html is used. A blank cell indicates no criteria value available.

² Data validation qualifier

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria ¹	Criteria ¹	Number of	Number of Times	Number of Samples	SEAD-17 MW17-3 GW 17LM20007 12/10/2008 SA LTM 2 Total	SEAD-17 MW17-3 GW 17LM20012FIL 11/18/2009 SA LTM 3 Dissolved	SEAD-17 MW17-3 GW 17LM20012UNFIL 11/18/2009 SA LTM 3 Total	SEAD-17 MW17-3 GW 17LM20017FIL 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-3 GW 17LM20017UNF 12/15/2010 SA LTM 4 Total	SEAD-17 MW17-3 GW 17LM20022F 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-3 GW 17LM20022U 12/11/2012 SA LTM 5 Total
Parameter		Unit			Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics														
Aluminum		UG/L				21	50	386	141 J	1,550 J	23 U	50 U	23 UJ	50 UJ
Antimony		UG/L	GA	3	4	12	50	1 U	1 U	1.5	2.3 U	2 U	2,3 UJ	2 UJ
Arsenic		UG/L	MCL	10	0	2	50	3.7 U	3.7 U	3.7 U	1.3 U	1.3 U	1.3 UJ	13 UJ
Barium		UG/L	GA	1,000	0	48	50	29.3	49.4	54.5	37	38 J	37 J	36 J
Beryllium		UG/L	MCL	4	O	1	50	0,33 U	0.3 U	0.3 U	0.25 U	0.15 U	0 25 UJ	0 15 UJ
Cadmium		UG/L	GA	5	0	2	50	0.33 U	0.3 U	0.3 U	0.095 U	0.13 U	0,095 UJ	0.13 UJ
Calcium		UG/L				48	50	67,200	99,400 J	95,900 J	90,000	93,000	74,000 J	67,000 J
Chromium		UG/L	GA	50	0	4	50	0.88 U	0.9 U	5.2	2.5 U	2.5 U	2,5 UJ	25 UJ
Cobalt		UG/L				31	50	1,1 U	1,5 J	1.7 J	0.63	0.7	0.15 UJ	0 12 UJ
Copper		UG/L		200	0	23	50	2.8 J	2.5 J	7.9 J	1.1 U	1.1 U	3.3 J	5 UJ
Iron		UG/L	GA	300	14	38	50	1,300	827 J	2,690 J	730 J	770 J	33 UJ	44 UJ
Iron+Mangan	lese	UG/L	GA	500	13	46	50	1,573	968 J	2,858 J	890 J	940 J	34 UJ	46 UJ
Lead		UG/L		15	1	8	50	2.9 U	2.9 U	8.6	0.2 U	0,5 U	0.24 J	0.78 J
Magnesium		UG/L				41	43	7,400	9,650	9,170	9,900	10,000 J	6,100 J	5,800 J
Manganese		UG/L		300	2	46	50	273	141	168	160	170	1 UJ	2 UJ
Mercury		UG/L		0.7	0	2	50	0.12 U	0.1 U	0.1 U	0.091 U	0.091 U	0 091 UJ	0.091 UJ
Nickel		UG/L	GA	100	0	14	50	1,8 J	3.1 J	4,5 J	2 U	2 U	2 UJ	2 UJ
Potassium		UG/L				43	45	1,840 J	1,290	1,590	1,200 J	1,200	1,000 J	1,700 J
Selenium		UG/L	GA	10	0	0	50	6.1 U	6.1 U	6.1 U	1 U	1.1 U	1 UJ	1 1 UJ
Silver		UG/L	GA	50	0	0	50	1.3 U	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	D 18 UJ
Sodium		UG/L	GA	20,000	4	44	46	5,500	7,500 J	6,200 J	6,000 J	6,100 J	3,300 J	3,100 J
Thallium		UG/L	MCL	2	0	2	50	0.09 U	0.008 U	0.008 U	0.5 U	0.25 U	0.5 UJ	0.25 UJ
Vanadium		UG/L				2	50	0.98 U	1 U	1.7 J	3.8 U	3.2 U	3.8 UJ	3.2 UJ
Zinc		UG/L				27	50	14.2	21.1	45.7	8.3 U	12 J	29 J	26 J

Notes

- The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1996, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html
- is used. A blank cell indicates no criteria value available.
- 2.Data validation qualifier.

