US Army Engineering & Support Center Huntsville, AL

ANNUAL REPORT AND YEAR 4 REVIEW
ASH LANDFILL OPERABLE UNIT
SENECA ARMY DEPOT ACTIVITY

DRAFT

PARSONS

MAY 2011

US Army, Engineering & Support Center Huntsville, AL

01719

Seneca Army Depot Activity Romulus, NY

DRAFT
ANNUAL REPORT AND YEAR 4 REVIEW

ASH LANDFILL OPERABLE UNIT SENECA ARMY DEPOT ACTIVITY

CONTRACT NO. W912DY-08-D-0003 TASK ORDER NO. 0001 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

PARSONS MAY 2011

100 High Street • Boston, Massachusetts 02110-2301 • (617) 946-9400 • Fax (617) 946-9777 • www.parsons.com

May 2, 2011

Mr. John Nohrstedt U.S. Army Corps of Engineers Engineering and Support Center, Huntsville Attn: CEHNC-FS-IS 4820 University Square Huntsville, Alabama 35816-1822

SUBJECT:

Draft Annual Report and Year Four Review – Ash Landfill Operable Unit at Seneca Army Depot Activity; W912DY-08-D-0003, Delivery Order 0001

Dear Mr. Nohrstedt:

Parsons Infrastructure & Technology Group, Inc. (Parsons) is pleased to submit the Draft Annual Report and Year Four Review for the fourth year of monitoring at the Ash Landfill Operable Unit at Seneca Army Depot Activity (SEDA) in Romulus, New York. This work was performed in accordance with the Scope of Work for Delivery Order 0001 under Contract W912DY-08-D-0003. This Annual Report and Year Four Review provides a review of long-term groundwater monitoring for 2010 and provides recommendations for future long-term monitoring at the site. This document also provides an annual review of the effectiveness of the remedy implemented in 2006. This document recommends the continuation of monitoring on a semi-annual basis for the next year.

Parsons appreciates the opportunity to provide you with the Draft Annual Report and Year Four Review for this work. Should you have any questions, please do not hesitate to call me at (617) 449-1405 to discuss them.

Sincerely,

Todd Heino, P.E. Program Manager

Enclosures

cc:

S. Absolom, SEDA

K. Hoddinott, USACHPPM R. Battaglia, USACE, NY

100 High Street • Boston, Massachusetts 02110-2301 • (617) 946-9400 • Fax (617) 946-9777 • www.parsons.com

May 2, 2011

Mr. Julio Vazquez USEPA Region II Superfund Federal Facilities Section 290 Broadway, 18th Floor New York, NY 10007-1866

Mr. Kuldeep K. Gupta, P.E.
New York State Department of Environmental Conservation (NYSDEC)
Division of Environmental Remediation
Remedial Bureau A, Section C
625 Broadway
Albany, NY 12233-7015

Mr. Mark Sergott
Bureau of Environmental Exposure Investigation, Room 300
New York State Department of Health
547 River Street, Flanigan Square
Troy, NY 12180

SUBJECT: Draft Annual Report and Year Four Review – Ash Landfill Operable Unit at Seneca Army Depot Activity; EPA Site ID# NY0213820830 and NY Site ID# 8-50-006

Dear Mr. Vazquez/Mr. Gupta/Mr. Sergott:

Parsons Infrastructure & Technology Group, Inc. (Parsons) is pleased to submit the Draft Annual Report and Year Four Review for the fourth year of annual monitoring at the Ash Landfill Operable Unit at Seneca Army Depot Activity (SEDA) in Romulus, New York (EPA Site ID# NY0213820830 and NY Site ID# 8-50-006). This Annual Report and Year Four Review provides a review of long-term groundwater monitoring for 2010 and recommendations for future long-term monitoring at the site. This document also provides an annual review of the effectiveness of the remedy implemented in 2006. This document recommends the continuation of monitoring on a semi-annual basis for the next year.

Parsons appreciates the opportunity to provide you with the Draft Annual Report and Year Four Review for this work. Should you have any questions, please do not hesitate to call me at (617) 449-1405 to discuss them.

Sincerely,

Todd Heino, P.E. Program Manager

Enclosures

cc: M. Heaney, TechLaw

S. Absolom, SEDA

R. Battaglia, USACE, NY

J. Nohrstedt, USACE, Huntsville K. Hoddinott, USACHPPM

DRAFT ANNUAL REPORT AND YEAR 4 REVIEW FOR THE ASH LANDFILL OPERABLE UNIT SENECA ARMY DEPOT ACTIVITY, ROMULUS, NEW YORK

Prepared for:

U.S. ARMY CORPS OF ENGINEERS, ENGINEERING AND SUPPORT CENTER HUNTSVILLE, ALABAMA

and

SENECA ARMY DEPOT ACTIVITY ROMULUS, NEW YORK

Prepared by:

PARSONS 100 High Street Boston, MA 02110

Contract Number W912DY-08-D-0003 Task Order No. 0001 EPA Site ID# NY0213820830 NY Site ID# 8-50-006

TABLE OF CONTENTS

		5.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
List o	f Figure	S	iii
List o	f Appen	ndices	iv
1.0	INT	RODUCTION	1
1.0	[.]	Long-Term Groundwater Monitoring Objectives	
2.0		BACKGROUND	
	2.1	Site Description	
	2.2	Site Geology/Hydrogeology	
	2.3	Soil and Groundwater Impacts	5
	2.4	Summary of the Remedial Action	6
		2.4.1 Biowalls	6
		2.4.2 Incinerator Cooling Water Pond.	6
		2.4.3 Ash Landfill and NCFL Vegetative Cover	7
		2.4.4 Debris Pile Removal	7
	2.5	Description of Technology Used in Biowalls	7
3.0	LON	G-TERM MONITORING DATA ANALYSIS AND GROUNDWATER REM	IEDY
		LUATION	
	3.1	Sample Collection	
	3.2	Groundwater Elevations	
	3.3	Geochemical Data	10
	3.4	Chemical Data Analysis and Groundwater Remedy Evaluation	
	3.5	Biowall Recharge Evaluation	
	3.6	Soil Remedy Evaluation	
	3.7	Land Use Controls (LUCs).	
	3.8	Operating Properly and Successfully	
4.0	LON	G-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS	2 3
	4.1	Conclusions	
	4.2	Recommendations	
5.0	DEE	FDFNCFS	15

LIST OF TABLES

Table 1	Groundwater Sample Collection
Table 2	Groundwater Elevations
Table 3	Groundwater Geochemical Data
Table 4	Chlorinated Organics in Groundwater
Table 5	Groundwater Trends

LIST OF FIGURES

Figure 1	Ash Landfill Location at SEDA
Figure 2	Ash Landfill Site Plan
Figure 3	Ash Landfill Historic Site Map
Figure 4	Location of Farinhouse Wells
Figure 5	Reductive Dechlorination of Chlorinated Ethenes
Figure 6	Chlorinated Ethenes Concentrations in Groundwater
Figure 7	Groundwater Elevations
Figure 8	Groundwater Contours & Groundwater Flow Direction Dec. 2010
Figure 9A	Concentrations of VOCs Along the Biowalls - Quarter 1, 2007
Figure 9B	Concentrations of VOCs Along the Biowalls - Quarter 2, 2007
Figure 9C	Concentrations of VOCs Along the Biowalls - Quarter 3, 2007
Figure 9D	Concentrations of VOCs Along the Biowalls - Quarter 4, 2007
Figure 9E	Concentrations of VOCs Along the Biowalls - Round 5, 2008
Figure 9F	Concentrations of VOCs Along the Biowalls - Round 6, 2008
Figure 9G	Concentrations of VOCs Along the Biowalls - Round 7, 2009
Figure 911	Concentrations of VOCs Along the Biowalls - Round 8, 2009
Figure 91	Concentrations of VOCs Along the Biowalls - Round 9, 2010
Figure 9J	Concentrations of VOCs Along the Biowalls - Round 10, 2010
Figure 10A	Concentrations of Chlorinated Organics Over Time at MWT-25
Figure 10B	Concentrations of Chlorinated Organics Over Time at MWT-26
Figure 10C	Concentrations of Chlorinated Organics Over Time at MWT-27
Figure 10D	Concentrations of Chlorinated Organics Over Time at MWT-28
Figure 10E	Concentrations of Chlorinated Organics Over Time at MWT-29
Figure 10F	Concentrations of Chlorinated Organics Over Time at MWT-22
Figure 10G	Concentrations of Chlorinated Organics Over Time at PT-22
Figure 10H	Concentrations of Chlorinated Organics Over Time at MWT-23
Figure 10I	Concentrations of Chlorinated Organics Over Time at MWT-24
Figure 10J	Concentrations of Chlorinated Organics Over Time at PT-24
Figure 11A	Historic Concentrations of Chlorinated Organics at PT-18A
Figure 11B	Historic Concentrations of Chlorinated Organics at PT-17
Figure 11C	Historic Concentrations of Chlorinated Organics at MWT-7
Figure 12	Decision Diagram

LIST OF APPENDICES

Appendix A Field Forms for 9R2010 and 10R2010 (CD)

Appendix B Complete Groundwater Data

Appendix C Regression Plots

1.0 INTRODUCTION

This Annual Report is for the Ash Landfill Operable Unit (OU), located at the Seneca Army Depot Activity (SEDA or the Depot) in Romulus, New York (Figure 1). This report provides a review of the fourth year of long-term groundwater monitoring of the full-scale biowall system installed in 2006. This report also provides recommendations for future long-term monitoring at the site. This report is based on an annual review of the effectiveness of the remedy implemented in 2006, and includes the following:

- A comparison of the groundwater data to the long-term groundwater monitoring (LTM) objectives, listed below in Section 1.1;
- An evaluation of the need to recharge (i.e., add substrate) the biowalls, as outlined in the Remedial Design Report (RDR) (Parsons, 2006e) in Section 3.4; and
- An assessment of the remedy's compliance with the United States Environmental Protection Agency's (USEPA's) "Guidance for Evaluation of Federal Agency Demonstrations (Section 12(h)(s))."

A remedial action (RA) was completed in October and November 2006 in accordance with the Record of Decision (ROD) for the Ash Landfill OU (Parsons, 2004), the Remedial Design Work Plan (Parsons, 2006b), and the RDR (Parsons, 2006c), The RA involved the following:

- Installation of three dual biowall systems, A1/A2, B1/B2, and C1/C2, to address volatile
 organic compounds (VOCs) in groundwater that exceed New York State Department of
 Environmental Conservation's (NYSDEC's) Class GA groundwater standards;
- Construction and establishment of a 12-inch vegetative cover over the Ash Landfill and the Non-Combustible Fill Landfill (NCFL) to prevent ecological receptors from coming into direct contact with the underlying soils that are contaminated with metals and polycyclic aromatic hydrocarbons (PAHs);
- Excavation and disposal of Debris Piles A, B, and C; and
- Re-grading of the Incinerator Cooling Water Pond to promote positive drainage.

As part of the RA at the Ash Landfill OU, LTM is being performed as part of the post-closure operations. Groundwater monitoring is required as part of the remedial design, which was formulated to comply with the ROD. The first of four rounds of groundwater sampling performed in the first year of LTM was completed between January 3, 2007 and January 4, 2007; the second round was completed between March 15, 2007 and March 17, 2007; the third round was completed between June 5, 2007 and June 7, 2007; and the last round was completed between November 13, 2007 and November 15, 2007.

May 2011

The analytical and geochemical results were presented in four letter reports, submitted April 12, 2007 (Quarter 1), June 5, 2007 (Quarter 2), September 19, 2007 (Quarter 3), and February 21, 2008 (Quarter 4). The results of the Year 1 LTM were reported and evaluated in the "Annual Report and One-Year Review for the Ash Landfill" (Parsons, 2008a). As part of the Year 1 report, the Army recommended that the frequency of LTM events at the Ash Landfill OU be reduced from quarterly to semi-annually; this recommendation was approved by the USEPA and NYSDEC.

The first round of Year 2 semi-annual monitoring, referred to as Round 5, was completed between June 24, 2008 and June 26, 2008, and the results are presented in the letter report issued on January 12, 2009. Round 6 of the semi-annual monitoring was completed between December 11, 2008 and December 15, 2008, and the results are presented in the letter report issues on April 3, 2009. The results of Year 2 of the LTM program were presented in the "Annual Report and Year Two Review" (Parsons, 2009). The first round of Year 3 semi-annual monitoring, referred to as Round 7, was completed between June 1, 2009 and June 4, 2009, and the results are presented in the letter report issued on August 5, 2009. Round 8 of the semi-annual monitoring was completed between December 14, 2009 and December 18, 2009, and the results are presented in the letter report issued on March 5, 2010. The results of Year 3 of the LTM program were presented in the "Annual Report and Year Three Review" (Parsons, 2010). The first round of Year 4 semi-annual monitoring, referred to as Round 9, was completed between June 28, 2010 and July 2, 2010, and the results are presented in the letter report issued on November 2, 2010. Round 10 of the semi-annual monitoring was completed between December 14, 2010 and December 19, 2010, and the results are presented in the letter report issued on April 5, 2011

This Annual Report reviews the results of the fourth year of the LTM program as part of the ongoing evaluation of the remedy and provides conclusions and recommendations about the effectiveness of the remedial action, including the groundwater remedy and the vegetative landfill covers.

1.1 Long-Term Groundwater Monitoring Objectives

Three types of long-term groundwater monitoring are being performed: 1) plume performance monitoring, 2) biowall process monitoring, and 3) off-site compliance monitoring. On-site performance monitoring is being conducted to measure groundwater contaminant concentrations and to evaluate the effectiveness of the biowall remedy for the Ash Landfill OU. The objectives of performance and compliance monitoring are as follows:

- Confirm that there are no exceedances of groundwater standards for contaminants of concern (COCs) at the off-site compliance monitoring well MW-56;
- Document the effectiveness of the biowalls to remediate and attenuate the chlorinated ethene plume; and

 Confirm that groundwater concentrations throughout the plume are decreasing to eventually meet NYSDEC Class GA groundwater standards.

Biowall process monitoring is being conducted at two locations (shown in Figure 2) to determine if, and when, any biowall maintenance activities should be performed. The first location is within Biowalls B1/B2 in the segment that runs along the pilot-scale biowalls that were installed in July 2005. The second location is within Biowall C2, the furthest downgradient biowall. The objectives of biowall process monitoring for operations and maintenance (O&M) activities are as follows:

- Monitor the long-term performance and sustainability of the biowalls;
- Monitor substrate depletion and geochemical conditions under which the effectiveness of the biowalls may decline; and
- Determine if, and when, the biowalls need maintenance (i.e., need to be recharge with additional organic substrate).

2.0 SITE BACKGROUND

2.1 Site Description

SEDA is a 10,587-acre former military facility located in Seneca County near Romulus, New York, that was owned by the United States Government and operated by the Department of the Army from 1941 until 2000. In 2000, the Army assumed a caretaker role at the SEDA, and since this time more than 8,500 acres of the property have been transferred to other parties. SEDA is located between Seneca Lake and Cayuga Lake and is bordered by New York State Highway 96 to the east, New York State Highway 96A to the west, and sparsely populated farmland to the north and south.

The location of the Ash Landfill OU, also referred to as the Ash Landfill, is composed of five historic solid waste management units (SWMUs). As shown in **Figure 3**, the five SWMUs that comprise the Ash Landfill OU are the Incinerator Cooling Water Pond (SEAD-3), the Ash Landfill (SEAD-6), the NCFL (SEAD-8), the former Debris Piles (SEAD-14), and the former Abandoned Solid Waste Incinerator Building (SEAD-15).

Prior to the Army's purchase of land for construction of the SEDA, the area of the Ash Landfill OU was used for farming. From 1941 (the date SEDA was constructed) to 1974, uncontaminated trash was burned in a series of burn pits located near the former abandoned incinerator building (Building 2207). According to the U.S. Army Environmental Hygiene Agency (USAEHA) Interim Final Report, Groundwater Contamination Survey No. 38-26-0868-88 (July 1987), the ash from the refuse burning pits was buried in the Ash Landfill (SEAD-6) from date of inception until the late 1950s or early 1960s.

The incincrator was built in 1974. Between 1974 and 1979, materials intended for disposal were transported to the incincrator. Each week the Depot generated approximately 18 tons of refuse, the

May 2011

majority of which was incinerated. The source for the refuse was domestic waste from Depot activities and family housing. Large items that could not be burned were disposed at the NCFL (SEAD-8). The NCFL encompasses approximately three acres located southeast of the former incinerator building, immediately south of a SEDA railroad line. The NCFL was used as a disposal site for non-combustible materials, including construction debris, from 1969 until 1977.

Ash and other residue from the former incinerator were temporarily disposed in an unlined cooling pond immediately north of the incinerator building. The cooling pond consisted of an unlined depression approximately 50 feet in diameter and approximately 6 to 8 feet deep. When the pond filled, the fly ash and residues were removed, transported, and buried in the adjacent ash landfill east of the cooling pond. The refuse was dumped in piles and occasionally spread and compacted. No daily or final cover was applied during operation. According to an undated aerial photograph of the incinerator during operation, the active area of the Ash Landfill extended at least 500 feet north of the incinerator building, near a bend in a dirt road. A fire destroyed the incinerator on May 8, 1979, and the landfill was subsequently closed. Post-closure the landfill was apparently covered with native soil of various thicknesses, but was not closed with an engineered cover or cap. Other areas at the site were used as a grease pit and for burning debris.

2.2 Site Geology/Hydrogeology

The site is underlain by a broad north-to-south trending series of rock terraces covered by a mantle of glacial till. As part of the Appalachian Plateau, the region is underlain by a tectonically undisturbed sequence of Paleozoic rocks consisting of shales, sandstones, conglomerates, limestones and dolostones. At the Ash Landfill site, these rocks (the Ludlowville Formation) are characterized by gray, calcareous shales and mudstones and thin limestones with numerous zones of abundant invertebrate fossils. Locally, the shale is soft, gray, and fissile. The shale, which has a thin weathered zone at the top, is overlain by 2 to 3 feet of Pleistocene-age¹ till deposits. The till matrix varies locally, but generally consists of unsorted silt, clay, sand, and gravel.

The thickness of the till at the Ash Landfill OU generally ranges from 4 to 15 feet. At the location of the biowalls, the thickness of the till and weathered shale is approximately 10 to 15 feet. Groundwater is present in both the shallow till/weathered shale layer and in the deeper competent shale layer. In both water-bearing units, the predominant direction of groundwater flow is to the west, toward Seneca Lake. Based on the historical data, the wells at the Ash Landfill site exhibit rhythmic and seasonal fluctuations in the water table and the saturated thickness. Historic data at the Ash Landfill OU indicate that the saturated interval is thin (generally between 1 and 3 feet thick) in the month of September and is thickest (generally between 6 and 8.5 feet thick) between December and March.

¹ The Pleistocene Age, also known as the Late Wisconsin Age, occurred 20,000 years before present.

The average linear velocity of the groundwater in the till/weathered shale layer was calculated during the Remedial Investigation (RI) in 1994 using the following parameters: 1) average hydraulic conductivity of 4.5 x 10⁻⁴ centimeters per second (cm/sec) (1.28 feet per day [ft/day]), 2) estimated effective porosity of 15% to 20%, and 3) groundwater gradient of 1.95 x 10⁻² feet per foot (ft/ft) (Parsons Engineering Science, Inc., 1994). The average linear velocity was calculated as 0.166 ft/day or 60.7 feet per year (ft/yr) at 15% effective porosity and 0.125 ft/day or 45.5 ft/yr at 20% effective porosity. The actual velocity of on-site groundwater may be locally influenced by zones of higher-than-average permeability; these zones are possibly associated with variations in the porosity of the till/weathered shale.

2.3 Soil and Groundwater Impacts

The nature and extent of the COCs at the Ash Landfill OU were evaluated through a comprehensive RI program. It was determined that surface water and sediment were not media of concern and did not require remediation. A groundwater contaminant plume that emanated from the northern end of the Ash Landfill was delineated during the RI. The primary COCs in groundwater at the Ash Landfill are VOCs; the primary COCs in soil at the Ash Landfill are chlorinated and aromatic compounds, semivolatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAIIs), and, to a lesser degree, metals. Release of the COCs is believed to have occurred during the former activities at the Ash Landfill OU (described above).

Soil

VOCs, specifically trichloroethene (TCE), were detected in the soil in the "Bend in the Road" area. Located northwest of the Ash Landfill, this area is believed to be the source of the groundwater plume. Between 1994 and 1995, the Army conducted a Non-Time Critical Removal Action (NTCRA), also known as an Interim Removal Measure (IRM), to address VOC and PAH contamination in soil near the "Bend in the Road." The excavation limits of the NTCRA are shown on Figure 3. The NTCRA successfully reduced the risk associated with potential exposure to contaminated soil, and prevented continued leaching of VOCs to groundwater. Since the NTCRA, concentrations of VOCs in groundwater near the original source area have decreased by two orders of magnitude. Further remediation for VOCs in the soil at the "Bend in the Road" was not required.

The other COCs detected in the soil were PAHs and metals. PAHs were detected at concentrations above NYSDEC's Technical and Administrative Guidance Memorandum (TAGM #4046) values in the NCFL and the Debris Piles present around the former Ash Landfill. In general, the highest PAH concentrations were detected in the NCFL and small Debris Pile surface soils. The metals that were detected at elevated concentrations (significantly above TAGMs) in soils were copper, lead, mercury, and zinc. These elevated concentrations were found in the Ash Landfill, the NCFL, and the Debris Piles, with the highest concentrations of metals detected at the surface of the Debris Piles. These piles were small, localized, surface features that were visibly discernable and did not extend into the subsurface. The former debris piles were excavated and disposed offsite during the RA in 2006.

May 2011

Groundwater

The primary potential impact to human health and the environment is a groundwater contaminant plume containing dissolved chlorinated solvents, primarily TCE, isomers of dichloroethene (DCE), and vinyl chloride (VC). The plume originates in the "Bend in the Road" area near the northwestern edge of the Ash Landfill and is approximately 1,100 feet long by 625 feet wide. The nearest exposure points for groundwater are three farmhouse wells located approximately 1,250 feet from the leading edge of the plume near the farmhouse. The location of the farmhouse relative to the plume at the Ash Landfill is shown on **Figure 4**. Two of the farmhouse wells draw water from the till/weathered shale aquifer and the remaining well draws water from the bedrock aquifer. As discussed in Section 4.4 of the RI (Parsons, 1994), plume profiles were constructed for geologic cross sections at the Ash Landfill; based on these profiles it was determined that the plume is vertically restricted to the upper till/weathered shale aquifer and is not present in the deeper competent shale aquifer. As noted above, the source area of the plume was removed by the NTCRA.

2.4 Summary of the Remedial Action

2.4.1 Biowalls

Three biowall pairs were installed to address groundwater contamination on-site, as documented in the Construction Completion Report (Parsons, 2007). The biowalls were constructed by excavating a linear trench to competent bedrock then backfilling the trench to the ground surface with a mixture of mulch and sand.

Biowalls A1/A2, B1/B2, and C1/C2 (as shown in **Figure 2**) were constructed perpendicular to the chlorinated solvent plume at the locations prescribed in the RDR. The entire length of Biowalls A1/A2 and the northern portion of B1/B2 were combined into a single double-width trench (minimum of 6 feet in width) due to unstable soil conditions that caused trench widening. Approximately 2,840 linear feet (If) of biowalls were constructed in the areas downgradient of the Ash Landfill at depths ranging from 7 feet below ground surface (bgs) to 18.5 feet bgs.

A 12-inch soil cover was placed over the entire length of the biowalls to impede surface water from preferentially flowing into the biowall trenches. Trench spoils were used as the cover material and were compacted with a backhoe. A site visit in December 2010 confirmed that the mulch backfill in the trenches has settled to ground surface.

2.4.2 Incinerator Cooling Water Pond

As specified in the RDR, the Incinerator Cooling Water Pond (ICWP) was re-graded to meet the surrounding grade to prevent the accumulation of water in this inactive pond. Prior to re-grading, the vegetation on the berms surrounding the ICWP was removed with an excavator. The soil berm was then regraded with a dozer to match the surrounding grade. The ICWP was seeded with a standard meadow mix to promote vegetation and to prevent crosion.

2.4.3 Ash Landfill and NCFL Vegetative Cover

A soil cover comprised of mulch, biowall trench spoils that met the site cleanup criteria, and off-site topsoil was placed over the 2.2 acres of the Ash Landfill. The Ash Landfill was covered with 4,380 cubic yards (ey) of fill to achieve a minimum cover thickness of 12 inches. Biowall trench spoils that met the site cleanup criteria and off-site topsoil were placed over the 3.4 acre NCFL. The NCFL was covered with 6,015 cy of fill to achieve a minimum cover thickness of 12 inches. The purpose of the covers is to prevent terrestrial wildlife from directly contacting or incidentally ingesting metal-impacted soils.

2.4.4 Debris Pile Removal

During the RA, approximately 200 cy of debris was removed from Debris Piles B and C. Approximately 1,000 cy of debris was removed from within and beyond the staked limits of Debris Pile A. The total volume of debris removed was approximately 1,200 cy (1,548 tons).

2.5 Description of Technology Used in Biowalls

Reductive dechlorination is the most important process for natural biodegradation of highly chlorinated solvents (USEPA, 1998) (see **Figure 5**). Complete dechlorination of TCE and other chlorinated solvents is the goal of anaerobic biodegradation via mulch biowall technology.

Biodegradation causes measurable changes in groundwater geochemistry that can be used to evaluate the effectiveness of substrate addition in stimulating biodegradation. For anaerobic reductive dechlorination to be an effective process, generally groundwater must be sulfate-reducing or methanogenic. Thus, groundwater in which anaerobic reductive dechlorination is occurring should have the following geochemical signature:

- Depleted concentrations of dissolved oxygen (DO), nitrate, and sulfate;
- Elevated concentrations of manganese, ferrous iron, methane, carbon dioxide, chloride, and alkalinity; and
- Reduced oxidation reduction potential (ORP).

Treatment of chlorinated ethenes in groundwater using a biowall relies on the flow of groundwater under a natural hydraulic gradient through the biowall to promote contact with slowly-soluble organic matter. As the groundwater flows through the organic matter in the biowall, an anaerobic treatment zone is established in the biowall. The treatment zone may also be established downgradient of the biowall as soluble organic matter migrates with groundwater and stimulates microbial processes.

Solid-phase organic substrates used to stimulate anaerobic biodegradation of chlorinated ethenes include plant mulch and compost. To enhance microbial activity, the mulch may be composted prior

to emplacement to more readily degraded material, or mulch may be mixed with an outside source of compost. Mulch is primarily composed of cellulose and lignin, and contains "green" plant material that provides nitrogen and nutrients for microbial growth. These substrates are mixed with coarse sand and placed in a trench or excavation in a permeable reactive biowall configuration. Biodegradable vegetable oil may be added to the mulch mixture to increase the availability of soluble organic carbon.

Degradation of the organic substrate by microbial processes in the subsurface provides a number of breakdown products, including metabolic acids (e.g., butyric and acetic acids). The breakdown products and acids produced by degradation of mulch in a saturated subsurface environment provide secondary fermentable substrates for the generation of molecular hydrogen, which is the primary electron donor utilized in anaerobic reductive dechlorination of chlorinated ethenes. Thus, a mulch biowall has the potential to stimulate reductive dechlorination of chlorinated ethenes for many years. If necessary, mulch biowalls can be periodically recharged with liquid substrates (e.g., emulsified vegetable oils) to extend the life of the biowall. Vegetable oil is a substrate that is readily available to microorganisms as a carbon source that helps establish and continually develop the microbial population. Used in combination with mulch, vegetable oil has the potential to enhance and extend the duration of organic carbon release.

3.0 LONG-TERM MONITORING DATA ANALYSIS AND GROUNDWATER REMEDY EVALUATION

3.1 Sample Collection

Four rounds of sampling were conducted during the first year of LTM, as follows:

- The first quarter, referred to as 1Q2007, was completed between January 3, 2007 and January 4, 2007;
- The second quarter, referred to as 2Q2007, was completed between March 15, 2007 and March 17, 2007;
- The third quarter, referred to as 3Q2007, was completed between June 5, 2007 and June 7, 2007; and
- The fourth quarter, referred to as 4Q2007, was completed between November 13, 2007 and November 15, 2007.

Two rounds of sampling were conducted during the second year of LTM, as follows:

Round five, referred to as 5R2008, was completed between June 24, 2008 and June 26, 2008;
 and

Round six, referred to as 6R2008, was completed between December 11, 2008 and December 15, 2008.

Two rounds of sampling were conducted during the third year of LTM, as follows:

- Round seven, referred to as 7R2009, was completed between June 1, 2009 and June 4, 2009;
 and
- Round eight, referred to as 8R2009, was completed between December 14, 2009 and December 18, 2009.

Two rounds of sampling were conducted during the fourth year of LTM, as follows:

- Round nine, referred to as 9R2010, was completed between June 28, 2010 and July 2, 2010;
 and
- Round ten, referred to as 10R2010, was completed between December 14, 2010 and December 19, 2010.

The first year of sampling was quarterly, and at that time, the sampling rounds were identified as xQyyyy, where "x" is the round number, and "yyyy" is the 4 digit year. After the first year, the sample frequency was modified to semiannual. An "R" was used to replace the "Q" to denote the round. The round number has been used sequentially since the first quarterly round.

Groundwater samples were collected using low flow sampling techniques during each of the 2010 sampling rounds. Bladder pumps were used to purge the wells and collect the samples during these rounds. Sampling procedures, sample handling and custody, holding times, and collection of field parameters were conducted in accordance with the "Final Sampling and Analysis Plan for Seneca Army Depot Activity (SAP)" (Parsons, 2006a). Field forms for 9R2010 and 10R2010 are included on a CD in **Appendix A**.

Fourteen monitoring wells were sampled and classified into three groups (listed in **Table 1**): cleven on-site plume performance monitoring wells, one off-site compliance monitoring well, and five biowall process monitoring wells. The off-site performance monitoring well, MW-56, is monitored on a semi-annual basis, and was monitored in January 2007, June 2007, June 2008, December 2008, June 2009, December 2009, June 2010, and December 2010. The well locations are shown on **Figure 6**.

Three of the biowall process monitoring wells are also plume performance wells (MWT-23, MWT-28, and MWT-29). These five wells are either within or immediately upgradient or downgradient of the biowalls and are used to assess if, and when, the biowalls may require additional substrate. The Annual Report – Year 1 recommended that groundwater samples collected from monitoring wells PT-

17 and MWT-7 be analyzed for additional geochemical parameters that are included for the process monitoring wells to better monitor the progress of the treatment zone.

As indicated in **Table 1**, samples from the wells in the biowall process monitoring group (MWT-23, MWT-26, MWT-27, MWT-28, and MWT-29) and from two wells from the on-site plume performance group (PT-17 and MWT-7) were submitted to Test America Laboratories, Inc. in Buffalo, New York for Rounds 1 through 8 and to Test America Laboratories, Inc. in Savannah, Georgia for Rounds 9 and 10 to be analyzed for:

- VOCs by USEPA SW846 Method 8260B
- Total organic carbon (TOC) by USEPA SW846 Method 9060A
- Sulfate by USEPA Method 300.1

Samples from these wells were also submitted to Microseeps, Inc. located in Pittsburgh, Pennsylvania for analysis for methane, ethane, and ethene (MEE) by AM20GAX, Microseeps' version of Method RSK 175.

During sampling in the field, the following geochemical parameters were recorded for the duration of low-flow sampling for each groundwater sample:

- pH, ORP, and conductivity were measured with a Horiba U-52 multi-parameter instrument;
- DO and temperature were measured with a YSI 85 meter; and
- Turbidity was measured with a Lamotte 2020 turbidity meter.

In addition, a HACH® DR/850 Colorimeter was used in the field to measure manganese and ferrous iron at PT-17, MWT-7, MWT-23, MWT-26, MWT-27, MTW-28, and MWT-29. Manganese and ferrous iron were measured by USEPA Method 8034 and USEPA Method 8146, respectively. A summary of the samples collected is presented in **Table 1**.

3.2 Groundwater Elevations

Historic groundwater elevations and groundwater elevations from the four years of LTM round are presented in **Figure 7** and **Table 2**. Groundwater contours and groundwater flow direction based on tenth round measurements taken on December 13, 2010 are provided in **Figure 8**; these data show that groundwater levels were relatively high during the tenth sampling event

3.3 Geochemical Data

Biodegradation causes measurable changes in groundwater geochemistry that can be used to evaluate the effectiveness of substrate addition in stimulating biodegradation. For anaerobic reductive dechlorination to be an effective process, typically groundwater will be sulfate-reducing or methanogenic. As mentioned above, geochemical parameters collected in the field that also serve as

water quality indicators (i.e., pII, ORP, DO, conductivity, and temperature) were recorded for all the wells in the LTM program. Analysis for the additional geochemical parameters of TOC, sulfate, and MEE, and field tests for ferrous iron and manganese, were completed at PT-18A, MWT-7, MWT-23, MWT-26, MWT-27, MWT-28, and MWT-29. According to USEPA guidance on natural attenuation of chlorinated solvents (USEPA, 1998), analysis of these geochemical parameters conditions are conducive for anaerobic reductive dechlorination to occur if the following geochemical signatures are identified::

- · Depleted concentrations of DO and sulfate,
- Elevated concentrations of methane,
- Reduced ORP,
- Elevated concentrations of soluble organic substrate as defined by TOC in groundwater; and
- An increase in the concentrations of ferrous iron and manganese relative to background conditions.

Geochemical parameter results are shown in **Table 3**, which is organized with the most upgradient well listed first and the most downgradient well listed last. A comparison of the geochemical parameters for wells MWT-26 (upgradient of Biowall B1) to MWT-28 (in Biowall B2) for Year 4, summarized below, demonstrates the change in geochemistry across the B1/B2 Biowalls.

Dissolved Oxygen

DO is the most favored electron acceptor (i.e., yields the most energy) used by microbes during biodegradation of organic carbon, and its presence can inhibit the anaerobic degradation of chlorinated ethenes. In the wells sampled within Biowalls B1/B2 and Biowall C2, DO levels are depleted (less than 1.0 milligrams per liter [mg/L]) in both Year 4 events (see Table 3). DO is depleted due to the biological activity encouraged by the biowall substrate. The depletion of DO enhances the potential for anaerobic degradation of chlorinated ethenes in groundwater. The data also show that historically DO concentrations are higher in winter than in summer; the increase in DO concentrations between the two Year 4 sampling events, 9R2010 and 10R2010, likely reflects seasonal variation and not a systemic increase in DO.

<u>Sulfate</u>

Sulfate is used as an electron acceptor during sulfate reduction, competing with anaerobic reductive dechlorination for available substrate/electron donor. Sulfate levels lower than 20 mg/L are desired to prevent inhibition of reductive dechlorination of chlorinated ethenes (USEPA, 1998). In Year 4, concentrations were less than 20 mg/L in Biowall B2 (MWT-28) and Biowall C2 (MWT-23). the sulfate levels detected within the biowalls (at MWT-27, MWT-28, and MWT-23) were orders of

magnitude lower than the concentration of sulfate detected upgradient of Biowalls B1/B2 at MWT-26 (see **Table 3**). These conditions indicate that sulfate is being depleted and that sulfate should not inhibit anaerobic dechlorination within the bio walls.

Methane

The presence of methane in groundwater is indicative of strongly reducing methanogenic conditions. An increase in the concentrations of methane indicates that reducing conditions are optimal for anaerobic reductive dechlorination to occur. Methane was detected in the well upgradient of Biowall B1/B2 (MWT-26) at a concentration of 1,600 micrograms per liter (µg/L) in Round 10. Compared to this concentration, concentrations of methane were greater at the process wells located within biowall B2, and were at least an order of magnitude at greater at the process wells located within biowalls B1 and C2 (see **Table 3**). These data demonstrate that there is an increase in the level of methanogenic activity within the biowalls and in downgradient areas, compared to upgradient locations.