[empty cell] = data is not qualified

- U = compound not detected at concentration listed
- J = the reported value is an estimated concentration
- J+ = result is an estimated quantity, biased high
- R = the result was rejected due to QA/QC considerations
- UJ = detection limit is estimated
- 3. Shading indicates a concentration above the identified criteria value.
- SA = Sample
- DU = Duplicate Sample
- 4. Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria	Criteria	Number of	Number of Times	Number of Samples	SEAD-17 MW17-3 GW 17LM20027F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-3 GW 17LM20027U 12/15/2013 SA LTM 6 Total	SEAD-17 MW17-4 GW 17LM20003 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-4 GW 17LM20008 12/10/2008 SA LTM 2 Total	SEAD-17 MW17-4 GW 17LM20013FIL 11/17/2009 SA LTM 3 Dissolved	SEAD-17 MW17-4 GW 17LM20013UNFIL 11/17/2009 SA LTM 3 Total	SEAD-17 MW17-4 GW 17LM20018FIL 12/16/2010 SA LTM 4 Dissolved
Parameter		Unit	Source		Exceedances		Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Vietne Ann
Inorganics		-							1000 000	70100 0001	Yalue Qual	value Qual	value Quar	Value Qua
Aluminum		UG/L				21	50	23 UJ	50 UJ	50.2 J	125 J	28 J	70 J	22.11
Antimony		UG/L	GA	3	4	12	50	23 UJ	2 UJ	1 U	0.62 J	1 U	1 U	23 U
Arsenic		UG/L	MCL	10	0	2	50	1 3 UJ	1.3 UJ	4.2 U	3.7 U	3.7 U	37 U	23 U
Barium		UG/L	GA	1,000	0	48	50	52 J	53 J	32.5	35.9	38.3		13 U
Beryllium		UG/L	MCL	4	0	1	50	0.25 UJ	0 15 UJ	0.27 U	0.33 U	03 U	38.6	27
Cadmium		UG/L	GA	5	O	2	50	0.095 UJ	0 13 UJ	0.36 U	0.33 U		03 U	0 25 U
Calcium		UG/L				48	50	130,000 J	110,000 J	74.900 J		0.3 U	0.3 U	0 095 U
Chromium		UG/L	GA	50	0	4	50	2.5 UJ	2.5 UJ	1 J	74,700	96.600 J	97,600 J	90,000
Cobalt		UG/L			7	31	50	0.31 J	0.3 J	0.89 U	0.88 U	0.9 U	09 U	25 U
Соррег		UG/L	GA	200	0	23	50	13 J	1.1 J	1.8 J	2.4 J	1.5 J	13 J	0.96
Iron		UG/L	GA	300	14	38	50	33 UJ	110 J	45.4 J	1.8 J	13 U	1.3 U	11 U
Iron+Mangar	ese	UG/L	GA	500	13	46	50	23 J	112 J		1,760	60 J	142 J	240 J
Lead		UG/L	MCL	15	1	8	50	0.35 J	0.5 UJ	59 J	2,671	258 J	355 J	370 J
Magnesium		UG/L	111111111111111111111111111111111111111	163	,	41	43	15,000 J+	15.000 J	2.9 U	2.9 U	29 U	29 U	0.2 U
Manganese		UG/L	GA	300	2	46	50	23 J	15,000 J 2 J	10,400 R	10,200	12.900	13,000	13,000
Mercury		UG/L	GA	0.7	0	2	50	0 091 UJ		13.7	911	198	213	130
Nickel		UG/L	GA	100	0	14	50	2 UJ	0.091 UJ	0.12 U	0.12 U	01 U	0 1 U	0 091 U
Potassium		UG/L	41,			43	45	870 J	2 UJ	1.2 U	2.6 J	22 J	2.4 J	2 U
Selenium		UG/L	GA	10	0	0	50		840 J	838 R	1,190 J	844	866	540
Silver		UG/L	GA	50	0	0	50	1 UJ	1.1 U.J	6.1 U	6.1 U	61 U	6.1 U	1.0
Sodium		UG/L	GA	20,000	4	44		0 25 UJ	0 18 UJ	10	1.3 U	1.3 U	1.3 U	0 25 U
Thallium		UG/L	MCL	20,000	~	2	46	11,000 J	10,000 J	28,500 J	15,500	10,400 J	10,500 J	12,000 J
Vanadium		UG/L	INCL	2	U	2	50	05 UJ	0.25 UJ	0.03 U	0.09 U	0 000 U	0.008 U	0 5 U
Zinc		UG/L				27	50 50	38 UJ	3 2 UJ	0.78 U	0.98 U	1 U	1 U	38 U
E.IIIO		COLL				21		35 J	33 J	5.1 J	6.7 J	36 U	36 U	8.7 J

Notes

[empty cell] = data is not qualified

U = compound not detected at concentration listed

The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/salewater/mcl.htmlit/morganic.html

is used. A blank cell indicates no criteria value available.

² Data validation qualifier

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ a detection limit is estimated

³ Shading indicates a concentration above the identified chteria value

SA = Sample

DU = Duplicate Sample

^{4.} Rejected values are not included in the number of samples analyzed

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria 1	Criteria 1	Number of	Number of Times	Number of Samples	SEAD-17 MW17-4 GW 17LM20018UNF 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-4 GW 17LM20023F 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-4 GW 17LM20023U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-4 GW 17LM20028F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-4 GW 17LM20028U 12/15/2013 SA LTM 6 Total	SEAD-17 MW17-5 GW 17LM20004 12/20/2007 SA LTM 1 Total	SEAD-17 MW17-5 GW 17LM20009 12/11/2008 SA LTM 2 Total
Parameter		Unit	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual
Inorganics														
Aluminum		UG/L				21	50	50 U	23 UJ	50 UJ	23 UJ	50 UJ	98.5 J	125 J
Antimony		UG/L	GA	3	4	12	50	2 U	2.3 UJ	2 UJ	2.3 UJ	2 UJ	1 U	0.56 J
Arsenic		UG/L	MCL	10	0	2	50	1.3 U	1.3 UJ	1.3 UJ	1.3 UJ	1.3 UJ	4.2 U	3.7 U
Barrum		UG/L	GA	1,000	0	48	50	28 J	65 J	67 J	20 J	23 J	86.7	82.9
Beryllium		UG/L	MCL	4	0	1	50	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0.15 UJ	0,27 U	0.33 U
Cadmium		UG/L	GA	5	0	2	50	0.13 U	0.095 UJ	0.13 UJ	0.095 UJ	0.13 UJ	0.36 U	0.33 U
Calcium		UG/L				48	50	88,000	83,000 J	87,000 J	96,000 J	93,000 J	97,100 J	97,300
Chromium		UG/L	GA	50	0	4	50	2.5 U	2.5 UJ	2.5 UJ	2.5 UJ	2.5 UJ	0.84 U	0.88 U
Cobalt		UG/L				31	50	1.1	0.21 J	0.25 J	1 J	1.1 J	0.89 U	1.1 U
Copper		UG/L	GA	200	0	23	50	1 1 U	1,1 J	5 UJ	1.1 UJ	1.1 UJ	1.3 U	1.5 3
Iron		UG/L	GA	300	14	38	50	260 J	33 UJ	72 J	810 J	810 J	91.7	76
Iron+Mangan	ese	UG/L	GA	500	13	46	50	400 J	9.5 J	63 J	1,090 J	1,090 J	128	85
Lead		UG/L	MCL	15	1	8	50	0.5 U	0.2 UJ	0.5 UJ	0.2 UJ	0,5 UJ	2.9 U	2.9 U
Magnesium		UG/L				41	43	13,000 J	15,000 J	15,000 J	15,000 J+	15,000 J	15,800 J	15,600
Manganese		UGIL	GA	300	2	40	50	140	9.5 J	11 J	280 J	280 J	36.5	8.9
Mercury		UG/L	GA	0.7	0	2	50	0.091 U	0 091 UJ	0.091 UJ	0,091 UJ	0.091 UJ	0,12 U	0.12 U
Nickel		UG/L	GA	100	0	14	50	2 U	2 UJ	2,1 J	2 UJ	2 UJ	1.2 U	1.2 J
Potassium		UG/L				43	45	530 J	750 J	780 J	450 J	430 J	972 R	624 J
Selenium		UG/L	GA	10	0	0	50	1 1 U	1 UJ	1.1 UJ	1 UJ	1.1 UJ	6.1 U	6.1 U
Silver		UG/L	GA	50	0	0	50	0 18 U	0.25 UJ	0.18 UJ	0.25 UJ	0.18 UJ	1 U	13 U
Sodium		UG/L	GA	20,000	4	44	46	12,000 J	8,900 J	8,600 J	7,800 J	7,800 J	7,950 R	7,360
Thallium		UG/L	MCL	2	0	2	50	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	0.25 UJ	0.03 U	0.09 U
Vanadium		UG/L				2	50	3.2 U	3.8 UJ	3 2 UJ	3.8 UJ	3.2 UJ	0.78 U	0.98 U
Zinc		UG/L				27	50	8.4 U	8.3 UJ	8.4 UJ	83 UJ	8.4 UJ	47 J	41.6