Oxidation-Reduction Potential

ORP indicates the level of electron activity in groundwater and the tendency of groundwater to accept or transfer electrons. Low ORP, less than -100 millivolts (mV), is conducive for anaerobic reductive dechlorination to occur (USEPA, 1998). During Round 10, ORP values upgradient of Biowall A1/A2 were significantly higher than ORP values in the wells within the biowalls, which were less than or equal to -100 mV (see **Table 3**). The ORP levels within Biowalls B1/B2 and C2 indicate that reducing conditions within the biowalls are sufficient to support sulfate reduction, methanogenesis, and anaerobic reductive dechlorination.

Total Organic Carbon

The presence of organic substrate is necessary to stimulate and sustain anaerobic degradation processes. In biowalls, organic carbon acts as an energy source for anaerobic bacteria and drives reductive dechlorination. Typically concentrations of TOC greater than 20 mg/L are sufficient to maintain sulfate reducing and methanogenic conditions (USEPA, 1998). As shown in **Table 3**, the TOC concentration in Biowall B1 was greater than the TOC concentrations upgradient of the biowalls. In Biowalls B2 and C2, the TOC concentrations decreased below the threshold value of 20 mg/L, but remained greater than the concentration at upgradient well, MWT-26. Downgradient of Biowall B2 (at MWT-29) and C2 (at PT-17), the concentration of TOC decreased below the threshold value of 20 mg/L. There is a decrease in the concentration of TOC as readily degraded organics (i.e., vegetable oil and cellulose) in the mulch mixture are consumed; however, TOC concentrations on-site remain sufficiently high enough to serve as an energy source for anaerobic bacteria in the biowalls. As discussed below, the change in TOC concentrations appears to have little impact on the efficiency at which chlorinated organics are degraded within the biowalls and does not indicate that the biowalls need to be recharged at this time.

Ferrous Iron and Manganese

As described in USEPA (1998), iron III (ferric iron) is an electron acceptor used by iron-reducing bacteria under anaerobic conditions; Iron II (ferrous iron) is the product. Iron III is relatively insoluble in groundwater relative to Iron II. Therefore, an increase in concentrations of Iron II in groundwater is a clear indication that anaerobic iron reduction is occurring. Similarly, USEPA (1998) states that manganese (IV) is an electron acceptor used by manganese-reducing bacteria under anaerobic environments; soluble manganese (II) is the product. Under anaerobic conditions like those at the Ash Landfill, the presence of manganese and ferrous iron in groundwater at concentrations above the natural background concentrations demonstrates that manganese reduction and iron reduction are occurring at the site. These data support the conclusion that conditions within the biowalls are anaerobic and conducive to the degradation of chlorinated ethenes.

<u>Summary</u>

Monitoring data for wells within the biowalls during the fourth year of LTM indicate the following:

- DO remains below 1.0 mg/L at Biowalls B1/B2 and Biowall C2;
- Concentrations of TOC remain elevated in the biowalls, and greater than at the upgradient well:
- ORP remains low, ranging from -121 mV to -100 mV;
- Sulfate remains low; mostly below 20 mg/L, and ranging from 2.8 to 25.0 mg/L;
- Methane concentrations are 12 mg/L or higher; and
- Ferrous iron concentrations are increasing in the biowalls, indicating that conditions are conducive to the degradation of chlorinated ethenes.

A multiple lines-of-evidence approach that evaluates geochemical parameters together with the analytical data indicates that conditions in the biowalls are sufficient to support anaerobic degradation processes. Substrate in the biowalls has not been significantly depleted and biodegradation continues to occur within the biowalls. Highly anaerobic conditions persist within the biowalls and sufficient levels of organic carbon, ORP, sulfate, and methane are being sustained for effective anaerobic degradation of chlorinated ethenes.

3.4 Chemical Data Analysis and Groundwater Remedy Evaluation

Table 4 summarizes the concentrations of chlorinated ethenes detected in groundwater during the ten rounds of LTM. Table 4 is organized with the most upgradient well listed first and the most downgradient well listed last. A complete presentation of the groundwater data is provided in Appendix B. Figure 6 presents the chlorinated ethene data for the ten rounds. The discussion below

focuses on data collected during Year 4 (Rounds 9 and 10) of the LTM program, and addresses how the remedial action objectives are being achieved.

Achievement of first performance monitoring objective:

 Confirm that there are no exceedances of groundwater standards for contaminants of concern (COC) at the off-site trigger monitoring well MW-56;

Concentrations of chlorinated ethenes at off-site well MW-56 remain low or non-detect, with concentrations of TCE, cis-DCE, and VC meeting regulatory standards. As shown in **Table 4**, the fourth year of LTM confirmed that there were no exceedances of COC groundwater standards at MW-56. VC and TCE were not detected in any of the rounds at MW-56; cis-DCE was detected at MW-56 below its Class GA groundwater standard (5 μ g/L) during Year 4.

Achievement of second performance monitoring objective:

 Document the effectiveness of the biowalls to remediate and attenuate the chlorinated ethene plume;

TCE remains above the Class GA groundwater standard (5 μ g/L) at PT-18A (upgradient of biowalls). Concentrations of TCE at PT-18A vary from 2,700 μ g/L in the fourth round to 220 μ g/L in the fifth round, rebounding to 2,100 μ g/L in the eighth round, and decreasing to 6.3 μ g/L in the tenth round (see **Table 4**). Concentrations of TCE at well MWT-25 (upgradient of Biowall A) have consistently decreased from 50 μ g/L in the first quarter to below the Class GA groundwater standard at a concentration of 1.9 μ g/L in Round 10.

Concentrations of TCE and cis-DCE within the biowalls at MWT-27 (in Biowall B1), MWT-28 (in Biowall B2), and MWT-23 (in Biowall C2) remain below Class GA standards, which is an expected performance measure. Cis-DCE was reported below Class GA standards in the biowalls in all rounds. Concentrations of VC were recorded above the Class GA standard in Biowalls B1 and C2, and was detected for the first time in Biowall B2. However in Year 4, VC concentrations for all three biowalls remained at or below the VC concentration at the upgradient well, MWT-26. Continued sampling is necessary to confirm any trend for VC at MWT-27 in subsequent monitoring events.

The reduction in concentrations of TCE to below detection, coupled with concentrations of cis-DCE and VC not being elevated within the biowalls, suggests that complete mineralization of chlorinated ethenes is occurring. Therefore, the biowalls are operating as expected with no loss of performance within the biowalls.

Ethene, a final product of reductive dechlorination, is only slightly elevated within the biowalls. This suggests that multiple anaerobic degradation processes may be occurring within in the biowalls. For example, ethene is not produced by anaerobic oxidation of cis-DCE or VC, nor by abiotic transformation of chlorinated ethenes by reduced iron sulfides. Alternatively, concentrations of

ethene may be low since ethene can be further reduced under highly anaerobic conditions or can offgas with carbon dioxide or methane since it is volatile.

The overall trend in the concentrations of TCE, cis-DCE, and VC at well MWT-26 (between Biowalls A1/A2 and Biowalls B1/B2) is decreasing over time. Concentrations of TCE, cis-DCE, and VC at this well decreased during the Summer 2010 monitoring event, and increased in the Winter 2010 event. The area downgradient of MWT-26 is bounded by Biowalls B1/B2 in which the majority of concentrations of TCE, cis-DCE, and VC, except for the VC concentration in Biowall B2, remain non-detect or below their respective Class GA standards. The Army will continue to monitor well MWT-26 to see if an increasing trend in concentrations persists.

Concentrations at MWT-24 (downgradient of Biowall C2) show an overall decline over time, with some seasonal variation in cis-DCE (from 210 μ g/L in the first quarter to 23 μ g/L in the tenth round), and substantial decline in VC (from 45 μ g/L in the second quarter to 4.3 μ g/L in the tenth round). TCE has been at or below the Class GA groundwater standard (5 μ g/L) at MWT-24 in all rounds, with the exception of 6.0 μ g/L in Round 6 that was likely due to seasonal fluctuation (i.e., the effects of desorption during a period with frequent precipitation and subsequent high water levels).

The changes in groundwater concentrations of TCE, DCE, and VC as the groundwater passes through the biowalls are shown in **Figures 9A** through **9J** for Rounds 1 through 10, respectively. These figures show that the concentrations of TCE in groundwater within the biowalls are reduced to concentrations below detection limits. The concentration of TCE rebounds with distance downgradient of Biowalls C1/C2; this increase may be due to residual TCE that is desorbing from aquifer soils or diffusing out of low permeability soils. These results indicate that the biowalls treat the water within the biowalls and create a measurable, albeit slower, improvement in downgradient water quality, as well.

Anaerobic degradation of TCE may also occur in areas of the aquifer formation that are downgradient of the biowalls, where the presence of soluble organic carbon released from the biowalls enhances reductive dechlorination processes. In these downgradient areas, the concentrations of cis-DCE and VC are higher than they are within the biowalls. This suggests that sequential biotic reductive dechlorination of chlorinated organics is the primary degradation process in the downgradient reaction zones, with the presence of low concentrations of TCE being due to desorption from the aquifer matrix or from back diffusion of contaminated groundwater from low permeability soils. The elevated concentration of ethene, 88 µg/L and 7.9 µg/L observed at MWT-29 in Round 9 and 10 respectively, as compared to the upgradient concentration of 0.71 µg/L and 3.3 µg/L at MWT-26, also indicates that downgradient biotic reductive dechlorination is occurring. Further downgradient, TCE concentrations continued to decrease at MWT-7, which is 310 feet downgradient of Biowalls C1/C2. TCE was detected at a concentration of 330 µg/L in Round 9 and at 310 µg/L in Round 10. Additional rounds of data will be evaluated to determine long-term trends in this area.

Achievement of third performance monitoring objective:

 Confirm that groundwater concentrations throughout the plume are decreasing to eventually meet GA standards.

In general, concentrations of TCE, cis-DCE, and VC decreased over the ten sampling events at the wells within and downgradient of the biowalls. Time plots for monitoring wells MWT-25, MWT-26, MWT-27, MWT-28, MWT-29, MWT-22, PT-22, MWT-23, MWT-24, and PT-24 are presented in Figures 10A through 10J, respectively. These plots show an overall decreasing trend for the COCs. Figure 10B shows a decrease in concentrations at MWT-26 in Round 9 and an increase in concentration in Round 10, which may be due to desorption and back diffusion from low permeability soils. Figures 10E, 10F, and 10G show that the concentrations at MWT-29, MWT-22, and PT-22, respectively, which are located downgradient of Biowalls B1/B2, increased in Round 9, then decreased in Round 10 during Year 4 of LTM compared to the previous year. This confirms that the higher concentrations that were observed during the winter monitoring event were likely the result of desorption during periods of seasonal high water levels, and do not reflect an overall increasing concentration trend. The time plots of the downgradient wells (MWT-29, MWT-22, MWT-24, and PT-24) show that TCE concentrations in the wells in the vicinity and downgradient of the biowalls are decreasing over time.

An exponential regression, which models first-order decay typical in biological processes, has been calculated for each monitoring well. The regression serves as a means of estimating the time required for the concentrations of chlorinated organics to meet their respective GA groundwater standards. **Table 5** summarizes the trend for each contaminant in each well and provides an estimate of the date when the standards will be achieved as estimated by the exponential regressions. Time plots with regression lines are included as **Appendix C**.

Table 5 shows that, with the exception of the PT-18A (source area well), PT-17 (downgradient of biowalls), and MWT-7 (immediately upgradient of the ZVI wall), all concentrations at the wells either comply with the Class GA groundwater standard or are expected to comply with their respective standards by 2112, with most reaching the standards by 2023. These dates are intended to provide an indication of the timeframe required for concentrations to reach acceptable levels and are not meant as a time commitment for the remedy.

There may be limiting factors in reaching the groundwater standards by the specified date, such as desorption and back diffusion from low permeability soils, that may drive the actual time required to reach compliance. As an example, the estimates of compliance dates for PT-22 in Year 4 have both increased and decreased as compared to Year 1, Year 2, and Year 3 estimates, with increases likely due to the effect of desorption on the groundwater concentrations observed during winter months when groundwater levels were high.

Time plots of the concentration of TCE, cis-DCE, and VC for wells PT-18A, PT-17, and MWT-7 are provided in Figures 11A, 11B, and 11C, respectively; these plots include historic data prior to the

installation of the biowalls. **Figures 11A**, **11B**, and **11C** indicate that there is an overall decreasing trend for TCE, an overall increasing trend for cis-DCE, and no trend for VC at PT-18A, PT-17, and MWT-7. Since PT-18A is located in the Ash Landfill source area upgradient of all biowalls, decreasing trends at this location reflect natural attenuation processes.

PT-17 and MWT-7 are located 150 ft and 310 ft from Biowalls C1/C2, respectively. As such, it is possible that treatment zones have not been established this far downgradient of the biowalls. Nevertheless, an increasing trend for DCE paired with a decreasing trend for TCE may indicate that reductive dechlorination is occurring at these locations. Dates to achieve compliance at these locations cannot be estimated due to the natural variation in concentrations over time and further monitoring is necessary to determine any trends in chlorinated ethene concentrations at these wells. To date, concentrations at these wells are within historic levels and the Army will continue to evaluate any impacts of the biowalls on this portion of the plume.

Other Compounds

Non-chlorinated organics were detected in the groundwater at the Ash Landfill OU, and the data are presented in Appendix B. Toluene and ethyl benzene were detected in the biowalls in the first four sampling events in Year 1. The maximum concentration of toluene was 580 µg/L at MWT-23 in Quarter 4, and the maximum concentration of ethyl benzene was 1.3 J µg/L at MWT-23 in Quarter 3. The concentrations of tolucne and ethyl benzene detected during Year 2 decreased significantly. Toluene was detected at a maximum concentration of 300 µg/L at MWT-23 in Round 5, and ethyl benzene was detected with a maximum concentration of 0.85 J µg/L at MWT-23 in Round 5. In Year 3, concentrations of toluene and ethyl benzene in the biowalls were below their respective Class GA groundwater standards in Round 7, and were compounds were not detected in Round 8. In Year 4. concentrations of ethyl benzene in the biowalls were below their respective Class GA groundwater standards in Rounds 9 and 10. Concentrations of toluene was below the Class GA groundwater standard in Round 9, and was not detected in Round 10. Neither toluene nor ethyl benzene is a historic COC, nor are the detections of toluene and cthyl benzene believed to be associated with historic site operations or degradation products of reductive dechlorination. The four years of data demonstrate that the concentrations of these compounds have decreased to levels below the detection and are no longer of any concern.

Ketones were detected in some monitoring wells at the site, with higher concentrations detected in the wells located within the biowalls (see **Appendix B**). The maximum detections of acetone and methyl cthyl ketone were observed at well MWT-28 (in Biowall B2) in Quarter 1 at concentrations of 2,600 J μg/L and 4,900 J μg/L, respectively. Concentrations of ketones decreased significantly in the Year 2 sampling events. The maximum concentration of acetone was 26 J μg/L at MWT-27 in Round 6 (the associated sample duplicate was below the detection limit), and the maximum concentration of methyl ethyl ketone was 12 μg/L at MWT-23 in Round 5. Concentrations of ketones decreased even further in Year 3, and to concentrations below detection limits in Rounds 9 and 10. The maximum concentration of acetone was 11 J μg/L in MWT-27, and methyl ethyl ketone was not detected in any

of the biowall wells. Ketones were produced by fermentation reactions in the biowalls when concentrations of soluble organic carbon were high. However, ketones are readily degradable under aerobic conditions, have not persisted at the site, and were not detected within 100 feet of the site boundary.

3.5 Biowall Recharge Evaluation

The RDR calls for a recharge evaluation at the end of each year of monitoring. The evaluations completed at the end of Year 1, Year 2, and Year 3 concluded that recharge was not required and that a recharge evaluation would be performed again at the end of Year 4.

Recharge Evaluation Process

A recharge evaluation, defined on Figure 7-3 of the RDR and described below, is the determination of the need to recharge a biowall segment. The evaluation consists of the following:

- Determining the need to recharge a biowall segment requires a review of chemical
 concentrations and geochemical parameters by an experienced professional. A specific,
 absolute set of conditions or parameter values are not appropriate to determine the need to
 recharge. Rather, a lines-of-evidence approach will be used that correlates a decrease in the
 efficiency of the system to degrade chloroethenes to geochemical evidence that indicates the
 cause is due to substrate depletion will be used.
- The following parameters will be evaluated annually using at least two consecutive rounds of sampling data in order to determine if recharge of the biowalls is necessary:
 - COC concentrations in the biowalls (e.g., MWT-27, MWT-28, and MWT-23). If COC concentrations have rebounded by greater than 50% for any single sampling event, this will indicate that recharge should be considered. Concentrations within the biowalls, not at downgradient locations, will be used to make this evaluation so that the effectiveness of the wall itself is being measured without the interference of effects such as desorption and mixing.
 - Geochemical parameters, specifically ORP, TOC, and DO, in the biowalls (e.g., at MWT-27, MWT-28, and MWT-23). Benchmark values will be used initially to evaluate anaerobic conditions in the groundwater. The benchmarks are:
 - ORP < -100 mV
 - TOC > 20 mg/L
 - DO < 1.0 mg/L

Parameters described in the bullets above are intended to be used as guidelines and will be considered in evaluating if, and when, a depletion of bioavailable organic substrate results in a rebound in

geochemical redox conditions under which effective anacrobic degradation of chlorinated ethenes does not occur.

Recharge Evaluation for Year 4

The recharge evaluation for Year 4 indicates that recharging the biowalls is not necessary at this time.

Section 3.2 presents the geochemical data for Year 4. The values of geochemical parameters measured in Year 4 support the interpretation that reductive dechlorination is occurring in Biowalls A1/A2, B1/B2, and C1/C2. The tables below show that the geochemical parameters for the wells within the biowalls meet the benchmark values and that groundwater conditions remain highly reducing.

Parameter	Benchmark Value	MWT-27 (Qs 1, 2, 3, 4, Rs 5, 6, 7, 8, 9, 10)
ORP (mV)	< -1()()	-158, -145, -141, -166, -133, -126, -128, -102, -121, -111
TOC (mg/L)	> 20	2050, 1350, 755, 167, 89, 54, 81.7, 50, 61, 32
DO (mg/L)	< 1.0	0.25, 0.08, 0, 0.06, 0.18, 0.13, 0.06, 0.15, 0.05, 0.05

Parameter	Benchmark Value	MWT-28 (Qs 1, 2, 3, 4, Rs 5, 6, 7, 8, 9, 10)
ORP (mV)	<-100	-150, -113, -131, -151, -91, -95, -135, -148, -104, -100
TOC (mg/L)	> 20	1775, 171, 309, 92, 49, 28, 28.2, 25.5, 21, 12
DO (mg/L)	< 1.0	0.16, 0.09, 0, 0.08, 0.15, 0.10, 0.18, 0.29, 0.06, 0.07

Parameter	Benchmark Value	MWT-23 (Qs 1, 2, 3, 4, Rs 5, 6, 7, 8, 9, 10)
ORP (mV)	< -100	-122, -109, -87, -144, -129, -104, -117, -90, -115, -103
TOC (mg/L)	> 20	260, 210, 303, 151, 29, 20, 15.6, 17.4, 11, 5.9
DO (mg/L)	< 1.0	0.26, 0.35, 0, 0.12, 0.15, 0.20, 0.07, 0.63, 0.04, 0.29

Section 3.3 presents the analytical data for Year 4. As shown in the table below, concentrations of TCE, cDCE, and VC in the biowalls remain low and have not rebounded by greater than 50% for any sampling event. Further, the ability of the biowalls to sustain a high degree of reductive dechlorination is well established.

		TCE (µg/L)	cDCE (μg/L)	VC (μg/L)
	Q1	ND	ND	ND
	Q2	ND	ND	ND
	Q3	ND	ND	ND
MWT-27	Q4	ND	ND	ND
	R5	ND	ND	ND
	R6	ND	ND	ND
	<u>R</u> 7	ND	ND	ND
	R8	ND	_ ND	3.1.1

May 2011

		TCE (µg/L)	cDCE (μg/L)	VC (µg/L)
	R9	ND	0.18 J	ND
	R10	0.51 J	1.1	2.1
	Q1	ND	ND	ND
	Q2	ND	ND	ND
	Q3	ND	ND	ND
	Q4	ND	ND	ND
- 411/III 20	R5	ND	ND	ND
MWT-28	R6	ND	ND	ND
	R7	ND	ND	ND
	R8	ND	ND	ND
	R9	ND	ND	ND
	R10	ND	0.51 J	0.64 J
	Q1	ND	60	23
	Q2	ND	11	4.8
	Q3	ND	3.1	ND
	Q4	ND	3.6 J	3.65
MANUTE 22	R5	ND	ND	ND
MWT-23	R6	0.4	2.4	2.8
	R7	ND	0.42 J	ND
	R8	ND	0.47 J	ND
	R9	ND	0.41 J	ND
	R10	0.29 J	4.6	5.3

The analytical data at MWT-27 shows the concentration of TCE below the Class GA groundwater standard (5 μ g/L) at an estimated 0.51 J μ g/L. In Round 10, the concentration of cDCE was measured as 1.1 μ g/L below the Class GA groundwater standard. The concentration of VC was measured above the Class GA groundwater standard at a concentration of 2.1 μ g/L; however, this concentration was less than the only other instance of a detected VC concentration at MWT-27 (i.e. - 3.1 J μ g/L in Round 8). The Army will continue to monitor MWT-27 in subsequent monitoring events to determine any trend for VC at this well.

At MWT-28, concentrations of cDCE and VC remain below Class GA groundwater standards, and the concentration of TCE remains below detections limits.

At MWT-23 TCE and cDCE concentrations were below Class GA groundwater standards. In Round 10, the concentrations of TCE and cDCE were measured as 0.29 J μg/L and 4.6 μg/L, respectively. This is below the Class GA groundwater standard, and overall cDCE concentrations have decreased from the first monitoring event. The concentration of VC was above the Class GA groundwater standard at 5.3 μg/L. This was the first VC detection at MWT-23 in the past four monitoring events, and overall VC concentrations have decreased from the first monitoring event. The Army will continue to monitor MWT-23 in subsequent monitoring events to determine any trend for VC at this well.

Overall, the multiple lines-of-evidence approach that evaluates geochemical parameters together with the chemical analytical data indicates that conditions in the biowalls are sufficiently anaerobic to support reductive chlorination of chlorinated ethenes. Substrate in the biowalls has not been significantly depleted and biodegradation continues to occur. Although TOC levels are below the benchmark value at MWT-28 and MWT-23, they remain higher than TOC concentrations in the upgradient well. Low DO concentrations and ORPs indicate that highly reducing conditions are being maintained with the current levels of TOC. Reductions in sulfate and the production of methane further indicate that highly anaerobic conditions are being sustained.

Based on the review of the analytical and geochemical data, the biowalls do not need to be recharged at this time, and the biowall system continues to meet the long-term monitoring objectives established in the RDR (Parsons, 2006).

3.6 Soil Remedy Evaluation

Part of the remedial action was installing a 12-inch vegetative cover over the Ash Landfill and the NCFL. The covers have been inspected and field observations from Year 4 note that the landfills are vegetated with grass and clover. At the NCFL, visual observations noted a small amount of soil erosion and the presence of rodent trails; however, the erosion and the trails cut less than 6 inches into the cover. Therefore, underlying soil has not been exposed to the environment and corrective action is not required. The Army will continue to monitor the integrity of the covers and ensure that the vegetative covers have not been breached and that the underlying soil is not exposed.

3.7 Land Use Controls (LUCs)

The remedy for the Ash Landfill OU requires the implementation and maintenance of land use controls (LUCs). The LUC requirements are detailed in the "Land Use Control Remedial Design for SEAD-27, 66, and 64A, *Addendum 3*" (2008b). The selected LUCs for the Ash Landfill OU are as follows:

- Prevent access to or use of the groundwater until cleanup levels are met;
- Maintain the integrity of any current or future remedial or monitoring system, such as monitoring wells and permeable reactive barriers;
- Prohibit excavation of the soil or construction of inhabitable structures (temporary or permanent) above the area of the existing groundwater plume; and
- Maintain the vegetative soil layer over the ash fill areas and the NCFL to limit ecological contact.

As part of the LTM program, the Army inspected the site to determine that the LUCs are being maintained. While performing the groundwater sampling, it was confirmed that no prohibited

May 2011

facilities have been constructed and no access to or use of groundwater was evident other than that needed for monitoring. As discussed in **Section 3.5**, the vegetative covers are limiting ecological contact with the underlying soil.

During 9R2010 and 10R2010, groundwater monitoring wells were inspected by field personnel. The integrity of all wells at the Ash Landfill is intact and each well is viable for groundwater elevation readings and groundwater sampling, where appropriate. Monitoring wells not required as part of the LTM were decommissioned between September 2010 and January 2011.

3.8 Operating Properly and Successfully

The implemented design has met the requirements for "operating properly and successfully" (OPS) as outlined in Section 12(h)(s) of the USEPA "Guidance for Evaluation of Federal Agency Demonstrations" (USEPA, 1996). Parsons submitted a letter on behalf of the Army to USEPA, dated June 6, 2008, declaring that the Army had determined that the remedy met the OPS requirements. The Army submitted a letter under separate cover on February 26, 2009 further certifying that the "information, data and analysis provided in Parsons' June 6, 2008 letter was true and accurate." On March 11, 2009, the USEPA transmitted a letter to the Army approving the Army's OPS demonstration. The data for Year 4 of the LTM program are consistent with the data for Year 1, Year 2, and Year 3 and demonstrate that the remedy is OPS, as described below.

The remedial action is operating "properly."

The USEPA guidance describes that "a remedial action is operating 'properly' if it is operating as designed." The Construction Completion Report (CCR) (Parsons, 2007) details that the vegetative covers were installed as designed, meeting or exceeding the 12-inch of soil cover requirement. Section 3.5 describes that the covers are intact and effectively prevent ecological contact with the underlying soil; therefore, the vegetative covers are operating properly.

The CCR also details the construction of the biowalls. Deviation from the intended design resulted in wider-than-intended biowalls that required the emplacement of additional mulch; since this is an enhancement of the design, it is fair to say that the biowalls were constructed as designed. The geochemical data presented and discussed in **Section 3.1** indicate that conditions that are favorable to anaerobic reductive dechlorination have been established within and near the biowalls, which was the expectation of the design of the biowall system.

The remedial action is operating "successfully."

A remedial action may receive the USEPA's designation of "operating successfully" (1) if "a system will achieve the cleanup levels or performance goals delineated in the decision document" and (2) if the remedy is protective of human health and the environment. The data presented in Section 3.3 demonstrate that concentrations of VOCs are decreasing and will eventually meet the Class GA groundwater standards. The time plots presented in Figures 10A through 10J show a decreasing

trend for the COCs at the Ash Landfill OU; **Table 5** summarizes the trends in concentrations of COCs over time and provides time estimates for compliance based on exponential regressions of the time plots. The time estimates do not provide exact dates that Class GA groundwater standards will be achieved; rather they demonstrate that the concentrations in groundwater will eventually meet the groundwater standards.

Recent inspection of the vegetative covers at the Ash Landfill and the NCFL indicate that the covers are preventing ecological receptors from contacting the underlying soil; therefore, there is no threat to the environment. The LUCs have been maintained and no one is accessing the groundwater; therefore, there is no threat to human health. Based on a review of the site data, an inspection of the condition of the vegetative covers, and a confirmation that the LUCs are being maintained, the Army believes that the remedial action is operating successfully.

Based on an assessment of the design and construction of the remedial action, as well as an evaluation of the geochemical and analytical data from the three years of groundwater monitoring, the Army believes that the remedial action at the Ash Landfill meets the requirements to be designated as "operating properly and successfully".

4.0 LONG-TERM MONITORING CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Based on the results of the long-term monitoring at the Ash Landfill since the installation of the full-scale biowalls, the Army has made the following conclusions:

- TCE within the biowalls remains below or close to detection limits:
- TCE, cis-DCE, and VC are present in the groundwater at the site at concentrations above respective Class GA groundwater standards;
- Chemical results indicate that the concentrations of chlorinated ethenes are decreasing as they
 pass through the biowall systems;
- Geochemical parameters indicate that groundwater redox conditions are highly conducive for reductive dechlorination to occur within the biowalls;
- Concentrations of chlorinated ethenes at off-site well MW-56 are below Class GA groundwater standards;
- Continued monitoring is required to determine trends in concentrations of COCs at PT-18A, PT-17, and MWT-7;
- Recharge of the biowalls is not necessary at this time;

May 2011

- The remedial action continues to meets the requirements of the USEPA's "operating properly and successfully" designation; and
- The Army will continue to monitor the performance of the biowall system, including semiannual periodic evaluations of the potential need to recharge the biowalls.

4.2 Recommendations

Based on the first four years of long-term monitoring at the Ash Landfill OU, the Army recommends continuing the semi-annual frequency of monitoring based on the process shown in **Figure 12** (which is also Figure 7-3 of the RDR). The recommendations for LTM during year four of monitoring are as follows:

- Biowall process monitoring wells (MWT-26, MWT-27, MWT-28, MWT-29, and MWT-23) will be monitored on a semi-annual basis. Each year a recharge evaluation will be completed. As stated in the RDR (Parsons, 2006b), if a recharge is conducted, MWT-26, MWT-27, and MWT-29 would be excluded from the LTM program, as detailed in Figure 12. MWT-28 and MWT-23 will continue to be monitored as part of the performance monitoring wells to supplement data that will be used to determine whether additional biowall recharge is required. The recharge evaluation(s) conducted each year after the first biowall recharge would review the chemical and geochemical data at MWT-28 and MWT-23, and determine if the contaminant increase is a result of poor biowall performance or due to other issues such as seasonal variations in groundwater levels, unusual precipitation events, or desorption and back diffusion.
- Performance monitoring wells (PT-17, PT-18A, PT-22, PT-24, MWT-7, MWT-22, MWT-24, and MWT-25) will continue to be monitored on a semi-annual basis in a manner consistent with the Year 3 LTM program. In the four years of LTM events at the Ash Landfill OU, the concentrations of COCs, specifically TCE, in the wells downgradient of the source area (near PT-18A) have decreased.
- The off-site performance monitoring well (MW-56) will continue to be monitored on a semiannual basis.
- The vegetative covers at the Ash Landfill and the NCFL will be inspected annually to ensure that they remain intact and protective of ecological receptors.
- The frequency of monitoring and the need to recharge the biowalls will be reviewed in the annual report submitted after the completion of the fifth year of LTM, based on the process outlined in Figure 12.

5.0 REFERENCES

- Kampbell, D.H. and J.T. Wilson, 1998. Analysis of dissolved methane, ethane, ethene in groundwater by a standard gas chromatographic technique. *Journal of Chromatography*, Vol. 36:253-256.
- Parsons, 1994. Remedial Investigation Report at the Ash Landfill Site, Final, July 1994.
- Parsons, 2004. Record of Decision for the Ash Landfill Operable Unit, Final, July 2004.
- Parsons, 2006a. Final Sampling and Analysis Plan for Sencea Army Depot Activity (SAP), October 2006.
- Parsons, 2006b. Remedial Design Work Plan for the Ash Landfill Site at Seneca Army Depot Activity, July 2006.
- Parsons, 2006c. Remedial Design Report for the Ash Landfill Operable Unit, August 2006.
- Parsons, 2008a. Land Use Control Remedial Design for SEAD-27, 66, and 64A, Addendum 3, 2008.
- Parsons, 2008b. Annual Report and One Year Review for the Ash Landfill Operable Unit, May 2008.
- Parsons, 2009. Annual Report and Year Two Review for the Ash Landfill Operable Unit, June 2009.
- Parsons, 2010. Annual Report and Year Two Review for the Ash Landfill Operable Unit, August 2010.
- US Army Environmental Hygiene Agency (USAEHA), 1987. Interim Final Report, Groundwater Contamination Survey No. 38-26-0868-88, July 1987.
- USEPA, 1996. Guidance for Evaluation of Federal Agency Demonstrations that Remedial Actions are Operating Properly and Successfully, Interim, August 1996.
- USEPA, 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. EPA/600/R-98/128, September 1998.

May 2011 Page 25

TABLES

Table 1	Groundwater Sample Collection
Table 2	Groundwater Elevations
Table 3	Groundwater Geochemical Data
Table 4	Chlorinated Organics in Groundwater
Table 5	Groundwater Trends

Table 1
Groundwater Sample Collection
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

	- N	Nonitoring Wel	I Group		Laborato	ry Analysis	
Monitoring	On-Site	Biowall	Off-Site	VOC	TOC	MEE	Sulfate
Wells	<u> Plume</u>	Process	Performance	8260B	9060A	RSK-175	EPA 300.1
PT-18A	X (all)			X (all)			
MWT-25	X (all)			X (all)			
MWT-26		X (all)		X (all)	X (all)	X (all)	X (all)
MWT-27	_	X (all)		X (all)	X (all)	X (all)	X (all)
MWT-28	X (all)	X (all)		X (all)	X (all)	X (all)	X (all)
MWT-29	X (all)	X (all)		X (all)	X (all)	X (all)	X (all)
MWT-22	X (all)			X (all)		` <u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
PT-22	X (all)			X (all)			
MWT-23	X (all)	X (all)		X (all)	X (all)	X (all)	X (all)
MWT-24	X (all)			X (all)			` '
PT-17	X (all)			X (all)	X (5,6,7,8,9,10)	X (5,6,7,8,9,10)	X (5,6,7,8,9,10)
MWT-7	X (all)			X (alt)		X (5,6,7,8,9,10)	
PT-24	X (all)			X (all)	X (7)	X (7)	X (7)
MW-56			X (1,3,5,6,7,8,9,10)	X (all)		` '	

- 1. All samples were analyzed for field parameters including pH, ORP, dissolved oxygen, conductivity, temperature, and turbidity.
- (all) This well was sampled in all rounds of the LTM program.
- (7) This well was sampled in Round 7 of the LTM program.
- (1,3,5,6,7,8,9,10) This well was sampled in Quarters 1 and 3, and Rounds 5 10 of the LTM program.
- (5,6,7,8,9,10) These wells were sampled in Rounds 5 10 of the LTM program.

Table 2 Groundwater Elevation Data Ash Landfill Annual Report, Year 4 Seneca Army Depot Activity

			LTM	R10 - December	2010		Historic	al Data	
Monitoring	Top of Riser	Well Depth	Saturated Thickness	Depth to Groundwater	Water Level Elevation	Ground	water Elevat	tion (ft)	Well
Well	Elevation (ft)	(rel. TOC) (ft)	(ft)	(ft)	(ft)	Maximum	Minimum	Range	Depth (ft)
PT-17	640.14	11.65	9.01	2.64	637.50	637.50	629.05	8,45	11.65
PT-18A	659.05	12.85	7.05	5.80	653.25	653.25	649.68	3.57	12.85
PT-22	648.61	11.81	6.68	5.13	643.48	644.30	637.47	6.83	11.81
PT-24	636.40	11.88	7.26	4.62	631.78	632.76	627.80	4.96	11.88
MW-56	630.51	6.88	3.33	3.55	626.96	627.58	621.66	5.92	6.88
MWT-7	638.34	13.64	8.73	4.91	633.43	633.50	626.58	6.92	13,64
MWT-22	650.663	14.9	10.56	4.34	646.32	648.13	642.80	5.33	14.90
MWT-23	646,772	13.7	7.07	6.63	640.14	640.45	637.08	3.37	13.70
MWT-24	641.564	13	6.79	6.21	635.35	635.84	633.19	2.65	13.00
MWT-25	654,507	13.25	9.39	3.86	650.65	650.65	646.76	3.89	13.25
MWT-26	652.191	13.22	9.62	3.60	648.59	648.59	644.98	3.61	13.22
MWT-27	652.993	12.9	8.14	4.76	648.23	648.23	645.06	3.17	12.90
MWT-28	652.685	12.85	8.00	4.85	647.84	647.84	644.74	3.11	12.85
MWT-29	651.816	13.1	8.67	4.43	647.39	647.39	643.58	3.81	13.10

Table 3
Groundwater Geochemical Data
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Well ID	Location Description	Sample ID	Sample	На	Turbidity	Specific	DO	ORP	TOC	Sulfate	Ethane	Ethene	Methane	Manganese	Ferrous
			Round		(NTU)	Conductance (mS/cm)	(mg/L)	(mV)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	lren (ug/L)
PT-18A	upgradient of walls	ALBW20059	1Q2007	6.63	141	1,69	1.33	93							
		ALBW20074	202007	6.44	110	2.87	0.76	-177							
		ALBW20088	3Q2007	6.71	5	1.66	0	-23				1			
i		ALBW20103	4Q2007	6.41	0.0	1.25	0.04	-5				1			
i		ALBW20117	5R2008	6.36	1.9	1.75	0.22	-10	1			1		8.2	> 3,3
i		ALBW20132	6R2008	6.58	0.56	2.04	1.76	83	1			1	<u> </u>		
i		AL9W20147	7R2009	6.77	0.45	2.01	0.12	66	1			1			
i		ALBW20162	8R2009	6.71	0.00	2.04	0.62	154	1			1			
	1	ALBW02177	9R2010	6.7	1.00	2.05	0.1	62	1					1.5	0.15
		ALBW20192	10R2010	6.66	1.50	1.25	0.16	84	1		1	1			0.10
MWT-25	upgradient of Biowall A	ALBW20064	1Q2007	8	9.6	0.29	2.83	63	†					 	t
i		ALBW20079	202007	7.27	14	2.2	2.8	52	1			1			
	1	ALBW20093	3Q2007	7.36	6.2	2.43	4.14	100	1				1		
i		ALBW20108	402007	6.9	0	1.2	0.21	65	1			1			
	1	ALBW20123	5R2008	6.91	0.52	1,47	0.15	-41	1					1.4	0.75
i		ALBW20138	6R2008	6.69	1.32	1.36	2.91	90	1			1		''-	0.10
į	i	ALBW20153	7R2009	7.03	1.6	1.46	0.1	-31	ı			1			
		ALBW20168	8R2009	7.21	0	0.792	3.35	98							
		ALBW20183	9R2010	7.06	0.7	1.48	0.2	-116]			1	
		ALBW20198	10R2010	7.11	2.59	1.23	0.48	-94]					
MWT-26	upgradient of Biowalls B1/B2	ALBW20066	1Q2007	6.89	10	2.01	1.84	-3	3.9 J	958	ND	ND	ND		
	4.020	ALBW20081	2Q2007	7.26	9	1.9	0.48	-135	15.2	738	0.4	7.8	210	2.1	> 3.3
	1	ALBW20095	3Q2007	6.89	2.2	1.94	0.21	-170	10.3	473	1 1	13	390	3.1	> 3.3
		AL8W20111	4Q2007	7.08	50	1,9	0.89	-40	6.1	1060	0.16	0.4	44	0.0	1.09
		AL8W20126	5R2008	7.05	0.67	1.88	0.31	-71	5.6	600	0.82	2.9	210	1.3	0.81
		AL8W20141	6R2008	7.01	28.7	1.58	3.54	60	4,4	541	0.046	0.028	10	0.6	0.22
		ALBW20156	7R2009	6.95	2.7	1.75	0.34	-11	6.9	570	3.2	2.7	1,100	0.5	0.71
		ALBW20171	8R2009	7.01	10	2.45	4.66	71	5.6	912	2.2	1.8	610	0.7	0.18
		ALBW20186	9R2010	6.99	1.4	2.04	0.14	-81	4.6	580	2.2	0.71	740	1.7	2.67
	455	ALBW20202	10R2010	6.77	0.6	1.71	0.5	109	5.5	690	3.7	3.3	1600	0	0.13
MWT-27	in Biowall B1	ALBW20067	1Q2007	6.34	120	5.31	0.25	-158	2,050 J	ND	ND	ND	1000	1 - * - ·	
		ALBW20082	202007	6.65	87	4.37	0.08	-145	1350	ND	0.15	2.7	15.000	> 22	> 3.3
		ALBW20096	302007	6.59	154	3.35	0	-141	755	1.9 J	0.081	0.33	13,500	> 22	> 3.3
		ALBW20112	402007	6.43	58	5.76	0.06	-166	167	31.7	ND.	0.014 J	13,000	> 22	2.19
		ALBW20127	5R2008	6.49	40	3.07	0.18	-133	88.9	ND	2.3	0.049	13,000	> 22	3.23
		ALBW20142	6R2008	5.95	24.5	2.59	0.13	-126	53.5	24	1.6	0.13	15,000	> 22	3.05
	1	ALBW20157	7R2009	6.68	38	2.99	0.06	-128	81.7	0.93 J	5.1	0.15	14,000	22	1.88
		ALBW20172/73	6R2009	6.32	5.1	2.38	0.15	-102	50.0	14.0	4.4	1.2	15,500	9	1.26
		ALBW20187	9R2010	6.52	1.4	2.55	0.05	-121	61	0.95 J	3.8	0.12	13,000	> 22	2.54
		ALBW20203	10R2010	6.42	8.91	2.22	0.05	-111	32	25.0	3.0	0.88	18,000	48	3.30

> = The concentration exceeded the range of the Hach DR/850 Colorimeter field kit.

J = the reported value is an estimated concentration,

ND = Non-detect.

NS = Not sampled; water level was below the indicator probe.

1Q2007 - First round of LTM (January 2007) 2Q2007 - Second round of LTM (March 2007) 3Q2007 - Third round of LTM (June 2007) 4Q2007 - Fourth round of LTM (November 2007) 5R2008 - Fifth Round of LTM (June 2008) 6R2008 - Sixth Round of LTM (December 2008)
7R2009 - Seventh Round of LTM (June 2009)
8R2009 - Eighth Round of LTM (December 2009)
9R2010 - Ninth Round of LTM (June 2010)
10R2010 - Tenth Round of LTM (Occember 2010)

Empty cells indicate that the specified analysis was not completed for that well. The bolded and italicized wells are the five wells included in the blowall process monitoring group. Analysis of TQC, sulfate, methane, ethane, and ethene were completed for the blowall process wells only.

Table 3
Groundwater Geochemical Data
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

	Location Description	Sample ID	Sample Round	рН	Turbidity (NTU)	Specific Conductance (mS/cm)	DO (mg/L)	ORP (mV)	TOC (mg/L)	Sulfate (mg/L)	Ethane (ug/L)	Ethene (ug/L)	Methane (ug/L)	Manganese (ug/L)	ferrous fron (ug/L)
WWT-28	in Biowall B2	ALBW20068	1Q2007	7.5	163	0,61	0.16	-150	1,775 J	1.7	ND	ND	12,500 J		
		ALBW20083	2Q2007	6.6	21	2.3	0.09	-113	171	ND	0.67	0.48	19,000	7.5	> 3.3
		ALBW20098	3Q2007	6.56	100	2.74	0	-131	309	ND	0.01 J	0.057	11,000	> 22	> 3.3
		ALBW20113	4Q2007	6.48	10	1.72	80.0	-151	92	ND	0.014 J	ND	11,000	> 22	2.15
		ALBW20128	5R2008	6,31	14	2.16	0.15	-91	49.2	ND	0.65	0.044	12,000	> 22	> 3.3
		ALBW20144	6R2008	5.76	17	1.58	0.10	-95	27.9	48.3	2	0.12	19,000	5.3	1.98
		ALBW20158/59	7R2009	6.49	8.5	1.73	0.18	-135	28.2	ND	1.8	0.064	13,000	20.8	2.87
		ALBW20174	8R2009	6.4	10.8	1.88	0.29	-148	25.5	3.16	1.6	0.12	15,000	6.5	2.15
		ALBW20188/89	9R2010	6.36	5.5	1.62	0.06	-104	21	ND	1.6	0.059	13,500	18.6	0.57
	A STATE OF THE STA	ALBW20204	10R2010	6.28	4.5	0.802	0.07	-100	12	4.8	1.4	0.17	12,000	5.8	2.58
MWT-29	downgradient of Biowall B2	ALBW20070	1Q2007	6.49	7.2	2.1	0.33	-76	25.1 J	113	ND	ND	ND		
	The state of the s	ALBW20084/5	202007	6.8	1.7	2.21	0.39	-53	36.7	173	25	150	8,100	7.5	> 3.3
		ALBW20099	3Q2007	6.64	1.8	1.68	0.11	-79	15.7	151	13	160	2,800	8.1	2.84
		ALBW20114	4Q2007	7.04	12.2	1.88	0.21	-101	20.9	289	19	200	2,600	8.6	> 3.3
	1	ALBW20129/30	5R2008	6.44	2.7	1.85	0.17	-115	14.1	174	14.5	140	3,100	0.0	> 3.3
		ALBW20145	6R2008	6.57	3.69	1.58	1.32	67	13.6	312	14	19	2,700	3.3	0.20
		ALBW20160	7R2009	6.8	1.9	1.8	0.15	-105	11.8	300	10	47	3,000	6.8	2.97
		ALBW20175	8R2009	6.87	0	2.05	0.58	-75	8.2	644	6.7	12	1,500	6.3	0.96
		ALBW20190	9R2010	6.77	2	1.74	0.06	-86	10	170	18	88	5,400	9.1	2.54
		ALBW20205	10R2010	6.71	1,07	1.31	0.56	22	7.4	300	5.1	7.9	3,100	6.4	2.60
MWT-22	downgradient of Biowall B2	ALBW20071	1Q2007	7.7	4.5	0.13	0.09	-80		-		-1.10	-	-	1
		ALBW20075	202007	6.72	41	2.16	0.3	-65		1					
		ALBW20100	3Q2007	6.45	2.7	2.03	0.05	-107		1					
		ALBW20115	4Q2007	6.53	7.5	1.81	0.18	-132							
		ALBW20121	5R2008	6.38	14	2.21	0.3	-34						18.2	> 3.3
		ALBW20136	6R2008	6.44	8.17	1.86	0.57	-19		1					
		ALBW20151	7R2009	6.59	13	2.14	0.31	-91							4
		ALBW20166	8R2009	6.5	15	0.898	0.34	-65	4						
		ALBW20181	9R2010	6.52	16.8	2.2	0.22	-63							4
	W.	ALBW20196	10R2010	6.39	6.8	1.34	0.07	-58	100						
PT-22	between Biowalls B and C	ALBW20060	102007	7.70	4.5	0,13	0.09	-80							1
	Carried and Carried at April 2	ALBW20086	202007	6.78	7	1.18	0.78	-54	1						
		ALBW20089	3Q2007	6.67	0	1.44	0.09	-97		1			I .		
		ALBW20104	402007	6.73	5.1	1.26	0.17	-166							
		ALBW20118	5R2008	6.69	7.4	1.38	0.29	-119						0.3	1.38
		ALBW20133	6R2008	6.79	1.96	1.20	0.69	-37						0.0	1.55
		ALBW20148	7R2009	6.76	11	1.53	0.00	-123							
		ALBW20163	8R2009	6.74	6.3	1.45	1.0	-73							
		ALBW20178	9R2010	6.87	3.6	1.39	0.4	-75					1		
		ALBW20193	10R2010	6.75	0.8	1.14	0.18	15				1.5			

> = The concentration exceeded the range of the Hach DR/850 Colorimeter field kit.

J = the reported value is an estimated concentration.

ND = Non-detect.

NS = Not sampled; water level was below the indicator probe.

1Q2007 - First round of LTM (January 2007)

2Q2007 - Second round of LTM (March 2007)

3Q2007 - Third round of LTM (June 2007)

4Q2007 - Fourth round of LTM (November 2007) 5R2008 - Fifth Round of LTM (June 2008) 6R2008 - Sixth Round of LTM (December 2008)

7R2009 - Seventh Round of LTM (June 2009)

8R2009 - Eighth Round of LTM (December 2009)

9R2010 - Ninth Round of LTM (June 2010)

10R2010 - Tenth Round of LTM (December 2010)

Empty cells indicate that the specified analysis was not completed for that well. The bolded and italicized wells are the five wells included in the biowall process monitoring group. Analysis of TQC, sulfate, methane, ethane, and ethene were completed for the biowall process wells only.

Table 3
Groundwater Geochemical Data
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Well ID	Location Description	Sample ID	\$ample	pН	Turbidity	Specific	DO	ORP	TOC	Sulfate	Ethane	Ethene	Methane	Manganese	Ferrous
]			Round		(NTU)	Conductance	(mg/L)	(mV)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Iron
ļ <u> </u>	·	<u> </u>				(mS/cm)]				L		(ug/L)
MWT-23	in Biowall C2	ALBW20065	1Q2007	7.2	5	0.2	0.26	-122	260 J	ND	ND	МĐ	12,000		
ļ		ALBW20080	202007	6.51	30	1.8	0.35	-109	210	ND	45	5.9	23,000	5.4	2.73
		ALBW20094	3Q2007	6.3	69.3	1.82	0	-87	303	ND	4.1	0.28	18,000	> 22	2.99
		ALBW20109	4Q2007	6.32	21	2.21	0.12	-144	151	2.8	0.58	0.35	16,000	> 22	2.32
		ALBW20125	5R2008	6.27	29	1.54	0-15	-129	28.4	ND	0.53	0.048	18,000	> 22	> 3.3
		ALBW20140	6R2008	6.44	32	1.86	0.20	-104	20.1	6.3	4.6	1.2	19,000	> 22	2.75
		ALBW20155	7R2009	7.72	16	1.5	0.07	-117	15.6	ND	1.6	0.16	21,000	22	2.08
		ALBW20170	8R2009	6.78	10	2.1	0.63	-90	17.4	ND	1	0.058	18,000	7	3.3
		ALBW20185	9R2010	6.38	9	1.57	0.04	-115	11	ND	2.4	0.038	18,000	>22	1.71
		ALBW 20200/201	10R2010	6.41	2.8	1.07	0.29	-103	5.9	16	16	2.85	16,000	13	> 3.3
MWT-24	downgradient of Biowalls C1/C2	ALBW20063	102007	7.02	10	0.762	0.27	-160					1		
		ALBW20078	202007	6.91	59	1.08	0.32	-146					ĺ		1)
		ALBW20092	3Q2007	6.8	5,4	1.48	0.03	-115							
		ALBW20107	4Q2007	6.81	134	1.32	0.41	-114							
		ALBW20122	5R2008	6.65	45	1.21	0.35	-43						9.1	1.54
		ALBW20137	6R2008	6.40	10	1,31	0.09	40							
		ALBW20152	7R2009	6.81	6.7	1.34	0.11	-20						ŀ	
		ALBW20164	8R2009	6.61	23	0.558	1,31	59							
		ALBW20182	9R2010	6.63	6.6	1.45	0.06	-21							
<u> </u>		ALBW20197	10R2010	6.78	8.9	0.919	0.14	10				ļ			
PT-17	downgradient of blowalls	ALBW20058	1Q2007	8	3.8	92	0.23	-111]				i 1
		ALBW20073	2Q2007	7 1	14	0.729	0.76	-151							[]
1		ALBW20087	3@2007	6.99	0.4	0.732	0.9	-157	1						[
l		ALBW20102	402007	7.12	8.7	2	NS	-24							
Ī		AL8W20116	5R2008		70	!	0.24		6	15.2	98	66	5700		
		ALBW20131	6R2008	6.68	0.85	0.796	0.30	26	2.6	45.8	6.9	6.6	380	2.6	0.43
		ALBW20146	7R2009	7.19	0.2	1	0.30	-20	4.9	28	50	56	8300	7.5	0.53
	1	ALBW20161	8R2009	6.75	4	0.345	0.58	-52	2.4	46.2	9.9	5	1,500	2.1	0.07
		ALBW20176	9R2010	6.73	0.9	0.816	0.11	-13	2.4	36	16	20	4.300	5.8	0.29
		ALBW20191	10R2010	6.72	0.45	0.619	0.21	42	1.5	31	4.8	3.5	900	4.0	0.06
MWT-7	immed, upgradient of ZVI wall	ALBW20062	1Q2007	6.8	19.6	0.581	0.01	62	1						
		ALBW20077	202007	6.95	8	0.763	0.76	52					ı		1 1
		ALBW20091	3Q2007	6.91	4	0.586	0.19	22							. 1
l		ABLW20106	402007	6.88	٥	0.9	0.16	14							
l		ALBW20120	5R2008	6.85	15	0.974	0.43	37	2.3	29.1	6.7	2	400	0.2	0.09
		ALBW20135	6R2008	6.85	7.37	0.859	0.28	66	29.1	3	11	0.27	670	0.8	0.16
l		ALBW20150	7R2009	7.61	2.6	0.786	0.05	16	3.1	27	7.8	0.76	1100	O.	0.05
l		ALBW20165	8R2009	7.12	0.9	0.555	0.46	32	4.5	29.3	17	0.52	2,900	0.01	0.14
	1	ALBW20180	9R2010	6.85	1.35	1 04	0.02	-21	1.5	29	9	0.55	1,700	0.2	0.19
		ALBW20195	10R2010	6.85	3.3	0.758	0.06	35	1.3	31	4.5	0.2	400	1.1	0.18

> = The concentration exceeded the range of the Hach DR/850 Colonmeter field kit.

J = the reported value is an estimated concentration.

ND = Non-detect.

NS = Not sampted; water level was below the indicator probe.

1Q2007 - First round of LTM (January 2007) 2Q2007 - Second round of LTM (March 2007) 3Q2007 - Third round of LTM (June 2007)

4Q2007 - Fourth round of LTM (November 2007) 5R2008 - Fifth Round of LTM (June 2008) 6R2008 - Sixth Round of LTM (December 2006) 7R2009 - Seventh Round of LTM (June 2009) 8R2009 - Eighth Round of LTM (December 2009)

9R2010 - Ninth Round of LTM (June 2010) 10R2010 - Tenth Round of LTM (December 2010)

Empty colls indicate that the specified analysis was not completed for that well. The bolded and italicized wells are the five wells included in the blowall process monitoring group. Analysis of TOC, sulfate, methane, ethane, and ethene were completed for the blowall process wells only.

Table 3 Groundwater Geochemical Data Ash Landfill Annual Report, Year 4 Seneca Army Depot Activity

Well ID	Location Description	Sample ID	Sample Round	pH	Turbidity (NTU)	Specific Conductance (mS/cm)	DO (mg/L)	ORP (mV)	TOC (mg/L)	Sulfate (mg/L)	Ethane (ug/L)	Ethene (ug/L)	Methane (ug/L)	Manganese (ug/L)	Ferrous Iron (ug/L)
PT-24	downgradient of ZVI wall	ALBW20061	1Q2007	8.1	10	70	0.37	-59						1	
		ALBW20076	2Q2007	7.58	0	0.464	2.2	-59							
		ALBW20090	3Q2007	7.22	1.3	0.557	0.13	-80							
		ALBW20105	4Q2007	7.35	9.7	2.38	0.19	-46		1					
		ALBW20119	5R2008	6,99	4.3	0.9	0.16	-104						0.5	0.55
		ALBW20134	6R2008	6.84	5.8	0.656	0.11	-10							-100
		ALBW20149	7R2009	7.14	4.1	0.679	0.05	-101							
		ALBW20164	8R2009	7.32	1	0.41	0.34	-192			1			1,9	0.2
		ALBW20179	9R2010	7.07	8.3	0.78	0.19	-37	(C.						
		ALBW20194	10R2010	7.05	6.14	0.568	0.09	-29							
MW-56	off-site well	ALBW20072	1Q2007	6.85	3.3	0.462	0.37	-102		7	1	1			
		ALBW20101	3Q2007	6.9	0	0.603	NS	-65							
		ALBW20124	5R2008	6.73	2	0.763	0.18	-132						0.4	1,18
		ALBW20139	6R2008	6.85	6	0.545	0.81	-125							100
		ALBW20154	7R2009	7.01	0.1	0.623	0.23	-186						1	
		ALBW20169	8R2009	6.59	7.3	0.311	1.86	-149							
		ALBW20184	9R2010	6.85	3.19	0.403	0.16	-131							
		ALBW20199	10R2010	6.88	1.26	0.659	0.32	-105							

> = The concentration exceeded the range of the Hach DR/850 Colonmeter field kit.

J = the reported value is an estimated concentration.

ND = Non-detect.

NS = Not sampled; water level was below the indicator probe.

1Q2007 - First round of LTM (January 2007) 2Q2007 - Second round of LTM (March 2007)

3Q2007 - Third round of LTM (June 2007)

4Q2007 - Fourth round of LTM (November 2007)

5R2008 - Fifth Round of LTM (June 2008)

6R2008 - Sixth Round of LTM (December 2008)

7R2009 - Seventh Round of LTM (June 2009)

8R2009 - Eighth Round of LTM (December 2009)

9R2010 - Ninth Round of LTM (June 2010)

10R2010 - Tenth Round of LTM (December 2010)

Empty cells indicate that the specified analysis was not completed for that well. The bolded and italicized wells are the five wells included in the biowall process monitoring group. Analysis of TOC, sulfate, methane, ethane, and ethene were completed for the biowall process wells only.

Table 4
Chlorinated Organics in Groundwater
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Sample Identification	Class GA	Sample Date Standard (ug/L)	PCE (ug/L) 5	TCE (ug/L) 5	1,1-DCE (ug/L) 5	cis-DCE (ug/L) 5	trans-DCE (ug/L) 5	VC (ug/L) 2	1,1-DCA (ug/L) 5
PT-18A	upgradient of walls	3-Jan-07	1 U	2000	0.64 J	220	1.6	2.4	1 U
		17-Mar-07	1 U	1000	0.73 J	170	1.4	2.9	1 U
		5-Jun-07	1 U	1100	1.4	430	3.3	3.3	1 U
		15-Nov-07	1 U	2700	2.1	720	3.4	8.2	1 U
		24-Jun-08	1 U	220	1 U	200	0.9 J	1.4	1 U
		12-Dec-08	0.36 U	1400	1.3	510	2.4	4.6	0.75 U
		4-Jun-09	0.36 U	810 J	0.8 J	260	1.8	2.6	0.75 U
		17-Dec-09	1.5 U	2100	1.5 U	630	3.5 J	7.1	2 J
		1-Jul-10	0.15 U	120	0.11 U	28	0.2 U	0.18 U	0.25 U
	X Company	19-Dec-10	0.15 U	6.3	0.11 U	0.54 J	0.2 U	0.18 U	0.25 U
MWT-25	upgradient of Biowall A	3-Jan-07	1 U	50	1 U	41	0.56 J	1.6	1 U
	The state of the s	17-Mar-07	1 U	55	1 U	84	1.2	9.6	1 U
		6-Jun-07	1 U	28	1 U	36	0.5 J	2.1	1 U
		15-Nov-07	1 U	26	1 U	17	1 U	0.64 J	1 U
		24-Jun-08	1 U	19	1 U	17	1 U	1 U	1 U
	4	15-Dec-08	0.36 U	3.2	0.29 U	0.63 J	0.13 U	0.24 U	0.75 U
		3-Jun-09	0.36 U	12	0.29 U	10	0.13 U	0.24 U	0.75 U
		17-Dec-09	0.36 U	4.2	0.38 U	3.3	0.42 U	0.24 U	0.29 U
		30-Jun-10	0.15 U	7.7	0.11 U	13	0.49 J	0.18 U	0.25 U
		19-Dec-10	0.15 U	1.9	0.11 U	0.97 J	0.2 U	0.18 U	0.25 U
MWT-26	upgradient of Biowalls B1/B2	3-Jan-07	1 U	10	1 U	19	0.6 J	2	1 U
	A STATE OF THE PARTY OF THE PAR	17-Mar-07	1 U	11	1 U	17	1	6.1	1 U
		5-Jun-07	1 U	3.2	1 U	11	0.7 J	4.4	1 U
		15-Nov-07	1 U	2.8	1 U	2.8	1 U	1 U	1 U
		24-Jun-08	1 U	1.7	1 U	3.3	1 U	1 U	1 U
		15-Dec-08	0.36 U	1.9	0.29 U	1	0.13 U	0.24 U	0.75 U
		3-Jun-09	0.36 U	3.6	0.29 U	6	0.13 U	3.5	0.75 U
		17-Dec-09	0.36 U	5.8	0.38 U	8.1	0.42 U	4.2	0.29 U
		29-Jun-10	0.15 U	1.7	0.11 U	5.5	0.37 J	0.18 U	0.25 U
		19-Dec-10	0.15 U	4.2	0.11 U	12	0.67 J	7.6	0.25 U
MWT-27	in Biowall B1	3-Jan-07	20 U	20 UJ		49 J	20 UJ	20 UJ	
		16-Mar-07	20 U	20 U	20 U	20 U	20 U	20 U	20 U
		5-Jun-07	20 U	20 U	20 U	20 U	20 U	20 U	20 U
		15-Nov-07	10 U	10 U	10 U	10 U	10 U	10 U	10 U
		24-Jun-08	4 U	4 U	4 U	4 U	4 U	4 U	4 U
,	1	15-Dec-08	3.6 U	1.8 U	2.9 U	1,6 U	1.3 U	2.4 U	7.5 U
Y	1	3-Jun-09	3.6 U	1.8 U	2.9 U	1.6 U	1.3 U	2.4 U	7.5 U
		16-Dec-09	1.8 U	2.3 U	1.9 U	1.9 U	2.1 U	3.1 J	1.5 U
		29-Jun-10	0.15 U	0.13 U	0.11 U	0.18 J	0.2 U	0.18 U	0.25 U
		20-Dec-10	0.15 U	0.51 J	0.11 U	1.1	0.2 U	2.1	0.25 U

- Sample duplicate pairs were collected at MWT-28 in Jan-07 and June-10; MWT-29 in Mar-07, Jun-08, and Dec-09; MWT-27 in Jun-07, Dec-08, and Dec-09; and MWT-23 in Nov-07 and Dec-10. If an analyte was detected in the sample but not detected in the duplicate (or vice versa) the non-detect value was taken at half the detection limit averaged with the detect value.
- 2. Wells in bold and italics are the biowall process monitoring wells.
- Grey shading indicates that the concentration was detected above its Class GA groundwater standard. The Class GA Groundwater standard for TCE and cis-DCE is 5 ug/L; for VC the Class GA standard is 2 ug/L.
- U = compound was not detected.
- J = the reported value is an estimated concentration,
- UJ = the compound was not detected; the associated reporting limit is approximate.

Table 4
Chlorinated Organics in Groundwater
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Sample		Sample	PCE	TCE	1,1-DCE	cis-DCE	trans-DCE	VC	1,1-DCA
Identification		Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MWT-28	in Biowall B2	3-Jan-07	20 U	20 UJ	20 UJ	20 UJ	20 UJ	20 UJ	20 U.
		16-Mar-07	20 U	20 U	20 U	20 U	20 U	20 U	20 U
		5-Jun-07	20 U	20 U	20 U	20 U	20 U	20 U	20 U
		15-Nov-07	5 U	5 U	5 U	5 U	5 U	5 U	5 U
		25-Jun-08	4 U	4 U	4 U	4 U	4 U	4 U	4 U
		15-Dec-08	3.6 U	1.8 U	2.9 U	1.6 U	1.3 U	2.4 U	7.5 U
		3-Jun-09	0.36 U	0.18 U	0.29 U	0.16 U	0.13 U	0.24 U	0.75 U
		18-Dec-09	1.8 U	2.3 U	1.9 U	1.9 U	2.1 U	1.2 U	1.5 U
		29-Jun-10	0.15 U	0.13 U	0.11 U	0.15 U	0.2 U	0.18 U	0.25 U
		18-Dec-10	0.15 U	0.13 U	0.11 U	0.51 J	0.2 U	0.64 J	0.25 U
MWT-29	downgradient of Biowall B2	3-Jan-07	2 U	22	2 U	280	6.5	140	2 U
		16-Mar-07	4 U	19	4.5 U	220	7.75	165	4.5 U
		5-Jun-07	2 U	7.6	2 U	100	2.1	81	2 U
		14-Nov-07	10	4.4	1 U	96	0.83 J	74	1 U
	1	25-Jun-08	10	3.3	1 U	84	0.65 J	74	1 U
		15-Dec-08	0.36 U	6.6	0.29 U	91	0.6 J	80	0.75 U
		3-Jun-09	0.36 U	4.5	0.29 U	61	0.67 J	43	0.75 U
		16-Dec-09	0.36 U	3.5	0.38 U	37	0.65 J	29	0.29 U
		30-Jun-10	0.15 U	1.3	0.26 J	78	1.1	69	0.25 U
		19-Dec-10	0.15 U	2.1	0.4 J	38	0.77 J	27	0.25 U
MWT-22	downgradient of Biowall B2	3-Jan-07	2 U	5.2	2 U	130	2.7	98	2 U
		17-Mar-07	4 U	3.8 J	4 U	90	4 U	64	4 U
		6-Jun-07	1 U	6.5	1 U	120	3.2	81	1 U
		14-Nov-07	1 U	2.6	1 U	99	0.85 J	180	1 U
		25-Jun-08	5 U	3 J	5 U	68	5 U	42	5 U
		15-Dec-08	1.8 U	5.9	1.4 U	160	0.65 U	140	3.8 U
		3-Jun-09	0.36 U	2.2	0.29 U	66	0.77 J	89	0.75 U
		16-Dec-09	1.8 U	2.3 U	1.9 U	57	2.1 U	52	1.5 U
		1-Jul-10	0.15 U	0.6 J	0.12 J	41	1.3	57	0.25 U
		17-Dec-10	0.15 U	1.8	0.66 J	130	2.8	98	0.25 U
PT-22	between Biowalls B and C	3-Jan-07	10	11	1 U	57	0.86 J	22	1 U
	The second secon	15-Mar-07	1 U	16	1 U	41	0.51 J	13	1 U
		5-Jun-07	1 U	8.5	1 U	61	0.72 J	32	1 U
		14-Nov-07	10	9.7	1 U	30	0.67 J	11	1 U
		26-Jun-08	1 U	4.1	1 U	26	0.57 J	13	1 U
		15-Dec-08	0.36 U	35	0.29 U	52	0.41 J	1.3	0.75 U
		2-Jun-09	0.36 U	6.9	0.29 U	41	0.81 J	11	0.75 U
		16-Dec-09	0,36 U	8.7	0.38 U	29	0.42 U	9.5	0.29 U
		30-Jun-10	0.15 U	4.6	0.11 U	43	0.75 J	11	0.25 U
		17-Dec-10	0.15 U	29	0.11 U	42	0.48 J	2.1	0.25 U
MWT-23	in Biowall C2	3-Jan-07	4 U	4 U	4 U	60	4 U	23	4 U
		16-Mar-07	4 U	4 U	4 U	11	4 U	4.8	4 U
		6-Jun-07	2 U	2 U	2 U	3.1	2 U	2 U	2 U
		16-Nov-07	7 U	7 U	2.6 U	3.6 J	7 U	3.7 J	7 U
		25-Jun-08	1 U	1 U	1 U	1 U	1 U	1 U	1 U
		12-Dec-08	0.36 U	0.41 J	0.29 U	2.4	0.13 U	2.8	0.75 U
		2-Jun-09	0.36 U	0.18 U	0.29 U	0.42 U	0.13 U	0.24 U	0.75 U
		15-Dec-09	0.36 U	0.46 U	0.38 U	0.47 J	0.42 U	0.24 U	0.29 U
		29-Jun-10	0.15 U	0.13 U	0.11 U	0.41 J	0.2 U	0.18 U	0.25 U
		19-Dec-10	0.15 U	0.29 J	0.11 U	4.6	0.49 J	5.3	0.52 J

Sample duplicate pairs were collected at MWT-28 in Jan-07 and June-10; MWT-29 in Mar-07, Jun-08, and Dec-09; MWT-27 in Jun-07, Dec-08, and Dec-09; and MWT-23 in Nov-07 and Dec-10. If an analyte was detected in the sample but not detected in the duplicate (or vice versa) the non-detect value was taken at half the detection limit averaged with the detect value.

^{2.} Wells in bold and italics are the biowall process monitoring wells.

Grey shading indicates that the concentration was detected above its Class GA groundwater standard. The Class GA Groundwater standard for TCE and cis-DCE is 5 ug/L; for VC the Class GA standard is 2 ug/L.

U = compound was not detected.

J = the reported value is an estimated concentration.

UJ = the compound was not detected; the associated reporting limit is approximate.

Table 4
Chlorinated Organics in Groundwater
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Sample Identification		Sample Date	PCE (ua/L)	TCE (ug/L)	1,1-DCE (ug/L)	cis-DCE (ug/L)	trans-DCE (ug/L)	VC (ug/L)	1,1-DCA (ug/L)
MWT-24	downgradient of Biowalls C1/C2	3-Jan-07	1 10	0.94 J	1 U	210	2.1	19	0.81
		15-Mar-07	1 0	1 U	1 U	68	0.88 J	45	0.83
		5-Jun-07	2 U	2 U	2 U	19	2 U	22	1.1 .
		13-Nov-07	10	1.6	1 U	6.7	10	3.8	1
		26-Jun-08	5 U	5 U	5 U	31	5 U	5 U	5
		12-Dec-08	0.36 U	6	0.29 U	52	0.13 U	3.6	0.75
		2-Jun-09	0.36 U	4.8	0.29 U	38	0.13 U	7.3	0.75
		15-Dec-09	0.36 U	4.7	0.7 J	32	0.42 U	4	0.29
		1-Jul-10	0.15 U	5	0,11 U	31	0.41 J	7.5	0.79
		17-Dec-10	0.15 U	3.3	0.11 U	23	1	4.3	0.58
PT-17	downgradient of biowalls	2-Jan-07	10	6	1 U	62	1.0	21	1
	1	15-Mar-07	2 U	11	2 U	26	2 U	21	2
		5-Jun-07	1 U	3.4	1 U	43	0.77 J	9.9	1
		13-Nov-07	10	15	1 U	27	0.54 J	22	1
		26-Jun-08	1 0	8.5	1 U	21	1 U	23	1
		11-Dec-08	0.36 U	9.2	0.29 U	24	0.46 J	10	0.75
		2-Jun-09	0.36 U	8	0.29 U	56	1.1	55	0.75
		15-Dec-09	0.36 U	7.8	0.38 U	65	1.8	20	0.29
		1-Jul-10	0.15 U	3	0.24 J	81	3.2	53	0.25
		18-Dec-10	0.15 U	8.1	0.42 J	39	2.2	16	0.25
MWT-7	immed, upgradient of ZVI wall	4-Jan-07	1 U	490	1 U	35	1 U	0.51 J	1
	and the state of t	15-Mar-07	1 0	440	1 U	42	1 U	9.7	1
		5-Jun-07	10	410	1 U	61	1 U	18	1
		13-Nov-07	10	510	1 U	90	1 U	24	1
		25-Jun-08	10	440	1 U	.90	1 U	12	1
		15-Dec-08	0.36 U	410	0.29 U	79	0.13 U	13	0.75
		2-Jun-09	0.36 U	330	0.29 U	68	0.13 U	9.3	0.75
		15-Dec-09	0.36 U	350	0.38 U	140	0.55 J	21	0.48
		1-Jul-10	0.15 U	330	0.78 J	170	0.91 J	15	0.25
		18-Dec-10	0.15 U	310	0.98 J	120	0.75 J	15	0.25
PT-24	downgradient of ZVI wall	2-Jan-07	1 U	4	1 U	54	0.86 J	0.6 J	0.68
	A TOTAL STREET, THE STREET, TH	15-Mar-07	1 U	2.8	1 U	38	0.81 J	1 U	1
		5-Jun-07	1 U	3.1	1 U	60	1.6	2.6	0.75
		13-Nov-07	1 U	3.8	1 U	39	1 U	1 U	0.56
		26-Jun-08	1 U	2.4	1 U	48	1.1	1.9	0.69
		12-Dec-08	0.36 U	2.2	0.29 U	34	0.36 J	0.26 J	0.75
		2-Jun-09	0.36 U	1.7	0.29 U	32	0.83 J	2	0.75
		15-Dec-09	0.36 U	1.7	0.38 U	28	0.61 J	1.6	0.29
		30-Jun-10	0.15 U	0.39 J	0.11 U	33	1,1	3.8	0.54
		17-Dec-10	0.15 U	0.53 J	0.11 U	30	1.4	7.7	0.54
MW-56	off-site welt	4-Jan-07	1 U	1 U	1 U	1.2	1 U	1 U	1
dc-yvn	100000	6-Jun-07	1 U	1 U	1 U	1.7	1 U	1 U	1
		26-Jun-08	1 U	1 U	1 U	1.3	1 U	1 U	1
		11-Dec-08	0.36 U	0.33 J	0.29 U	0.4 J	0.13 U	0.24 U	0.75
		4-Jun-09	0.36 U	0.18 U	0.29 U	1	0.13 U	0.24 U	0.75
		18-Dec-09	0.36 U	0.46 U	0.38 U	0.56 J	0.42 U	0.24 U	0.29
		1-Jul-10	0.15 U	0.13 U	0.11 U	0.61 J	0.2 U	0.18 U	0.25
		19-Dec-10	0.15 U	0.13 U	0.11 U	0.86 J	0.2 U	0.18 U	0.25

Downgradient

- Sample duplicate pairs were collected at MWT-28 in Jan-07 and June-10; MWT-29 in Mar-07, Jun-08, and Dec-09; MWT-27 in Jun-07, Dec-08, and Dec-09; and MWT-23 in Nov-07 and Dec-10. If an analyte was detected in the sample but not detected in the duplicate (or vice versa) the non-detect value was taken at half the detection limit averaged with the detect value.
- 2. Wells in bold and italics are the biowall process monitoring wells.
- 3. Grey shading indicates that the concentration was detected above its Class GA groundwater standard. The Class GA Groundwater standard for TCE and cis-DCE is 5 ug/L; for VC the Class GA standard is 2 ug/L.
- U = compound was not detected.
- J = the reported value is an estimated concentration.
- UJ = the compound was not detected; the associated reporting limit is approximate.