Notes:

[empty cell] = data is not qualified

U = compound not detacted at concentration listed

OU = Duplicate Sample

¹ The lowest value for nither the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1996, et al.) or the EPA Maximum Contaminant Limit (MCL), source http://www.epa.gov/safewater/mcl.html#incrganic.html is used. A blank cell indicates no ordera value available.

² Data validation qualifier

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated.

^{3.} Shading indicates a concentration above the identified criteria value

SA = Sample

^{4.} Rejected values are not included in the number of samples analyzed.

	Area Loc ID Matrix Sample ID Sample Date QC Type Study ID Sample Round Filtered		Criteria	Criteria 1	Number of	Number of Times	Number of Samples	SEAD-17 MW17-5 GW 17LM20014FiL 11/17/2009 SA LTM 3 Dissolved	SEAD-17 MW17-5 GW 17LM20014UNFIL 11/17/2009 SA LTM 3 Total	SEAD-17 MW17-5 GW 17LM20019FiL 12/16/2010 SA LTM 4 Dissolved	SEAD-17 MW17-5 GW 17LM20019UNF 12/16/2010 SA LTM 4 Total	SEAD-17 MW17-5 GW 17LM20024F 12/11/2012 SA LTM 5 Dissolved	SEAD-17 MW17-5 GW 17LM20024U 12/11/2012 SA LTM 5 Total	SEAD-17 MW17-5 GW 17LM20029F 12/15/2013 SA LTM 6 Dissolved	SEAD-17 MW17-5 GW 17LM20029U 12/15/2013 SA LTM 6 Total
Parameter		Unit	Source	Level	Exceedances	Detected	Analyzed	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qual	Value Qua
Inorganics													raide dogs	value Gual	value Qua
Aluminum		UG/L	-			21	50	29 J	98 J	23 U	50 U	23 UJ	50 UJ	23 UJ	50 UJ
Antimony		UG/L	GA	3	4	12	50	1	. 1	2.3 U	2 U	2.3 UJ	2 UJ	2.3 UJ	2 UJ
Arsenic		UG/L	MCL	10	0	2	50	3.7 U	3.7 U	1.3 U	13 U	1.3 UJ	1 3 UJ	1.3 UJ	13 UJ
Barium		UG/L	GA	1.000	0	48	50	166	168	81	82 J	24 J	26 J	75 J	86 J
Beryllium		UG/L	MCL	4	O.	1	50	2 U	2 U	0.25 U	0.15 U	0.25 UJ	0.15 UJ	0.25 UJ	0 15 UJ
Cadmium		UG/L	GA	5	0	2	50	0.3 U	0.3 U	0.095 U	0.13 U	0,095 UJ	0 13 UJ	0.095 UJ	0 13 UJ
Calcium		UG/L				48	50	184,000 J	185,000 J	100,000	110,000	68,000 J	75.000 J	110,000 J	100 000 J
Chromium		UG/L	GA	50	a	4	50	0.9 U	0.9 U	2.5 U	25 U	2.5 UJ	2.5 UJ	2.5 UJ	25 UJ
Cobalt		UG/L				31	50	1.1 U	1.1 U	0.17 J	0.19 J	0.31 J	031 J	02 J	0 22 J
Copper		UG/L	GA	200	0	23	50	1.3 U	1.3 U	11 U	1.1 U	3.7 J	5 UJ	1.1 UJ	11 UJ
Iron		UG/L	GA	300	14	38	50	19 UJ	34 J	83 J	110 J	44 J	160 J F	350 J	140 J
Iron+Mangani		UG/L	GA	500	13	46	50	24.3	61.4 J	118 J	145 J	82 J	219 J	374 J	167 J
Lead		UG/L	MCL	15	1	8	50	2.9 U	2.9 U	0.2 U	0.5 U	0.2 UJ	0.5 UJ	0.2 UJ	05 UJ
Magnesium		UG/L				41	43	27,100	27.300	17,000	18,000 J	9,900 J	11.000 J	18.000 J+	17 000 J
Manganese		UG/L	GA	300	2	46	50	24.3	27.4	35	35	38 J	59 J	24 J	27 J
Mercury		UG/L	GA	0.7	0	2	50	0.1 U	0.1 U	0.091 U	0 091 U	0 12 J	0 091 UJ	0.091 UJ	0 091 UJ
Nicket		UG/L	GA	100	0	14	50	1.7 J	1.8 J	2 U	2 U	2 UJ	2 UJ	2 UJ	
Potassium		UG/L				43	45	1.920	1,960	1,600 J	1,600	460 J	460 J	1200 J	2 UJ
Selenium		UG/L	GA	10	0	Ð	50	6.1 U	61 U	1 U	1.1 U	1 113	11 00	1 UJ	1100 J
Silver		UG/L	GA	50	0	0	50	1.3 U	1.3 U	0.25 U	0.18 U	0.25 UJ	0.18 UJ	0 25 UJ	1 1 UJ
Sodium		UG/L	GA	20,000	4	44	46	364,000 J	366,000 J	8,200 J	8,300 J	9.400 J	9,100 J	5,400 J	0 18 UJ
Thallium		UG/L	MCL	2	0	2	50	0.08 J	0.08 J	0.5 U	0.25 U	0.5 UJ	0.25 UJ	0.5 UJ	5,300 J
Vanadium		UG/L				2	50	1 U	1 U	3.8 U	3.2 U	3.8 UJ	3.2 UJ	3.8 UJ	0.25 UJ
Zinc		UG/L				27	50	3.6 U	3.6 U	20	8.4 U	8.3 UJ	84 UJ	83 UJ	3 2 UJ
							7	Votes:		2.4	5.7 4	3.5 65	34 03	0 3 0 3	8 4 UJ