Table 5 Groundwater Trends Ash Landfill Annual Report, Year 4 Seneca Army Depot Activity

Sampled Wells	Location			TCE	cis-1,2-DCE	VC
PT-18A ¹	upgradient of walls	Sample Date: Est. Date ² :	19-Dec-10 Trend:	6.3 Decreasing	0.54 J Increasing	0.18 U Decreasing
MWT-25	upgradient of Biowall A	Sample Date: Est. Date ² :	19-Dec-10 Trend:	1.9 Compliant	0.97 J Compliant	0.18 U Compliant
MWT-26	upgradient of Biowalls 81/B2	Sample Date: Est. Date ⁴ :	19-Dec-10 Trend:	4.2 Compliant	12 Decreasing	7.6 No Trend
MWT-27	in Biowall B1	Sample Date: Est. Date ² :	20-Dec-10 Trend:	0.51 J Compliant	1.1 Compliant	2.1 No Trend
MWT-28	in Biowall B2	Sample Date: Est. Date ² :	18-Dec-10 Trend:	0.13 U Compliant	0.51 J Compliant	0.64 J Compliant
MWT-29	downgradient of Biowall B2	Sample Date: Est. Date ² :	19-Dec-10 Trend:	2.1 Compliant	38 Decreasing	27 Decreasing
MWT-22	downgradient of Biowall B2	Sample Date: Est. Date ² :	17-Dec-10 Trend:	1.8 Compliant	130 Decreasing	98 No Trend
PT-22	between Biowalls B and C	Sample Date: Est. Date ² :	17-Dec-10 Trend:	29 Increasing	42 Decreasing	2.1 Decreasing
MWT-23 ³	in Biowall C2	Sample Date: Est. Date ² :	19-Dec-10 Trend:	0.29 J Compliant	4.6 Compliant	5.3 Decreasing
MWT-24	downgradient of Biowalls C1/C2	Sample Date: Est. Date ² :	17-Dec-10 Trend:	3.3 Compliant	23 Decreasing	4.3 Decreasing
PT-17 ¹	downgradient of biowalls	Sample Date: Est. Date ² :	18-Dec-10 Trend:	8.1 Decreasing	39 No Trend	16 No Trend
MWT-7 ¹	immed. Upgradient of ZVI wall	Sample Date: Est. Date ² :	17-Dec-10 Trend:	310 Decreasing	120 Increasing	15 No Trend
PT-24	downgradient of ZVI wall	Sample Date: Est. Date ² :	Trend:	0.53 J Compliant	30 Decreasing	7.7 Increasing
MW-56	off-site well	Sample Date: Est. Date ² :	18-Dec-09 Trend:	0.13 U Compliant	0.86 J Compliant	0.18 U Compliant

- The concentration of TCE at these wells has not been impacted by the biowall system and dates to achieve compliance cannot be estimated at this
 time due to the natural variation in concentrations over time.
- The date that the groundwater standard will be achieved is estimated based on an exponential regression of the time plots for each well. The dates are rough estimates that indicate that the groundwater concentrations will eventually reach the GA standard and are not intended to represent a definitive timeframe in which the GA standards will be achieved.
- 3. The concentrations presented were an average of the sample duplicate pair.
- Overall concentrations follow a decreasing trend; however further monitoring is needed to efficidate the dates at which compounds can be expected
 to reach groundwater standards.
- U = compound was not detected.
- J = the reported value is an estimated concentration.

FIGURES

Figure 1	Ash Landfill Location at SEDA
Figure 2	Ash Landfill Site Plan
Figure 3	Ash Landfill Historic Site Map
Figure 4	Location of Farmhouse Wells
Figure 5	Reductive Dechlorination of Chlorinated Ethenes
Figure 6	Chlorinated Ethenes Concentrations in Groundwater
Figure 7	Groundwater Elevations
Figure 8	Groundwater Contours & Groundwater Flow Direction Dec. 2010
Figure 9A	Concentrations of VOCs Along the Biowalls - Quarter 1, 2007
Figure 9B	Concentrations of VOCs Along the Biowalls - Quarter 2, 2007
Figure 9C	Concentrations of VOCs Along the Biowalls - Quarter 3, 2007
Figure 9D	Concentrations of VOCs Along the Biowalls - Quarter 4, 2007
Figure 9E	Concentrations of VOCs Along the Biowalls - Round 5, 2008
Figure 9F	Concentrations of VOCs Along the Biowalls - Round 6, 2008
Figure 9G	Concentrations of VOCs Along the Biowalls - Round 7, 2009
Figure 9H	Concentrations of VOCs Along the Biowalls - Round 8, 2009
Figure 9I	Concentrations of VOCs Along the Biowalls - Round 9, 2010
Figure 9J	Concentrations of VOCs Along the Biowalls - Round 10, 2010
Figure 10A	Concentrations of Chlorinated Organics Over Time at MWT-25
Figure 10B	Concentrations of Chlorinated Organics Over Time at MWT-26
Figure 10C	Concentrations of Chlorinated Organics Over Time at MWT-27
Figure 10D	Concentrations of Chlorinated Organics Over Time at MWT-28
Figure 10E	Concentrations of Chlorinated Organics Over Time at MWT-29
Figure 10F	Concentrations of Chlorinated Organics Over Time at MWT-22
Figure 10G	Concentrations of Chlorinated Organics Over Time at PT-22
Figure 10H	Concentrations of Chlorinated Organics Over Time at MWT-23
Figure 10I	Concentrations of Chlorinated Organics Over Time at MWT-24
Figure 10J	Concentrations of Chlorinated Organics Over Time at PT-24
Figure 11A	Historic Concentrations of Chlorinated Organics at PT-18A
Figure 11B	Historic Concentrations of Chlorinated Organics at PT-17
Figure 11C	Historic Concentrations of Chlorinated Organics at MWT-7
Figure 12	Decision Diagram

Figure 5
Reductive Dechlorination of Chlorinated Ethenes
Ash Landfill Annual Report
Seneca Army Depot Activity

Figure 7
Groundwater Elevations
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Note: Groundwater levels were measured on: December 12, 2006; June 4, 2007; November 7, 2007; June 23, 2008; December 23, 2008; June 1, 2009; December 14, 2009; June 28, 2010, and December 13, 2010. Groundwater elevations were not measured at well MW-56 during 3Q2007, 4Q2007, 6R2008, or 8R2009; at PT-17 during 1Q2007 or 8R2008; or at PT-18A during 4Q2007. Groundwater levels were not recorded during 2Q2007.

Figure 9A

Concentrations of VOCs Along the Biowalls - Quarter 1, 2007

Ash Landfill Annual Report, Year 4

Seneca Army Depot Activity

		0

Figure 9B
Concentrations of VOCs Along the Biowalls - Quarter 2, 2007
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 9C
Concentrations of VOCs Along the Biowalls - Quarter 3, 2007
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 9D
Concentrations of VOCs Along the Biowalls - Quarter 4, 2007
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 9E
Concentrations of VOCs Along the Biowalls - Round 5, 2008
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 9F
Concentrations of VOCs Along the Biowalls - Round 6, 2008
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 9G
Concentrations of VOCs Along the Biowalls - Round 7, 2009
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 9H
Concentrations of VOCs Along the Biowalls - Round 8, 2009
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 9I
Concentrations of VOCs Along the Biowalls - Round 9, 2010
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 9J
Concentrations of VOCs Along the Biowalls - Round 10, 2010
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 10A
Concentrations of Chlorinated Organics Over Time at MWT-25
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Note:

ND = not detected.

Figure 10B
Concentrations of Chlorinated Organics Over Time at MWT-26
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Note: ND = not detected.

Figure 10C
Concentrations of Chlorinated Organics Over Time at MWT-27
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Note: Round 3 and Round 6 data is the average of the sample and its duplicate. ND = not detected.

Figure 10D
Concentrations of Chlorinated Organics Over Time at MWT-28
Ash Landfill Annual Report, Year 4

Note: Round 3 and Round 6 data is the average of the sample and its duplicate. ND = not detected.

Figure 10E
Concentrations of Chlorinated Organics Over Time at MWT-29
Ash Landfill Annual Report, Year 4

Note: Round 2 and Round 5 data is the average of the sample and its duplicate.

Figure 10F
Concentrations of Chlorinated Organics Over Time at MWT-22
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure 10G
Concentrations of Chlorinated Organics Over Time at PT-22
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Note:

Figure 10H
Concentrations of Chlorinated Organics Over Time at MWT-23
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Note: Round 4 data is the average of the sample and its duplicate. ND = not detected.

Figure 10I
Concentrations of Chlorinated Organics Over Time at MWT-24
Ash Landfill Annual Report, Year 4

Note: ND = not detected.

Figure 10J
Concentrations of Chlorinated Organics Over Time at PT-24
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Note: ND = not detected.

Figt 1A .
Historic Concentrations of Chiorinated Organics at PT-18A
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figu 1C
Historic Concentrations of Chiorinated Organics at MWT-7
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

OFF-SIT RFORMANCE MONITURING WELL (MW-56)

····· Current selected path

SEE SHEET 2 FOR NOTES

ON-SITE . //E PERFORMANCE MONITORING WELLS

(PT-17, PT-18, PT-22, PT-24, MWT-7, MWT-22, MWT-24, MWT-25. Add MWT-15 & MWT-23 after 1st recharge.)

BIOWALL PROCE. ELLS (MWT-26, MWT-27, MWT-28, MWT-29, MWT-23)

NOTES:

- 1. Achieving GA Stds: The condition of achieving GA standards applies to achieving groundwater standards for all COCs in all of the On-Site Plume Wells. If GA standards are achieved in the On-Site Plume Wells for two successive monitoring events, then the remedy is complete and no further monitoring is required at the site.
- 2. Decreasing Trend: After each year of sampling, the Army will review the results to determine if the chemical concentrations of the COCs are increasing, decreasing, or are unchanged. Graphical and statistical analyses will be used as the basis for this determination. For example, data points will be plotted and a best fit line (linear regression) will be graphed. The slope of the best fit line is representative of the trend in concentration; a negative slope indicates a decreasing trend in COC concentrations. A decreasing COC trend indicates that the potential for contaminants to migrate and negatively impact groundwater further downgradient is decreasing, and that the plume is being effectively managed by the remedy. Any evaluation of trends in contaminant concentrations will take into account that historic data at the Ash Landfill shows that there are seasonal fluctuations in contaminant concentrations. Semi-annual monitoring during wet and dry seasons is appropriate until it is established in which season maximum concentrations are observed. Annual monitoring would occur in the season of maximum concentrations.

3. Recharge Evaluation:

- Determining the need to recharge a biowall segment requires a review of chemical concentrations and geochemical parameters by an experienced professional. A specific, absolute set of conditions or parameter values are not appropriate to determine the need to recharge. Rather, a lines-of-evidence approach will be used that correlates a decrease in the efficiency of the system to degrade chloroethenes to geochemical evidence that indicates the cause is due to substrate depletion.
- The following parameters will be evaluated on an annual basis using at least two consecutive rounds of sampling data in order to determine if recharge of the biowalls is necessary:
 - a. COC concentrations in the wall. If COC concentrations have rebounded by greater than 50% for any single sampling event, this will indicate that recharge should be considered. Concentrations within the biowalls, not at downgradient locations, will be used to make this evaluation so that the effectiveness of the wall itself is being measured without the interference of effects such as desorption and mixing.
 - b. Geochemical parameters, specifically ORP, TOC, and DO, in the wall. Benchmark values will be used initially to evaluate anaerobic conditions in the groundwater. These benchmarks are:
 - ORP < -100 MV
 - TOC > 20 ma/L
 - DO < 1.0 mg/L

Parameters described in a and b above are intended to be used as guidelines and will be considered in the evaluation if, and when, a depletion of bioavailable organic substrate results in a rebound in geochemical redox conditions under which effective biodegradation does not occur.

4. Indirect Recharge Evaluation: Once the biowalls are recharged the first time, an indirect recharge evaluation will be conducted if an increasing trend in COC concentrations is observed in the plume performance monitoring wells. An increasing trend is a positive slope on the best-fit line, described in *Note* 2 above. Two biowall monitoring wells, MWT-15 and MWT-23, will be added to the Plume Performance Monitoring program after the first recharge is completed. The evaluation will review the chemical and geochemical data and determine if the contaminant increase is a result of poor biowall performance or due to other issues, such as seasonal variations, recent precipitation events, desorption, etc. As stated in Note 2, a rebound in concentrations of COCs of 50% in MWT-15 and MWT-23 in two consecutive monitoring rounds is a major indication that recharge is needed. Once this COC rebound is observed, the geochemical parameter concentrations at MWT-15 and MWT-23 will be reviewed. In addition, conditions at the other plume performance wells will be reviewed and compared to the conditions observed at those wells at the time that the initial recharge was required. The Army will determine if similar conditions in the well provide further proof that carbon source recharge is needed again.

APPENDICES

Appendix A Field Forms for 9R2010 and 10R2010 (CD)

Appendix B Complete Groundwater Data

Appendix C Regression Plots

APPENDIX A

FIELD FORMS FOR 9R2010 and 10R2010 (CD)

APPENDIX B

COMPLETE GROUNDWATER DATA

Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL PT-18A GW ALBW20059 1/3/2007 SA LTM 1	ASH LANDFILL PT-18A GW ALBW20074 3/17/2007 SA LTM 2	ASH LANDFILL PT-18A GW ALBW20088 6/5/2007 SA LTM 3	ASH LANDFILL PT-18A GW ALBW20103 11/15/2007 SA LTM 4	ASH LANDFILL PT-18A GW ALBW20117 6/24/2008 SA LTM 5	ASH LANDFILL PT-18A GW ALBW20132 12/12/2008 SA LTM 6
Parameter	Units	Value	Detection	Goals 1	Exceedances		Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (O)	Value (Q)
Volatile Organic Compounds													:(-/
t,t,t-Trichloroethane	UG/L	0.76	3%	5	0	4	148	1 U	1 U	1 U	1 U	1 U	0.26 UJ
1,1,2,2-Tetrachloroethane	UGAL	0	0%	5	0	0	148	† U	1 U	1 U	1 U	1 U	0.21 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	148	1 U	1 U	1 UJ	1 U	1 UJ	0.31 U
1,1,2-Trichloroalhane	UG/L	0	0%	1	O	0	148	1 U	1 U	1 U	1 U	1 U	0.23 U
1,1-Dichlorpethane	UG/L	1.1	9%	5	0	14	148	1 U	1 U	1 U	1 U	1 U	0.75 U
1,1-Dichloroethene	UG/L	2.1	11%	5	0	16	148	0.64 J	0.73 J	1.4	2.1	1 U	1,3
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	148	1 U	1 U	1 U	1 U	1 U	0.41 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	148	1 U	1 ປ	1 U	1 U	1 UJ	1 UJ
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	Ö	148	1 U	1 U	1 U	1 U	1 U	0.17 U
1.2-Dichlorobenzene	UG/L	0	0%	3	0	Ð	148	1 U	1 U	1 ប	1 U	1 U	0.2 ป
1.2-Dichloroethane	UG/L	5.6	13%	0.6	16	19	148	1 U	1 U	1.0	1 U	1 U	0.21 U
1.2-Dichloropropane	UG/L	0	0%	1	0	0	148	1 U	1 ป	1 🛭	1 U	1 U	0.14 U
1.3-Dichlorobenzene	UG/L	0	0%	3	0	0	148	1 U	1 U	1 U	1 U	1 U	0.16 ∪
1,4-Dichlorobenzene	UG/L	0	0%	3	¢.	0	148	1 U	1 U	1 U	1 U	1 U	0.16 U
Acetone	UG/L	2600	25%		0	37	148	5 ป	2 J	7	5 U	5 U	1.3 U
Banzene	UG/L	Ð	0%	1	0	0	148	1 U	1 Ų	1 U	1 U	1 U	0.16 U
Bromodichloromethane	UG/L	0	0%	80 b	0	0	148	1 U	1 U	1 U	1 U	1 U	0.38 ∪
Bromoform	UG/L	Ð	0%	80 "	ρ	0	148	1 U	1 U	1 U	1 U	1 U	0.26 U
Carbon disulfide	UG/L	O	0%		۵	0	148	1 U	1 U	1 Ų	1 U	1 ປ	0.19 U
Carbon tetrachlonde	UG/L	0	0%	5	D	0	146	1 U	1 U	1 U	1 U	1 U	0.27 UJ
Chlorobenzene	UG/L	0	0%	5	۵	0	146	1 U	1 U	1 U	1 U	1 U	0.18 U
Chlorodibromomethane	UG/L	0	0%	80 ^t	Ð	0	148	1 U	1 U	1 U	1 U	1 U	0.32 U
Chloroethane	UG/L	1.1	5%	5	Ð	7	148	1 U	1 U	1 U	1 U	1 UJ	0.32 U
Chloroform	UG/L	27	10%	7	4	15	148	27	13 U	14	H.7	1 U	22
Cis-1,2-Dichloroethene	UG/L	720	84%	5	98	124	148	220	170	430	720	290	510
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	148	1 U	1 U	1 0	1 U	1 U	0.36 U
Cyclonexane	UG/L	0	0%		Ð	0	148	1 U	1 U	1 U	1 U	1 ป	0.22 U
Dichlorodifluoromethane	UG/L	0	D%	5	0	0	148	1 U	1 U	1 U	1 U	1 U	0.28 UJ
Elhyl benzene	UG/L	1.3	6%	5	0	9	148	1 U	1 U	1 U	1 U	1 U	0.18 U
lsopropy/benzene	UG/L	Ġ	0%	5	0	٥	148	† U	1 U	1 U	1 U	1 U	0.19 U
Methyl Acetate	UG/L	6	1%		0	2	148	1 U	1 UJ	1 IJ	1 UJ	1 UJ	0.17 U
Methyl Tertbutyl Ether	UG/L	0	0%		0	0	148	1 U	1 U	1 U	1 U	1 U	0.16 U
Methyl bromide	UG/L	0	0%	5	0	0	147	1 U	1 🛭	1 U	1 U	1 UJ	0.28 U
Methyl butyl katone	UG/L	0	0%		0	0	148	5 U	5 U	5 U	5 UJ	5 UJ	1.2 U
Methyl chlonde	UG/E	0	0%	5	0	0	148	1 U	1 U	1 U	1 U	1 Ա.	0.34 U
Methyl cyclohexane	UG/L	0	0%		0	Q	148	1 U	1 U	1 U	1 U	1 U	0.22 U
Methyl ethyl ketone	UG/L	4900	14%		0	21	148	5 U	5 U	5 U	5 U	5 UJ	1.3 U
Methyl isobutyl ketone	UG/E	0	0%		0	0	148	5 U	5 U	5 U	5 U	5 UJ	0.91 U
Methylene chloride	UG/L	18	8%	5	7	12	148	1 UJ	1 U	1 U	1 U	1 U	0.44 UJ
Styrene	UG/L	Q	0%	5	0	0	148	1 U	1 U	1 U	1 U	1 U	0.18 Ų
Tetrachloroalhene	UG/L	0	0%	5	0	0	148	1 U	1 U	1 U	1 U	1 U	0.36 U
Toluene	UG/L	590	18%	5	16	27	148	1 U	1 U	1 U	1 U	1 U	0.51 ∪
Total Xylenes	UG/L	Ð	0%	5	Q.	0	148	3 U	3 ∪	3 U	3 U	3 U	0.93 ₺
Trans-1,2-Dichloroethena	UG/L	8	47%	5	3	69	148	1.6	1.4	3.3	3.4	0.9 J	2.4
Trans-1,3-Dichloropropene	LIG/L	0	ይ%	0.4	0	0	146	1 U	1 U	1 U	1 U	1 U	0.37 ∪

Fac								ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL	ASH LANDFILL
Location Ma								PT-18A	PT-18A	PT-18A	PT-18A	PT-18A	PT-18A
Sample								GW	GW GW	GW	GW	GW	GW
Sample D								ALBW20059 1/3/2007	ALBW20074 3/17/2007	ALBW20088 6/5/2007	ALBW20103 11/15/2007	ALBW20117 6/24/2008	ALBW20132
ac co								SA	SA	SA	SA	5A	12/12/2008 SA
Study								LTM	LTM	LTM	LTM	LTM	LTM
Sampling Rou	ınd	Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	1	2	3	4	5	6
Parameter	Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
richloroethene	UG/L	2700	70%	5	55	103	148	2000	1000	1100	2700	220	1490
richlorofluoromethane	UG/L	0	0%	5	0	0	148	1 U	1.0	1 UJ	1 U	1 UJ	0.15 UJ
/inyl chioride	UG/L	180	66%	2	85	97	148	2.4	2.9	3.3	8.2	1,4	4.6
Other													
ron	UG/L	296000	100%		11	12	12						
ron+Manganese	UG/L	352900	100%		12	12	12						
Manganese	UG/L	56900	100%		12	12	12						
thane	UGIL	98	90%		0	65	72						
thens	UG/L	200	90%		0	65	72						
Methane	UG/L	23000	96%		0	69	72						
Sulfate	MG/L	1060	72%	250000	2	52	72						
					_								

72

Notes:

Total Organic Carbon

1 The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

MG/L

- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

2050

100%

- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL PT-18A GW ALBW20147 6/4/2009 SA LTM 7	ASH LANDFILL PT-18A GW ALBW20182 12/17/2009 SA LTM B	ASH LANDFILL PT-18A GW ALBW20177 7/1/2010 SA LTM 9	ASH LANDFILL PT-18A GW ALBW20192 12/19/2010 SA LTM 10	ASH LANDFILL MWT-25 GW ALBW20064 1/3/2007 SA LTM 1	ASH LANDFILL MWT-25 GW ALBW20079 3/17/2007 SA LTM 2
Parameter	Units	Value	Detection	Goals 1	Exceedances		Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Volatile Organic Compounds							r-myeed	raida (a)	Tallo (a)	raide (d)	Yaide (@)	Value (G)	vaine (a)
1,1,1-Trichloroethane	UG/L	0.76	3%	5	0	4	148	0.26 U	1,1 U	0.5 U	0.5 U	1 U	1 U
1,1,2,2-Tetrachloroethane	UG/L	Ð	0%	5	0	0	148	0.21 U	0.85 ⊔	0.18 U	0.18 U	1 U	1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	148	0.31 U	1.2 UJ	0.5 ป	0.5 Lt	1 U	1 U
1,1,2-Trichloroethane	UG/L	Ð	0%	1	0	0	148	0.23 U	0.92 U	0.13 ป	0.13 U	1 U	1 U
1,1-Dichloroethane	UG/L	1.1	9%	5	0	14	148	0.75 U	1.5 U	0.25 U	0.25 U	1 U	1 U
1,1-Dichloroethene	UG/L	2.1	11%	5	0	16	14B	0.8 J	2 J	0.11 U	0.11 U	1 U	1 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	148	0.41 U	160	0.25 U	0.25 U	1 U	1 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	148	1 U	1.6 U	0.44 U	0.44 U	1 U	1 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	0	0	148	0.17 U	0.66 U	0.25 U	0.25 U	1 U	1 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	148	0.2 U	0.81 U	0.21 U	0.21 U	1 U	1 U
1.2-Dichloroethane	UG/L	5.6	13%	0.6	16	19	148	0.21 U	0.86 U	0.1 U	0.1 U	1 U	1 U
1,2-Dichloropropane	UG/L	0	0%	1	0	0	148	0 14 U	1.3 U	0.13 U	0.13 U	1 U	1 U
1.3-Dichlorobenzene	UG/L	0	0%	3	0	O.	148	0.16 U	1.4 U	0.25 U	0.25 U	1 U	1 U
1.4-Dichlorobenzane	UG/L	0	0%	3	0	Ò	148	0.16 U	1.6 U	0.28 U	0.28 U	1 U	1 ⊔
Acetone	UG/L	2600	25%		٥	37	148	1.3 UJ	5.4 U	5 U	5 UJ	5 U	5 U
Benzene	UG/L	0	0%	1	٥	ą.	148	0.16 U	1.6 U	0.25 U	0.25 U	1 U	1 U
Bromodichloromethane	UG/L	0	0%	80 °	٥	ū	148	0.39 U	1.5 U	0.25 U	0.25 ∪	1 U	1 U
Bromoform	UG/L	0	0%	80°	0	Q	148	0.26 U	1 U	0.5 U	0.5 U	1 U	1 U
Carbon disulfide	UG/L	0	0%		0	Ð	148	0.19 U	0.78 U	0.6 U	0.6 U	tU	1 U
Carbon tetrachlonde	UG/L	0	0%	5	0	Ð	148	0.27 U	1.1 U	0.5 U	0.5 U	1 U	1 U
Chlorobenzene	UG/L	0	0%	5	0	Ð	148	0.32 U	1.3 U	0.25 U	0.25 U	1 U	1 ↓
Chlorodibromomethane	UG/L	0	0%	80 ti	O	0	148	0.32 U	1.3 U	0.1 ⊔	0.1 U	1 U	1 U
Chioroethane	UG/L	1.1	5%	5	0	7	148	0.32 U	1.3 UJ	1 🗅	1 U	1 U	1 ⊔
Chloroform	UG/L	27	10%	7	4	15	148	9	3.1 J	2.1	0.27 🕽	1 U	1 11
Cis-1,2-Dichloroethene	UG/L	720	84%	5	98	124	148	260	630	28	0.54 J	41	6.1
Cis-1.3-Dichloropropene	UG/L	Ð	0%	0.4	0	Q	148	0.36 U	1.4 U	0.11 U	Q.11 LJ	1 U	1 U
Cyclohexane	UG/L	Ð	0%		Q.	0	148	0.53 U	2.1 U	0.25 U	0.25 ⊔	1 U	1 U
Dichlorodifluoromethane	UG/L	0	0%	5	Q.	0	148	0 29 U	1.1 U	0.25 U	0.25 U	1 U	1 U
Ethyl benzene	UG/L	1.3	6%	5	0	9	148	0.18 U	0.74 U	0.11 U	0.11 U	1 U	1 U
tsopropylbenzene	UG/L	Ō	0%	5	Q.	0	148	0.19 U	0.77 U	0.1 U	0.1 U	1 U	1 U
Methyl Acetate	UG/L	6	1%		а	2	148	0.17 U	2 U	0.19 U	0.19 U	1 U	1 UJ
Methyl Tertbutyl Ether	UG/L	0	0%			0	148	0.16 U	0.64 U	0.2 U	0.8 UJ	1 U	1 U
Methyl bromide	UG/L	0	0%	5	ø	0	147	0.28 U	1.1 UJ	0.8 U	1 U	1 U	1 U
Methyl butyl ketone	UG/L	0	0%		a	0	148	1.2 U	5 U	1 U	0.33 U	5 U	5 U
Methyl chlonde	UG/L	Ð	0%	5	0	0	148	0.35 U	1.4 U	0.33 U	0.1 U	1 U	1 U
Methyl cyclohexane	UG/L	0	0%		۵	0	148	0.5 U	2 U	0.1 U	1 U	1 U	1 U
Methyl ethyl ketone	UG/L	4900	14%			21	148	1.3 U	5.3 U	1 U	1 U	5 U	5 U
Methyl isobutyl ketone	UG/L	0	0%		0	0	148	0.91 U	3.6 U	1 ป	0.2 L	5 LI	5 U
Mellitylene chlonde	UG/L	18	8%	5	7	12	148	0.44 U	1.8 U	1 U	1 U	1 U	1 U
Styrene	UG/L	0	0%	5	O	0	148	0.18 U	0.74 U	0.11 U	0.11 U	1 U	1 U
Tetrachloroethene	UG/L	0	0%	5	0	Ü	148	0.36 U	1.5 U	0.15 U	0.15 U	1 U	1 U
Toluene	UG/L	590	18%	5	16	27	148	0.51 U	2 U	0.33 U	0.33 ∪	1 U	1 U
Total Xylenes	UG/L	0	0%	5	0	0	148	0.66 U	2.6 U	0.2 U	0 2 U	3 U	3 ∪
Trans-1,2-Dichloroethene	UG/L	8	47%	5	3	69	148	1.8	3.5 J	0.2 LJ	0.2 U	0.56 J	1.2
Trans-1,3-Dichloropropene	ŲĠ/L	O	0%	0.4	0	0	148	0.37 U	1.5 U	0.21 ⊔	0.21 U	1 U	1 Մ

Local	acility ion ID								ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL PT-18A	ASH LANDFILL MWT-25	ASH LANDFILL MWT-25
	Matrix								GW	GW	GW	GW	GW	GW
	ple ID								ALBW20147	ALBW20162	ALBW20177	ALBW20192	ALBW20064	ALBW20079
Sample									6/4/2009	12/17/2009	7/1/2010	12/19/2010	1/3/2007	3/17/2007
	Code								SA	SA	SA	SA	SA	SA
	idy ID			40.00					LTM	LTM	LTM	LTM	LTM	LTM
Sampling F	Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	7	8	9	10	1	2
Parameter	- 1	Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)					
Trichloroethene		JG/L	2700	70%	5	55	103	148	816 J	2100	120	6.3	50	55
Trichlorofluoromethane	- (JG/L	0	0%	5	Q	0	148	0.15 U	0.61 UJ	0.25 U	0.25 U	1 U	10
Vinyl chlorida		JG/L	180	66%	2	85	97	148	2.6	7.1	0.18 U	0.18 U	1.6	9.6
Other														
Iron	1	JG/L	296000	100%		11	12	12						
Iron+Manganese	l	JG/L	352900	100%		12	12	12						
Manganese	l	JG/L	56900	100%		12	12	12						
Ethane	(JG/L	98	90%		0	65	72						
Ethene	U	JG/L	200	90%		O	65	72						
Methane	i	JG/L	23000	96%		O.	69	72						

72

72

52

Notes:

Sulfate

Total Organic Carbon

1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

MG/L

MG/L

- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b, Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

1060

2050

72%

100%

250000

- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate

Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round		Maximem	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL MWT-25 GW ALBW20093 6/6/2007 SA LTM 3	ASH LANDFILL MWT-25 GW ALBW20108 11/15/2007 SA LTM 4	ASH LANDFILL MWT-25 GW ALBW20123 6/24/2008 SA LTM 5	ASH LANDFILL MWT-25 GW ALBW20138 12/15/2008 SA LTM E	ASH LANDFILL MWT-25 GW ALBW 20153 6/3/2009 SA LTM 7	ASH LANDFILL MWT-25 GW ALBW20168 12/17/2009 SA LTM 8
Parameter Volatile Organic Compounds	Units	Value	Detection	Goals 1	Exceedances		Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (0)
1,1,1-Trichloroethane	UG/L	0.76	3%	5	0	4	148	1 U	1 U	1 U	0.26 ∪	0.26 U	0.26 U
1.1.2.2-Tetrachloroethane	UG/L	0	0%	5	0	0	148	1 U	1 U	1 U	0.21 U	0.21 U	0.21 U
1.1,2-Trichloro-1,2,2-Triftuoroethane	UG/L	0	0%	5	0	Q.	148	1 UJ	1 U	1 U.J	0.31 U	0.31 U	0.31 U
1,1,2-Trichloroethane	UG/E	ů.	0%	1	0	Q	148	1 U	1 U	1 U	0.23 U	0.23 U	0.23 U
1,1-Dichloroethane	UG/L	1.1	9%	5	0	14	148	1 Ų	1 0	1 U	0 75 U	0.75 U	0.38 U
1.1-Dichloroethene	UG/L	2.1	11%	5	O.	16	148	1 11	1 U	10	0.29 U	0.29 U	0.29 U
1.2.4-Trichforobenzene	UG/L	0	0%	5	O-	Ð	148	1 U	t Ü	1 U	0.41 U	0.41 U	0.41 U
1.2-Dibroma-3-chloropropane	UG/L	D	0%	0.04	à	0	148	1 U	t U	1 UJ	1 UJ	1 UJ	0.39 U
1,2-Dibromoethane	UG/L	D	0%	0.0006	à	0	148	1 U	1 U	1 U	0.17 U	0.17 U	0.17 U
1,2-Dichlorobanzene	UG/L	Ð	0%	3	0	0	148	1 U	1 U	1 U	0.2 U	0.2 U	0.2 U
1,2-Dichloroethane	UG/L	5.6	13%	0.6	16	19	148	1 U	1 U	1 U	0.21 U	0.21 U	0.21 U
1,2-Dichloropropane	UG/L	0	0%	1	0	0	146	1 U	1 U	1 U	0.14 U	0.14 U	0.32 U
1,3-Dichlorobenzene	UG/L	0	0%	3	Ď	0	146	1 U	1 U	1 U	0.16 U	0.16 U	0.36 U
1,4-Dichlorobenzene	UG/L	0	0%	3	٥	0	148	1 U	1 U	1 U	0.16 U	0.16 U	0.39 U
Acelone	UG/L	2600	25%		0	37	148	4.5 J	5 U	5 U	1.3 U	1.3 U	13 U
Benzene	UGAL	0	0%	1	0	0	148	1 U	1 U	1 U	0.16 U	0,16 U	0.41 U
Bromodichloromethane	UG/L	0	0%	80 "	0	O	148	1 U	1 U	1 U	0.38 U	0.39 U	0.39 U
Bromoform	UG/L	0	0%	80 ^a	0	0	148	1 U	1 U	1 U	0.26 U	0.26 UJ	0.26 U
Carbon disulfide	UG/L	0	0%		0	0	148	1 U	1 U	1 U	0.19 U	0.19 UJ	0.19 U
Carbon tetrachionde	UG/L	0	0%	5	0	0	148	1 U	1 U	1 0	0.27 U	0.27 U	0.27 U
Chlorobenzene	UG/L	0	0%	5	ō	0	148	1 U	1 ป	1 U	0.18 U	0.32 U	0.32 U
Chlorodibromomethane	UG/L	0	0%	80 b	0	0	148	1 U	1 U	1 0	0.32 U	0.32 U	0.32 U
Chloroethane	UG/L	1.1	5%	5	0	7	148	1 U	1 U	1 (1)	0.32 U	0.32 U	0.32 U
Chloroform	UG/L	27	10%	7	4	15	148	1 U	1 U	1 U	0.34 U	0.34 U	0.34 U
Cis-1.2-Dichloroethene	UG/L	720	84%	5	98	124	148	36	17	17	0.63 J	10	3,3
Cis-1,3-Dichloropropena	UG/L	0	0%	0.4	0	0	148	10	1 U	1 U	0.36 U	0.36 U	0.36 U
Cyclohexane	UG/L	0	0%		0	0	148	1 U	1 U	1 U	0.22 U	0.53 U	0.53 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	148	1 U	1 U	1 U	0.28 U	0.29 U	0.29 U
Elhyl benzene	UG/L	1.3	6%	5	0	9	148	1 U	1 U	1 U	0.18 U	0.18 U	0.18 U
Isopropylbenzene	UG/L	0	0%	5	0	0	148	1 U	1 U	1 U	0 19 U	0.19 U	0.19 U
Methyl Acetate	UG/Ł	6	1%		0	2	148	1 U	1 UJ	1 UJ	0.17 U	0.17 UJ	0.5 U
Methyl Tertbutyl Ether	UG/L	0	0%		0	0	148	1 U	1 น	1 U	0.16 U	0.16 U	0.16 U
Methyl bromide	UG/L	0	0%	5	0	0	147	1 U	1 U	1 UJ	0.28 U	0.28 U	0.28 UR
Methyl butyl katone	UGVL	0	0%		0	0	148	5 U	5 UJ	5 UJ	1.2 U	1.2 U	1.2 U
Methyl chlonde	UG/L	0	0%	5	0	0	148	1 U	1 ប	1 UJ	0.34 U	0.35 U	0.35 U
Methyl cyclohexane	UG/L	O	0%		0	Ö	148	1 U	1 U	1 U	0.22 U	0.5 U	0.5 U
Methyl ethyl ketone	UG/E	4900	14%		O	21	148	5 U	5 U	5 UJ	1.3 ∪	1,3 ∪	1.3 U
Methyl isobutyl ketone	UG/L	0	0%		0	0	148	5 U	5 U	5 UJ	0.91 U	0.91 U	0.91 U
Methylene chlonde	UG/L	18	8%	5	7	12	148	1 U	1.0	1 U	0.44 UJ	0.44 U	0.44 U
Styrene	UG/L	Q	0%	5	à	0	146	1 U	1 U	1 U	0 18 บ	0.18 U	0.18 U
Tetrachioroethene	UG/L	0	0%	5	۵	0	148	1 ជ	1 U	1 U	0.36 U	0.36 U	0.36 U
Toluene	UG/L	590	18%	5	16	27	148	4.6	1 U	t U	0.51 U	0.51 U	0.51 U
Total Xylenes	UG/L	0	0%	5	O.	0	146	3 U	3 U	3 U	0.93 U	0.66 U	0.66 U
Trans-1,2-Dichloroethena	UG/L	8	47%	5	3	69	148	0.5 J	1 U	1 🛭	0.13 U	0.13 U	0.42 ↓
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	148	1 U	1 U	1 U	0.37 U	0.37 ↓	0.37 U

Facili Location I Matr Sample I Sample O	Ď ix D							ASH LANDFILL MWT-25 GW ALBW20093 6/6/2007	ASH LANDFILL MWT-25 GW ALBW20108 11/15/2007	ASH LANDFILL MWT-25 GW ALBW20123 6/24/2008	ASH LANDFILL MWT-25 GW ALBW20138 12/15/2008	ASH LANDFILL MWT-25 GW ALBW20153	ASH LANDFILL MWT-25 GW ALBW20168
QC Coo								SA	SA	5A	12/15/2008 SA	6/3/2009 SA	12/17/2009 SA
Study								LTM	LTM	LTM		LTM	LTM
Sampling Rour		Maximum	Frequency of	Cleanup	Number	Number of Times	Number of Samples	3	4	5	LTM 6	7	LTM 8
Parameter	Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Trichloroethene	UG/L	2700	70%	5	55	103	148	28	26	19	3.2	12	4.2
Trichlorofluoromethane	UG/L	0	0%	5	0	0	148	1 UJ	10	1 UJ	0.15 U	0.15 U	0.15 UJ
Vinyl chloride	UG/L	180	66%	2	85	97	148	2.1	0.64 J	1 U	0.24 U	0.24 U	0.24 U
Other													
Iron	UG/L	296000	100%		11	12	12						
Iron+Manganese	UGIL	352900	100%		12	12	12						
Manganese	UG/L	56900	100%		12	12	12						
Ethane	UG/L	98	90%		0	65	72						
Ethene	UG/L	200	90%		0	65	72						
Methane	UGIL	23000	96%		0	69	72						
Sulfate	MG/L	1060	72%	250000	2	52	72						

Notes:

Tolal Organic Carbon

1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise,

MG/L

- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

2050

100%

a

72

72

- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number	ASH LANDFILL MWT-25 GW ALBW20183 6/30/2010 SA LTM 9	ASH LANDFILL MWT-25 GW ALBW20198 12/19/2010 SA LTM 10	ASH LANDFILL MWT-26 GW ALBW20066 1/3/2007 SA LTM 1	ASH LANDFILL MWT-26 GW ALBW20081 3/17/2007 SA LTM 2	ASH LANDFILL MWT-26 GW ALBW 20095 6/5/2007 SA LTM 3	ASH LANDFILL MWT-26 GW ALBW20111 11/15/2007 SA LTM 4
Parameter	Units	Value	Detection	Goals 1	Exceedances	Detected	of Samples Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Volatile Organic Compounds							,		12:12 (2)			7 GIOC (G)	4496 (4)
1,1,1-Thchloroethane	UG/L	0.76	3%	5	0	4	148	0.5 U	0.5 U	1 U	1 U	1 U	1 년
1.1.2,2-Tetrachloroethane	UG/L	0	0%	5	0	0	148	0.18 U	0.18 U	1 U	1 U	1 U	1 ป
1,1,2-Trichtoro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	148	0.5 UJ	0.5 U	1 U	1 🖰	لانا 1	1 ប
1.1.2-Trichloroathane	UG/L	0	0%	1	0	0	148	0.13 ป	0.13 U	1 🛭	1 🗸	1 🗓	1 ប្
1,1-Oichloroethane	UG/L	1.1	9%	5	0	14	148	0.25 U	0.25 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	UG/L	2.1	11%	5	0	16	148	0.11 U	0.11 U	1 U	1 U	1 U	1 U
1,2,4-Trichtorobenzene	UG/L	ů.	0%	5	0	0	148	0.25 U	0.25 U	1 U	1 U	1 ⊔	1 U
1 2-Dibronto-3-chloropropane	UG/L	O.	0%	0.04	0	0	148	0.44 U	0,44 ∪	1 U	1 U	1 U	t U
1.2-Dibrombethane	UG/L	۵	0%	0.0006	0	0	148	0.25 U	0.25 U	1 ป	1 U	1 U	1 U
1.2-Dichlorobenzene	UG/L	۵	0%	3	ů.	0	148	0.21 U	0.21 ↓	1 U	1 U	1 U	1 U
1,2-Dichloroethane	UG/L	5.6	13%	0.6	16	19	148	0 1 U	0.1 U	1 U	1 ປ	1 V	1 U
1,2-Dichloropropane	UG/L	0	0%	1	a a	0	148	0.13 U	0.13 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	UG/L	Ō	0%	3	Ď.	0	149	0.25 U	0.25 U	1 U	1 U	1 U	1 U
1,4-Dichlorobenzene	UG/L	0	0%	3	Ð	0	148	0.28 U	0.28 U	t U	1 U	1 U	1 U
Acetone	UG/L	2600	25%		0	37	148	5 U	5 UJ	5 U	17	5 U	5 U
Benzene	UG/L	0	0%	1	0	0	148	0.25 ∪	0.25 U	1 U	1 U	1 U	1 U
Bromodichloromethane	UG/L	0	0%	80 h	Q	0	148	0.25 U	0.25 U	1 U	1 U	1 U	1 U
Bromotorm	UG/L	G	0%	80 *	0	0	148	0.5 U	0.5 U	1 U	1 U	1 U	1 십
Carbon disulfide	UG/L	0	0%		0	0	148	0.6 U	0.6 U	1 U	1 U	1 U	1 U
Carbon letrachlonde	UG/L	0	0%	5	0	0	148	0.5 U	0.5 U	1 U	1 U	1 U	1 U
Chlorobenzene	UG/L	0	0%	5	0	0	148	0.25 U	0.25 U	1 บ	1 U	1 U	1 U
Chlorodibromomethane	UG/L	0	0%	90 "	0:	0	148	0.1 U	0.1 U	1 U	1 U	1 U	1 U
Chloroethane	UG/L	1.1	5%	5	0	7	148	1 U	1 UJ	1 U	1 U	1 U	1 U
Chioroform	UG/L	27	10%	7	4	15	148	0.14 U	0.14 U	1U	1U	1 ឋ	1 U
Cis-1,2-Dichloroethene	UG/L	720	84%	5	98	124	148	13	0.97 J	19	17	11	2.8
Cis-1,3-Dichloropropena	UG/L	0	0%	0.4	0	0	148	0.11 U	0.11 U	1 U	1 U	1 U	1 U
Cyclohexane	UG/L	0	0%	_	0	0	148	0.25 U	0.25 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	148	0.25 U	0.25 U	1 U	1 U	1 U	1 U
Ethyl benzene	UG/L	1.3	6%	5	0	9	148	0.11 U	0.11 U	1 U	1 ∪	1 U	1 U
Isopropylbenzene	UG/L	0	0%	5	0	٥	148	0.1 U	0.1 U	1 U	1 U	1 U	1 U
Methyl Acetate	UG/L	6	1%		0	2	148	0.19 UJ	0.19 U	1 U	† UJ	1 U	1 UJ
Methyl Tertbutyl Ether	UG/L	0	0%	_	٥	Ď	148	0.2 LI	0.8 U	1 U	1 U	1 U	1 u
Methyl bromide	UG/L	0	0%	5	0	Ò	147	0.8 UJ	1 U	1 U	1 U	1 😃	1 ป
Methyl butyl ketone Methyl chlonde	UG/L	0 0	0%	-	0	Ð	148	1 UJ	0.33 U	5 U	5 U	5 U	5 UJ
,	UG/L	_	0%	5	0	Đ	148	0.33 ป	0,1 U	1 ປ	1 U	1 U	1 U
Methyl cyclohexane	UG/L	Û.	0%		0	0	148	0.1 U	1 U	1 U	1 U	1 U	1 U
Methyl ethyl katone	UG/L	4900	14%		0	21	148	1 U	1 U	5 U	15	5 U	5 U
Methyl isobutyl ketone	UG/L	Ó	0%		0	0	148	1 U	0.2 U	5 ⊔	5 U	5 U	5 U
Mathytane chlonde	UG/L	18	8%	5	7	12	148	1 U	1 U	1 U	1 U	ט 1	1 U
Styrene	UG/L	0	0%	5	0	0	148	0.11 U	0.11 U	1 U	1 U	1 U	1 U
Tetrachloroethene	flet.	0	0%	5	0	0	148	0.15 U	0.15 U	1 Ų	1 U	1 U	1 13
Toluene Tolo: Yutaana	UG/L	590	18%	5	16	27	148	033 U	0.33 U	1 U	† U	1 U	1 Џ
Total Xylenes	UG/L	0	0%	5	0	0	148	0.2 U	D.2 U	3 U	3 U	3 Ų	3 ∪
Trans-1.2-Dichloroethene	UG/L	8	47%	5	3	69	148	0.49 J	0.2 U	0.6 J	1	0.7 J	1 U
Trans-1,3-Dichloropropene	UG/L	O.	0%	0.4	0	0	148	0.21 U	0.21 U	1 υ	1 Ц	1 U	1 U

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

	Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL MWT-25 GW ALBW20183 6/30/2010 SA LTM 9	ASH LANDFILL MWT-25 GW ALBW20198 12/19/2010 SA LTM 10	ASH LANDFILL MWT-26 GW ALBW20066 1/3/2007 SA LTM 1	ASH LANDFILL MWT-26 GW ALBW20081 3/17/2007 SA LTM 2	ASH LANDFILL MWT-26 GW ALBW20095 6/5/2007 SA LTM 3	ASH LANDFILL MWT-26 GW ALBW20111 11/15/2007 SA LTM 4
Parameter		Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Trichloroethene		UG/L	2700	70%	5	55	103	148	7.7	1.9	10	- 11	3.2	2.8
Trichlorofluoromethan	10	UG/L	0	0%	5	0	O	148	0,25 U	0.25 U	1 U	1 U	1 UJ	1 U
Vinyl chloride		UG/L	180	66%	2	85	97	148	0.18 U	0.18 U	2	6.1	4.4	1 U
Other														
Iron		UG/L	296000	100%		11	12	12			275 J	844		
Iron+Manganese		UG/L	352900	100%		12	12	12			1043 J	2464		
Manganese		UG/L	56900	100%		12	12	12			768	1620		
Ethane		UG/L	98	90%		O	65	72			2 U	0.4	1	0.16
Ethane		UG/L	200	90%		a	65	72			2 U	7.8	13	0.4
Methane		UG/L	23000	96%		D.	69	72			2 U	210	390	44
Sulfate		MG/L	1060	72%	250000	2	52	72			958	738	473	1060
Total Organic Carbon		MG/L	2050	100%		O	72	72			3.9 J	15.2	10.3	6.1

- 1. The deanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date OC Code Study ID								ASH LANDFILL MWT-26 GW ALBW20126 6/24/2008 SA LTM	ASH LANDFILL MWT-26 GW ALBW20141 12/15/2008 SA LTM	ASH LANDFILL MWT-26 GW ALBW20156 6/3/2009 SA LTM	ASH LANDFILL MWT-26 GW ALBW20171 12/17/2009 SA LTM	ASH LANDFILL MWT-26 GW ALBW20186 6/29/2010 SA LTM	ASH LANDFILL MWT-26 GW ALBW20202 12/19/2010 SA LTM
Sampling Round			Frequency		Number	Number	Number	5	6	7	8	9	10
Parameter	Units	Maximum Value	of Detection	Cleanup Goals 1	of	of Times	of Samples	Malua (O)	14.1 . 201			14.1 (0)	
Volatile Organic Compounds	Office	# diue	Detection	Ocais	Exceedances	Detected	Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1.1.1-Trichloroethane	UG/L	0.76	3%	5	0	4	148	1 U	0.26 U	0.26 ∪	0.26 U	0.5 U	0,5 ⊔
1 1.2.2-Tetrachloroethane	UG/L	0	0%	5	0	Đ	148	1 U	0.21 U	0.21 U	0.21 U	0.18 U	0.18 U
1.1 2-Trichtoro-1,2,2-Tnfluoroethane	UG/L	O:	0%	5	0	Ð	148	1 U	0.31 U	0.31 U	0.31 UJ	0.5 U	0.5 U
1.1.2-Trichloroethane	UG/L	Q.	0%	1	0	0	148	1 U	0.23 U	0.23 U	0.23 U	0.13 U	0.13 U
1.1-Dichloroethane	UĞ/L	1,1	9%	5	0	14	148	1 U	0.75 U	0.75 U	0.38 U	0.25 U	0.25 U
1 1-Dichloroethene	UG/L	2,1	11%	5	0	16	148	1 U	0.29 U	0.29 U	0.29 U	0.11 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	Ð	148	1 U	0.41 U	0.41 U	0.41 U	0.25 U	0.25 U
1.2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	Ð	148	1 U	1 UJ	1 UJ	0.39 U	0.44 U	0.44 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	0	Ð	148	1 U	0.17 Ų	0.17 U	0.17 U	0.25 U	0.25 U
1.2-Dichlorobenzene	UG/L	O.	0%	3	Ó	0	148	1 0	0.2 U	0.2 U	0.2 U	0.21 U	0:21 U
1,2-Dichloroethane	UG/L	5.6	13%	0.6	16	19	148	1 U	0.21 U	0.21 U	0.21 U	0.1 U	0.1 U
1,2-Dichloropropane	UG/L	0	0%	1	O.	0	148	1 U	0.14 U	0.14 U	0.32 U	0.13 U	0.13 U
1,3-Dichlorobenzens	UG/L	0	6%	3	å	ō	148	1 U	0.16 U	0.16 U	0.36 U	0.25 U	0.25 U
1.4-Dichlorobenzena	UG/L	0	0%	3	ń	ō	148	10	0.16 U	0.16 U	0.39 U	0.28 U	0.28 U
Acetone	UG/L	2600	25%	_	Ů	37	148	5 U	130	1.3 U	1.3 U	5 U	5 (4.)
Benzene	UG/L	0	0%	1	o o	0	148	10	0.16 U	0.16 U	0.41 U	0.25 U	0.25 U
Bramadichloromethane	UG/L	0	0%	80 L	0	0	148	1 U	0.38 U	0.39 U	0.39 U	0.25 U	0.25 U
Bromoform	UG/L	0	0%	80 b	n	0	148	1 U	0.26 U	0.26 UJ	0.26 U	0.5 U	0.5 U
Carbon disulfide	UG/L	0	0%		0	0	148	1 U	0.19 U	0.19 UJ	0.19 U	0.6 U	0.5 U
Carbon tetrachloride	UG/L	0	0%	5	0	ñ	148	1 U	0.27 U	0.27 U	0.27 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	ā	0	148	1 U	0.18 U	0.32 U	0.32 U	9.25 ⊔	0.25 U
Chlorodibromomethane	UG/L	0	0%	80 h	o	0	148	1 U	0.32 U	0.32 U	0.32 U	0.1 U	0.1 U
Chloroethane	UG/L	1.1	5%	5	0	7	148	1 UJ	0.32 1)	0.32 U	0.32 UJ	1 UJ	1 UJ
Chloroform	UGIL	27	10%	7	4	15	148	1 U	0.34 ⊔	0.34 D	0.34 U	0.14 U	0.14 U
Cis-1,2-Dichloroalhene	UG/L	720	84%	5	98	124	148	3.3	1 [6	8.1)	5.5	12
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	148	1 U	0.36 ป	0.36 U	0,36 U	0.11 U	0.11 ປ
Cyclohexane	UG/L	0	0%		n	0	148	1 U	0.22 U	0.53 U	0.53 U	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0	0%	5	ō	0	148	1 U	0.28 U	0.29 U	0.29 U	0.25 U	0.25 U
Ethyl benzene	UG/L	1.3	6%	5	ō	9	148	1 U	0.18 U	0.18 U	0 18 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0	0%	5	o o	0	148	1 U	0.19 U	0.19 U	0.19 U	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%		o	2	148	1 U.j	0.17 U	0 17 UJ	0.5 U	0.19 U	0.19 U
Methyl Teributyl Ether	UG/L	0	0%		ō	0	148	1 U	0.16 U	0.16 U	0.16 U	0.2 U	0.8 U
Mathyl bromide	UG/L	0	0%	5	ō	0	147	1 UJ	0.28 U	0.28 U	0.28 UJ	0.2 U UU 8.0	1 U
Mathyl butyl ketone	UG/L	a	0%	_	0	0	148	5 UJ	1.2 U	1.2 U	1.2 U	1 U	0.33 ビ
Mathyl chloride	UG/L	0	0%	5	0	0	148	1 0	0.34 U	0.35 U	0.35 U	0.33 U	0.1 U
Mathyl cyclohexane	UG/L	0	0%	•	ů.	ō	148	1 ປ	0.22 U	0.5 U	0.55 U	0.1 U	1 U
Methyl ethyl ketone	UG/L	4900	14%		ā	21	148	5 U	1.3 U	1.3 U	1.3 U	1 U	1 U
Methyl isobutyl ketone	UG/L	0	0%		n	0	148	5 U	0.91 U	0.91 U	0.91 U	1 U	0.2 U
Methylene chloride	UG/L	18	8%	5	7	12	148	10	0.91 UJ	0.44 U	0.91 U	1 U	1.2 U
Styrene	UG/L	Đ	0%	5	ó	0	148	1 U	0.18 U	0.18 U	0.44 U	0.11 U	0.11 U
Tetrachloroethene	UG/L	0	0%	5	0	0	148	1 U	0.18 U			0.11 U	0.11 U
Toluene	UG/L	590	18%	5	16	27	148	1 U	0.51 U	0.36 U 0.51 U	0.36 U 0.51 U	0.15 U 0.33 U	0.15 U 0.33 U
Total Xylenes	UG/L	0	0%	5	0	0	148	3 U	0.51 U	0.66 U	0.51 U	0.33 U	0.33 U 0.2 U
Trans-1,2-Dichloroethene	UG/L	8	47%	5	3	69	148	3 U	013.0	0.66 U 0.13 U		0.2 U 0.37 J	0.2 U 0.67 J
Trans-1,3-Dichloropropene	UGVL	0	0%	0.4	0	0	148	1 U	0.37 U	0.13 U	0.42 U 0.37 U	0.37 J 0.21 U	0.67 J 0.21 U
τεωτο-1,α-ουριποιοριομοπο	OUVE	U	Uno	U.4	V	ш	140	10	0.37 0	0.57 0	V.57 U	U.Z1 U	0.21 U

	Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round		Maximum		Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL MWT-26 GW ALBW20126 6/24/2008 SA LTM 5	ASH LANDFILL MWT-26 GW ALBW20141 12/15/2008 SA LTM 6	ASH LANDFILL MWT-26 GW ALBW20156 6/3/2009 SA LTM 7	ASH LANDFILL MWT-26 GW ALBW20171 12/17/2009 SA LTM 8	ASH LANDFILL MWT-26 GW ALBW20186 6/29/2010 SA LTM 9	ASH LANDFILL MWT-26 GW ALBW20202 12/19/2010 SA LTM 10
Parameter		Units	Value	Detection	Goals 1	Exceedances		Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Trichloroethene		UG/L	2700	70%	5	55	103	148	1.7	1.9	3.6	5.8	1.7	4.2
Trichlorofluorometh	ane	UG/L	0	0%	5	0	0	148	1 03	0.15 U	0.15 U	0.15 UJ	0.25 U	0.25 U
Vinyl chloride		UG/L	180	66%	2	85	97	148	1 U	0.24 U	3.5	4.2	0.18 U	7.6
Other														
Iron		UG/L	296000	100%		11	12	12						
Iron+Manganese		UGIL	352900	100%		12	12	12						
Manganese		UG/L	56900	100%		12	12	12						
Ethane		UG/L	98	90%		0	65	72	0.82	0.046	3.2	2.2	22	3.7
Ethene		UG/L	200	90%		0	65	72	2.9	0.028	2.7	1.8	0.71	3.3
Meihane		UG/L	23000	96%		0	69	72	210	10	1100	610	740	1600
Sulfate		MG/L	1060	72%	250000	2	52	72	600	541	570	912	680	690
Total Organic Carbo	оп	MG/L	2050	100%		D	72	72	5.6	4.4	6.9	5.6	4.6	5.5

- 1. The cleanup goal values are NYSDEC Class GA GW Standards unlass noted otherwise.
- a NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW stendard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round			Frequency		Number	Number	Number	ASH LANDFILL MWT-27 GW ALBW20067 1/3/2007 SA LTM 1	ASH LANDFILL MWT-27 GW ALBW20082 3/16/2007 SA LTM 2	ASH LANDFILL MWT-27 GW ALBW20097 6/5/2007 DU LTM 3	ASH LANDFILL MWT-27 GW ALBW20096 6/5/2007 SA LTM 3	ASH LANDFILL MWT-27 GW ALBW20112 11/15/2007 SA LTM 4	ASH LANDFILL MWT-27 GW ALBW20127 5/24/2008 SA LTM 5
Parameter	t to the	Maximum	of	Cleanup	of	of Times	of Samples						
Volatile Organic Compounds	Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1.1,1-Trichloroethane	UG/L	0.76	3%	5	0	4	148	20 UJ	20 U	20 U	20 U	10 U	4 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	ń	0	148	20 UJ	20 U	20 U	20 U	10 U	4 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	Q	0%	5	0	0	148	20 UJ	20 U	20 UJ	20 UJ	10 U	4 U
1,1,2-Trichloroethane	UG/L	Đ	0%	1	ō	ā	148	20 UJ	20 U	20 U	20 U	10 U	4 U
1,1-Dichlorpalhane	UG/L	1.1	9%	5	ń	14	146	20 UJ	20 U	20 U	20 U	10 U	4 U
1,1-Dichlorpathene	UG/L	2.1	11%	5	ō	16	146	20 UJ	20 U	20 U	20 U	10 U	4 U
1.2.4-Trichlorobenzene	UG/L	0	0%	5	ō	0	146	20 DJ	20 U	20 U	20 U	10 U	4 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	0	148	20 UJ	20 U	20 U	20 U	10 U	4 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	0	0	148	20 UJ	20 U	20 U	20 U	10 U	4 U
1,2-Dichlorobenzene	UG/L	ō	0%	3	o o	0	148	20 UJ	20 U	20 U	20 U		4 U
1.2-Dichloroethane	UG/L	5.6	13%	0.6	16	19	148	20 UJ	20 U	20 U	20 U	10 U	_
1,2-Dichloropropane	UG/L	0	0%	1	0	0	148	20 UJ	20 U	20 U	20 U	10 U 10 U	4 U 4 U
1.3-Dichtorobenzene	UG/L	ō	0%	3	ŏ	0	148	20 UJ	20 U	20 U	20 U	10 U	4 U
1.4-Dichforobenzene	UG/L	0	0%	3	ő	n	148	20 UJ	20 U	20 U	20 U	10 U	
Acetone	UG/L	2600	25%		ő	37	148	2000 J	1300	1300	1300		4 U
Benzene	UG/L	0	0%	1	0	0	148	20 UJ	20 U	20 U		30 J	20 U
Bromodichloromethane	UG/L	ō	0%	80 "	0	0	148	20 UJ	20 U	20 U	20 U 20 U	10 U	4 U
Bromoform	UG/L	0	0%	60°	G.	0	148	20 UJ	20 U	20 U	20 U	10 U	4 U
Carbon disulfide	UG/L	Ó	0%	Ų.	n	Ö	148	20 UJ	20 U	20 U	20 U	10 U 10 U	4 U
Carbon tetrachlonde	UG/L	Ó	0%	5	0	0	148	20 UJ	20 U	20 U	20 U	10 U	4 U 4 U
Chlorobenzene	UG/L	ō	0%	5	٥	Ô	148	20 UJ	20 U	20 U	20 U	10 U	4 U
Chlorodibromomethane	UG/L	ō	0%	80 h	٥	0	148	20 UJ	20 U	20 U	20 U		
Chloroethane	UG/L	1.1	5%	5	۵	7	148	20 UJ	20 U	20 U	20 U	10 U	4 U
Chteroform	UG/L	27	10%	7	4	15	148	50 M1	20 U	20 U	20 U	10 U	4 U.J 4 U.J
Cis-1.2-Dichloroethene	UG/L	720	84%	5	98	124	148	49)	20 U	20 U	20 U	10 U	
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	148	20 UJ	20 U	20 U	20 U	10 U 10 U	4 U 4 U
Cyclohexane	UG/L	a	0%	V-4	0	0	148	20 UJ	20 U	20 U	20 U	10 U	4 U
Dtchlorodifluoromethane	UG/L	ō	0%	5	0	0	148	20 UJ	20 U				
Elhyl benzene	UG/L	1,3	6%	5	0	9	148	20 UJ	20 U	20 U	20 U	10 U	4 U
Isopropylbenzene	UG/L	0	0%	5	o	a \$	148	20 UJ	20 U	20 U 20 U	20 U 20 U	10 U	4 U
Methyl Acetate	UG/L	6	1%	0	0	2	148	20 UJ	20 UJ	20 U		10 U	4 U
Methyl Teributyl Ether	UG/L	0	0%		0	Ò	148	20 UJ	20 U	20 U	20 U 20 U	10 UJ 10 U	4 Uu 4 U
Methyl bromide	UG/L	0	0%	5	o	0	147	20 UJ	20 U	20 U	20 U	10 U	4 U.i
Malhyl butyl kelone	UG/L	0	0%		0	0	148	100 UJ	100 U	100 U	100 U		
Methyl chloride	UG/L	0	0%	5	0	0	148	20 UJ	20 U			50 UJ	20 UJ
Methyl cyclohexane	UG/L	0	0%	Ų.	G.	0	148	20 UJ	20 U	20 ປ 20 ປ	20 U 20 U	10 U	4.0
Mathyl ethyl ketone	UG/L	4900	14%		0	21	148	4100 J				10 U	4 U
Methyl isobutyl ketone	UG/L	0	0%		0	0	148	100 J	2200	1700	1800	50 U	20 U
Methylene chlonda	UG/L	18	8%	5	7	12	148	18 J	100 U	100 U	100 U	50 U	20 U
Styrene	UG/L	0	0%	5	٥	0			20 U	13]7	[1]	10 U	4 U
Tetrachioroethens	UG/L	0			0	-	146	20 UJ	20 U	20 U	20 U	10 U	4 U
Taluane	UG/L	590	0% 18%	5 5	υ 16	0 27	148	20 UJ	20 U	20 U	20 U	10 U	4 U
Totai Xylenes	UG/L	0	18% 0%	5	16 Q	0	148 148	20 UJ	20 U	20 U	20 U L	7.3 3	5.9
Trans-1,2-Dichloroethene	UG/L	8	47%	5	3	69	148	80 UJ	60 U	60 U	U 08	30 U	12 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	D	148	20 UJ 20 UJ	20 U	20 U	20 U	10 U	4 U
mans-r,a-bidinoropiqpene	JUNE	U	10.76	0.4	•	U	140	20 UJ	20 U	20 U	20 U	10 U	4 U

Facilit Location II Matri Sample II Sample II C Codi Study II Sampling Round) 3 3 3	Maximum Value	Frequency of Detection	Cleanup	Number of Exceedances	Number of Times	Number of Samples Analyzed	ASH LANDFILL MWT-27 GM ALBW20067 1/3/2007 SA LTM 1 Value (Q)	ASH LANDFILL MWT-27 GW ALBW20082 3/16/2007 SA LTM 2	ASH LANDFILL MWT-27 GW ALBW20097 6/5/2007 DU LTM 3	ASH LANDFILL MWT-27 GW ALBW20096 6/5/2007 SA LTM 3	ASH LANDFILL MWT-27 GW ALBW20112 11/15/2007 SA LTM 4	ASH LANDFILL MWT-27 GW ALBW20127 6/24/2008 SA LTM 5
Trichlurgethene	UG/L	2700	70%	C-DAUS E	55	103	148	20 UJ	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (O
				3	33				20 U	20 U	20 U	10 U	4 U
Trichlorofluoromethane	UG/L	0	0%	5	U	0	148	20 UJ	20 U	20 UJ	20 UJ	10 U	4 U.
Vinyl chloride	UG/L	180	66%	2	85	97	148	20 UJ	20 U	20 U	20 U	10 U	4 U
Other													
Iron	UG/L	296000	100%		11	12	12	296000 J	229000				
Iron+Manganese	UG/L	352900	100%		12	12	12	352900 J	273500				
Manganese	UG/L	56900	100%		12	12	12	56900	44500				
Ethane	UG/L	98	90%		0	65	72	10000 UJ	0.15	0.079	0.082	0.025 U	2.3
Ethene	UG/L	200	90%		0	65	72	10000 UJ	2.7	0.32	0.34	0.014 J	0.049
Melhane	UG/L	23000	96%		0	69	72	10000 UJ	15000	13000	14000	13000	13000
Sulfate	MG/L	1060	72%	250000	2	52	72	10 U	10 U	2.7	2 U	31.7	2 U
Total Organic Carbon	MG/L	2050	100%	ASSIST.	0	72	72	2050 J	1350	771	738	167	88.9