¹ The lowest value for either the New York Class GA Groundwater Standards (TOGS 1.1.1, June 1998, et al.) or the EPA Maximum Contaminani Limit (MCL), source http://www.epa.gov/safewater/mcl.html#inorganic.html is used. A blank cell indicates no criteria value available.

[empty cell] = data is not qualified

² Data validation qualifier

U = compound not detected at concentration listed

J = the reported value is an estimated concentration

J+ = result is an estimated quantity, biased high

R = the result was rejected due to QA/QC considerations

UJ = detection limit is estimated

^{3.} Shading indicates a concentration above the identified criteria value

SA = Sample

DU = Duplicate Sample

⁴ Rejected values are not included in the number of samples analyzed

APPENDIX E

LABORATORY REPORTS

Laboratory Reports have been provided on the CD version of this report.

APPENDIX F

DATA VALIDATION

PRU. __f NAME/NO. USACE - Seneca Army Depot SEAD-16/17 LTM Year 6

LAB: TestAmerica

 SDG:
 680-97324-1 (aka J97324)

 FRACTION:
 Metals (SW846 6020A)

MEDIA: Groundwater

NUMBER OF SAMPLES: 12 Unfiltered and 12 Filtered

CRITERIA	Did Analyses Meet all criteria as specified in the SOPS?	Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	Qualifiers Added?
Data Completeness, Holding Times & Preservation	Yes	Cooler temp < 10 C. pH < 2 Holding Time Hg < 28 days, all other metals < 180 days from collection	Coolers were received at 0.8°C by the laboratory. All samples were received in good condition based on the laboratory login report. Samples were properly preserved and had pH < 2. Samples were analyzed within 9 days from collection.	No
Calibration	Yes	r^2 ≥ 0 995 CCV every 10 samps or 2 hours ICV/CCV %R blw 90-110%	Calibrations available, taken every ten samples, and within recovery limits (90-110%) Initial Calibration Verification (Batch #680-309198) for Dissolved metals was conducted on 12/23/13 at 13:56. The ICV and subsequent CCVs for metals were all within accetance criteria. ICV (Batch #680-309582) for Total metals except Ba, Ca, & Ag was conducted on 12/23/13 at 13:56. The ICV and subsequent CCVs for metals were all within accetance criteria. ICV (Batch #680-309339) for Total metals (Ba, Ca, and Ag) was conducted on 12/26/13 at 16:41. The ICV and subsequent CCVs for metals were all within accetance criteria.	No
Błanks (prep blank, ICB, CCB) No		Method blanks. 1 per 20 project samples	Initial Calibration Blank (ICB) (Batch #680-309198) analyzed on 12/23/13 at 14:03 for Dissolved metals and all metals were non-detected CCBs (Batch #680-309198) were analyzed from 12/23/13 at 14:25 to 12/24/13 at 08:59 for Dissolved metals every ten samples, all CCBs were non-detect for Dissolved metals except for Al (0.483 J ug/L at 15:32). No action was taken since no samples were analyzed before or after the 15:32 CCB. ICB (Batch #680-30939) analyzed on 12/23/13 at 14:03 for Total metals (except Ba, Ca, & Ag) and all metals were non-detected	
CRDL Standard	Yes	CROL results btw 70-130%	CRDL analyses for all remaining metals conducted at the beginning and end of the analysis. All met requirements.	
Laboratory Control Sample	Yes	LCS/LCSD. 1 per 20 project samples or each preparation batch. LCS limits within 60-120%	Two aqueous LCS results were within the limits for Total metals (of 14 unfiltered project samples) One aqueous LCS results were within the limits for Dissolved metals (of 14 filtered project samples).	
Duplicates	No RPD < 20% or Absolute Diff < 2 RL when samp/dup value < 5x RL Two field duplicate pairs were collected for this SDG; a unfiltered and filtered sample. Unfiltered sample 16LM20038U and its duplicate 16LM20039U, and filtered sample 16LM20038F and its duplicate 16LM20039F. All RPDs were within acceptance limits a lab duplicate was not analyzed for this SDG. Qualify all sample results as J since a tab duplicate was not performed.		Yes	