- 1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location tD Matrix Sample ID Sample Date QC Code								ASH LANDFILL MWT-27 GW ALBW20143 12/15/2008 DU	ASH LANDFILL MWT-27 GW ALBW20142 12/15/2008 SA	ASH LANDFILL MWT-27 GW ALBW20157 6/3/2009 SA	ASH LANDFILL MWT-27 GW ALBW20173 12/16/2009 DU	ASH LANDFILL MWT-27 GW ALBW20172 12/16/2009 SA	ASH LANDFILL MWT-27 GW ALBW20187 6/29/2010 SA
Study ID Sampling Round			Frequency		Number	Number	Number	LTM 6	LTM 6	LTM 7	LTM 8	LTM 8	LTM 9
Company (Cond		Maximum	of	Cleanup	of	of Times	of Samples	0	· ·	,	•	٥	9
Parameter	Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Volatile Organic Compounds													
1.1.1-Trichloroethane	UG/L	0.76	3%	5	O .	4	148	2.6 UJ	2.6 UJ	2.6 U	1.3 U	1.3 U	0.5 U
1.1.2,2-Tetrachloroethane	UG/L	0	0%	5	0	Đ	148	2 1 UJ	2.1 UJ	2.1 U	1.1 U	1.1 U	0.18 U
1,1,2-Trichtero-1,2,2-Trifluoroethane	UG/L UG/L	0	0%	5	0	0	148	3.1 UJ	3.1 UJ	3.1 0	1.5 U	15 U	0 5 UJ
1,1,2-Trichloroethane		0	0%	1	0	0	148	2.3 UJ	2.3 UJ	2.3 U	1.2 U	1 2 U	0.13 U
1,1-Dichloroethane 1,1-Dichloroethane	UG/L UG/L	1.1 2.1	9% 11%	5 5	0	14	148	7.5 U	7.5 U	7.5 U	1.9 U	1.9 U	0.25 U
1,1-Dichloroethene 1,2,4-Trichlorobenzene	UG/L	2.1	0%	5	ů G	16 ຄ	148	2.9 U	2.9 U	2.9 U	1.5 U	1.5 U	0.11 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	ū.	0	148 148	4.1 UJ	4.1 ЏЈ	4.1 U	2 U	2 U	0.25 U
1,2-Dibromoethane	UG/L	Û	0%	0.0006	0	6	148	10 UJ	10 UJ	10 UJ	2 U	2 U	0.44 U
1,2-Dichlorobenzene	UG/L				Û	-		1.7 UJ	1.7 113	1.7 U	0.83 U	0.83 U	0.25 U
1,2-Dichloroethane		0 5.6	0%	3	-	0	148	2 U	2 U	2 U	10	1 U	0.21 U
	UG/L UG/L	0	13%	0.6	16 0	19 0	148	2.1 U	2.1 U	2.1 U	1.1 0	1.1 U	0.1 U
1,2-Dichloropropane			0%	1	0	_	148	1,4 U	1.4 U	1,4 U	1.6 U	1.6 U	0.13 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	UG/L UG/L	0	0% 0%	3	n	0	148	1,6 U	1.6 U	1.6 U	1.8 U	1.8 U	0.25 D
Acetone	UG/L	2600		3	n	37	148	1.6 U	1.6 U	1.6 U	2 U	2 U	0.28 U
Benzene			25%	1	0		148	13 UJ	26 J	13 U	6.7 U	6.7 U	11 J
Bromodichloromethane	UG/L UG/L	0	0% 0%	80 h	0	0	148 148	1.6 U	1.6 U	1.6 U	2 U	2 U	0.25 U
Bromoform		0		80 h	n	0		3.8 U	3.8 U	3.9 U	1.9 U	1.9 U	0.25 ⊍
Carbon disulfide	UG/L UG/L	0	0% 0%	00	0	0	148	2.6 UJ	2.6 UJ	2.6 UJ	1.3 U	1.3 U	0.5 U
Carbon tetrachloride	UG/L	0	0%	5	Ü	0	148	1.9 U	1.9 U	1.9 UJ	0.97 U	0.97 U	061
Chlorobenzene	UG/L	0	0%	5	ů ů	0	148	2.7 UJ 1.8 U	2.7 UJ	2.7 U	1.3 U	1.3 U	0.5 U
Chlorodibromomethane	UG/L	0	0%	80 t	n	0	148 148	1,8 U 3.2 U	1.8 U	3.2 ∪	1.6 U	1.6 U	0.25 U
Chloroethane	UG/L	1.1	5%	5	0	7	148		3.2 U	3.2 U	1.6 U	1.6 U	0.1 ป
Chloroform	UG/L	27	10%	7	4	15	148	3.2 U 3.4 U	3.2 U 3.4 U	3.2 U 3.4 U	1.6 U	1.6 U 1.7 U	1 ป 0.14 ป
Cts-1,2-Dichloroethene	UG/L	720	84%	5	98	124	148	1.6 U	3.4 U	16 U	1.7 U 1.9 U	1.7 U	0.14 U
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	148	3.6 U	3.6 U	3.6 ∪	1.8 U	1.6 U	0.18.3
Cyclohexane	UG/L	0	0%	0.4	0	Û	148	2.2 UJ	2.2 UJ	5.3 U	2.7 U	2.7 U	0.11 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	148					2.7 U 1.4 U	
Ethyl benzene	UG/L	1.3	6%	5 5	0	ģ	148	2.8 U 1.8 U	2.8 U	2.9 U	1.4 U		0.25 U
•	UG/L	0	0%	5	0	0. A	148	1.0 U	1.8 U 1,9 U	1.8 U 1.9 U	0.92 U 0.96 U	0.92 U 0.96 U	0.11 U
Isopropylbenzene Methyl Acetate	UG/L	6	1%	5	0	2	148						0.1 년
Methyl Tertbutyl Ether	UG/L	0	0%		0	0	148	1.7 UJ 1.6 UJ	1.7 UJ 1.6 UJ	1 7 UJ 1.6 U	2.5 U 0.6 U	2.5 U 0.8 U	0.19 UJ 0.2 U
Methyl bromide	UG/L	0	0%	5	0	0	147	2.8 U	2.8 U	2.8 U	1.4 U	1.4 U	0.8 UJ
Methyl butyl ketone	UG/L	0	0%	5	0	0	148	12 U	12 U	2.6 U	6.2 U	6.2 U	1 UJ
Methyl chlorida	UG/L	0	0%	5	0	ń	148	3.4 U	3.4 U	3.5 U	1.7 U	1.7 U	0.33 U
Methyl cyclohexane	UG/L	0	0%	3	n n	0	148	2.2 UJ	2.2 UJ	5.0 U	2.5 U	2.5 U	0.1 U
Methyl ethyl ketone	UG/L	4900	14%		0	21	148	2.2 UJ 13 UJ	2.2 UJ	13 U	2.5 U	6.6 U	10
Methyl isobulyl ketone	UG/L	0	0%		0	0	148	9.† UJ	9.1 UJ	9.1 U	4.5 U	4,5 U	1 U
Methylene chloride	UG/E	18	8%	5	7	12	148	9.1 UJ				4.5 U 2.2 U	
•		-		5	0				4.4 UJ	4.4 U	2.2 U		1 U
Styrene Tetrachloroelhene	UG/L UG/L	0	0% 0%	5 5	0	0	148	1.8 U	1.8 U	1.8 U	0.92 U	0.92 U	0.11 U
Tetrachioroethene Toluene		590		5	_	0 27	148	3.6 U	3.6 U	3.6 U	1.8 U	1.8 U	0.15 U
Total Xylenes	UG/L UG/L	990	18% 0%	5	16 0	0	148 [148	7.2 J	L 6.6	5.1 U	2.6 U 3.3 U	2.6 U 3.3 U	0.61 J 0.2 U
Trans-1,2-Dichloroethene	UG/L	8	47%	5	3	69	148	9.3 U		6.6 U		•	
	UG/L UG/L	0			3 O	0		1.3 U	1.3 U	1.3 U	2.1 U	2.1 U	0.2 U
Trans-1,3-Dichloropropene	UG/L	U	0%	0.4	U	U	148	3.7 U	3.7 U	3.7 ↓	1.8 ป	1.8 U	0.21 U

	Facility								ASH LANDFILL					
	Location ID								MWT-27	MWT-27	MWT-27	MWT-27	MWT-27	MWT-27
	Matrix								GW	GW	GW	GW	GW	GW
	Sample ID								ALBW20143	ALBW20142	ALBW20157	ALBW20173	ALBW20172	ALBW20187
	Sample Date								12/15/2008	12/15/2008	6/3/2009	12/16/2009	12/16/2009	6/29/2010
	QC Code								DU	SA	SA	DU	SA	SA
	Study ID								LTM	LTM	LTM	LTM	LTM	LTM
	Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	6	6	7	8	8	9
Parameter		Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)					
Trichloroethene		UG/L	2700	70%	5	55	103	148	1.8 U	1.8 U	1.8 U	2.3 U	2.3 U	0.13 U
Trichlorofluorometha	ane	UG/L	D	0%	5	O	0	148	1.5 UJ	1.5 UJ	1.5 U	0.76 U	0.76 U	0.25 U
Vinyl chlonde		UG/L	180	66%	2	85	97	148	2.4 U	2.4 U	2.4 U	2.9 J	3.2 J	0.18 U
Other														
Iron		UGIL	296000	100%		11	12	12						
Iron+Manganese		UG/L	352900	100%		12	12	12						
Manganese		UG/L	56900	100%		12	12	12						
Ethane		UG/L	98	90%		0	65	72	1.6	1.6	5.1	4.3	4.4	3.8
Ethene		UG/L	200	90%		0	65	72	0.12	0.13	0.15	1.1	1.2	0.12
Methana		UG/L	23000	96%		0	69	72	15000	15000	14000	16000	15000	13000
Sulfate		MG/L	1060	72%	250000	2	52	72	23.8	24.2	0.93 J	14 J	13.9 J	0.95 J
Total Organic Carbo	n	MG/L	2050	100%		D	72	72	53.1	53.8	81.7	50.9	49	61

- 1 The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number	ASH LANDFILL MWT-27 GW ALBW20203 12/18/2010 SA LTM 10	ASH LANDFILL MWT-28 GW ALBW20069 1/3/2007 DU LTM 1	ASH LANDFILL MWT-28 GW ALBW20068 1/3/2007 SA LTM 1	ASH LANDFILL MWT-28 GW ALBW20063 3/16/2007 SA LTM 2	ASH LANDFILL MWT-28 GW ALBW20098 6/5/2007 SA £TM 3	ASH LANDFILL MWT-28 GW ALBW20113 11/15/2007 SA LTM 4
Parameter	Units	Value	Detaction	Goals 1	Exceedances		of Samples Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Volatile Organic Compounds							7 and 1 y and 1	(2000 (4)	70.00 (4)		*000 (12)	48166 (G)	Value (G)
1,1,1-Trichtoroethane	UG/L	0.76	3%	5	0	4	148	0.5 U	20 UJ	20 UJ	20 U	20 11	5 U
1,1,2,2-Tetrachloroethane	UG/L	Ō	0%	5	0	0	148	0.18 U	20 UJ	20 UJ	20 U	20 U	5 U
1,1,2-Trichtoro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	148	0.5 ∪	20 UJ	20 UJ	20 U	20 ŲJ	5 U
1,1,2-Trichloroethane	UG/L	0	0%	1	Q.	0	148	0.13 U	20 UJ	20 UJ	20 U	20 U	5 U
1,1-Dichloroethane	UG/L	1.1	9%	5	O	14	148	0.25 ↓	20 UJ	20 UJ	20 U	20 U	5 U
1,1-Dichloroethene	UG/L	2.1	11%	5	O.	16	148	0.11 U	20 UJ	20 UJ	20 U	20 U	5 U
1,2,4-Trichlorobenzane	UG/L	0	0%	5	0	0	148	0.25 ∪	20 UJ	20 UJ	20 U	20 U	5 U
1.2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	O	148	0.44 U	20 UJ	20 UJ	20 U	20 U	5 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	ø	0	148	0.25 U	20 UJ	20 UJ	20 U	20 U	5 LJ
1,2-Dichlorobenzene	UG/L	Đ	0%	3	0	0	148	0.21 U	20 UJ	20 UJ	20 U	20 U	5 U
1,2-Dichloroethane	UG/L	5.6	13%	0.6	16	19	148	0.1 U	20 UJ	20 UJ	20 U	20 U	5 U
1.2-Dichloropropane	UG/L	0	0%	1	0	0	148	0.13 U	20 UJ	20 UJ	20 U	20 U	5 U
1.3-Dichlorobenzene	UG/Ļ	0	0%	3	0	0	148	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U
1,4-Dichlorobenzene	UG/L	0	0%	3	0	0	148	0.28 U	20 UJ	20 UJ	20 U	20 U	5 U
Acelone	UG/L	2600	25%		0	37	148	5 UJ	2600 J	2500 J	170	520	25 U
Benzene	UG/L	Đ	0%	1	0	0	148	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U
Bromodichloromethane	UG/L	Đ	0%	80 °	0	0	148	0.25 U	20 UJ	20 UJ	20 U	20 U	5 ⊔
Bromoform	UG/L	0	0%	80 r.	0	0	148	0.5 U	20 UJ	20 U3	20 U	20 U	5 U
Carbon disulfide	UG/L	0	0%		0	0	148	0.6 U	20 UJ	20 UJ	20 U	20 U	5 บ
Carbon tetrachloride	UG/L	0	0%	5	0	O.	148	0.5 U	20 UJ	20 UJ	20 U	20 U	5 น
Chlorobanzena	UG/L	0	0%	5	0	0	148	0.25 ∪	20 UJ	20 UJ	20 U	20 U	5 U
Chlorodibromomethane	UG/L	0	0%	80 b	٥	0	148	0,1 U	20 UJ	20 UJ	20 U	20 U	5 U
Chloroethane	UG/L	1.1	5%	5	0	7	148	1 UJ	20 UJ	20 UJ	20 U	20 U	5 U
Chloroform	UG/L	27	10%	7	4	15	148	0.14 U	20 UJ	20 UJ	20 U	20 U	5 U
Cis-1,2-Dichloroethene	UG/L	720	84%	5	98	124	148	1,1	20 UJ	20 UJ	20 U	20 U	5 U
Cis-1,3-Dichloropropane	UG/L	0	0%	0.4	0	Ð	148	0.11 U	20 UJ	20 UJ	20 U	20 U	5 U
Cyclohexane	UG/L	0	0%		0	0	148	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	Đ	148	0.25 U	20 UJ	20 UJ	20 U	20 U	5 U
Ethyl benzene	UG/L	1.3	6%	5	0	9	148	0.11 U	20 UJ	20 UJ	20 บ	20 U	5 U
Isopropylbenzene	UG/L	0	0%	5	0	0	148	0.1 U	20 UJ	20 UJ	20 U	20 U	5 U
Methyl Acetate	UG/L	6	1%		Q.	2	148	0.19 U	20 UJ	20 UJ	20 UJ	20 ⊔	5 UJ
Methyl Tertbutyl Ether	UG/L	0	0%		0	0	148	0.8 U	20 UJ	20 UJ	20 U	20 U	5 U
Methyl bromide	UG/L	0	0%	5	0	0	147	1 U	20 UJ	20 UJ	20 U	20 U	5 U
Mathyl butyl kelone	UG/L	0	0%		а	0	148	0.33 U	100 UJ	100 UJ	100 U	100 U	25 UJ
Mathyl chloride	UG/L	0	0%	5	ů.	0	148	0.1 U	20 UJ	20 UJ	20 U	20 U	5 U
Methyl cyclohexane	UG/L	0	0%		à	0	148	t U	20 UJ	20 UJ	20 U	20 U	5 U
Methyl ethyl ketone	UG/L	4900	14%		а	21	148	1 U	4900 J	4900 J	180	510	25 U
Methyl isobutyl ketone	UG/L	Ð	0%		O.	0	148	0.2 U	100 UJ	100 UJ	100 U	100 U	25 U
Methylene chloride	UG/L	18	8%	5	7	12	148	1 년 [I4 J	13 4	20 U [1 5.6	5 U
Styrene	UG/L	0	0%	5	0	0	148	0.11 U	20 LIJ	20 UJ	20 U	20 U	5 U
Tetrachloroethene	UG/L	0	0%	5	0	0	148	0.15 U		20 UJ	20 U	20 U	5_U
Toluene	UG/L	590	18%	5	16	27	148	0.33 ⊔ [350 J	330 J	160	500	310
Total Xylenes	UG/L	0	0%	5	٥	0	148	0.2 U	60 UJ	60 UJ	60 U	60 U	15 U
Trans-1,2-Dichloroethene	UGÆ	8	47%	5	3	69	148	0.2 U	20 UJ	20 UJ	20 ∪	20 U	5 U
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	148	0.21 U	20 UJ	20 UJ	20 ∪	20 U	5 U

Sampl	Facility Location ID Matrix Sample ID ample Date QC Code Study ID along Round		Mäximum	Frequency	Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL MWT-27 GW ALBW20203 12/18/2010 SA LTM 10	ASH LANDFILL MWT-28 GW ALBW20069 1/3/2007 DU LTM 1	ASH LANDFILL MWT-28 GW ALBW20068 1/3/2007 SA LTM 1	ASH LANDFILL MWT-28 GW ALBW20083 3/16/2007 SA LTM 2	ASH LANDFILL MWT-28 GW ALBW20098 6/5/2007 SA LTM 3	ASH LANDFILL MWT-28 GW ALBW20113 11/15/2007 SA LTM 4
Parameter		Units	Value	Detection	Goals 1	Exceedances		Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Trichloroeihene		UGIL	2700	70%	5	55	103	148	0.51 J	20 UJ	20 UJ	20 U	20 U	5 U
Trichlorofluoromethane		UG/L	0	0%	5	0	Ð	148	0.25 U	20 UJ	20 UJ	20 U	20 UJ	5 U
Vinyl chloride		UG/L	180	66%	2	85	97	148	2.1	20 UJ	20 UJ	20 U	20 U	5 U
Other														
Iron		UG/L	296000	100%		11	12	12		271000 J	278000 J	33000		
fron+Manganese		UG/L	352900	100%		12	12	12		301800 J	309800 J	37450		
Manganese		UG/L	56900	100%		12	12	12		30800	31800	4450		
Ethane		UG/L	98	90%		0	65	72	3	10000 UJ	10000 UJ	0.67	0.01 J	0.014 J
Ethene		UG/L	200	90%		O	65	72	0.88	10000 UJ	10000 UJ	0.48	0.057	0.025 U
Methane		UG/L	23000	96%		0	69	72	18000	13000 J	12000 J	19000	11000	11000
Sulfate		MG/L	1060	72%	250000	2	52	72	25	2.3	2 U	2 U	2 U	
Total Organic Carbon		MG/L	2050	100%		0	72	72	32	1730 J	1820 J	171	309	2 U 92

- 1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998),
- b. Federal Maximum Conteminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round		Manhaura	Frequency	Olympia	Number	Number	Number	ASH LANDFILL MWT-28 GW ALBW20128 6/25/2008 SA LTM 5	ASH LANDFILL MWT-28 GW ALBWZ0144 12/15/2008 SA LTM 6	ASH LANDFIEL MWT-28 GW ALBW20159 674/2009 DU LTM 7	ASH LANDFILL MWT-28 GW ALBW20158 6/3/2009 SA LTM 7	ASH LANDFILL MWT-28 GW ALBW20174 12/18/2009 SA LTM 8	ASH LANDFILI. MWT-28 GROUNDWATER ALBW20188 6/29/2010 SA LTM 9
Parameter	Units	Maximum Value	of Detection	Cleanup Goals 1	of Exceedances	of Times Detected	of Samples	Value (O)	Materia (O)	16-1 200	V-1 (O)	1/-1 101	V-1 - 70
Volatile Organic Compounds	UTILS	Talde	Detection	Guais	exceedances	Detected	Analyzed	Value (Q)	Value (□)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
1,1,1-Trichloroethane	UG/L	0.76	3%	5	О	4	148	4 U	2.6 U	0.26 U	0.26 U	1.3 U	0.5 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	ā	0	148	4 U	2.1 U	0.21 U	0.21 U	1.1 Ư	0 18 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	a	ō	148	4 U	3.1 U	0.31 U	0.31 U	1.5 UJ	0.5 UJ
1,1,2-Trichloroethane	UG/L	0	0%	1	а	0	148	4 U	2.3 ∪	0.23 U	0.23 U	1.2 U	0 13 U
1.1-Dichloroelhane	UG/L	1.1	9%	5	0	14	148	4 U	7.5 U	0.75 U	0.75 U	1.9 U	0.25 U
1,1-Dichloroethene	UG/L	2.1	11%	5	۵	16	148	4 U	2.9 U	0.29 U	0,29 U	1,5 U	0.11 U
1,2,4-Trichlorobenzene	UG/L	-0	0%	5	a	0	148	4 U	4.1 U	0.41 U	0,41 U	2 U	0.25 U
1.2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	¢.	0	148	4 U	10 UJ	1 UJ	1 UJ	2 U	0.44 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	a	0	148	4 U	1.7 U	0.17 U	0.17 U	0.83 U	0 25 U
1,2-Dichlorobanzena	UG/L	0	0%	3	а	0	148	4 U	2 U	0.2 U	0.2 U	1 U	0.21 U
1,2-Dichloroethane	UG/L	5.6	13%	0.6	16	19	148	4 U	2.1 ↓	0.21 U	0.21 U	1.1 U	0.1 U
1.2-Dichloropropane	UG/L	Ð	0%	1	0	0	148	4 U	1,4 U	0.14 U	0.14 U	1.6 U	0.13 U
1.3-Dichlorobenzene	UG/L	0	0%	3	0	0	149	4 U	1.6 U	0.16 U	0.16 ป	1.8 ∪	0.25 U
1.4-Dichloroberizene	UG/L	0	0%	3	0	0	148	4 U	1.6 U	0,16 U	0.16 U	2 Ü	0.28 U
Acetone	UG/L	2600	25%		0	37	148	20 ⊎	13 U	1.9 J	1.9 J	6.7 ⊔	6.2 J
Benzene	ĽĠ/Ļ	0	0%	1	0	0	148	4 U	1.6 U	0.16 U	0.16 U	2 U	0.25 U
Bromodichloromethane	UGIL	0	0%	1 08	0	0	148	4 U	3.8 ∪	0.39 U	0.39 U	1.9 U	0.25 U
Bromoform	UG/L	0	0%	1 08	0	0	148	4 U	2 6 U	0.26 UJ	0.26 UJ	1.3 U	0.5 U
Carbon disulfide	UG/L	0	0%		0	0	148	4 U	1.9 U	0.19 UJ	0.19 UJ	0.97 U	0.6 U
Carbon tetrachtoride	UGAL	0	0%	5	0	0	148	4 U	2.7 U	0.27 U	0.27 U	1.3 U	0.5 U
Chlorobenzene	UGAL	0	0%	5	0	O-	148	4 U	1.8 U	0.32 U	0.32 U	1.6 U	0.25 U
Chlorodibromomethane	UG/L	Ō	0%	80 ^t	0	0	148	4 U	3.2 U	0.32 U	0.32 U	1.6 U	0.1 U
Chloroethane	UG/L	1.1	5%	5	0	7	148	4 U.J	3.2 U	0.32 U	0.32 U	1.6 UJ	1 U
Chloroform	UG/L	27	10%	7	4	15	148	4 U	3.4 U	0.34 U	0.34 U	1.7 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	720	84%	5	98	124	148	4 U	1.6 U	0.16 U	0.16 U	1.9 U	0.15 U
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	148	4 U	3.6 U	0.36 U	0.36 U	18 U	0.11 U
Cyclohexane	UG/L	0	0%		0	0	148	4 U	2.2 U	0.53 U	0.53 U	2.7 U	0.25 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	148	4 U	2.8 U	0.29 U	0.29 U	140	0.25 ∪
Ethyl benzene	UG/L	13	6%	5	0	9	148	4 U	1.8 U	0.18 U	0.18 U	0.92 U	0.17 J
Isopropylbenzene	UG/L	0	0%	5	0	Ö	148	4 U	1.9 U	0.19 U	0.19 U	0.96 U	0.1 U
Methyl Acelate	UG/L	6	1%		0	2	148	4 UJ	1.7 U	0.17 UJ	0.17 UJ	2.5 U	0.19 UJ
Methyl Teribotyl Ether	UG/L	0	0%		0	0	148	4 U	1.6 U	0.16 U	Q 16 U	U 8.0	0 2 U
Methyl bromide	UG/L	0	0%	5	0	Ð	147	4 UJ	2.8 U	0.28 U	0.28 U	1,4 UJ	08 UJ
Methyl butyl ketone	UG/L	0	0%		Û	Ð	148	20 UJ	12 U	1.2 U	1 2 U	6.2 ∪	1 UJ
Methyl chlonde	UG/L	0	0%	5	0	0	148	4 U	3.4 U	0.35 U	0.35 U	17 U	0.33 U
Methyl cyclohexane	UG/E	0	0%		0	0	148	4 U	2.2 ⊔	0.5 U	0.5 U	2,5 ↓	0.1 U
Methyl eihyl kalone	UG/L	4900	14%		0	21	148	20 U	13 U	1.3 U	1,3 U	6.6 U	1 ⊔
Methyl isobulyl ketone	UG/L	O	0%		0	0	148	20 U	9,1 U	0.91 U	0.91 U	4.5 U	1 U
Methylene chloride	UG/L	18	8%	5	7	12	148	4 U	4.4 UJ	0.44 U	0.44 U	2.2 U	1 U
Styrene	UG/L	D	0%	5	0	0	148	4 U	1.8 ∪	0.18 U	0.18 U	0.92 U	0.11 Lf
Tetrachlorgelhene	UG/L	0	0%	5	O	٥	148	4 U	3.6 ∪	0.36 U	0.36 U	1.8 U	0.15 U
Toluane	UG/L	590	18%	5	16	27	148	.50	5.1 ↓	0.6 J	0.57 J	2.6 U	0.52 J
Tolal Xylenes	UG/L	0	0%	5	0	0	148	12 U	9.3 U	0.66 ∪	0.66 U	3.3 U	0.2 U
Trans-1,2-Dichloroethene	UG/L	8	47%	5	3	69	148	4 U	1.3 U	0.13 U	0.13 U	2.1 ⊎	0.2 ∪
Trans-1,3-Dichloropropene	UG/L	0	۵%	0.4	Ð	0	148	4 U	3.7 ∪	0.37 U	0.37 ⊍	1.8 ∪	0.21 U

Facil Location Mate Sample Sample Da QC Coo Study Sampling Rout	Ó ix D le e e	Maximum Value	Frequency of Detaction	Cleanup	Number of Exceedences		Number of Samples Analyzed	ASH LANDFILL MWT-28 G ME ALBW20128 6/25/2008 SA LTM 5	ASH LANDFILL MWT-28 GW ALBW20144 12/15/2008 SA LTM 6	ASH LANDFILL MWT-28 GW ALBW20159 G/3/2009 DU LTM 7	ASH LANDFILL MWT-28 GW ALBW20158 6/3/2009 SA LTM 7	ASH LANDFILL MWT-28 GW ALBW20174 12/18/2009 SA LTM 8	ASH LANDFILL MWT-28 GROUNDWATER ALBW20188 6/29/2010 SA LTM 9
Trichloroethene	UG/L	2700	70%	6	55	103	148	Value (Q) 4 U	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Trichlorofluoromethane	UG/L	0		-					1.8 U	0.18 U	0.18 U	2.3 U	0.13 U
			0%	5	0	0	148	4 UJ	1.5 U	0.15 U	0.15 U	0.76 UJ	0.25 U
Vinyl chloride	UG/L	180	66%	2	85	97	148	4 U	2.4 U	0.24 บ	0.24 U	1.2 U	0.18 U 1.6
Other													
Iron	UG/L	296000	100%		11	12	12						
Iron+Manganese	UG/L	352900	100%		12	12	12						
Manganese	UG/L	56900	100%		12	12	12						
Ethane	UG/L	98	90%		0	65	72	0.65	2	1.7	1.9	1.6	1.5
Ethene	UG/L	200	90%		0	65	72	0.044	0.12	0.066	0.062	0.12	0.057
Methane	UG/L	23000	96%		D	69	72	12000	19000	12000	14000		
Sulfate	MG/L	1060	72%	250000	2	52	72	2 U				15000	14000
Total Organic Carbon	MG/L	2050		250000	2				48.3	0.35 U	0.35 U	3.16	0.5 U
rotal Cogains Calbon	MICH	2050	100%		O.	72	72	49.2	27.9	27.6	28.7	25.5	21

- 1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detacted; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date OC Code Study ID Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL MWT-28 GW ALBW20189 6/29/2010 DU LTM 9	ASH LANDFILL MWT-28 GW ALBW20204 12/18/2010 SA LTM 10	ASH LANDFILL MWT-29 GW ALBW 20070 1/0/2007 SA LTM 1	ASH LANDFILL MWT-29 GW ALBW20085 3/16/2007 DU LTM 2	ASH LANDFILL MWT-29 GW ALBW20084 3/16/2007 SA LTM 2	ASH LANDFILL MWT-29 GW ALBW20099 6/5/2007 SA LTM 3
Parameter	Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (O)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Vatue (Q)
Volatile Organic Compounds												, ,	
1,1,1-Trichloroethane	UG/L	0.76	3%	5	Ò	4	148	0.5 U	0.5 ∪	2 U	4 U	5 U	2 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	٥	148	0.18 U	0.18 ∪	2 U	4 U	5 U	2 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	0	0%	5	0	0	148	0.5 UJ	0.5 ∪	2 U	4 U	5 U	2 UJ
1,1,2-Tachloroethane	UG/L	0	0%	1	0	0	148	0.13 ∪	0.13 U	2 U	4 U	5 U	2 U
1,1-Dichloroethane	UG/L	1,1	9%	5	Ò	14	148	0.25 ∪	0.25 ∪	2 U	4 U	5 U	2 U
1,1-Dichloroethene	IJG≀L	2.1	11%	5	0	18	148	0.11 U	0.11 U	2 ゼ	4 U	5 U	2 U
1.2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	148	0.25 U	0.25 ∪	2 U	4 U	5 U	2 U
1.2-Dibromo-3-chloropropane	UG/L	Ð	0%	0.04	0	0	148	0.44 U	0.44 U	2 U	4 U	5 U	2 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	Û	0	148	0.25 U	0.25 U	2 U	4 U	5 U	2 U
1,2-Dichlorobenzens	UG/L	Ð	0%	3	0	0	148	0 21 U	0.21 U	2 U	4 U	s u	2 U
1,2-Dichloroathane	UG/L	5.6	13%	0.6	16	19	148	0.1 U	0.1 U	2 U	4 U	5 ⊔	2 U
1,2-Dichloropropane	UG/L	0	0%	1	0	Q	148	0.13 U	0.13 ∪	2 U	4 U	5 U	2 U
1,3-Dichlorobenzene	UG/L	Ð	0%	3	0	0	148	0.25 U	0.25 U	2 U	4 U	5 U	2 U
1,4-Dichlorobenzene	UG/L	Ð	0%	3	٥	0	148	0.28 U	D.28 U	2 U	4 U	5 U	2 U
Acetone	UG/L	2600	25%		0	37	148	5.9 J	5 U.J	10 U	14 J	15 J	5.7 J
Benzene	UG/L	Ø	0%	1	0	0	148	0.25 U	0.25 ∪	2 U	4 Ų	5 Ų	2 U
Bromodichloromethane	UG/L	Ó	0%	80 t	Q	0	148	0.25 U	0.25 U	2 U	4 U	5 U	2 U
Bromoform	UG/L	0	0%	80 ^E	0	Q	148	0.5 U	0.5 U	2 U	4 U	5 U	2 U
Carbon disulfide	UG/L	Ó	0%		0	0	148	0 6 U	0.6 U	2 U	4 U	5 U	2 U
Carbon tetrachloride	UG/L	0	0%	5	0	0	148	0.5 U	0.5 U	2 U	4 U	5 U	2 U
Chlorobenzene	UG/L	٥	0%	5	0	0	148	0 25 U	0.25 U	2 U	4 U	5 U	2 U
Chlorodioromomethane	UG/L	0	0%	80 1	0	0	148	0.1 U	0.1 U	2 U	4 U	5 U	2 U
Chloroethane	UG/L	1.1	5%	5	0	7	148	1 U	1 U	2 U	4 U	5 U	2 U
Chloroform	UG/L	27	10%	7	4	15	148	0.14 U	0.14 U	2 U	4 U	5 U	2 U
Cis-1,2-Dichloroethene	UG/L	720	84%	5	96	124	148	0.15 U	0.51 J	280	220	220	100
Cis-1,3-Dichloropropene	UG/Ł	0	0%	0.4	0	0	148	0.11 U	0.11 U		4 U	5 U	2 U
Cyclohexane	UG/L	0	0%		0	Q	148	0.25 U	0.25 U	2 U	4 U	5 U	2 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	148	0 25 U	0.25 U	2 U	4 U	5 U	2 U
Ethyl begzene	UG/L	1.3	6%	5	0	9	148	0.17 J	0.11 U	2 U	4 U	5 U	2 U
Isopropytbenzene	UGAL	Ģ	0%	5	0	0	148	0.1 U	0.1 U	2 U	4 U	5 U	2 U
Methyl Acetate	UG/L	6	1%		0	2	148	0.19 UJ	0.19 U	2 U	4 U.J	5 UJ	2 U
Methyl Teributyl Ether	UG/L	0	0%		0	0	148	0.2 U	UJ 8.0	2 U	4 U	5 U	2 U
Methyl bromide	UG/L	0	0%	5	0	0	147	LU 8.0	1 U	2 U	4 U	5 U	2 U
Methyl butyl ketone	UG/L	0	0%		٥	0	148	1 U.J	0.33 U	10 U	20 U	25 U	10 U
Methyl chlorida	UG/L	Q	0%	5	0	٥	148	0.33 U	0.1 U	2 U	4 U	5 U	2 U
Methyl cyclohexane	UG/L	0	0%		o	Ð	148	0.1 U	1 U	2 U	4 U	5 U	2 U
Methyl ethyl ketone	UG/L	4900	14%		o	21	148	1 U	1 U	10 U	20 U	25 ∪	10 D
Methyl isobutyl ketone	UG/L	0	0%		o	0	148	1 U	0.2 U	10 U	20 U	25 U	10 U
Methylene chlande	UG/L	18	8%	5	7	12	148	1 U	1 U	2 U	4 U	2.5 J	2 U
Styrene	UG/L	0	0%	5	G	n	148	0.11 U	0.11 U	2 U	4 U	5 U	2 U
Tetrachioroethene	UG/L	0	0%	5	0	0	148	0.15 U	0.15 U	2 U	40	5 U	2 U
Toluene	UG/L	590	18%	5	16	27	148	0.48 J	0.33 U	2.6	2.2 』	5 U	2 U
Fotal Xylenes	UG/L	0	0%	5	O.	0	148	0.40 J	0.33 U	6 U	12 U	15 Ų	6 U
Trans-1,2-Dichloroethene	UG/L	8	47%	5	3	69	148	0.2 U	0.2 U	6.5	8 1	7.5	2.1
Trans-1,3-Dichloropropene	UG/L	ō	0%	0.4	0	0	148	0.21 U	0.21 U	2 U	<u>-</u> 4 U	5 U	2 U

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Sai	Facility ocation ID Matrix Sample ID imple Date QC Code Study ID ling Round	Units	Maximum Value	Frequency of Detection	Cleanup			Number of Samples	ASH LANDFILL MWT-28 GW ALBW20189 6/29/2010 DU LTM 9	ASH LANDFILL MWT-28 GW ALBW20204 12/18/2010 SA LTM 10	ASH LANDFILL MWT-29 GW ALBW20070 1/3/2007 SA LTM 1	ASH LANDFILL MWT-29 GW ALBW20085 3/16/2007 DU LTM 2	ASH LANDFILL MWT-29 GW ALBW20084 3/16/2007 SA LTM 2	ASH LANDFILL MWT-29 GW ALBW20099 6/5/2007 SA LTM 3
Trichloroethene		UG/L	2700	70%	Goals 1	Exceedances 55	Detected 103	Analyzed 148	Value (Q) 0.13 U	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Trichlorofluoromethane		UGIL	0	0%	-	33				0.13 U	22	19	19	7.6
					3	U	0	148	0,25 U	0.25 U	2 U	4 U	5 U	2 UJ
Vinyl chloride		UG/L	180	66%	2	65	97	148	0.18 U	0.64 J	140	170	160	81
Other														
Iron		UG/L	296000	100%		11	12	12			1370 J	2550	2470	
Iron+Manganese		UG/L	352900	100%		12	12	12			8620 J	9050	8750	
Manganese		UG/L	56900	100%		12	12	12			7250	6500	6280	
Ethane		UG/L	98	90%		O	65	72	1.5	1,4	2000 U	25	20	13
Elhene		UG/L	200	90%		0	65	72	0.061	0,17	2000 U	150	120	160
Methane		UG/L	23000	96%		0	69	72	13000	12000	2000 U	8100	6500	
Sulfate		MG/L	1060	72%	250000	2	52	72	0.5 U	4.8	113			2800
Total Organic Carbon		MG/L	2050	100%	245000	_	72					173	179	151
road organic Carbon		ULI POLE	LUGU	10076		u	12	72	21	12	25.1 J	36.7	35	15.7

- 1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate

Facility Location ID Matrix Sample iD Sample Date QC Code Study ID Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL MWT-29 GW ALBW20114 11/14/2007 SA LTM 4	ASH LANDFILL MWT-29 GW ALBW20130 6/25/2008 DU LTM 5	ASH LANDFILL MWT-29 GW ALBW20129 6/25/208 SA LTM 5	ASH LANDFILL MWT-29 GW ALBW20145 12/15/2008 SA 1.TM 6	ASH LANDFILL MWT-29 GW ALBW20160 6/3/2009 SA LTM 7	ASH LANDFILL MWY-29 GW ALBW20176 12/16/2009 SA LTM 8
Parameter	Units	Value	Detection	Goals	Exceedances		Analyzed	Value (Q)	Value (Q)	Value (O)	Value (Q)	Value (Q)	Value (Q)
Volatile Organic Compounds													
1,1,1-Trichloroethane	UG/L	0.76	3%	5	0	4	148	1 U	1 U	1 년	0.26 UJ	0.26 U	0.26 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	O.	0	148	1 U	1 U	1 ប	0.21 UJ	0.21 U	0.21 U
1,1,2-Trichipro-1,2,2-Trifluoroethane	UG/L	0	0%	5	O O	0	148	1 U	1 U	1 ប	0.31 UJ	0.31 U	0 31 U
1.1.2-Trichloroethane	UG/L	0	0%	1	0	O.	148	1 U	1 U	1 ⊔	0.23 UJ	0.23 U	0.23 U
1.1-Dichloroethane	UG/E	11	9%	5	0	14	148	1 U	1 ប	1 U	0.75 U	0.75 ∪	0.38 U
1.1-Dichloroethene	UG/L	2.1	11%	5	0	16	148	1 U	1 U	1 U	0.29 ∪	0.29 U	0.29 U
1.2,4-Trichlorobenzane	UG/E	0	0%	5	0	Ð	148	1 U	1 U	1 🗆	0.41 UJ	0.41 U	0.41 U
1.2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	Ð	148	1 0	1 U	1 U	1 UJ	1 UJ	0.39 U
1,2-Dibromoethane	UG/E	0	0%	0.0006	O	0	148	1 U	1 U	1 U	0.17 UJ	0.17 U	0.17 U
1.2-Dichlorobenzene	UG/L	0	0%	3	O.	Ð	148	1 U	1 U	1 U	0.2 U	0.2 U	0.2 U
1,2-Dichloroethane	UG/L	5.6	13%	0.6	16	19	148	1 U	1 U	1 U	0.21 ∪	0.21 U	0.21 U
1,2-Dichloropropane	UG/L	0	0%	1	O.	0	148	1 U	1 U	1 U	0.14 U	0.14 U	0.32 U
1.3-Dichlorobenzene	UG/L	0	0%	3	0	0	148	1 U	1 U	1 U	0.16 U	0.16 U	0.36 ⊎
1.4-Dichlorobenzene	UĞ/L	0	O%	3	0	0	148	1 บ	1 U	1 U	0 16 U	0 16 U	0.39 U
Acetone	UG/L	2600	25%		0	37	148	5 U	5 U	5 U	1.3 OJ	1.3 U	1.3 U
Benzene	UG/L	0	0%	1	0	0	148	1 11	1 U	1 U	0.16 U	0.16 U	0.41 U
Bromodichloromethane	UG/L	0	0%	80 °	0	0	148	1 U	1 U	1 U	0.38 U	0.39 ∪	0.39 U
Bromoform	UG/L	0	0%	80 6	0	0	148	1 U	1 U	1 U	0.26 UJ	0.26 UJ	0.26 U
Carbon disulfide	UG/L	0	0%	_	0	٥	148	1 U	1 U	1 Ų	0.19 U	Q.19 UJ	0.19 U
Carbon tetrachlonde	UG/L	0	0%	5	0	0	148	1 U	1 U	1 U	0.27 UJ	0.27 U	0.27 U
Chlorobenzene	UG/L	0	0%	5	0	0	148	1 U	1 U	1 U	0.18 U	0.32 U	0.32 U
Chlorodibromomethane	UG/L	0	0%	4 08	0	0	148	1 U	1 U	1 U	0.32 U	0.32 U	0.32 U
Chloroethane	UG/L	1,1	5%	5	0	7	148	1 U	1 UJ	1 UJ	0.32 U	0.32 U	0.32 U
Chloroform	UG/L	27	10%	7	4	15	148	1 1	1 U	1U	0.34 U	0.34 U	0.34 U
Cis-1,2-Dichloroethene	UG/L	720	84%	5	98	124	148	96	ж5	#3	91	61	37
Cis-1.3-Dichloropropena	UG/L	0	0%	0.4	0	0	148	1 U	1 U	1 U	0.36 U	0.36 U	0.36 U
Cyclohexane	UG/L	0	0%	_	0	0	148	1 U	1 U	1 U	0,22 UJ	0.53 U	0.53 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	9	148	1 U	1 U	ţ U	0.28 U	D.29 LI	0.29 U
Ethyl benzene	UG/L	1,3	6%	5	0	-	148	10	1 U	1 U	0.18 U	0.18 U	0.18 U
Isopropylbenzene	UG/L	6	0%	5	0	0	148	1 U	1 U	1 U	0.19 U	0.19 U	0.19 U
Methyl Acetate	UG/L	0	1%		-	0	148	1 UJ	1 03	1 UJ	0.17 UJ	0.17 UJ	0.5 U
Methyl Teributyl Ether	UG/L	_	0%	r	0	_	148	1 U	1 U	1 U	0.16 UJ	0.16 U	0.16 U
Methyl bromide	UG/L	0	0%	5	0	O D	147	1 U	1 (/)	1 UJ	0.28 U	0,28 U	0.28 U
Methyl butyl ketone	UG/L	0	0%		_	ů.	148	5 UJ	5 UJ	5 UJ	1.2 U	1.2 U	1.2 U
Methyl chloride	UG/L	-	0%	5	0	•	148	1 U	1 U	1 U	0.34 U	0.35 ป	0.35 U
Methyl cyclohexane	UG/L	0	0%		0	0	148	1 U	1 U	1 U	0.22 ŲJ	0.5 U	0.5 U
Methyl ethyl ketone	UG/L	4900	14%		0	21 0	148	5 U	5 U	5 U	1.3 UJ	1.3 U	1.3 U
Methyl isobutyl ketone	UG/L	0	0%	-	0 7	•	148	5 U	5 U	5 U	LU 19.0	0.91 U	0.91 U
Methylene chloride	UGVL	18	8%	5	-	12	148	1 U	1 년	1 U	0.44 UJ	0.44 U	0.44 U
Styrene	UGVL	0	0%	5	0	0	148	1 U	1 U	1 U	0.18 U	0.18 L)	0.18 U
Tetrachloroethene	UG/L	Ů.	0%	5	0	0	148	1 U	1 U	1 U	0.36 U	0.36 U	0.36 U
Toluene	UG/L	590	18%	5	16	27	148	2.1	1 U	1 U	0.51 U	0 51 U	0.51 U
Total Xylenes	UG/L	0	0%	5	0	0	148	3 U	3 U	3 U	0.93 U	0.66 U	0.66 U
Trans-1.2-Dichloroethene	UG/L	8	47%	5	3	69 0	148	0.83 J	0.68 J	0.62 J	0,6 J	0.67 J	0.85 J
Trans-1,3-Dichloropropene	UG/L	U	0%	0.4	0	Ü	148	1 ប	1 U	1 U	0.37 ₪	0.37 ⊔	0.37 ⊎

Parameter	Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round	Units	Maximum Value	Frequency of Detection	Cleanup	Number of Exceedances	Number of Times Detected		ASH LANDFILL MWT-28 GW ALBW20114 11/14/2007 SA LTM 4	ASH LANDFILL MWT-29 GW ALBW20130 6/25/2008 DU LTM 5	ASH LANDFILL MWT-29 GW ALBW20129 6/25/2008 SA LTM 5	ASH LANDFILL MWT-29 GW ALBW20145 12/15/2008 SA LTM 6	ASH LANDFILL MWT-29 GW ALBW20160 6/3/2009 SA LTM 7	ASH LANDFILL MWT-29 GW ALBW20175 12/16/2009 SA LTM 8
Trichloroethene		UG/L	2700	70%	Goals	55	103	148	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q
Trichlorofluorometha		UG/L							4.4	3.3	3.2	6.6	4.5	3.5
CONTROL WITH THE PARTY OF THE PARTY	III		0	0%	2	0	0	148	1 U	1 UJ	1 UJ	0.15 UJ	0.15 U	0 15 U
Vinyl chloride		UG/L	180	66%	2	65	97	148	7.4	74	73	80	43	29
Other														
Iron		UG/L	296000	100%		11	12	12						
Iron+Manganese		UG/L	352900	100%		12	12	12						
Manganese		UG/L	56900	100%		12	12	12						
Ethane		UG/L	98	90%		0	65	72	19	14	15	14	10	6.7
Ethene		UG/L	200	90%		0	65	72	200	140	140	19	47	12
Methane		UG/L	23000	96%		0	69	72	2600	3000	3200	2700	3000	1500
Sulfate		MG/L	1060	72%	250000	2	52	72	289	174	173	312	300	644 J
Total Organic Carbon	n	MG/L	2050	100%		0	72	72	20.9	14	14.2	13.6	11.8	8.2

- 1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2 Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL MWT-29 GW ALBW20190 6/30/2010 SA LTM 9	ASH LANDFILL MWT-29 GW ALBW20205 12/19/2010 SA LTM 10	ASH LANDFILL MWT-22 GW ALBW20071 1/4/2007 SA LTM 1	ASH LANDFILL MWT-22 GW ALBW-20075 3/17/2007 SA LTM 2	ASH LANDFILL MWT-22 GW ALBW20100 6/6/2007 SA LTM 3	ASH LANDFILL MWT-22 GW ALBW20115 11/14/2007 SA LTM 4
Parameter	Units	Value	Detection	Goals 1	Exceedances		Analyzed	Value (Q)	Value (◘)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Volatite Organic Compounds							,				10.00 (2)	7 LI LO (L)	1000 (0)
1,1,1-Trichloroethane	UG/L	0.76	3%	5	0	4	148	0.5 U	0.5 U	2 U	4 U	1 U	1 U
1.1.2,2-Tetrachloroethane	UG/L	Ð	0%	5	0	0	148	D.18 U	0.18 ∪	2 U	4 U	1 U	1 년
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L		0%	5	0	0	148	0.5 UJ	0.5 U	2 U	4 U	1 UJ	1 U
1,1.2-Trichloroethane	UG/L	a	0%	1	0	0	148	Đ.13 Ų	0.13 U	2 U	4 U	1 U	1 U
1,1-Dichloroethane	UG/L	1.1	9%	5	0	14	148	0.25 ↓	0.25 U	2 U	4 U	1 U	1 U
1,1-Dichloroethene	UG/L	2.1	11%	5	0	16	148	0.26 J	0.4 3	2 U	4 U	1 U	1 U
1,2,4-Trichlorobenzene	UG/L	Ð	0%	5	0	0	148	0.25 U	0.25 ∪	2 ป	4 U	1 U	1 U
1.2-Dibromo-3-chloropropane	UG/L	D	0%	0.04	0	Û	148	0.44 U	0.44 U	2 U	4 U	1 Lf	1 U
1,2-Dibromoethane	UG/L	0	0%	0.0006	0	Ð	148	0.25 U	0.25 U	2 U	4 U	1 U	1 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	٥	148	0.21 U	0.21 U	2 U	4 ⊔	1 ⊔	1 U
1,2-Dichloroethane	UG/L	5.6	13%	0.6	15	19	148	0.1 U	0.1 U	2 U	4 U	1 U	1 U
1,2-Dichloropropane	UG/L	0	0%	1	O.	٥	148	0.13 U	0.13 U	2 십	4 U	1 U	1 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	148	0.25 U	0.25 U	2 U	4 U	1 U	1 U
1,4-Dichlorobenzene	UG/L	0	0%	3	Q	0	148	0.28 U	0.28 U	2 U	4 U	1 U	1 U
Acetone	DG/L	2600	25%		0	37	148	5 U	5 UJ	10 U	18 J	38	5 U
Benzena	DG/L	0	0%	t	0	0	148	0.25 U	0.25 U	2 U	4 U	1 U	1 U
Bromodichloromethane	UG/L	0	0%	80 b	0	0	148	0.25 U	0.25 U	2 U	4 U	1 U	1 U
Bromoform	UG/L	0	0%	80 6	0	0	148	0.5 U	0.5 U	2 U	4 U	1 U	1 U
Carbon disulfide	UG/L	0	0%		Đ	0	148	0.6 U	0.6 U	2 U	4 U	1 ⊔	1 U
Carbon tetrachlonde	UG/L	0	0%	5	Ð	0	148	0.5 U	0.5 U	2 ป	4 U	1 년	1 U
Chlorobenzene	UG/L	0	0%	5	Đ	0	148	0.25 U	0.25 U	2 ป	4 U	1 វេ	1 U
Chlorodibromomethane	UG/L	0	0%	4 OS	Đ	0	148	0.1 ⊔	0.1 U	2 U	4 ⊔	1 13	1 U
Chloroethane	UG/L	1.1	5%	5	0	7	148	1 U	1 U	2 UJ	4 U	1 U	1 U
Chloroform	UGIL	27	10%	7	4	15	148	0,14 U	0.14 J	2 U	4 U	1 U	<u>1</u> U
Cis-1,2-Dichloroethene	UG/L	720	B4%	5	98	124	148	78	38	130	90	120	99
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	148	0 11 U	0.11 U	2 U	4 U	1 ሆ	1 U
Cyclohexane	UG/L	0	0%		0	0	148	0.25 U	0.25 U	2 ป	4 U	1 U	1 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	148	0.25 U	0.25 U	2 U	4 U	1 U	1 U
Ethyl benzene	UG/L	1.3	6%	5	0	9	148	0.11 년	0.11 U	2 U	4 U	1 U	1 😉
Isopropythenzene	UG/L	0	0%	5	0	0	148	0.1 U	0.1 U	2 U	4 U	1 U	1 U
Methyl Acetate	UG/L	6	1%		0	2	148	0.19 UJ	0.19 U	2 U	4 UJ	1 U	1 141
Methyl Tertbulyl Ether	UG/L	0	0%	_	0	0	148	0.2 U	0.8 UJ	2 U	4 U	1 U	1 U
Methyl bromide	UG/L	0	0%	5	0	0	147	0.8 UJ	1 U	2 U	4 U	1 U	1 U
Methyl butyl kelone	UG/L	0	0%	_	0	0	148	1 UJ	0.33 U	10 U	20 U	5 U	5 UJ
Methyl chloride	UG/L	0	0%	5	0	0	148	0.33 U	0.1 U	2 U	4 U	1 U	1 U
Methyl cyclohexane	UG/L	0	D%		0	0	148	0.1 U	1 0	2 ປ	4 U	1 U	1 U
Methyl ethyl ketone	UG/L	4900	14%		0	21	148	1 U	1 1	6 J	20 U	5 U	5 U
Methyl isobutyl ketona	UG/L	0	0%	_	0	0	148	1 U	0.2 U	10 U	20 U	5 U	5 U
Methylene chloride	UGIL	18	8%	5	7	12	148	1 U	1 U	1.2 J	4 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	0	148	0.11 U	0.11 U	2 U	4 U	1 U	1 U
Tetrachloroathene	UG/L	0	0%	5 5	0	0	148	0.15 U	0.15 U	2 U	4 U	1 U	1 U
Toluena	UG/L	590	18%	•	16	27	148	0.33 U	0.33 U	2 U	4 U	1 U	1 U
Total Xylenes	UG/L	0	0%	5 5	0	0	148	0.2 U	0.2 U	6 U	12 U	3 U	3 U
Trans-1,2-Dichloroethene	UG/L UG/L	8 O	47% 0%	0.4	3 0	69 0	148 148	1,1	0.77 J	2.7	4 U	3.2	0.85 J 1 U
Trans-1,3-Dichtoropropene	UG/L	U	U%	0.4	u.	U	149	0.21 U	0.21 U	2 U	4 U	1 U	1 U

Sa Parameter	Facility Location ID Matrix Sample ID Sample Date GC Code Study ID Impling Round	N-M-	Maximum		Cleanup			Number of Samples	ASH LANDFILL MWT-29 GW ALBW20190 6/30/2010 SA LTM 9	ASH LANDFILL MWT-29 GW ALBW20205 12/19/2010 SA LTM 10	ASH LANDFILL MWT-22 GW ALBW20071 1/4/2007 SA LTM 1	ASH LANDFILL MWT-22 GW ALBW20076 3/17/2007 SA LTM 2	ASH LANDFILL MWT-22 GW ALBW20100 6/6/2007 SA LTM 3	ASH LANDFILL MWT-22 GW ALBW20115 11/14/2007 SA LTM 4
Trichloroethene		Units UG/L	Value 2700	Detection 70%	Goals 1	Exceedances 55		Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
			2700		5	55	103	148	1.3	2.1	5.2	3.8 J	6.5	2.6
Trichlorofluoromethane		UG/L	0	0%	5	0	0	148	0.25 U	0.25 U	2 U	4 U	1 UJ	1 U
Vinyl chlonde		UG/L	180	66%	2	85	97	148	69	27	98	64	81	140
Other														
Iron		UG/L	296000	100%		11	12	12						
Iron+Manganese		UG/L	352900	100%		12	12	12						
Manganese		UG/L	56900	100%		12	12	12						
Ethane		UG/L	98	90%		O	65	72	18	5.1				
Ethene		UG/L	200	90%		0	65	72	68	7.9				
Methane		UG/L	23000	96%		0	69	72	5400	3100				
Sulfate		MG/L	1060	72%	250000	2	52	72	170	300				
Total Organic Carbon		MG/L	2050	100%		0	72	72	10	7.4				

- 1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
- a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- U.i= the compound was not detected; the associated reporting limit is approximate.

Facility Location tD Matrix Sample tD Sample Date QC Code Study tD Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	ASH LANDFILL MWT-22 GW AL8W20121 6/25/2008 SA LTM 5	ASH LANDFILE MWT-22 GW ALBW20136 12/15/2008 SA LTM 6	ASH LANDFILL MWT-22 GW ALBW20151 6/3/2009 SA LTM 7	ASH LANDFILL MWT-22 GW ALBW20166 12/16/2009 SA LTM 8	ASH LANDFILL MWT-22 GW ALBW20181 7/1/2010 SA LTM 9	ASH LANDFILL MWT-22 GW ALBW20196 12/17/2010 SA LTM 10
Parameter	Units	Value	Detection	Goals 1	Exceedances	Detected		Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Volatile Organic Compounds	1104	0.70	001		-		4.45						
1,1,1-Trichloroethane 1,1,2-Tetrachloroethane	UG/L UG/L	0.76 0	3% 0%	5 5	0	4 0	148 148	5 U 5 U	1.3 UJ	0.26 U	1.3 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	ů ů	0%	5	0	O O	148	5 UJ	1 UJ 1.6 UJ	0.21 U	1.1 U	0.18 U	0 18 U
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	148	5 UJ	1.6 UJ	0.31 U 0.23 U	1.5 U	0.5 U	0.5 U
1.1-Dichloroethane	UG/L	1.1	9%	5	0	14	148	5 U	1.2 U3 3.8 U	0.23 U 0.75 U	1.2 U 1.9 U	0.13 U 0.25 U	0.13 U 0.25 U
1,1-Dichloroethene	UG/L	2.1	11%	5	0	16	148	5 U	3.a u 1.4 U	0.75 U	1.9 U	0.25 U 0.12 J	0.66 J
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	148	5 U	2 UJ	0.41 U	2 U	0.12 3 0.25 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	o o	0	148	5 UJ	5 U.J	1 11 1	2 U	0.44 U	0.44 V
1,2-Dibromoethane	UG/L	r.	0%	0.0006	0	0	148	5 U	0.85 UJ	0.17 Lt	0.83 U	0.25 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	148	5 U	1 U	0.17 L	1 U	0.21 U	0.21 1
1.2-Dichloroethane	UG/L	5.6	13%	Q. 6	16	19	148	5 U	10	0.21 U	1.1 U	0.1 U	0.25 J
1.2-Dichloropropane	UG/L	n	0%	1	ū.	0	148	5 U	0.7 U	0.14 U	1.6 U	0.13 U	0.13 U
1,3-Dichlorobenzene	UG/L	Ď	0%	3	ō	ō	148	5 U	0.8 U	0.16 U	1.8 U	0.25 U	0.25 U
1,4-Dichlorobenzene	UG/L	0	0%	3	ů	ů.	148	5 U	0.8 U	0.16 U	2 U	0.28 U	0.28 U
Acetone	UG/L	2600	25%	•	n.	37	148	25 U	6.5 UJ	2.5 J	6.7 U	5 U	5 UJ
Benzene	UG/L	0	0%	1	D.	0	148	5 U	0.8 U	0.16 U	2 U	0.25 ป	0.25 U
Bromodichloromethane	UG/L	0	0%	4 08	0	0	148	5 U	1.9 U	0.39 U	1.9 U	0.25 U	0.25 U
Bromolonn	UG/L	Ð	0%	80 h	n	ñ	148	5 U	1.3 UJ	0.26 UJ	1.3 U	0.5 U	0.5 U
Carbon disulfide	UG/L	a	0%		0	0	148	5 U	0.95 U	0.19 UJ	0.97 U	0.6 U	0.6 U
Carbon tetrachlonde	UG/L	0	0%	5	0	0	149	5 U	1.4 UJ	0,27 ∪	1.3 U	0.5 U	0.5 U
Chlorobenzene	UG/L	0	0%	5	0	0	148	รี บ	0.9 U	0,32 ↓	1.6 U	0.25 U	0.25 ป
Chlorodibromomethane	UG/L	0	0%	80 °	0	0	148	5 U	1.6 U	0.32 ∪	1.6 U	0.1 U	0.1 U
Chloroethane	UG/L	1,1	5%	5	0	7	148	5 UJ	1.6 U	0.32 ↓	1.6 U	1 U	1 U
Chlaroform	UG/L	27	10%	7	4	15	148	5 U	1.7 U	0,34 U	1.7 U	0.14 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	720	84%	5	98	124	148	68	160	66	57	41	130
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	Ð	0	148	5 U	1.8 U	0.36 U	1.8 ∪	0.11 U	0.11 U
Cyclohexane	UG/L	0	0%		0	0	148	5 U	1.1 UJ	0.53 ∪	2.7 ↓	0.25 U	0.25 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	148	5 U	1.4 U	0.29 U	1,4 ∪	0,25 UJ	0.25 U
Ethyl benzene	UG/L	1.3	6%	5	0	9	148	Ś U	0.9 ↓	0.18 U	0.92 U	0.11 U	0.11 U
Isopropylbenzene	UG/L	0	0%	5	0	0	148	5 U	0.95 U	0.19 U	0.96 ∪	0.1 U	0.1 U
Methyl Acetate	UG/L	6	1%		0	2	148	5 UJ	0.85 UJ	0.17 UJ	2.5 ∪	0.19 U	0.19 U
Methyl Tenbutyl Ether	UG/Ł	0	0%		0	0	148	5 U	UU 8.0	0.16 U	U 8.0	0.2 U	0.8 UJ
Methyl bromide	UG/L	0	0%	5	0	Û	147	5 UJ	1.4 U	0.28 U	1.4 U	U 8.0	1 U
Methyl butyl ketone	UG4L	0	0%		0	0	148	25 UJ	6 U	1.2 U	6.2 U	1 U	0.33 U
Methyl chtoride	UG/L	Û	0%	5	0	0	148	5 UJ	1.7 ⊔	0.35 U	1.7 U	0.33 U	0 1 U
Methyl cyclohexane	UG/L	0	0%		O	Ò	148	5 U	1.1 UJ	0.5 ↓	2.5 U	0.1 U	1 U
Methyl elhyl ketone	UG/L	4900	14%		0	21	148	25 UJ	6.5 UJ	1.3 U	6.6 U	1 U	1 U
Methyl isobutyl ketone	UG/L	0	0%		0	Φ	148	25 UJ	4.6 UJ	0.91 U	4.5 U	1 U	0.2 U
Methylene chlonde	UG/L	18	8%	5	7	12	148	5 U	2.2 UJ	0.44 U	2.2 U	1 U	1 U
Styrene	UG/L	0	0%	5	0	Đ	148	5 U	0.9 U	0.18 U	0.92 U	0.11 U	0.11 U
Tetrachloroethene	UG/L	0	0%	5	0	Đ	148	5 U	1.8 U	0.36 U	1.8 U	0.15 U	0.15 U
Toluene	UG/L	590	18%	5	16	27	148	5 U	2.6 U	0.51 U	2.6 U	0.33 U	0.33 U
Total Xylenes	UG/L	-O	0%	5	0	0	148	15 U	4.6 U	0.66 U	3.3 ∪	0.2 U	0.2 U
Frans-1.2-Dichloroethene	UG/L	θ	47%	5	3	69	148	5 U	0.65 U	0.77 J	2.1 U	1.3	2.8
Trans-1,3-Dichloropropene	UG/L	Ð	0%	0.4	0	0	148	5 U	1.8 U	0.37 U	1.8 나	0.21 U	0.21 U

Le	Facility ocation ID								ASH LANDFILL MWT-22	ASH LANDFILL MWT-22	ASH LANDFILL MWT-22	ASH LANDFILL MWT-22	ASH LANDFILL MWT-22	ASH LANDFILL MWT-22
	Matrix								GW	GW	GW	GW	GW	GW
Sar	Sample ID mple Date								ALBW20121 6/25/2008	ALBW20136 12/15/2008	ALBW20151 6/3/2009	ALBW20166 12/16/2009	ALBW20181 7/1/2010	ALBW20196 12/17/2010
	QC Code								SA	SA	SA	SA	SA	SA
277	Study ID								LTM	LTM	LTM	LTM	LTM	LTM
Sampli	ing Round		Maximum	Frequency of	Cleanup	Number	Number of Times	Number of Samples	5	6	7	8	9	10
Parameter		Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Trichloroethene		UG/L	2700	70%	5	55	103	148	3 J	5.9	2.2	2.3 U	0.6 J	1.8
Trichlorofluoromethane		UG/L	0	0%	5	0	0	148	5 UJ	0.75 UJ	0.15 U	0.76 U	0.25 U	0.25 U
Vinyl chlonde		UG/L	180	66%	2	85	97	148	42	140	#9	52	57	98
Other														
Iron		UGIL	296000	100%		11	12	12						
Iron+Manganese		UG/L	352900	100%		12	12	12						
Manganese		UG/L	56900	100%		12	12	12						

Notes:

Elhane

Ethene

Sulfate

Methane

Total Organic Carbon

1. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

UG/L

UG/L

UG/L

MG/L

MG/L

98

200

23000

1060

2050

90%

90%

96%

72%

100%

250000

0

D

0

2

0

65

65

69

52

72

72

72

72

72

72

- a. NYSDEC Class GA GW Standards (TOGS 1,1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matinx Sample ID Sample Qate QC Code Study ID Sampling Round			F		Non-hor	\$1h	Norther	ASH LANDFILL MWT-7 GW ALBW20077 3/15/2007 SA LTM	ASH LANDFILL MWT-7 GW ALBW20091 6/5/2007 SA LTM	ASH LANDFILL MWT-7 GW ALBW20106 11/13/2007 SA LTM	ASH LANDFILL MWT-7 GW ALBW20120 6/25/2008 SA LTM	ASH LANDFILL MWT-7 GW ALBW20135 12/15/2008 SA LTM	ASH LANDFILL MWT-7 GW ALBW20150 6/2/2009 SA LTM
Sampling Round		Maximum	Frequency of	Cleanup	Number of	Number of Times	Number of Samples	2	3	4	5	6	7
Parameter	Units	Value	Detection	Goals 1	Exceedances			Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Volatile Organic Compounds													
1,1,1-Trichloroethane	UG/L	0.76	3%	5	0	4	118	1 U	1 U	1 U	1 U	0.26 U	0.26 U
1.1,2.2-Tetrachloroethane	UG/L	0	D%	5	0	0	118	1 U	1 U	1 U	1 U	0.21 U	0.21 U
1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane	UG/L	0	0%	5	0	0	118	10	1 U J	1 U	1 UJ	0.31 U	0.31 U
1,1,2-1richloroethane	UG/L UG/L	0 1 1	0% 7%	1 5	0	0 8	118 118	1 U	1 U	1 U	1 U	0.23 U	0.23 U
1 1-Dichloroethene	UG/L	2.1	7%	5	Đ	8	118	1 U	1 U 1 U	1 U 1 U	1 U 1 U	0.75 U 0.29 U	0.75 U 0.29 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	118	1 1	1 0	1 U	1 U	0.29 U 0.41 U	0.29 U
1,2-Dibromo-3-chloropropane	UG/L	ő	0%	0.04	ñ	ő	118	1 U	1 U	1 U	1 U.J	1 UJ	1 UJ
1,2-Dibromoethane	UG/L	ō	0%	0.0006	0	ō	118	1 U	1 U	1 U	1 U	0.17 U	0.17 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	ō	118	1 U	1 U	1 Ü	1 Ü	0.2 U	0.2 U
1,2-Dichloroethane	UG/L	5.6	11%	0.6	11	13	118	1 U	1 Ū	1 0	1 U	0.21 U	0.21 U
1.2-Dichloropropane	UG/L	0	0%	1	0	0	118	1 U	1 Ū	1 🗓	† U	0.14 U	0.14 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	Q:	118	1 U	1 U	1 U	1 Ū	0.16 U	0.16 U
1.4-Dichlorobenzene	UG/L	0	0%	3	0	0:	118	1 U	1 U	1 U	1 U	0.16 U	0.16 U
Acetone	UG/L	2600	29%		0	34	118	5 U	5 U	5 U	5 U	1.3 U	1.3 ∪
Benzene	UG/L	0	0%	1	0	Q.	118	1 U	1 U	1 U	1 U	0.16 ∪	0.16 U
Bromodichloromethane	UG/L	0	0%	80 b	0	٥	118	1 U	1 U	1 U	1 U	0.38 U	0.39 U
Bromoform	UG/L	۵	0%	80 b	0	O	118	1 U	1 П	1 U	1 U	0.26 U	0.26 UJ
Carbon disulfide	UG/L	O	0%		0	O-	118	t U	1 U	1 Ū	1 Ū	0.19 U	0.19 UJ
Carbon tetrachlonds	UG/L	0	0%	5	Ð	Q	118	1 U	1 U	1 U	1 U	0.27 U	0.27 U
Chlorobenzene	UG/L	Û	0%	5	Ð	Q.	118	1 U	1 U	1 ⊔	1 U	0.18 U	0.32 U
Chlorodibromomethane	UG/L	à	0%	80 ^h	0	0	118	1 U	1 U	1 U	1 U	0.32 U	0.32 U
Chioroethane	UG/L	1.1	6%	5	0	7	118	1 U	1 ប្	0.65 J	1 UJ	0.93 J	0.61 J
Chloroform	UG/L	27	5%	7	4	6	118	1 U	1 U	1 U	1 U	0.34 U	0.34 U
Cis-1,2-Dichlargethene	UG/L	720	81%	5	80	96	116	42	61	90	90	79	68
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	0	118	1 U	1 U	1 U	1 U	0.36 LJ	0.36 U
Cyclohexane	UG/L	D	0%		0	-0	118	1 U	1 ប	1 Ų	1 U	0 22 U	0.53 U
Dichlorodifluoromethane	UGIL	Φ	0%	5	0	0	118	1 U	1 U	1 U	1 U	0.28 U	0.29 じ
Ethyl benzene	UG/L	1.3	3%	5	0	4	118	1 U	1 U	1 U	1 U	0.18 U	0.18 U
Isopropylbenzene	UG/L	0	0%	5	0	0	118	1 U	10	1 U	10	0.19 U	0.19 U
Methyl Acetate Methyl Teributyl Elher	UG/L UG/L	6 0	2% 0%		0	2	118 118	1 UJ	10	1 UJ	1 03	0.17 U	0.17 UJ
Methyl bromide	UG/L	0	0%	5	0	0	118	1 U	1 0	1 U	1 0	0.16 U	0.16 U
Methyl butyl ketone	UG/L	ŏ	0%	2	0	0	117	1 U 5 U	1 U 5 U	1 ป 5 ม.เ	1 UJ 5 UJ	0.28 U 1.2 U	0.28 U 1.2 U
Methyl chloride	UG/L	0	0%	5	0	0	118	1 U	1 U	1 U	1 UJ	0.34 U	0.35 U
Methyl cyclohaxane	UG/L	0	0%	J	o	0	118	1 U	1 U	1 U	1 1	0.22 U	0.5 U
Methyl ethyl ketone	UG/L	4900	18%		0	21	118	5 U	5 U	5 U	5 (1)	1.3 U	1.3 U
Methyl isobutyl ketone	UG/L	0	0%		0	0	118	5 U	5 U	5 U	5 U.J	0.91 U	0.91 U
Methylene chloride	UG/L	18	10%	5	7	12	118	1 U	1 U	1 u	1 U	0.44 UJ	0.44 U
Styrane	UG/L	0	0%	5	0	0	118	1 U	1 U	1 U	1 0	0.18 U	0.18 U
Tetrachloroethena	UG/L	0	0%	5	O	Ð	118	1.0	1 U	1 Ū	1 Ü	0.36 U	0.36 U
Toluene	UG/L	590	19%	5	16	23	118	1 Ü	10	1 ป	1 🗓	0.51 U	0.51 ป
Total Xylenes	UG/L	0	0%	5	0	0	118	3 U	3 U	3 U	3 U	Q.93 U	0.66 년
Trans-1,2-Dichloroethene	UG/L	8	42%	5	3	50	118	1 Ų	1 U	1 U	1 U	0.13 U	0.13 U
Trans-1.3-Dichloropropene	UG/L	0	0%	0.4	Û	0	118	1	1 U	1 U	1 U	0.37 U	0.37 U
Tachloroathane	UG/L	2700	68%	5	48	80	118	440	410	510	440	410	330
Trichlorofluoromethane	UG/L	٥	0%	5	0	0	118		1 UJ	<u> </u>	1 UJ	0.15 U	0.15 U
Vinyl chlonde	ĽĠ/Ļ	180	66%	2	67	78	118	9.7	18	24	12	L3	9.3

Parameter	Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round	Units	Maximum Value	Frequency of Detection	Cleanup Goals ¹	Number of Exceedances		Number of Samples Analyzed	ASH LANDFILL MWT-7 GW ALBW20077 3/15/2007 SA LTM 2 Value (Q)	ASH LANDFILL MWT-7 GW ALBW20091 6/5/2007 SA LTM 3	ASH LANDFILL MWT-7 GW ALBW20106 11/13/2007 SA LTM 4	ASH LANDFILL MWT-7 GW ALBW20120 6/25/2008 SA LTM 5	ASH LANDFILL MWT-7 GW ALBW20135 12/15/2008 SA LTM 6	ASH LANDFILL MWT-7 GW ALBW20150 6/2/2009 SA LTM 7
Other						Exceptioning	Detected	Andryacu	value (G)	value (d)	value (Q)	value (Q)	value (Q)	Value (Q)
Iron		UG/L	296000	100%		11	12	12						
Iron+Manganese		UG/L	352900	100%		12	12	12						
Manganese		UGIL	56900	100%		12	12	12						
Ethane		UG/L	98	88%		0	49	56				6.7	11	7.8
Ethene		UGIL	200	88%		0	49	56				2	0.27	0.76
Methane		UG/L	23000	95%		0	53	56				400	670	
Sulfate		MG/L	1060	70%		0	39	56				29.1	29.1	1100 27
Total Organic Cart	onn	MG/L	2050	100%			56	56				2.3	A. d. t	3.1

- The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
 NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
 2. Shading indicates a concentration above the GA GW standard.