PROJECT NAME/NO.

USACE - Seneca Army Depot SEAD-16/17 LTM Year 6

LAB:

TestAmerica

SDG:

680-97324-1 (aka J97324) Metals (SW846 6020A)

FRACTION: MEDIA:

Groundwater

NUMBER OF SAMPLES:

12 Unfiltered and 12 Filtered

Did Analyses Meet all criteri as specified ithe SOPS?		Region 2 Acceptable limits / criteria	Comments/Qualifying Actions	
Matrīx Spike/Matrix Spike Duplicates		MS/MSD. 1 per 20 project samples or each preparation batch. Recoveries within tab limits. MS/MSD %RPDs <= 20%. Spike Recovery limits 75-125%	One spike unfiltered sample was associated with this SDG; sample 16LM20038U. All spike metal recoveries were within the recovery except Mg (152% MS) and Zn (146% MSD), and Ca initial conc was >4x spike conc. The RPD limits were within the limits One spike filtered sample was associated with this SDG; sample 16LM20038F. All spike metal recoveries were within the recovery, and Ca initial conc was >4x spike conc. The RPD limits were within the limits. The post digestion spike was performed on unfiltered 16LM20038U. Al (127%), Mg (127%), and Mn (1085%) recoveries were above the limits. Qualify Total Mg detects as J+, estimated high. The post digestion spike was performed on filtered 16LM20038F. Mn (1030%) recoveries were above the limits. Qualify Dissolved Mn results as J.	
ICP Interference Check Sample (ICS)	Yes	ICS results within 80-120%.	All concentrations detected in all samples within the ICP Linear Range. No action was taken	No
ICP Tune Analysis	Yes	RSD < 5%	Tune Analysis was conducted on 12/23/13 and 12/26/13. All isotopes of each analyte had a RSD < 5%.	No
Internal Standard	Yes	Intensity within 60-125%	IS from 12/23/13 to 12/24/13 had %RI within acceptance limits. IS from 12/26/13 to 12/27/13 had %RI within acceptance limits.	No
Serial Dilution	Yes			
Total/Dissolved Comparison	No	%RPD less than 20%	Samples with Total and Dissolved results that have detected Dissolved concentrations greater than the Total and have a Dissolved concentration > 5xMDL. All sample results met this requirment except for in samples: 16LM20038U/16LM20038F for Mn (30%). Qualify these samples results as J.	
Field Duplicate Precision	Yes	%RPD less than 20%	Two field duplicate pairs were collected for this SDG, a unfiltered and filtered sample. Unfiltered sample 16LM20038U and its duplicate 16LM20039U, and filtered sample 16LM20038F and its duplicate 16LM20039F. All RPDs were within acceptance limits.	

TCL = Target Compound List;

MS = Matrix Spike,

RT = Retention Time; %D = Percent Deviation; %RPD = Relative Percent Difference; MSD = Matrix Spike Duplicate; %RSD = Percent Relative Standard Deviation;

RRF = Relative Response Factor;

CCV = Continuing Calibration Verification