U = compound was not detected

- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date								ASH LANDFILL MWT-7 GW ALBW20165 12/15/2009	ASH LANDFILL MWT-7 GW ALBW20180 7/1/2010	ASH LANDFILL MWT-7 GW ALBW20195 12/18/2010	ASH LANDFILL PT-24 GW ALBW20061 1/2/2007	ASH LANDFILL PT-24 GW ALBW20076 3/15/2007	ASH LANDFILL 7 PT-24 GW AL8W20090 6/5/2007
QC Code								SA	SA	SA	SA	SA	SA
Study ID								LTM	LTM	LTM	LTM	ĻTM	LTM
Sampling Round			Frequency		Number	Number	Number	8	9	10	1	2	3
		Maximum	of	Cleanup	of	of Times	of Samples	ı					
Parameter	Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)	Value (Q)
Volatile Organic Compounds	•				<u> </u>								
1,1,1-Trichloroethane	UG/L	0.76	3%	5	Ð	4	118	0.26 U	0.5 ∪	0.5 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	UG/L	0	0%	5	0	Ü	118	0.21 U	0.18 U	0.18 U	1 U	1 U	1 🗓
1.1.2-Trichloro-1,2,2-Trifluoroethane	UG/L	Q	0%	5	0	0	118	0.31 U	0.5 U	0.5 U	1 🗓	1 U	1 UJ
1,1,2-Trichloroethane	UG/L	0	0%	1	0	0	118	0.23 U	0.13 U	0.13 U	1 U	1 U	1 U
1,1-Dichloroethane	UG/L	1.1	7%	5	0	8	118	0.38 U	0.25 U	0.25 U	L \$8.0	1 U	0.75 J
1 1-Dichloroethene	UGIL	2.1	7%	5	Đ	8	118	0.48 』	0.78 J	0.98 J	1 U	1 U	1 U
1,2,4-Trichlorobenzene	UG/L	0	0%	5	0	0	118	0.41 U	0.25 U	0.25 U	1 U	1 U	1 U
1.2-Dibromo-3-chtoropropane	ug/L	0	0%	0.04	0	0	118	0.39 U	0.44 U	0.44 U	1 U	1 U	1 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	0	O	118	0.17 U	0.25 U	0.25 U	1 U	1 U	1 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	118	0.2 U	0.21 U	0.21 U	1 U	1 U	1 U
1,2-Dichloroethane	UG/L	5.6	11%	0.6	11	13	118	0.21 U	0.1 U	0.1 U	1.0	1 U	1 U
1.2-Dichloropropane	UG/L	0	Da's	1	0	0	118	0.32 U	0.13 U	0.13 U	1 U	1 U	1 U
1.3-Dichlarobenzene	UG/L	0	0%	3	0	0	118	0.36 U	0.25 U	0.25 U	1 U	1 Ų	1 U
1,4-Dichlorobanzene	UG/L	0	0%	3	Đ	0	118	0.39 U	0.28 U	0.28 U	1 U	1 U	1 U
Acetone	UG/L	2600	29%		0	34	118	1.3 U	5 U	5 UJ	5 U	5 U	5 U
Benzene	UG/L	Φ	0%	1	0	ů.	118	0.41 U	0.25 U	0.25 U	1 U	1 U	1 U
Bromodichloromalhane	UG/L	0	0%	80 b	0	Û	118	0.39 U	0.25 U	0.25 U	1 U	1 U	1 U
Bromafarm	UG/L	0	0%	80 "	0	а	118	0.26 UJ	0.5 Ŭ	0.5 U	1 U	1 U	1 U
Carbon disulfide	UG/L	D	0%		0	Q.	118	0.19 UJ	0.6 U	0.6 LJ	1 U	1 U	1 ⊔
Carbon tetrachlonde	UG/L	0	0%	5	0	0	118	0.27 U	0.5 ∪	0.5 U	1 U	1 U	1 U
Chilorobenzene	UG/L	0	0%	5	0	0	118	0.32 ⊍	0.25 U	0.25 U	1 U	1 U	1 U
Chlorodibromomethane	UG/L	0	0%	80 "	0	0	118	0.32 U	0.1 U	0.1 U	1 U	1 U	1 U
Chloroethane	UG/L	1.1	6%	5	0	7	118	0.32 UJ	1 U	1 U	1 U	1 U	1 U
Chloroform	UG/L	27	5%	7	4	6	118	0.34 U	0.14 U	0.14 ⊔	1 Џ	1 U	1 U
Cis-1,2-Dichloroethene	UG/L	720	81%	5	80	96	118	140	170	120	54	38	60
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	D	118	0.36 ↓	0,11 U	0.11 ∪	10	1 υ	1 _U
Cyclohexane	UG/L	Ð	0%		0	0	118	0.53 U	0.25 U	0.25 U	1 U	1 U	1 U
Dichlorodifluoromethana	UG/L	D.	0%	5	0	0	118	0.29 U	0.25 UJ	0.25 U	1 U	1 U	1 U
Ethyl benzene	UG/L	1.3	3%	5	0	4	118	0.18 U	0.11 U	0.11 U	1 Ų	1 U	1 🛭
Isopropylbenzene	UG/L	0	0%	5	0	0	118	0.19 U	0.1 U	0.1 U	1 U	10	1 U
Methyl Acetate	UG/L	6	2%		0	2	118	0.5 U	0.19 U	0.19 U	1 U	1 UJ	1 U
Methyl Tertbutyl Ether	UG/L	0	0%		0	0	118	0.16 U	0.2 U	0.8 UJ	1 U	1.0	1 U
Methyl bromide	UG/L	0	0%	5	0	0	117	0.28 U	0.8 LJ	1 U	1 U	1 U	1 U
Methyl butyl ketone	UG/L	0	0%		0	0	118	1.2 U	1 U	0.33 U	5 U	5 U	5 U
Methyl chloride	UG/L	0	0%	5	0	0	118	0.35 UJ	0.33 U	0.1 U	1 U	1 U	1 U
Methyl cyclohexane	UG/L	Đ	0%		0	0	118	0 5 U	0 1 U	1 U	1 U	1.0	1 U
Methyl athyl ketona	UG/L	4900	18%		0	21	118	1.3 U	1 U	1 U	5 U	5 U	5 U
Methyl isobutyl ketone	UG/L	0	0%		0	0	118	0.91 U	1 U	0.2 U	5 U	5 U	5 U
Methylene chloride	UG/L	18	10%	5	7	12	118	0.44 U	1 U	1 U	1 U	1 0	1 U
Styrene	UG/L	0	0%	5	0	0	118	0.18 U	0.11 U	0.11 U	1 U	1 U	1 U
Tetrachloroethene	UG/L	0	0%	5	0	0	118	0.36 U	0.15 U	0.15 U	1 U	1 ប	1 U
Totuene	UG/L	590	19%	5	16	23	118	0.51 1	0.33 U	0.33 ∪	1 U	1 Ų	1 U
Total Xylenes	UG/L	0	۵%	5	Q.	0	118	0.66 U	0.2 U	0 2 U	3 U	3 U	3 U
Trans-1,2-Dichloroethene	UG/L	8	42%	5	3	50	118	0.55 J	0.91 J	0.75 J	0.86 J	0.81 J	1,6
Trans-1.3-Dichloropropene	UG/L	O	0%	0.4	٥	0	118	0,37 ⊔	0.21 U	0.21 U	1 U	1 U	1 U
Inchloroethene	UG/L	2700	68%	5	48	80	118	350	330	310	4	2.6	3.1
Trichlorofluoromathane	UG/L	0	0%	5	0	Ó	118	0.15 U	0.25 U	0.25 U	1 U	f U	t UJ
Vinys chlonde	UG/L	180	66%	2	67	78	118	21	15	15	0.6 J	1 U	2.6

Parameter	Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round	Units	Maximum Value	Frequency of Detection	Cleanup Goals 1	Number of Exceedances		Number of Samples Analyzed	ASH LANDFILL MWT-7 GW ALBW20165 12/15/2009 SA LTM 8	ASH LANDFILL MWT-7 GG ALBW20180 7/1/2010 SA LTM 9	ASH LANDFILL MWT-7 GW ALBW20195 12/18/2010 SA LTM 10	ASH LANDFILL PT-24 GW ALBW20061 1/2/2007 SA LTM 1 Value (Q)	ASH LANDFILL PT-24 GW ALBW20076 3/15/2007 SA LTM 2	ASH LANDFILL PT-24 GW ALBW20090 6/5/2007 SA LTM 3
Other				V/ D V-				raidiyada	value (Q)	value (Q)	value (Q)	value (Q)	Value (Q)	Value (Q)
Iron		UG/L	296000	100%		11	12	12						
Iron+Manganese		UGIL	352900	100%		12	12	12						
Manganese		UG/L	56900	100%		12	12	12						
Ethane		UG/L	98	88%		0	49	12 56	17	9	4.5			
Ethene		UG/L	200	88%		0	49	56	0.52	0.55	0.2			
Methane		UG/L	23000	95%		0	53	56	2900	1700	400			
Sulfate		MG/L	1060	70%		0	39	56	29.3 J	29	31			
	oon	MG/L	2050	100%			56							

- T. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

 a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

 b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration

 UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Location ID Matrix Sample ID Sample Date								ASH LANDFILL PT-24 GW ALBW20105 11/13/2007	ASH LANDFILL PT-24 GW ALBW20119 6/26/2008	ASH LANDFILL PT-24 GW ALBW20134 12/12/2008	ASH LANDFILL PT-24 GW AL8W20149 6/2/2009	ASH LANDFILL PT-24 GW ALBW20164 12/15/2009	ASH LANDFILL PT-24 GW ALBW20179 6/30/2010
QC Code								SA	SA	\$A	SA	SA	5/30/2010 SA
Study ID								LTM	LTM	LTM	LTM	LTM	LTM
Sampling Round			Frequency		Number	Number	Number	4	5	6	7	8	9
		Maximum	of	Cleanup	of	of Times	of Samples						
Parameter	Units	Value	Detection	Goals 1	Exceedances	Detected	Analyze4	Value (Q)	Value (Q)	Value (Q)	Value (O)	Value (Q)	Value (Q)
Volatile Organic Compounds													
1,1,1-Trichloroethane	UG/L	0.76	3%	5	0	4	118	1 0	1 U	0.26 U	0.26 U	0.26 U	0.5 U
1.1,2,2-Tetrachloroethane 1,1,2-Techloro-1,2,2-Teffuoroethane	UG/L UG/L	0	0% 0%	5 5	0	0	118 118	1 U 1 U	1 0	0.21 U	0.21 U	0.21 U	0.18 U
1,1,2-Inchloroethane	UG/L	0	0%	1	n.	O O	118	1 U	1 UJ 1 U	0.31 U 0.23 U	0.31 U	0.31 U	0.5 UJ
1,1-Dichloroethane	UG/L	1.1	7%	5	0	8	118	0.56 J	0.69 J	0.23 U	0.23 U 0.75 U	0.23 U 0.38 U	0.13 U 0.54 J
1,1-Dichlorpethene	UG/L	2.1	7%	5	0	8	118	1 U	1 U	0.29 U	0.29 U	0.29 U	0.11 U
1,2,4-Tachlorobeazene	UG/L	Ð	0%	5	0	Ð	118	1 ม	1 Ŭ	0.41 U	0.41 U	0.41 U	0.25 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	Ð	118	1 0	1 UJ	1 UJ	1 UJ	0.39 U	0.44 U
1.2-Dibromoethane	UG/L	0	0%	0.0006	0	Ð	118	1 U	1 U	0.17 U	0.17 U	0.17 U	0.25 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	0	118	1 Ų	1 U	0.2 U	0.2 U	0.2 U	0.21 U
1.2-Dichloroethane	UG/L	5.6	11%	0.6	11	13	118	1 U	1 U	0.21 U	0.21 U	0.21 U	0.1 U
1,2-Dichloropropane	UG/L	0	0%	1	O-	0	118	1 U	1 U	0.14 U	0.14 U	0.32 U	0.13 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	118	1 🖰	1 U	0.16 U	0.16 U	0.36 U	0.25 ນ
1.4-Dichtorobenzene Acetone	UG/L UG/L	0 2600	0% 29%	3	0	0 34	118 118	1 บ 5 ม	1 U	0.16 U	0.16 U	0.39 U	0.28 U
Benzene	UG/L	2000	29% 0%	1	0	Ö	118	5 U	5 U 1 U	1.3 U 0.16 U	1.3 U 0,16 U	1.3 U 0.41 U	5 U
Bromodichloromethane	UG/L	o	0%	80 0	٥	0	118	1 U	1 U	0.38 U	0.39 U	0.41 U	0.25 U
Bromoform	UG/L	0	0%	80 b	0	0	118	1 U	1 U		0.39 U 0.26 UJ		0.25 U
Carbon drsulfide	UG/L	0	0%	au	0	0	118	1 U	1 U	0.26 U 0.19 U	0.26 UJ	0.26 UJ 0.19 UJ	0.5 U 0.6 U
Carbon tetrachlonde	UG/L	o o	0%	5	Ú	n	118	1 U	1 U	0.19 U	0.19 UJ	0.19 UJ 0.27 U	0.5 U
Chlorobenzene	UG/L	ő	0%	5	ű	ö	118	1 0	1 0	0.18 U	0.32 U	0.32 U	0.25 U
Chlorodibromomethane	UG/L	0	0%	80 t	0	o	118	1 U	1 U	0.32 U	0.32 U	0.32 U	0.1 U
Chloroethane	UG/L	1.1	6%	5	ō	7	118	1 U	1 113	0.32 U	0.32 U	0.32 UJ	1 8
Chloroform	UG/L	27	5%	7	4	6	118	1 Ü	1 0	0.34 U	0.34 U	0.34 U	0.14 U
Cis-1,2-Dichloroethene	UG/L	720	81%	5	80	96	118	39	48	34	32	28	33
Cis-1,3-Dichloropropene	UG/L	0	0%	0.4	0	O-	118	1U	1 U	0.36 U	0.36 U	0.36 U	0.11 ∪
Cyclohexane	UG/L	D)	0%		0	0	118	1 U	1 ⊔	0.22 U	0.53 U	0.53 U	0.25 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	118	1 U	1 U	0.28 U	0.29 U	0 29 U	0.25 U
Ethyl benzene	UG/L	1.3 0	3%	5 5	0	4 0	118	1 U	1 0	0.18 U	0.18 U	0.18 U	0.11 U
Isopropylbenzene Methyl Acetate	UG/L UG/L	6	0% 2%	5	0	2	118 118	1 U 1 UJ	1 U 1 UJ	0.19 U 0.17 U	0.19 U 0.17 UJ	0.19 U 0.5 U	0.1 U 0.19 UJ
Methyl Teributyl Ether	UG/L	o.	0%		ŏ	ñ	118	1 U	1 13	0.17 U	0.17 U3	0.16 U	0.19 UJ
Melhyl bromide	UG/L	o.	0%	5	ō	D	117	1 U	1 U.J	0.28 U	0.28 U	0.28 (/	0.8 UJ
Methyl butyl ketone	UG/L	à	0%	_	ŏ	Ď.	118	5 UJ	5 แม	1.2 U	1.2 U	1.2 U	t UJ
Methyl chloride	UG/L	0	0%	5	o	0	118	t u	1 113	0.34 U	0.35 U	0.35 UJ	0.33 ∪
Methyl cyclohexane	UG/L	0	0%		٥	à	118	t U	1 U	0.22 U	0.5 U	0.5 U	0.1 U
Methyl ethyl ketone	UG/L	4900	18%		Q	21	118	5 U	5 U.J	1.3 ป	1.3 U	1.3 U	1 U
Methyl isobutyl ketone	UG/L	0	0%		0	0	118	5 U	5 U.J	0.91 U	D,91 U	0.91 U	1 Ų
Mathylane chloride	UG/L	18	10%	5	7	12	118	1 U	1.0	0.44 UJ	0.44 U	0.44 U	1 U
Styrene	UG/L	0	0%	5	0	Ď	118	1 U	1 U	0.18 U	0.18 U	0.18 U	0.11 U
Tetrachloroethene	UG/L	0 590	0%	5 5	0	0	116	10	10	0.36 U	0.36 U	0.36 U	0.15 U
Toluene Total Xvienes	UG/L UG/L	590	19% 0%	5 5	16 0	23 0	116 118	1 U 3 U	1 U 3 U	0.51 U	0.51 U	0.51 U	0.33 U
Trans-1,2-Dichtoroethene	UG/L	8	42%	5	3	50	118	3 U	3 U	0.93 U 0.36 J	0.65 U 0.83 J	0.66 U 0.61 J	0.2 U 1.1
Trans-1,3-Dichloropropene	UG/L	Ö	0%	0.4	0	0	116	1 0	111	0.37 U	0.37 U	0.37 U	0.21 U
Trichloroethane	UG/L	2700	68%	5	48	80	118	3.8	2.4	2.2	1.7	1.7	0.39 J
Trichloroftuoromethane	UG/L	0	0%	5	o o	0	118	1 U	1 0.1	0.15 U	0.15 ⊍	0.15 U	0.25 U
Vinyl chlorida	UG/L	180	66%	2	67	78	118	1 Ū	1.9	0.26 J	2	1.6	3.8

	Facility Location ID								ASH LANDFILL PT-24					
	Matrix								GW	GW	GW	GW	GW	GW
	Sample ID								ALBW20105	ALBW20119	ALBW20134	ALBW20149	ALBW20164	ALBW20179
	Sample Date								11/13/2007	6/26/2008	12/12/2008	6/2/2009	12/15/2009	6/30/2010
	QC Code								SA	SA	SA	SA	SA	SA
	Study ID								LTM	LTM	LTM	LTM	LTM	LTM
	Sampling Round			Frequency		Number	Number	Number	4	5	5	7	8	9
			Maximum	of	Cleanup	of	of Times	of Samples						
Parameter		Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)					
Other			NAME OF THE PARTY									1000 (4)	raidd (de)	raide (d)
Iron		UG/L	296000	100%		31	12	12						
Iron+Manganese		UG/L	352900	100%		12	12	12						
Manganese		UG/L	56900	100%		12	12	12						
Ethane		UG/L	98	88%		0	49	56						
Ethene		UG/L	200	88%		0	49	56						
Methane		UG/L	23000	95%		0	53	56						
Sulfate		MG/L	1060	70%		0	53 39	12 12 12 56 56 56 56						
Total Organic Cart	pon	MG/L	2050	100%		0	56	56						
Total Organic Cart	oon	MG/L	2050	100%		0	56	56						

- T. The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.

 a. NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).

 b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)

 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Facility Localion ID Matrix								ASH LANDFILL PT-24 GW	ASH LANDFILL MW-56 GW	ASH LANDFILL MW-56 GW	ASH LANOFILL MW-56 GW	ASH LANDFILL MW-56 GW	ASH LANDFILL MW-56 GW
Sample ID								ALBW20194	ALBW20072	ALBW20101	ALBW20124	ALBW20139	ALBW20154
Sample Date								12/17/2010	1/4/2007	6/6/2007	6/26/2008	12/11/2008	6/4/2009
QC Code								SA	SA	SA	SA	SA	SA
Study ID			F					LTM	LTM	LTM	LTM	ĻТМ	LTM
Sampling Round			Frequency		Number	Number	Number	10	1	3	5	6	7
Parameter	Units	Maximum		Cleanup	of	of Times	of Samples						
Volatile Organic Compounds	Units	Value	Detection	Goals 1	Exceedances	Detected	Analyzed	Value (Q)					
1.1.1-Trichloroethane	UG/L	0.76	3%	5	0	4	118	0.5.14					
1,1,2,2-Yelrachioroethane	UG/L	۵	0%	5	0	ů.	118	0.5 U 0.18 U	1 U	1 U	1 U	0.26 ŲJ	0.26 U
1.1.2-Trichloro-1,2,2-Trifluoroethane	UG/L	ū	0%	5	ŏ	ů.	118	0.16 0	1 U	1 U 1 UJ	1 ປ 1 ປັ	0.21 U	0.21 U
1,1,2-Trichloroethane	UG/L	ō	0%	1	ő	ū	118	0.13 L)	1 U	1 U	1 U	0.31 ป 0.23 ป	0.31 U
1,1-Dichloroalhane	UG/L	1.1	7%	5	ō	ä	118	0.54 J	1 U	1 U	1 U	0.23 U	0.23 U 0.75 U
1,1-Dichloroethene	UG/L	2.1	7%	5	Q	a	118	0.11 U	1 Ŭ	1 U	1 0	0.29 U	0.79 U
1.2.4-Tachlorobenzene	UG/L	0	0%	5	G	Ð	118	0.25 U	1 Ü	1 Ŭ	1 U	0,41 U	0.41 U
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	Ð	118	0.44 U	1 U	1 Ū	1 ມມ	1 UJ	1 1
1,2-Dibromoethane	UG/L	0	ዕ%	0.0006	0	0	118	0.25 U	1 U	1 Ū	1 U	0.17 U	0.17 U
1,2-Dichlorobenzene	UG/L	0	0%	3	0	Ð	118	0.21 U	1 U	1 U	1 U	0.2 U	0.2 U
1,2-Dichioroethane	UG/L	5.6	11%	0.6	11	13	118	0.1 U	1 U	1 U	1 Ü	0.21 U	0.21 U
1,2-Dichloropropane	UG/L	0	0%	1	ם	0	118	0.13 ⊍	1 U	1 U	1 U	0.14 U	0.14 U
1,3-Dichlorobenzene	UG/L	0	0%	3	0	0	118	0.25 ↓	1 U	1 U	1 U	0 16 U	0.16 ⊔
1.4-Dichlorobenzene	UG/L	0	0%	3	0	0	118	0.28 U	1 U	1 U	1 U	0.16 U	0.16 U
Acetona Benzene	UG/L	2600	29%		0	34	118	5 UJ	5 U	5 U	5 U	1.3 U	1.3 UJ
	UG/L	0	0%	1	0	0	118	0.25 U	1 U	1 U	1 U	0.16 U	0.16 U
Bromodichloromethane	UG/L	0	0%	80 t	0	0	118	0.25 U	1 U	1 U	1 U	0.38 U	0.39 U
Bromoform	UG/L	۵	0%	80°	0	0	118	0.5 U	1 ↓	1 U	1 U	0.26 🗓	0.26 U
Carbon disulfide	UG/L	0	0%		0	0	118	0.6 U	1 U	1 U	1 U	0.19 U	0.19 U
Carbon tetrachlonde	UG/L	0	0%	5	0	0	118	0.5 U	† U	1 U	1 U	0.27 UJ	0.27 U
Chlorobenzene	UG/L	0	0%	5	0	0	118	0.25 U	1 U	1 U	1 U	0.18 U	0.32 ↓
Chlorodibromomethane	UG/L	0	0%	80 5	0	0	118	0.1 U	1 U	1 U	1 U	0.32 U	0.32 U
Chloroethane Chloroform	UG/L	1.1	6%	5	0	7	118	10	1 Ų	1 U	1 UJ	0.32 U	0.32 U
Cis-1,2-Dichloroethene	UG/L	27	5%	7	4	6	118	0.1 6 _J	1 U	1 U	1 U	0.34 U	0.34 U
Cis-1,3-Dichloropropene	UG/L UG/L	720 0	81% 0%	5 0.4	80	96	118	30	1.2	1.7	1.3	0.4 J	1
Cyclohexane	UG/L	0	0%	0.4	0	0	118	0.11 U	1 U	1 0	1 U	0.36 U	0.36 U
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	118 118	0.25 U	1.0	1 U	1 U	0.22 U	0.53 U
Ethyl benzene	UG/L	1.3	3%	5	0	4	118	0.25 U 0.11 U	1 ປ	1 U	1 0	0.28 LJ	0.29 U
Isopropylbenzene	UG/L	0	0%	5	ő	0	118	0.11 U	1 U 1 U	1 U	1 U	0.18 U	0.18 U
Methyl Acetate	UG/L	6	2%		o o	2	118	0.19 U	1 U	1 U 1 U	1 U 1 UJ	0.19 U	0.19 U
Methyl Tertbutyl Ether	UG/L	õ	0%		Ď	Ô	118	0.8 UJ	10	1 U	1 03	0.17 U 0.16 บ	0.17 U 0.16 U
Melhyl bromide	UG/L	0	0%	5	ō	ũ	117	1 LI	1 Ú	1 0	1 UJ	0.28 U	0.18 U
Methyl butyl ketons	UG/L	٥	0%	_	0	Ö	118	0.33 U	5 U	5 U	5 UJ	1.2 U	1.2 U
Methyl chloride	UG/L	0	0%	5	0	Ö	118	0.1 U	1 U	1 U	1 UJ	0.34 U	0.35 U
Methyl cyclohexane	UG/L	0	0%		0	Ð	118	1 U	1 U	1 U	1 U	0.22 U	0.5 U
Methyl ethyl ketons	UG/L	4900	18%		0	21	118	1 U	5 U	5 U	5 UJ	1.3 U	1.3 U
Methyl isobutyl ketone	UG/L	0	0%		Q.	0	118	0.2 U	5 U	5 U	5 UJ	0.91 U	0.91 U
Methylene chloride	UG/L	18	10%	5	7	12	118	1 U	1 IJ	1 υ	1 U	0.44 UJ	0.44 U
Styrene	UG/L	0	0%	5	0	0	118	0.11 U	1 U	1 U	1 U	0 †8 U	0.18 U
Telrachloroethene	UG/L	٥	0%	5	0	0	118	0.15 U	1 U	1 ⊔	1 U	0.36 U	0.36 U
Toluene	UG/L	590	19%	5	16	23	118	0.33 ↓	1 U	1 U	1 U	0.51 U	0.51 U
Total Xylenes	UG/L	0	0%	5	0	0	118	0.2 U	3 U	3 U	3 U	0.93 U	0.66 U
Trans-1,2-Dichloroethene	UG/L	8	42%	5	3	50	118	1.4	1 U	1 U	1 U	0.13 U	0.13 ⊔
Trans-1,3-Dichloropropene Trichloroethene	UG/L	0	0%	0.4	0	0	118	0.21 U	1 U	1 U	1 U	0.37 €	0.37 U
Trichtorofluoromethane	UG/L UG/L	2700	68%	5	46	80	118	0.53 J	1 U	1 U	1 U	0.33 J	0.1B U
Vinyl chloride	UG/L	0 180	0% 66%	5 2	0 67	ը 78	118	0.25 U	1 0	1 01	1 UJ	0.15 UJ	0.15 U
sicily) restricte	JUST	100	00%	2	D.	78	118	7.7	1 U	1 U	1 U	0.24 U	0.24 U

	Facility Location ID Matrix								ASH LANDFILL PT-24 GW	ASH LANDFILL MW-56 GW				
	Sample ID								ALBW20194	ALBW20072	ALBW20101	ALBW20124	ALBW20139	ALBW20154
	Sample Date								12/17/2010	1/4/2007	6/6/2007	6/26/2008	12/11/2008	6/4/2009
	QC Code								SA	SA	SA	SA	SA	SA
	Study ID								LTM	LTM	LTM	LTM	LTM	SA LTM
	Sampling Round		Maximum	Frequency	Cleanup	Number of	Number of Times	Number of Samples	10	1	3	5	6	7
Parameter		Units	Value	Detection	Goals 1	Exceedances		Analyzed	Value (Q)					
Other		1.1				- Allertan					- 11-17039			
tron		UG/L	296000	100%		11	12	12						
Iron+Manganese		UG/L	352900	100%		12 12	12	12						
Manganese		UG/L	56900	100%		12	12	12						
Ethane		UG/L	98	88%		0	49	56						
Ethene		UG/L	200	88%		0	49	56						
Methane		UG/L	23000	95%		0	49 53 39 56	56 56 56 56						
Sulfate		MG/L	1060	70%		0	39	56						
Total Organic Cart	bon	MG/L	2050	100%		0	56	56						

- 1 The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
- a NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
 b Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
- 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

Table B-1
Complete Groundwater Data for Ash Landfill Long Term Monitoring
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Facility Location ID Matrix Sample ID Sample Date QC Code								ASH LANDFILL MW-56 GW ALBW20169 12/18/2009	ASH LANDFILL MW-56 GW ALBW20184 7/1/2010	ASH LANDFILL MW-56 GW ALBW20199 12/19/2010	
Study ID								SA	SA	SA	
Sampling Round			Frequency		Number	Number	Massachus	LTM	LTM	LTM	
ounping Nouno		Maximum	of	Cleanup			Number	Ş	₽	10	
Parameter	Units	Value			of	of Times	of Samples				
Volatile Organic Compounds	Units	value	Detection	Goals	Exceedances	Detected	Analyzed	Value (Q)	Value (Q)	Value (Q)	
1.1.1-Trichloroethane	UGAL	0.76	3%	5							
1.1.2.2-Tetrachloroethane	UG/L	0.76			0	4	118	0.26 U	0.5 U	0.5 U	
1.1,2-Trichloro-1,2,2-Trifluoroethane	UG/L	Ð	0% 0%	5	0	0	118	0.21 U	0.18 U	0.18 U	
1,1,2-Trichloroethane		-		5	0	0	118	0.31 UJ	0.5 U	0.5 U	
1,1-Dichloroethane	UG/L	0	0%	1	0	D	118	0.23 U	0.13 U	0.13 U	
1,1-Dichloroethene	UG/L	1.1	7%	5	O.	8	116	0.38 ∪	0.25 U	0.25 U	
	UG/L	2.1	7%	5	0	8	11B	0.29 U	0.11 U	0.11 U	
1,2,4-Tachlorobenzene	UG/L	0	0%	5	0	0	118	0.41 U	0.25 U	0.25 U	
1,2-Dibromo-3-chloropropane	UG/L	0	0%	0.04	0	Đ	118	0.39 U	0.44 U	0.44 U	
1,2-Dibromoethane	UG/L	0	0%	0 0006	Ò	0	118	0.17 U	0.25 ⊔	0.25 U	
1.2-Dichlorobenzane	UG/L	Q.	0%	3	D	0	118	0.2 U	0.21 U	0.21 U	
1,2-Dichloroethane	UG/L	5.6	11%	0.6	11	13	118	0.21 U	0.1 U	0.1 U	
1,2-Dichloropropane	UG/L	0	0%	1	Ď	0	118	0.32 U	0.13 U	0.13 U	
1.3-Dichlorobenzene	UG/L	0	0%	3	0	0	118	0.36 U	0.25 U	0.25 U	
1,4-Dichlorobanzene	UG/L	0	0%	3	0	۵	118	0.39 U	0.26 U	0.28 U	
Acetone	UG/L	2600	29%		Ó	34	118	1.3 U	5 U	5 UJ	
Benzene	U/G/L	0	0%	1	0	0	118	0.41 U	0.25 U	0.25 U	
Bromodichloromethane	UG/L	Ð	0%	80 "	6	0	118	0.39 U	0.25 U	0.25 U	
Bromoform	UG/L	0	0%	80°	0	0	118	0.26 U	0.5 ↓	0.5 U	
Carbon disulfide	UG/L	ő	0%	00	ő	ő	118	0.19 U			
Carbon tetrachlonde	UG/L	ő	0%	5	0	0	118	0.19 U	0.6 U	0.6 U	
Chlorobenzene	UG/L	Ö	0%	5	0	õ	118		0.5 U	0.5 U	
Chlorodibromomethane	UG/L	0	0%	80°	ò	-		0.32 U	0.25 U	0.25 U	
Chloroethane	UG/L	1.1	6%			0	118	0.32 U	0.1 น	0.1 U	
Chloroform	UG/L	27	5%	5 7	0 4	7	118	0.32 UJ	1 U	1 UJ	
Cis-1,2-Dichloroethene	UG/L	720	81%			6	118	0.34 U	0.14 U	0.24 J	
Cis-1,3-Dichloropropene	UG/L			5	80	96	118	0.56 J	0.61 J	0.86 J	
Cyclohexane	UG/L	O C	0% 0%	0.4	0	0	118	0.36 U	0.11 U	0.11 U	
				_	0	0	118	0.53 U	0.25 U	0.25 U	
Dichlorodifluoromethane	UG/L	0	0%	5	0	0	118	0.29 U	0.25 UJ	0.25 U	
Ethyl benzene	UG/L	1.3	3%	5	0	4	118	0.18 U	0.11 U	0.11 U	
Isopropylbenzene	UG/L	0	0%	5	0	0	118	0.19 U	0.1 U	0.1 U	
Methyl Acatate	UG/L	6	2%		0	2	118	0.5 U	0.19 ↓	0.19 U	
Melinyl Tertbutyl Ether	UG/L	0	0%	_	0	0	118	0.16 U	0.2 U	0.8 น	
Methyl bromide	UG/L	0	0%	5	0	0	117	0.28 UJ	0.8 U	1 U	
Methyl butyl ketone	UG/L	0	0%	_	۵	0	118	1.2 U	1 U	0.33 U	
Methyl chloride	UG/L	0	0%	5	0	0	118	0.35 U	0.33 U	0.1 U	
Methyl cyclohexane	UG/L	0	0%		ð	0	118	0.5 U	0 1 t	1 U	
Methyl ethyl ketone	UG/L	4900	18%		Ð	21	118	1.3 U	1 U	1 U	
Methyl isobutyl ketone	UG/L	0	0%		0	0	118	0.91 ∪	1 U	0.2 U	
Methylene chlonda	UG/L	18	10%	5	7	12	118	0.44 ป	1 U	† U	
Styrene	UG/L	0	0%	5	o o	O	118	0.18 U	0.11 U	0.11 U	
Tetrachioroethene	UG/L	0	0%	5	0	а	118	0.36 ∪	0.15 U	0.15 U	
Toluene	UG/L	590	19%	5	16	23	118	0.51 U	0.33 U	0.33 U	
Total Xylenes	UG/L	0	0%	5	0	0	118	0.66 ∪	0.2 U	0.2 U	
Trans-1,2-Dichloroethene	UG/L	8	42%	5	3	50	118	0.42 U	0.2 U	0.2 U	
Trans-1,3-Dichloropropene	UG/L	0	0%	0.4	0	Ð	118	0.37 U	0.21 U	0.21 U	
Trichloroethene	UG/L	2700	68%	5	48	80	118	0.46 U	0.13 U	0.13 U	
Trichlorofluoromethane	UG/L	٥	0%	5	Q	0	118	0.15 UJ	0.25 U	0.25 U	
Vinyl chlonde	UG/L	180	66%	2	67	78	118	0 24 U	0.18 ⊔	0.18 U	

Parameter	Facility Location ID Matrix Sample ID Sample Date QC Code Study ID Sampling Round	Units	Maximum Value	Frequency of Detection	Cleanup Goals ¹	Number of Exceedances		Number of Samples	ASH LANDFILL MW-56 GW ALBW20169 12/18/2009 SA LTM 8 Value (Q)	ASH LANDFILL MW-56 GW ALBW20184 7/1/2010 SA LTM 9 Value (O)	ASH LANDFILL MW-56 GW ALBW20199 12/19/2010 SA LTM 10 Value (Q)	
Other		Olitio	V Blue	Detection	Outra	EXCECUANCES	Detected	Analyzeu	value (Q)	value (G)	value (Q)	
Iron		UG/L	296000	100%		11	12	12				
Iron+Manganese		UG/L	352900	100%		12	12	12 12				
Manganese		UG/L	56900	100%		12	12	12				
Ethane		UG/L	98	86%		G	49	56				
Ethene		UG/L	200	88%		0	12 49 49	56				
Methane		UGIL	23000	95%		0	53	56				
Sulfate		MG/L	1060	70%		O	53 39 56	12 56 56 56 56 56				
Total Organic Carbo	n	MG/L	2050	100%		0	56	56				

- The cleanup goal values are NYSDEC Class GA GW Standards unless noted otherwise.
 NYSDEC Class GA GW Standards (TOGS 1.1.1, June 1998).
- b. Federal Maximum Contaminant Level (http://www.epa.gov/safewater/contaminants/index.html)
 2. Shading indicates a concentration above the GA GW standard.
- U = compound was not detected
- J = the reported value is and estimated concentration
- UJ= the compound was not detected; the associated reporting limit is approximate.

APPENDIX C

REGRESSION PLOTS

Fig -1
Regression Plot of Well Concentrations At MWT-25
Ash Landfill Annual Report, Year 4

Figure C-2
Regression Plot of Well Concentrations At MWT-26
Ash Landfill Annual Report, Year 4

ND = not detected.

P:\PIT\

.ts\Huntsville Cont W912DY-08-D-0003\TO#01 - LTM Ash Landfill\Annual Report

2 of 10 3/2011

Fig :-3
Regression Plot of Well Concentrations At MWT-27
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

Figure C-4
Regression Plot of Well Concentrations At MWT-28
Ash Landfill Annual Report, Year 4

P:\PIT

Fig :-5
Regression Plot of Well Concentrations At MWT-29
Ash Landfill Annual Report, Year 4

Figure C-6
Regression Plot of Well Concentrations At MWT-22
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

ND = not detected.

P:\PIT

ts\Huntsville Cont W912DY-08-D-0003\TO#01 - LTM Ash Landfill\Annual Repor

ppendices\Apdx C Conc Over Time Regr Y4.xls MWT-22 Regr

Figl -7
Regression Plot of Well Concentrations At PT-22
Ash Landfill Annual Report, Year 4
Seneca Army Depot Activity

of the a policy of the control of the second of the second

Figure C-10
Regression Plot of Well Comcentrations At PT-24
Ash Landfill Annual Report, Year 4

